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Abstract

Abstract: This paper proposes a continuous-time term-structure model under stochastic differential util-
ity with non-unitary elasticity of intertemporal substitution (EIS, henceforth) in a representative-agent
endowment economy with mean-reverting expectations on real output growth and inflation. Using this
model, we make clear structural relationships among a term structure of real and nominal interest rates,
utility form and underlying economic factors (in particular, inflation expectation). Notably, we show
that, if (1) the EIS is less than one, (2) the agent is comparatively more risk-averse relative to time-
separable utility, (3) short-term interest rates are pro-cyclical, and (4) the rate of expected inflation is
negatively correlated with the rate of real output growth and its expected rate, then a nominal yield
curve can have a low instantaneous riskless rate and an upward slope. Keywords: Stochastic differential
utility; Non-unitary EIS; Term structure of interest rates; Inflation expectation. JEL codes: E43, G12.

1 Introduction

A term structure of interest rates plays a crucial role in practice. From a Macroeconomic

perspective, investors and central banks obtain market information regarding future interest

rates from bond yield curves. Also, from a Finance perspective, fixed-income markets trade a

large amount of bonds and derivative securities sensitive to interest rates. The term structure

of interest rates is used for pricing not only the bonds and the interest rate derivatives but

also all other market securities.

Despite such importance of the term structure of interest rates, surprisingly, people know

little about structural relationships among underlying economic factors, utility structure,

and yield curves. From historical data, we know that, on average, a nominal yield curve

slope up (Homer and Sylla (2005)). Based on standard term structure models such as Cox,

∗Corresponding author: Hisashi Nakamura (email: nakamura@e.u-tokyo.ac.jp). We all thank to Zengjing Chen, Lars Peter
Hansen, Hyeng Keun Koo, Shigeo Kusuoka, Chenghu Ma, Jun Sekine and Jaeyoung Sung for their valuable comments. Also, we
are thankful to all participants at the Seoul-Tokyo Conference 2008 in Mathematical Finance at KIAS in Seoul, the “Finance,
Stochastics and Asymptotic Analysis” seminar at Osaka University, and the 2008 Mathematical Economics Conference at the
Research Institute for Mathematical Sciences, Kyoto University.
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Ingersoll, and Ross (1985), an upward-sloping real yield curve implies that, the real short-

term rates should be counter-cyclical. On the other hand, from several empirical studies,

we know that the real GDP growth rates are positively correlated with nominal short-term

rates. How can we replicate the yield curves well by using structural economic factors?

To answer this question, there is a recent growing literature on the term structure of real

and nominal interest rates using homothetic recursive-utility models. Notably, Piazzesi and

Schneider (2006) predict in a recursive utility model in discrete time that, when inflation

is bad news for consumption growth, the nominal yield curve slopes up, whereas the real

yield curve slopes down. Also, Nakamura, Nakayama and Takahashi (2008) study a similar

recursive utility model in continuous time and supports their results in a more rigorous

way.1 However, most of the previous recursive-utility models assume unitary elasticity of

intertemporal substitution (EIS, henceforth) to achieve solvability for the analytical form of

the yield curves. The assumption is restrictive in reality. For example, in those homothetic

recursive utility models, the assumption results in a constant consumption/wealth ratio over

time. According to several asset pricing papers, the result is not supported. Also, Chen,

Favilukis and Ludvigson (2008) show empirically that EIS is different from one. Now, a

question is raised: can a recursive-utility model with non-unitary EIS replicate an actual

term structure of real/nominal interest rates better?

The purpose of this paper is to provide a framework to answer the question by construct-

ing a continuous-time term structure model in environments with (i) stochastic differential

utility (SDU, henceforth), a form of recursive utility in continuous time, with non-unitary

EIS and (ii) mean-reverting expectations on the rates of inflation and real output growth.2

Specifically, we find that, if (1) the EIS is strictly less than one, (2) the agent is compar-

atively more risk-averse relative to time-separable utility, (3) real short-term interest rates

are pro-cyclical, and (4) the rate of expected inflation is negatively correlated with the rate

of real output growth and its expected rate, then a nominal yield curve can have (i) a low

instantaneous riskless rate and (ii) an upward slope. Intuitively, when the agent is charac-

terized by the conditions (1) and (2), she has the motive of longing the instantaneous zero

1Their model replicates typical shapes of the term structures by controlling the structural parameters and the conditional
variances/covariances of the state variables.

