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Abstract

Consider the problem of testing the linear hypothesis on the regression coeffi-
cients in the Fay-Herriot model which has been used in the small area problem.
Since this model involves the random effects, a test based on the generalized least
squares estimator, called the GLS test, depends on the estimate of the ‘between’
component of variance, which causes the problem that it has an inflated type I error
(size) when the variance component is far from zero. To fix this problem, we derive
the second order approximation of the distribution of the GLS test statistic under
the null hypothesis. Using the Bartlett-type correction, we obtain modified test
statistics with sizes identical to the nominal significance level in the second-order
asymptotic. As estimators of the variance component, the Prasad-Rao estimator,
Fay-Herriot estimator, maximum likelihood (ML) estimator and the restricted max-
imum likelihood (REML) estimator are used and the corresponding modified tests
based on the Bartlett-type correction are given. The sizes of these tests are inves-
tigated numerically and the Bartlett-type correction is shown to work well.

Key word and Phrases: Bartlett correction, Fay-Herriot model, generalized least square
method, linear hypothesis, linear mixed model, maximum likelihood estimator, restricted
maximum likelihood estimator, random effect, test, type I error, variance component.

1 Introduction

In the linear mixed models (LMM), we are concerned with the problem of testing linear
hypotheses on the regression coefficients. It is known that the naive F -statistic based on
the ordinary least squares (OLS) estimator has the serious drawback of having an inflated
type I error (size) when the random effect is present. To fix the drawback, Wu, Holt and
Holmes (1988) and Rao, Sutradhar and Yue (1993) suggested alternative test procedures.
Although their procedures give significant improvements in terms of type I errors, the
sizes are still slightly larger than the nominal significance level. In this paper, we derive
the Bartlett-type correction in the Fay-Herriot model so that the resulting corrected tests
have sizes which are identical to the nominal level upto the second order.
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More specifically, we consider the model treated by Fay and Herriot (1979), given by

yi = x′iβ + vi + ei, i = 1, . . . , k, (1.1)

where β is a p × 1 vector of regression coefficients. It is assumed that v1, . . . , vk and
e1, . . . , ek are mutually independently distributed as vi ∼ N (0, ψ) and ei ∼ N (0, di) for
i = 1, . . . , k. In the Fay-Herriot model, it is also assumed that di’s are known constants.
This model has been used as an area-level model in the context of the small area problem.
Letting y = (y1, . . . , yk)

′, X = (x1, . . . , xk)
′, v = (v1, . . . , vk)

′ and e = (e1, . . . , ek)
′, we

can write the model in the matrix notation as

y = Xβ + v + e, (1.2)

where y ∼ Nk(Xβ,Σ(ψ)) for

Σ(ψ) = ψIk + D, D = diag (d1, . . . , dk).

It is assumed that k ≥ p and X is of full rank.

In this paper, we consider the problem of testing the linear hypothesis on the regression
coefficients β = (β0, β1, . . . , βp−1)

′, namely

H0 : Cβ = b versus H1 : Cβ 6= b,

where C is a q × p known matrix with full rank (p ≥ q) and b is a q × 1 known vector.
When ψ is known, the generalized least squares (GLS) estimator of β is

β̂(ψ) =
{
X ′Σ−1(ψ)X

}−1
X ′Σ−1(ψ)y, (1.3)

which has Np(β, {X ′Σ−1(ψ)X}−1), and an exact test statistic based on the GLS β̂(ψ) is
given by

TGLS(ψ) =
{

Cβ̂(ψ)− b
}′ {

C
{
X ′Σ−1(ψ)X

}−1
C ′

}−1 {
Cβ̂(ψ)− b

}
.

which is distributed as χ2
q distribution with q degrees of freedom under H0. Thus, the

rejection region with size 0 < α < 1 is expressed as {y|TGLS(ψ) > χ2
q,α}, where χ2

q,α is the
upper 100α% point of the χ2

q distribution.

When the model (1.1) does not include the random effects vi’s, TGLS(0) is an exact
test, namely, P [TGLS(0) > χ2

q,α] = α under H0. Since the random effects are present in the
model (1.1), however, TGLS(0) has the serious drawback of having an inflated type I error

when ψ is away from zero. An alternative procedure is the test statistic TGLS(ψ̂) where

ψ̂ is an appropriate estimator of ψ, and we call it the Generalized Least Squares (GLS)

test. Although the GLS test TGLS(ψ̂) is a reasonable alternative, as shown in Section 3,

the size of TGLS(ψ̂) remains still slightly larger than the nominal significance levels.

To improve on TGLS(ψ̂) in the sense of controlling the size, we derive the Bartlett-type

correction of TGLS(ψ̂) when k is large, and show that the resulting corrected test T ∗
GLS(ψ̂)
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has the size which is identical to the nominal significance level α up to O(k−1) under the

null hypothesis H0, namely, P [T ∗
GLS(ψ̂) > χ2

q,α] = α + o(k−1) as k →∞ under H0.

In Section 2, we obtain the asymptotic expansion of the distribution of TGLS(ψ̂) under

the null hypothesis H0 and provide the Bartlett-type correction of TGLS(ψ̂) using the
monotone transformation given in Fujikoshi (2000). The resulting corrected test can be
shown to satisfy the size property in the second order asymptotic on k. The Bartlett-type
correction depends on the asymptotic bias and variance of the estimator ψ̂ of ψ. Section
2 also introduces some estimators of ψ and provides their asymptotic bias and variance
as well as it is shown that the estimators satisfy the assumptions required to establish
the asymptotic expansion of TGLS(ψ̂). In Section 3, the sizes of the corrected tests are
numerically investigated for various k and ψ, and it is shown that the corrected tests
improve on TGLS(ψ̂) in the sense of controlling the sizes. The proofs of the main results
are given in Section 4.