2We apply some theoretical results of SDU that are derived by Schroder and Skiadas (1999) and Skiadas (2007).
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coupon bonds to mitigate income risk in the case that the expected income growth rate is

positively correlated with the income growth rate (in which case the condition (3) holds true

under some relevant conditions3). At the same time, she has the motive of shorting the nom-

inal long-term bonds to mitigate income risk when the expected inflation rate is negatively

correlated with the real output growth rate and its expected rate (that is, when the condi-

tion (4) holds true). This result resolves the risk-free rate puzzle, like Weil (1989) studies it

in a discrete-time recursive utility model and, at the same time, produces an upward sloping

nominal yield curve. Moreover, in this case, a higher level of the risk aversion results in a

lower instantaneous riskless rate and a steeper upward-sloping nominal yield curve.

The main contributions of this paper are twofold. First, due to mathematical tractability

of the continuous-time framework, this paper is successful in making clear relationships

among the yield curves and some structural parameters of the economic environments and

the utility form. In particular, this paper shows that non-unitary EIS and risk aversion to

the uncertainty of future utility play a key role in determining the level and the slope of the

real and nominal yield curves. Moreover, our paper probes more deeply into the effect of

the expected inflation shock on the slope of the nominal yield curve. As a consequence, we

show that, with regard to the role of monetary policy on the term structure of interest rates,

higher credibility in price stability makes the upward-sloping nominal yield curve flatter.

Second, this paper is successful in solving numerically for yield curves. In general, it is

difficult to examine quantitatively the term structure of interest rates under SDU with non-

unitary EIS, because there is no closed-form solution of it. Against such difficulty, Hansen,

Heaton, Roussanov and Lee (2008) derive the first-oder approximation around δ = 1. In

contrast, we obtain numerical results by using the regression-based Monte Carlo method

of Gobet, Lemor and Warin (2005) for backward stochastic differential equations (BSDEs,

henceforth).

In related literature, Duffie and Epstein (1992) and Duffie, Schroder and Skiadas (1997)

look at a term structure model under SDU mainly with unitary EIS, and study the effect of

the preference for the timing of resolution of uncertainty on the term structure. In contrast,

3For more details, see footnote 12 below.
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this paper solves for real and nominal yield curves under SDU with non-unitary EIS, makes

clear their relationships with the structural parameters of economic environments and the

utility form, and draws macroeconomic implications from them.

This paper is organized as follows. The next section defines SDU. Section 3 sets up a real

endowment economy under SDU and derives real yield curves. Section 4 extends the model

into a nominal economy and derives nominal yield curves. Section 5 analyzes quantitatively

the yield curves in relationships with macroeconomic factors and the utility form. The final

section concludes. Several supplementary notes and proofs for theorems, propositions and

lemmas are placed in Appendices.

2 Stochastic differential utility

This section defines stochastic differential utility (SDU, henceforth), a form of recursive

utility in continuous time, of consumption. Time parameter is t ∈ [0, T ], where T > 0 is a

given terminal time. Let (Ω, {F t}0≤t≤T ,F, P ) denote a filtered probability space that satisfy

the usual conditions. There are single non-storable consumption goods.

An agent consumes the consumption goods. A consumption process c = {ct; t ∈ [0, T ]}
is assumed to be real-valued, non-negative and {Ft}0≤t≤T -adapted, and satisfies some math-

ematical regularity conditions. The agent ranks her consumption plan c based on SDU of

consumption Vt(c) (we may also write simply Vt) for each t ∈ [0, T ], which is characterized by:

dVt = −f(ct, Vt)dt+ Σ⊤
t dBt; VT = 0. (2.1)

B denotes a 2-dimensional Brownian motion defined on the probability space. The super-

script ⊤ of a vector or a matrix represents its transpose. f(ct, Vt) is called a (normalized)

aggregator. We focus attention on a particular form of the aggregator that is introduced by

Schroder and Skiadas (1999): for constants α, β, δ,

f(c, v) ,

 (1 + α)
{
c1−δ

1−δ |v|
α

1+α − βv
}

(if δ ̸= 1),

(1 + αv)
{

log c− β
α log(1 + αv)

}
(if δ = 1).