2 Main results

2.1 Bartlett-type correction of the GLS test

In the Fay-Herriot model (1.1) or (1.2), we consider the problem of testing the linear
hypothesis on the regression coefficients β, given by H0 : Cβ = b against H1 : Cβ 6= b,
where C is a q × p known matrix with full rank (p ≥ q) and b is a q × 1 known vector.

Since y ∼ Nk(Xβ,Σ(ψ)) for Σ(ψ) = ψIk + D, the GLS estimator of β is β̂(ψ) =
{X ′Σ−1(ψ)X}−1X ′Σ−1(ψ)y. When ψ is known, the chi-square test statistic based on

β̂(ψ) is given by

TGLS(ψ) =
{

Cβ̂(ψ)− b
}′ {

C
{
X ′Σ−1(ψ)X

}−1
C ′

}−1 {
Cβ̂(ψ)− b

}
. (2.1)

which is distributed as χ2
q distribution with q degrees of freedom under H0. Thus, the

critical region is expressed as {y|TGLS(ψ) > χ2
q,α}, where χ2

q,α is the upper 100α% point of
the χ2

q distribution. Since ψ is unknown, however, we need to estimate ψ by an appropriate

estimator ψ̂ and consider the test statistic TGLS(ψ̂) by substituting ψ̂ into TGLS(ψ). Since

TGLS(ψ̂) is based on the GLS estimator β̂(ψ), we call it the GLS test. This substitution

causes the problem that the size of the GLS test TGLS(ψ̂) is not identical to the nominal
level α. As seen in Tables 1-3 in Section 3, the problem is serious when k is small and ψ
is away from zero. To improve the GLS test in the sense of controlling the size, we derive
the Bartlett-type correction of the GLS test. To this end, we first obtain the asymptotic
expansion of the GLS test under the null hypothesis H0.

Let W (ψ) = C ′{C
{
X ′Σ−1(ψ)X

}−1
C ′}−1

C and W (i)(ψ) = (di/dψi)W (ψ) for i =

1, 2. Also let Ai(ψ) = X ′Σ−i(ψ)X for i = 1, 2, 3. As the differential operator with
respect to y, we use the notation

∇ =
∂

∂y
=

(
∂

∂y1

, . . . ,
∂

∂yk

)′
.
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Assume the following conditions:

(A1) X is of full rank, k ≥ p and X ′X = O(k) as k →∞.

(A2) The estimator ψ̂ satisfies that X ′∇ψ̂ = 0 and X ′∇∇′ψ̂ = 0.

(A3) ψ̂−ψ = Op(k
−1/2), X ′Σ−1(ψ)∇ψ̂ = Op(k

−1/2) and X ′Σ−1(ψ){∇∇′ψ̂}Σ−1(ψ)X =
Op(1) as k →∞.

(A4) Bias(ψ̂) = O(k−1) as k →∞.

(A5) ψ̂ is invariant under the transformation y → y + Xα for any α ∈ Rp.

Theorem 2.1 Assume the conditions (A1) − (A5), Under the null hypothesis H0, the

distribution function of the GLS test TGLS(ψ̂) is approximated as

P [TGLS(ψ̂) ≤ x] =Gq(x) + {Gq+2(x)−Gq(x)}h1(ψ)

+ {Gq+4(x)− 2Gq+2 + Gq(x)}h2(ψ) + o(k−1) (2.2)

=Gq(x)− 2
x

q

{
h1(ψ)− h2(ψ) +

x

q + 2
h2(ψ)

}
gq(x) + o(k−1), (2.3)

where Gq(x) and gq(x) are the distribution and density functions of χ2
q, the chi-square

distribution with q degrees of freedom, and

h1(ψ) =
1

2
tr [W (1)(ψ)A−1

1 (ψ)]Bias(ψ̂) +
1

2

{1

2
tr [W (2)(ψ)A−1

1 (ψ)]

+ tr [A−1
1 (ψ)W (ψ)A−1

1 (ψ){A3(ψ)−A2(ψ)A−1
1 (ψ)A2(ψ)}]

}
V ar(ψ̂),

h2(ψ) =
1

8

{(
tr [W (1)(ψ)A−1

1 (ψ)]
)2

+ 2tr
[
W (1)(ψ)A−1

1 (ψ)
]2}

V ar(ψ̂).

(2.4)

From (2.2), it can be seen that the first and second moments of TGLS(ψ̂) are given by

E[TGLS(ψ̂)] =q
{
1 + k−1c1(ψ)

}
+ o(k−1),

E[{TGLS(ψ̂)}2] =q(q + 2)
{
1 + k−1c2(ψ)

}
+ o(k−1),

where

c1(ψ) =2kh1(ψ)/q,

c2(ψ) =4k {(q + 2)h1(ψ) + 2h2(ψ)} /{q(q + 2)}.

Then, we can use the results of Fujikoshi (2000) to derive the Bartlett-type correction of

TGLS(ψ̂). Let c̃2(ψ) = c2(ψ)− 2c1(ψ),

α(ψ) =2/c̃2(ψ),

β(ψ) =
1

2
{(q + 2)c2(ψ)− 2(q + 4)c1(ψ)} /c̃2(ψ)

=
4k

qc̃2(ψ)
{h2(ψ)− h1(ψ)} .
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Then, it is observed that c̃2(ψ) = 8kh2(ψ)/{q(q + 2)} > 0, namely, α(ψ) > 0, and

kα(ψ) + β(ψ) =
2k

qc̃2(ψ)
[q + 2 {h2(ψ)− h1(ψ)}] .