(2.2)

Call this type of the aggregator the Schroder-Skiadas (SS, henceforth) aggregator. We will

use some theoretical results of Schroder and Skiadas (1999), without a further reference, in
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the remaining. For the details, see their paper. In Eq.(2.2), β denotes time preference. The

reciprocal of δ (that is, 1
δ
) denotes elasticity of intertemporal substitution (EIS, henceforth)

where δ > 0; non-unitary EIS corresponds to δ ̸= 1, whereas unitary EIS corresponds to

δ = 1. We will discuss the notion of α shortly below.

Put a parametric assumption:

Assumption 2.1 β ≥ 0 and

 α > −1 and 1 − δ < min
{

1, 1
1+α

}
(if δ ̸= 1),

α ≤ β (if δ = 1).

This assumption ensures the existence of a unique well-defined Vt for each consumption

process c. Moreover, V0 is strictly increasing, concave, and homothetic in c.

To interpret the parameter α intuitively, we take a monotonic transformation of the utility

function Vt:

V̂t =


(Vt)

1
1+α if δ < 1;

−|Vt|
1

1+α if δ > 1;

1
α log(1 + αVt) if δ = 1.

(2.3)

Under the SS aggregator, the monotonically transformed utility process V̂t, which is ordinally

equivalent to the original utility process Vt, is written as:

V̂t =

 Et

[∫ T
t
e−β(s−t)

(
c1−δ

s

1−δ + α
2 V̂ (s)−1

∣∣∣∣σV̂ (s)
∣∣∣∣2) ds] (when δ ̸= 1),

Et

[∫ T
t
e−β(s−t)

(
log cs + α

2

∣∣∣∣σV̂ (s)
∣∣∣∣2) ds] (when δ = 1).

(2.4)

Note that standard time-separable utility, denoted by V̂
(s)
t , is written as:

V̂
(s)
t =

 Et

[∫ T
t
e−β(s−t)

(
c1−δ

s

1−δ

)
ds
]

(when δ ̸= 1),

Et

[∫ T
t
e−β(s−t) (log cs) ds

]
(when δ = 1).

Thus, the utility V̂t in Eq.(2.4) can be decomposed into two parts: (1) the time-separable

utility (α = 0) and (2) additional utility. In the second part, ||σV̂ (s)||2 stands for the

uncertainty of the future utilities. When δ < 1, since V̂t > 0 for all t < T ,4 the additional

utility with α < 0 causes an additional penalty for the uncertainty of the future utility,

whereas the one with α > 0 causes an additional reward for it. When δ < 1, the agent is

said to be comparatively more risk-averse (relative to the time-separable utility) if −α > 0,
4For the proof of this claim, see appendices in Schroder and Skiadas (1999).
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whereas the agent is said to be comparatively less risk-averse (relative to the time-separable

utility) if −α < 0.

When δ = 1, V̂t is not uniformly signed. Still, since the sign of the second part of the

utility does not depend on the sign of V̂t, the same conclusions are valid when δ = 1. On the

other hand, when δ > 1, the effect of the sign of α is reversed because V̂t < 0 for all t < T .

In either case of δ, the agent pays no attention to the uncertainty of the future utility

when α = 0; her utility, not only V̂ but also V , is said to be time separable. When α ̸= 0,

by contrast, the utility, not only V̂ but also V , is said to be time-nonseparable.

3 Real yield curve

This section derives a real yield curve under SDU. We consider a representative-agent en-

dowment economy. A representative agent is lived on [0, T ] and ranks a consumption plan

based on the above-defined SDU.