Fujikoshi (2000) considered the following monotone transformations:

T ∗
1 (ψ̂) =

{
kα(ψ̂) + β(ψ̂)

}
log

(
1 +

1

kα(ψ̂)
TGLS(ψ̂)

)
, (2.5)

T ∗
2 (ψ̂) =

{
kα(ψ̂) + β(ψ̂)

} {
1− exp

(
− 1

kα(ψ̂)
TGLS(ψ̂)

)}
, (2.6)

where T ∗
1 (ψ̂) is defined when kα(ψ̂) + β(ψ̂) > 0, while T ∗

2 (ψ̂) can be defined whenever

kα(ψ̂) + β(ψ̂) takes any value. It is noted that both transformations have the same
expansion up to O(k−1), given by

T ∗
i (ψ̂) = TGLS(ψ̂) +

1

kα(ψ̂)

{
β(ψ̂)TGLS(ψ̂)− 2−1(TGLS(ψ̂))2

}
+ O(k−2),

for i = 1, 2, which implies that

E[T ∗
i (ψ̂)] = q + o(k−1) and E[{T ∗

i (ψ̂)}2] = q(q + 2) + o(k−1).

From Theorem 2 of Fujikoshi (2000), we can see that the sizes of the modified test statistics
with the Bartlett-type correction are justified theoretically.

Theorem 2.2 (Bartlett-type Correction) Assume the conditions (A1)−(A5). Then,

the sizes of the corrected tests T ∗
i (ψ̂) given by (2.5) and (2.6) are identical to the nominal

significance level α up to O(k−1) as k →∞, namely,

P [T ∗
i (ψ̂) > χ2

q,α] = α + o(k−1),

under H0.

For another account on monotone transformations, see Fujisawa (1997), Enoki and
Aoshima (2006) and the references therein. It is noted that the conventional Bartlett

correction based on only the first moment E[TGLS(ψ̂)] is given by

TB(ψ̂) = TGLS(ψ̂)/(1 + 2q−1h1(ψ̂)), (2.7)

but the size of TB(ψ̂) does not possess the same asymptotic approximation as in Theorem
2.2 unless c2(ψ) = 0.

When C = I, the functions h1(ψ) and h2(ψ) can be simplified. In this case, q = p,

W (ψ) = A1(ψ), W (1)(ψ) = A
(1)
1 (ψ) = −A2(ψ) and W (2)(ψ) = A

(2)
1 (ψ) = 2A3(ψ), so

that h1(ψ) and h2(ψ) are expressed as

h1(ψ) =− 1

2
tr [A−1

1 (ψ)A2(ψ)]Biasψ(ψ̂)

+
1

2

{
2tr [A−1

1 (ψ)A3(ψ)]− tr
[
A−1

1 (ψ)A2(ψ)
]2

}
V arψ(ψ̂),
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and

h2(ψ) =
1

8

{(
tr [A2(ψ)A−1

1 (ψ)]
)2

+ 2tr
[
A2(ψ)A−1

1 (ψ)
]2

}
V ar(ψ̂).

For the general matrix C, W (2)(ψ) gives a complicated form, but we can com-
pute it as follows: Let E(ψ) = {X ′Σ−1(ψ)X}−1 and F (ψ) = {CE(ψ)C ′}−1. Then,
W (1)(ψ) = C ′F (1)(ψ)C, which can be obtained from F (1)(ψ) = −F (ψ)CE(1)(ψ)C ′F (ψ)
and E(1)(ψ) = E(ψ)A2E(ψ). Also, we have W (2)(ψ) = C ′F (2)(ψ)C, which can be
obtained from

F (2)(ψ) = −F (1)(ψ)CE(1)(ψ)C ′F (ψ)−F (ψ)CE(2)(ψ)C ′F (ψ)−F (ψ)CE(1)(ψ)C ′F (1)(ψ)

and
E(2)(ψ) = −2E(ψ)A2(ψ)E(ψ)A2(ψ)E(ψ) + 2E(ψ)A3(ψ)E(ψ).

2.2 Estimators of ψ and the corresponding corrections of the
GLS test

The Bartlett-type corrections T ∗
i (ψ̂) given in (2.5) and (2.6) depend on the asymptotic

bias and variance of the estimator ψ̂. We here provide these values for some specific
estimators of ψ as well as we check the assumptions (A2)-(A5) on ψ̂. The estimators we
treat are the estimator proposed by Prasad and Rao (1990), the estimator proposed by
Fay and Herriot (1979), the maximum likelihood estimator and the restricted maximum
likelihood estimator.

[1] Prasad-Rao estimator. Prasad and Rao (1990) proposed the estimator

ψ̂PR =
1

k − p
(y′Q0y − tr [DQ0])+, (2.8)

where (a)+ = max{a, 0} and

Q0 = Ik −X(X ′X)−1X ′.

Since Q0X = 0, the condition (A5) is satisfied. Since P [ψ̂PR = 0] = o(k−1), it is sufficient

to handle the case that ψ̂PR > 0. It is noted that (y′Q0y−tr [DQ0])/(k−p) is an unbiased
estimator of ψ. Note that

∇ψ̂PR = 2(k − p)−1Q0y.

Then it is observed that X ′∇ψ̂PR = 0 and ∇∇′ψ̂PR = 2(k−p)−1Q0, so that for Ai(ψ) =
X ′Σ−i(ψ)X, i = 1, 2,

X ′Σ−1(ψ)∇ψ̂PR =
2

k − p
A1(ψ){(X ′Σ−1(ψ)X)−1X ′Σ−1(ψ)y − (X ′X)−1X ′y},

which is Op(k
−1/2), and

X ′Σ−1(ψ){∇∇′ψ̂PR}Σ−1(ψ)X =
2

k − p
{A2(ψ)−A1(ψ)(X ′X)−1A1(ψ)},
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which is O(1). Prasad and Rao (1990) demonstrated that

V ar(ψ̂PR) =2k−2trΣ2(ψ) + o(k−1),

Bias(ψ̂PR) =o(k−1),

so that the assumptions (A2)-(A4) are satisfied, and from Theorem 2.2, we get the
Bartlett-type correction.

[2] Fay-Herriot estimator. Fay and Herriot (1978) proposed the estimator of the

form ψ̂FH = (ψ̂∗FH)+, where ψ̂∗FH is a solution of the equation

y′Q1(ψ̂
∗
FH)y = k − p, (2.9)

for

Q1(ψ) =
{
Ik −Σ−1(ψ)XA−1

1 (ψ)X ′}Σ−1(ψ)
{
Ik −XA−1

1 (ψ)X ′Σ−1(ψ)
}

.

Since Q1(ψ)X = 0, the condition (A5) is satisfied. Since P [ψ̂FH = 0] = o(k−1), it is

sufficient to handle the case that ψ̂FH > 0. Note that

∇ψ̂FH = − 2Q1(ψ̂FH)y

y′Q(1)
1 (ψ̂FH)y

.

Then it can be seen that X ′∇ψ̂FH = 0, y′Q(1)
1 (ψ̂FH)y = Op(k) and X ′Σ−1(ψ)∇ψ̂FH =

Op(k
−1/2). Denote Q

(2)
1 (ψ) = (d2/dψ2)Q1(ψ). For ψ̂ = ψ̂FH , it is seen that

∇∇′ψ̂FH = −2Q1(ψ̂) + 2Q
(1)
1 (ψ̂)y(∇ψ̂)′ + (y′Q(2)

1 (ψ̂)y)(∇ψ̂)(∇ψ̂)′

y′Q(1)
1 (ψ̂)y

.

It can be observed that X ′∇∇′ψ̂FH = 0 and X ′Σ−1(ψ){∇∇′ψ̂FH}Σ−1(ψ)X = Op(1).
Datta, Rao and Smith (2005) showed that

V ar(ψ̂FH) =2k
{
trΣ−1(ψ)

}−2
+ o(k−1),

Bias(ψ̂FH) =2
ktrΣ−2(ψ)− {trΣ−1(ψ)}2

{trΣ−1(ψ)}3
+ o(k−1),

so that the assumptions (A2)-(A4) are satisfied and we get the Bartlett-type correction
from Theorem 2.2.

[3] Maximum likelihood (ML) estimator. The ML estimator is given by ψ̂ML =

(ψ̂∗ML)+ where ψ̂∗ML is a solution of the equation

y′Q2(ψ̂
∗
ML)y = tr [Σ−1(ψ̂∗ML)], (2.10)

for

Q2(ψ) =
{
Ik −Σ−1(ψ)XA−1

1 (ψ)X ′}Σ−2(ψ)
{
Ik −XA−1

1 (ψ)X ′Σ−1(ψ)
}

.
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Since Q2(ψ)X = 0, the condition (A5) is satisfied. Since P [ψ̂ML = 0] = o(k−1), it is

sufficient to handle the case that ψ̂ML > 0. Note that

∇ψ̂ML = −2
Q2(ψ̂ML)y

y′Q(1)
2 (ψ̂ML)y + tr [Σ−2(ψ̂ML)]

.

Then for ψ̂ = ψ̂ML, it can be seen that X ′∇ψ̂ = 0, y′Q(1)
2 (ψ̂)y = Op(k), X ′Σ−1(ψ)∇ψ̂ =

Op(k
−1/2) and

∇∇′ψ̂ML

= −2Q2(ψ̂) + 2Q
(1)
2 (ψ̂)y(∇ψ̂)′ − 2tr [Σ−3](∇ψ̂)(∇ψ̂)′ + (y′Q(2)

2 (ψ̂)y)(∇ψ̂)(∇ψ̂)′

y′Q(1)
2 (ψ̂)y + tr [Σ−2(ψ̂)]

,

It can be observed that X ′∇∇′ψ̂ML = 0 and X ′Σ−1(ψ){∇∇′ψ̂ML}Σ−1(ψ)X = Op(1).
Datta and Lahiri (2000) derived that

V ar(ψ̂ML) =2
{
trΣ−2(ψ)

}−1
+ o(k−1),

Bias(ψ̂ML) =− tr [A−1
1 (ψ)A2(ψ)]

trΣ−2(ψ)
+ o(k−1),

so that the assumptions (A2)-(A4) are satisfied. Hence we get the Bartlett-type correction
from Theorem 2.2.