There exist two state variables. The first state variable is the endowment of the con-

sumption goods, denoted by e. The endowment process is exogenous and is governed by the

following stochastic differential equation (SDE):

det
et

= µe(t)dt+ σ⊤
e dBt, e0 ∈ R+ (3.1)

where µe(t) , νt − β and σe ∈ R2×1 is a constant vector. νt stands for the expected endow-

ment growth rate and is the second state variable, which is stochastic and, in particular, is

mean-reverting:

dνt = k(ν̄ − νt)dt+ σ⊤
ν dBt, ν0 ∈ R (3.2)

where ν̄ is a constant and σν ∈ R2×1 is a constant vector. ν̄ denotes the mean-reversion level

of the expected endowment growth rate and k means the speed of the mean reversion.

From Skiadas (2007), under Assumption 2.1 and the above set-up, the equilibrium utility

process Vt for t ≥ 0 is well-defined for the following decoupled forward-backward stochastic
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differential equations (FBSDEs, henceforth):5


det

et
= µe(t)dt+ σ⊤

e dBt, e0 ∈ R+,

dνt = k(ν̄ − νt)dt+ σ⊤
ν dBt, ν0 ∈ R,

dVt = −f(et, Vt)dt+ Σ⊤
t dBt, VT = 0.

(3.3)

Assume that there is some function J ∈ C1,2([0, T ] × R2) such that Vt = J(t, et, νt). The

equilibrium utility process Vt = J(t, et, νt) then satisfies:

dJt = −f(et, Jt)dt+ σJ(t)⊤dBt. (3.4)

where σJ , eσe
∂J
∂e

+ σν
∂J
∂ν

. The derivation of Eq.(3.4) is shown in Appendix E.

In this equilibrium, a pricing kernel is written as:6

πt = exp
{∫ t

0

fv(eu, Ju) du
}
fc(et, Jt). (3.5)

Note that fc(c, v) := ∂f(c,v)
∂c

, fv(c, v) := ∂f(c,v)
∂v

, and fcv(c, v) := ∂2f(c,v)
∂c∂v

and so on. Under

no arbitrage, the pricing kernel πt satisfies the following equation, using an instantaneous

riskless rate rt and the market price of risk λt:

πt = exp
{
−
∫ t

0

ru du

}
exp

{
−
∫ t

0

λ⊤u dBu −
1
2

∫ t

0

||λu||2 du
}
.

Or, equivalently,

dπt
πt

= −rtdt− λ⊤t dBt. (3.6)

From Eq.(3.5) and Eq.(3.6), the market price of risk is specified as follows:

Lemma 3.1 The market price of risk, λt, is given by

λt = σe

(
−ef

∗
cc

f∗c

)
+ σJ(t)

(
−f

∗
cv

f∗c

)
. (3.7)

The superscript “∗” of f and its partial derivatives denotes that they are evaluated at

equilibrium values (that is, c = e and v = J); that is, define f ∗ , f(e, J), f ∗
c , fc(e, J) and

f ∗
v , fv(e, J) in an abbreviated form.

5We can show the existence of the equilibrium in the endowment economy.
6The existence of the pricing kernel is ensured in our model. Also, see Skiadas (2007).
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On the other hand, with regard to the spot rate rt, since rt = −Dπt/πt in Eq.(3.6) where

Dπt denotes the drift coefficient of πt, we obtain the following lemma in a similar way to the

above proof of Lemma 3.1:

Lemma 3.2 The instantaneous riskless rate is given by:

rt = −fv(et, Jt) −
D fc(et, Jt)
fc(et, Jt)

. (3.8)

Now, substitute the SS aggregator Eq.(2.2) into the above Eq.(3.7) and Eq.(3.8). We

then obtain the following proposition:

Proposition 3.1 Under the SS aggregator in Eq.(2.2), the instantaneous riskless rate rt and

the market price of risk λt are specified in equilibrium as: when δ ̸= 1,

rt = β + δµe(t) −
1
2
δ(1 + δ) ||σe||2 + αδ

σ⊤
e σJ(t)

(1 + α)Jt
+
α

2

∣∣∣∣∣∣∣∣ σJ(t)
(1 + α)Jt

∣∣∣∣∣∣∣∣2 (3.9)