[4] Restricted maximum likelihood (REML) estimator. The REML estimator

is given by ψ̂REML = (ψ̂∗REML)+ where ψ̂∗REML is a solution of the equation

y′Q2(ψ̂
∗
REML)y = tr [Σ−1(ψ̂∗REML)]− tr [A−1

1 (ψ̂∗REML)A2(ψ̂
∗
REML)], (2.11)

for Q2(ψ) defined above. Since P [ψ̂REML = 0] = o(k−1), it is sufficient to handle the case

that ψ̂REML > 0. Note that for ψ̂ = ψ̂REML,

∇ψ̂REML = −2
Q2(ψ̂)y

y′Q(1)
2 (ψ̂)y + tr [Σ−2(ψ̂)] + tr [A−1

1 (ψ̂)A2(ψ̂)]2 − 2tr A3(ψ̂)
.

Then it can be seen that X ′∇ψ̂REML = 0 and X ′Σ−1(ψ)∇ψ̂REML = Op(k
−1/2). Also it

is observed that for ψ̂ = ψ̂REML,

2Q2(ψ̂) + 2Q
(1)
2 (ψ̂)y(∇ψ̂)′ − 2tr [Σ−3(ψ̂)](∇ψ̂)(∇ψ̂)′ + 6tr [A4(ψ̂)](∇ψ̂)(∇ψ̂)′

+ 2
{

tr [A−1
1 (ψ̂)A2(ψ̂)]3 − 2tr [A−1

1 (ψ̂)A2(ψ̂)A−1
1 (ψ̂)A3(ψ̂)]

}
(∇ψ̂)(∇ψ̂)′

=−
{

y′Q(1)
2 (ψ̂)y + tr [Σ−2(ψ̂)] + tr [A−1

1 (ψ̂)A2(ψ̂)]2 − 2tr A3(ψ̂)
}

∇∇′ψ̂.

It can be observed that X ′∇∇′ψ̂REML = 0 and X ′Σ−1(ψ){∇∇′ψ̂REML}Σ−1(ψ)X =

Op(1). Datta and Lahiri (2000) showed that V ar(ψ̂REML) = V ar(ψ̂ML) + o(k−1) and

Bias(ψ̂REML) = o(k−1), so that the assumptions (A2)-(A4) are satisfied, and we get the
Bartlett-type correction from Theorem 2.2.

8



3 Numerical Study

In this section, we shall investigate the performances of the sizes of the test statistics
proposed in the previous section through simulation experiments.

For the regressor variables in the model (1.1), it is supposed that the model has an
intercept term, namely, x′i = (1, x∗′i ) for a (p− 1)-vector x∗i , where x∗i is generated as

x∗i = u + zi.

Here, zi is a (p − 1)-random vector having Np−1(0, 10Ip−1), and u is a (p − 1)-random
vector having Np−1(0, 10Σu) where Σu = (1 − ρu)Ip−1 + ρujp−1j

′
p−1 for ρu = 0.6 and

jp−1 = (1, . . . , 1)′ ∈ Rp−1. Let di’s in the model (1.1) be generated as di = 1/[1 +
Bin(10, 1/2)] for i = 1, . . . , k, where Bin(10, 1/2) is a random variable distributed as a
binomial distribution with mean 5 and success probability 1/2. The regression coefficients
β = (β0, β1, . . . , βp−1)

′ are set up as βi = 5(−1)i(Ui + 1) for i = 0, . . . , p− 1 where Ui is a
random number from a uniform distribution on the interval (0, 1). Then, the observation
vector y is generated from Nk(Xβ, ψIk + D).

In the simulation experiments, we handle the two cases: (A) k = 30, 10, p = 3,
q = 2, α = 5% and H0 : β1 = β2 = 0, (B) k = 20, p = 6, q = 4, α = 5%, 1% and
H0 : β2 = β3 = β4 = β5 = 0, where ψ takes the values ψ = 0, 0.2, 0.4, 0.6, 0.8, 1.0. A
set of observations of the regressor variables X is generated, and 10,000 observations of
the response variable y are generated from the model (1.2). Sizes of test statistics can be
approximated based on these simulation experiments.

We first handle the test statistic TGLS(0) with ψ = 0, the GLS test TGLS(ψ̂PR), the test

TB(ψ̂PR) with the crude Bartlett correction (2.7), the Bartlett-type corrections T ∗
1 (ψ̂PR)

and T ∗
2 (ψ̂PR) for the case (A). The sizes of these test statistics for the nominal significance

level α = 5% are reported in Table 1. From the table, it is seen that TGLS(0) is too bad,

TGLS(ψ̂PR) is not good, and TB(ψ̂PR) is not good for k = 10, while the Bartlett-type

correction GLS tests T ∗
1 (ψ̂PR) and T ∗

2 (ψ̂PR) are excellent. Especially for k = 30, their
performances are very nice.

The sizes of the test statistics TGLS(ψ̂), T ∗
1 (ψ̂) and T ∗

2 (ψ̂) for ψ̂ = ψ̂FH , ψ̂ML and

ψ̂REML are reported in Table 2 in the case (A). Table 3 reports the sizes of the test

statistics TGLS(ψ̂), T ∗
1 (ψ̂) and T ∗

2 (ψ̂) for ψ̂ = ψ̂PR, ψ̂FH , ψ̂ML and ψ̂REML in the case (B)
for the nominal significance level α = 5%, 1%. From Table 2, the Bartlett-type correction
GLS tests T ∗

1 (ψ̂) and T ∗
2 (ψ̂) improve the GLS tests TGLS(ψ̂) for ψ̂ = ψ̂FH , ψ̂ML and

ψ̂REML. The test T2(ψ̂ML) is too conservative in the case of k = 10. We can observe

the same property of T2(ψ̂ML) in Table 3 for k = 20. From these tables, we can see that

the Bartlett-type correction GLS tests T ∗
1 (ψ̂) and T ∗

2 (ψ̂) have very nice size properties for

k = 30, while their size properties are still good for k = 10, 20 except T ∗
2 (ψ̂ML). Tables

1-3 seem to suggest the use of T ∗
2 (ψ̂) for ψ̂ = ψ̂PR, ψ̂FH and ψ̂REML and the use of T ∗

1 (ψ̂)

for ψ̂ = ψ̂ML.
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4 Proof of Theorem 2.1

Recall that W (ψ) = C ′ {C{A1(ψ)}−1C ′}−1
C, W (i)(ψ) = (di/dψi)W (ψ) and Ai(ψ) =

X ′Σ−i(ψ)X for i = 1, 2, 3. Let β̂
(i)

(ψ) = {∂i/∂ψi}β̂(ψ) for i=1, 2. For notational

convenience, we omit (ψ) in W (ψ), W (i)(ψ), β̂(ψ), Ai(ψ), Σ(ψ) and others. Under
the null hypothesis H0 : Cβ = b, we want to derive the asymptotic expansion of the
distribution of TGLS(ψ̂). To this end, we first expand the characteristic function of TGLS(ψ̂)

given by φ(t) = E˛[exp{itTGLS(ψ̂)}], which is written as

φ(t) = E0[exp{itβ̂(ψ̂)′W (ψ̂)β̂(ψ̂)}] = E0[exp{ity′P (ψ̂)y}],
where i =

√−1 and

P (ψ) = P = Σ(ψ)−1XA1(ψ)−1W (ψ)A1(ψ)−1X ′Σ(ψ)−1. (4.1)

Hereafter, we omit (ψ) in W (ψ), P (ψ), Σ(ψ), Ai(ψ) and others, and we can put β = 0
without any loss of generality and omit 0 in the expectation notation E0[·].

Using Taylor series expansion of exp{ity′P (ψ̂)y} around ψ̂ = ψ, we can approximate
φ(t) as

φ(t) =E
[
exp{ity′Py}[1 + ity′P (1)y(ψ̂ − ψ)

+ 2−1
{
ity′P (2)y + (it)2(y′P (1)y)2

}
(ψ̂ − ψ)2

]]
+ O(k−3/2), (4.2)

For the sake of simplicity, we use the notation E∗[·] defined by

E∗[g(y)] = E[exp{ity′Py}g(y)] = Ck

∫
g(y) exp{−y′V −1y}dy, (4.3)

for a function g(y), where V −1 = Σ−1 − 2itP and Ck = (2π)−k/2|Σ|−1/2. Then, we

need to evaluate the terms I1 = E∗[y′P (1)y(ψ̂ − ψ)], I2 = E∗[y′P (2)y(ψ̂ − ψ)2] and

I3 = E∗[(y′P (1)y)2(ψ̂−ψ)2]. The Stein identity proposed by Stein (1973, 81) is useful for
the purpose. Since the Stein identity is based on the integration by parts, we can verify
that the Stein identity under the notation E∗[·] is given by

E∗[y′g(y)] = E∗[∇′[V g(y)]], (4.4)

for k-dimensional absolutely continuous function g(y), where ∇ = ∂/∂y = (∂/∂y1, . . . , ∂/∂yk)
′

for y = (y1, . . . , yk)
′. For scalar function f(Y ), the following equality is useful:

∇′[g(y)f(y)] = {∇′g(y)}f(y) + g(y)′∇f(y). (4.5)

Applying the Stein identity to I1, we can rewrite it as

I1 =E∗
[
∇′[V P (1)y(ψ̂ − ψ)]

]

=E∗
[
tr [V P (1)](ψ̂ − ψ)

]
+ E∗

[
y′P (1)V (∇ψ̂)

]
. (4.6)
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The Stein identity is applied again to the second term to get that

E∗
[
y′P (1)V (∇ψ̂)

]
= E∗

[
∇′[V P (1)V (∇ψ̂)]

]
= E∗

[
tr [V P (1)V (∇∇′ψ̂)]

]
, (4.7)

so that I1 is expressed as

I1 = tr [V P (1)]E∗[ψ̂ − ψ] + E∗
[
tr [V P (1)V (∇∇′ψ̂)]

]
. (4.8)

The same arguments as in (4.6) and (4.7) can be used to evaluate I2 as

I2 = tr [V P (2)]E∗[(ψ̂ − ψ)2] + 2E∗
[
tr [V P (2)V Ψ]

]
, (4.9)

where Ψ = (∇∇′ψ̂)(ψ̂ − ψ) + (∇ψ̂)(∇′ψ̂). Also, I3 is rewritten as

I3 =tr [V P (1)]E∗[y′P (1)y(ψ̂ − ψ)2] + 2E∗
[
y′P (1)V P (1)y(ψ̂ − ψ)2

]

+ 2E∗
[
y′P (1)V (∇ψ̂)y′P (1)y(ψ̂ − ψ)

]
.