= β + δµe(t) −
δ

2
||σe||2 −

1
2
||λt||2 +

α(1 + α)
2

∣∣∣∣∣∣∣∣ σJ(t)
(1 + α)Jt

∣∣∣∣∣∣∣∣2 (3.10)

λt = δσe − α
σJ(t)

(1 + α)Jt
. (3.11)

When δ = 1,

rt = β + µe(t) − ||σe||2 + α
σ⊤
e σJ(t)

(1 + αJt)
(3.12)

= β + µe(t) −
1
2
||σe||2 −

1
2
||λt||2 +

1
2
α2

∣∣∣∣∣∣∣∣ σJ(t)
(1 + αJt)

∣∣∣∣∣∣∣∣2 (3.13)

λt = σe − α
σJ(t)

(1 + αJt)
. (3.14)

We provide the results with some intuitive interpretations as follows. First, with regard

to the instantaneous riskless rate rt, let us see Eq.(3.9) under δ ̸= 1 and Eq.(3.12) under

δ = 1. The first and second terms on the right hand side β + δµe(t) = (1− δ)β + δνt stands

for the instantaneous return that the investor would demand if σe = σν = σJ(t) = 0 (i.e.,

income is deterministic). These terms exist under α = 0 (time separable utility) as well.

In the third term “−1
2

f∗
ccc

f∗
c
||etσe||2 = − δ(1+δ)

2
||σe||2,” f∗

ccc determines the sign of this term.

In this model, f ∗
ccc > 0 while f∗

cc < 0. Hence, the third term is negative. From an economic

point of view, f ∗
ccc implies prudence of the investor, that is, the strength of the investor’s

motive to make extra (i.e., precautionary) savings caused by future income being random

8



rather than deterministic. Intuitively, when the investor is prudent (that is, f ∗
ccc > 0),

−f∗
cc is decreasing in e; that is, the investor is more risk averse when her income level is

lower. Accordingly, when her income is stochastic, the prudent investor has an incentive to

hedge the downward income risk. Therefore, she demands bonds to hedge the risk, and can

purchase them even when the riskless return is low; the equilibrium instantaneous riskless

return is lowered. Note that in such stochastic income environments, this term exists when

the utility is time separable (i.e., α = 0) as well.

The fourth term “−f∗
ccv

f∗
c
etσ

⊤
e σJ(t) = δασ⊤

e σJ (t)
(1+α)Jt

” of Eq.(3.9) is specific to the time non-

separable utility (i.e., α ̸= 0). With σ⊤
e σJ(t) given, the sign of the term depends on the sign of

−f∗
ccv

f∗
c
et = αδ

(1+α)Jt
. Recall that f ∗

c = (1+α)(et)
−δ|Jt|

α
1+α and f ∗

ccv = −αδ(et)
−δ−1|Jt|−

1
1+α sgn(Jt).

Since δ > 0, α > −1, and thus f ∗
c > 0, the sign of this fourth term depends on the sign of

−f∗
ccv, i.e., sgn(α)sgn(Jt). Recall that Jt is positive (negative) when δ < 1 (when δ > 1, re-

spectively). Now, suppose σ⊤
e σJ(t) > 0, that is, that when the endowment growth rate

increases, the expected discounted utility increases (vice versa). When the agent is compar-

atively less risk-averse (that is, either when δ < 1 and α > 0 or when δ > 1 and α < 0), the

fourth term is positive; it pushes up the equilibrium instantaneous riskless rate. An intuitive

interpretation is as follows. Since f∗
ccv < 0, −f ∗

cc is increasing in J . Under σ⊤
e σJ(t) > 0, when

her income is lower, the investor becomes less risk-averse. Therefore, she has an incentive

to sell (i.e., take a short position of) instantaneous zero-coupon bonds. On the other hand,

suppose that the agent is comparatively more risk-averse (that is, either that δ > 1 and

α > 0 or that δ < 1 and α < 0). Since f∗
ccv > 0, the effect of the fourth term is reversed.

Also, when σ⊤
e σJ(t) < 0, it is reversed. When δ = 1, the interpretation of α is the same as

in the case of δ < 1 because, by construction, (1 + αJt) is positive.