Using the same arguments as in (4.6) and (4.7) based on the Stein identity, we can evaluate
I3 as

I3 =(tr [V P (1)])2E∗[(ψ̂ − ψ)2] + 2E∗[tr [V P (1)V Ψ]]

+ 2
{
tr [V P (1)V P (1)]E∗[(ψ̂ − ψ)2] + 2E∗[tr [V P (1)V P (1)V Ψ]

}

+ 2
{
tr [V P (1)]E∗[tr [V P (1)V Ψ]] + E∗[tr [V P (1)V P (1)V Ψ]]

+ E∗[y′P (1)V ΨV P (1)y]
}
. (4.10)

Substituting P given in (4.1), we can simplify the terms I1, I2 and I3 given in (4.8),
(4.9) and (4.10). Note that

V =
(
Σ−1 − 2itΣ−1XA−1

1 WA−1
1 X ′Σ−1

)−1
= Σ + (s− 1)XA−1

1 WA−1
1 X ′, (4.11)

for s = 1/(1− 2it). Also note that P (1) can be written as

P (1) =(Σ−1XA−1
1 A2 −Σ−2X)A−1

1 WA−1
1 X ′Σ−1

+ Σ−1XA−1
1 WA−1

1 (A2A
−1
1 X ′Σ−1 −X ′Σ−2)

+ Σ−1XA−1
1 W (1)A−1

1 X ′Σ−1.

Since WA−1
1 W = W and WA−1

1 W (1) = W (1), it can be seen that

V P (1) =(XA−1
1 A2 −Σ−1X)A−1

1 WA−1
1 X ′Σ−1

+ sXA−1
1 WA−1

1 (A2A
−1
1 X ′Σ−1 −X ′Σ−2)

+ sXA−1
1 W (1)A−1

1 X ′Σ−1, (4.12)
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which implies that

tr [V P (1)] =str [W (1)A−1
1 ],

tr [(V P (1))2] =s2tr [(W (1)A−1
1 )2] + 2str [(A3 −A2A

−1
1 A2)A

−1
1 WA−1

1 ].
(4.13)

From (4.13), it follows that ∂tr [V P (1)]/∂ψ = str [W (2)A−1
1 ] + str [W (1)A−1

1 A2A
−1
1 ].

Since ∂tr [V P (1)]/∂ψ = tr [V (1)P (1)] + tr [V P (2)] and

V (1) =Ik + (s− 1)XA−1
1 W (1)A−1

1 X ′

+ (s− 1)XA−1
1 A2A

−1
1 WA−1

1 X ′ + (s− 1)XA−1
1 WA−1

1 A2A
−1
1 X ′,

it can be observed that

tr [V P (2)] = str [W (2)A−1
1 ] + 2tr [(A3 −A2A

−1
1 A2)A

−1
1 WA−1

1 ]. (4.14)

It is also noted that

V P (1)V =s(XA−1
1 A2 −Σ−1X)A−1

1 WA−1
1 X ′

+ sXA−1
1 WA−1

1 (A2A
−1
1 X ′ −X ′Σ−1)

+ s2XA−1
1 W (1)A−1

1 X ′, (4.15)

Then, from the condition (A2), it follows that tr [V P (1)V (∇∇′ψ̂)] = 0 and tr [V P (1)V Ψ] =
0. Similarly, from the condition (A3), we can verify that tr [V P (2)V Ψ] = Op(k

−3/2),
tr [V P (1)V P (1)V Ψ] = Op(k

−3/2) and y′P (1)V ΨV P (1)y = Op(k
−3/2). Hence, we obtain

the expressions that

I1 =s tr [W (1)A−1
1 ]E∗[ψ̂ − ψ],

I2 =
{
s tr [W (2)A−1

1 ] + 2tr [(A3 −A2A
−1
1 A2)A

−1
1 WA−1

1 ]
}
E∗[(ψ̂ − ψ)2] + O(k−3/2),

I3 =s2
{
tr [W (1)A−1

1 ]
}2

E∗[(ψ̂ − ψ)2]

+ 2
{
s2 tr [(W (1)A−1

1 )2] + 2s tr [(A3 −A2A
−1
1 A2)A

−1
1 WA−1

1 ]
}
E∗[(ψ̂ − ψ)2] + O(k−3/2).

From the result of Kackar and Harville (1984), it follows that ψ̂ is independent of β̂

under the condition (A5). From the definition of E∗[·] and the fact that y′Py = β̂
′
Wβ̂,

we can see that E∗[ψ̂ − ψ] = E[exp{itβ̂′Wβ̂}(ψ̂ − ψ)] = E[exp{itβ̂′Wβ̂}]Bias(ψ̂) and

E∗[(ψ̂ − ψ)2] = E[exp{itβ̂′Wβ̂}]E[(ψ̂ − ψ)2]. From (A4), note that E[(ψ̂ − ψ)2] =

V ar(ψ̂)+ o(k−1). Noting that E[exp{itβ̂′Wβ̂}] = sq/2 and substituting I1, I2 and I3 into
(4.3), we can get the approximation

φ(t) =E[exp{itβ̂′Wβ̂}] + itI1 + 2−1itI2 + 2−1(it)2I3 + O(k−3/2)

=sq/2 +
s− 1

2
sq/2tr [W (1)A−1

1 ]Bias(ψ̂)

+
s− 1

2
sq/2

{
1

2
tr [W (2)A−1

1 ] + tr [A−1
1 WA−1

1 (A3 −A2A
−1
1 A2)

}
V ar(ψ̂)

+
(s− 1)2

8
sq/2{(tr [W (1)A−1

1 ])2 + 2tr [W (1)A−1
1 ]2}V ar(ψ̂) + O(k−3/2),

12



which is expressed as

φ(t) = sq/2 + sq/2(s− 1)h1(ψ) + sq/2(s− 1)2h2(ψ) + o(k−1), (4.16)

for the functions h1(ψ) and h2(ψ) given in (2.4). Inverting φ(t) yields the asymptotic

expansion of the distribution function of TGLS(ψ̂) given as

P [TGLS(ψ̂) ≤ x] =Gq(x) + {Gq+2(x)−Gq(x)}h1(ψ)

+ {Gq+4(x)− 2Gq+2 + Gq(x)}h2(ψ) + o(k−1), (4.17)

where Gq(x) is the distribution function of χ2
q, namely, Gq(x) =

∫ x

0
gq(y)dy for the pdf

gq(y) of χ2
q. Noting that Gq+2(x) − Gq(x) = −2gq+2(x) = −2(x/q)gq(x), we can get the

expression (2.3) from (4.17), and the proof of Theorem 2.1 is complete.
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Table 1: Size Estimates (%) of Tests TGLS(0), TGLS(ψ̂), TB(ψ̂), T ∗
1 (ψ̂) and T ∗

2 (ψ̂) for

ψ̂ = ψ̂PR where p = 3, q = 2, α = 5% and H0 : β1 = β2 = 0

ψ TGLS(0) TGLS(ψ̂PR) TB(ψ̂PR) T ∗1 (ψ̂PR) T ∗2 (ψ̂PR)

k = 30
0.0 5.0 3.9 2.7 2.2 2.0
0.2 29.7 6.9 5.8 5.1 4.9
0.4 46.9 6.8 5.8 5.1 4.9
0.6 57.8 6.7 5.8 5.1 4.9
0.8 65.1 6.6 5.8 5.1 4.9
1.0 70.5 6.6 5.8 5.1 4.9

k = 10
0.0 5.1 3.6 1.4 0.4 0.0
0.2 29.0 10.6 6.8 4.1 1.3
0.4 45.9 11.8 8.1 5.8 3.2
0.6 56.7 11.9 8.5 6.3 4.1
0.8 63.7 11.8 8.7 6.6 4.7
1.0 68.7 11.8 8.7 6.6 4.9

Table 2: Size Estimates (%) of Tests TGLS(ψ̂), T ∗
1 (ψ̂) and T ∗

2 (ψ̂) for ψ̂ = ψ̂FH , ψ̂ML and

ψ̂REML where p = 3, q = 2, α = 5% and H0 : β1 = β2 = 0

ψ̂FH ψ̂ML ψ̂REML

ψ TGLS T ∗1 T ∗2 TGLS T ∗1 T ∗2 TGLS T ∗1 T ∗2
k = 30

0.0 4.0 2.5 2.4 4.0 1.6 1.5 3.7 2.3 2.2
0.2 6.8 5.1 5.0 8.9 4.8 4.7 6.9 5.1 4.9
0.4 6.8 5.1 5.0 8.7 5.0 4.8 6.8 5.1 5.0
0.6 6.7 5.1 5.0 8.7 5.0 4.8 6.7 5.1 5.0
0.8 6.7 5.1 5.0 8.6 5.0 4.8 6.7 5.1 5.0
1.0 6.6 5.1 5.0 8.6 5.0 4.9 6.7 5.1 5.0

k = 10
0.0 3.6 0.8 0.2 2.5 0.0 0.0 1.5 0.2 0.1
0.2 10.4 4.9 2.8 14.5 1.0 0.0 7.8 3.5 1.9
0.4 11.7 6.4 4.3 18.4 2.5 0.0 10.2 5.3 3.5
0.6 11.8 6.6 4.9 19.7 3.5 0.0 11.1 6.1 4.4
0.8 11.7 6.6 5.1 20.0 4.0 0.1 11.3 6.4 4.8
1.0 11.7 6.6 5.2 20.1 4.4 0.2 11.4 6.5 5.0
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Table 3: Size Estimates (%) of Tests TGLS(ψ̂), T ∗
1 (ψ̂) and T ∗

2 (ψ̂) for ψ̂ = ψ̂PR, ψ̂FH , ψ̂ML

and ψ̂REML where k = 20, p = 6, q = 4 and H0 : β2 = β3 = β4 = β5 = 0

ψ̂PR ψ̂FH ψ̂ML ψ̂REML

ψ TGLS T ∗1 T ∗2 TGLS T ∗1 T ∗2 TGLS T ∗1 T ∗2 TGLS T ∗1 T ∗2
α = 5%

0.0 3.7 1.0 0.6 3.7 1.3 0.9 3.1 0.0 0.0 2.2 0.6 0.4
0.2 10.3 5.6 4.4 10.1 5.8 4.8 19.9 3.1 1.7 9.6 5.5 4.5
0.4 10.5 6.2 5.2 10.3 6.3 5.4 21.7 4.6 3.0 10.2 6.1 5.1
0.6 10.4 6.3 5.3 10.3 6.3 5.4 21.9 4.8 3.2 10.3 6.3 5.3
0.8 10.4 6.3 5.4 10.3 6.2 5.4 21.9 5.0 3.3 10.2 6.2 5.4
1.0 10.4 6.3 5.5 10.3 6.2 5.5 21.7 5.0 3.3 10.2 6.2 5.4

α = 1%
0.0 0.7 0.0 0.0 0.6 0.0 0.0 0.5 0.0 0.0 0.3 0.0 0.0
0.2 4.0 1.0 0.2 3.9 1.2 0.6 9.3 0.3 0.0 3.6 1.0 0.5
0.4 4.3 1.5 0.6 4.1 1.6 0.9 11.0 0.8 0.0 4.0 1.5 0.8
0.6 4.2 1.6 0.9 4.1 1.7 1.0 11.1 0.9 0.0 4.1 1.6 0.9
0.8 4.2 1.6 0.9 4.1 1.7 1.0 11.0 1.0 0.0 4.1 1.5 1.0
1.0 4.1 1.7 1.0 4.1 1.7 1.0 11.0 1.0 0.0 4.1 1.6 1.0
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