The fifth term “−1
2

f∗
cvv

f∗
c
||σJ(t)||2 = α

2

∣∣∣∣∣∣ σJ (t)
(1+α)Jt

∣∣∣∣∣∣2” of Eq.(3.9) is specific to the time non-

separable utility (i.e., α ̸= 0) and non-unitary EIS (i.e., δ ̸= 1); the corresponding term does

not exist in Eq.(3.12) under δ = 1. Recall that f∗
cvv = − α

(1+α)
(et)

−δ|Jt|
−2−α
1+α . Accordingly, in

the fifth term of Eq.(3.9), f∗
cvv is positive (negative) when α < 0 (when α > 0, respectively).

Suppose α < 0. Then, the marginal utility of the consumption f ∗
c is convex in J . Therefore,

due to Jensen’s inequality, the utility uncertainty ||σJ(t)||2 > 0 results in a higher level of

9



the expected marginal utility of consumption (that is, the zero-coupon bond price) than in

case that f∗
c is linear in Jt. Call this the “convexity effect” of the fifth term. Due to this

effect, the equilibrium instantaneous riskless rate is lowered; the fifth term is negative. When

α > 0, the effect is reversed – call this the “concavity effect.” Note that this effect of this

term is independent of sgn(J). Notably, since f ∗
cvv = 0 in case of δ = 1, the term does not

exist in the unitary-EIS case; it is specific to the case of δ ̸= 1 under the time nonseparable

utility.

Next, with regard to the market price of risk λ, from Eq.(3.7),

λt = σe

(
−ef

∗
cc

f∗c

)
+ σJ(t)

(
−f

∗
cv

f∗c

)
.

In the first term on the right hand side, − ef∗
cc

f∗
c

= δ is relative risk aversion against the income

risk under the part of the time separable utility. Hence, the first term stands for the risk

price of income growth uncertainty. On the other hand, the second term σJ(t)
(
−f∗

cv

f∗
c

)
is

specific to the time nonseparable utility (i.e., α ̸= 0). f∗
cv represents how a small change of

Jt change the marginal utility of consumption f ∗
c . Thus, in parallel to the the first term,

−f∗
cv

f∗
c

means the additional risk price through J per one unit of σJ(t).

Let P (t, s) and R(t, s) denote time-t price of zero coupon bonds maturing at time s and

the spot yields from time t to time s, respectively:

P (t, s) = Et

[
exp

{
−
∫ s

t

rudu

}
exp

{
−
∫ s

t

λ⊤u dBu −
1
2

∫ s

t

||λu||2 du
}]

, (3.15)

R(t, s) = − 1
s− t

logP (t, s). (3.16)

From Eq.(3.15) and Eq.(3.16),

R(t, s) = − 1
s− t

logEt

[
exp

{
−
∫ s

t

(
ru +

1
2
||λu||2

)
du

}
exp

{
−
∫ s

t

λ⊤u dBu

}]
. (3.17)

From Eq.(3.10) and Eq.(3.13),

rt +
1
2
||λt||2 =

 β + δµe(t) − δ
2 ||σe||

2 + α(1+α)
2

∣∣∣∣∣∣ σJ (t)
(1+α)Jt

∣∣∣∣∣∣2 (if δ ̸= 1),

β + µe(t) − 1
2 ||σe||

2 + 1
2α

2
∣∣∣∣∣∣ σJ (t)

(1+αJt)

∣∣∣∣∣∣2 (if δ = 1), .
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Substituting these and Eq.(3.11) and Eq.(3.14) into Eq.(3.17),

R(t, s) =



− 1
s−t logEt

 exp
{
−
∫ s
t

(
β + δµe(u) − δ

2 ||σe||
2 + α(1+α)

2

∣∣∣∣∣∣ σJ (u)
(1+α)Ju

∣∣∣∣∣∣2) du} ·

exp
{
−
∫ s
t

(
δσe − α σJ (u)

(1+α)Ju

)⊤
dBu

}
 (if δ ̸= 1),

− 1
s−t logEt

 exp
{
−
∫ s
t

(
β + µe(u) − 1

2 ||σe||
2 + 1

2α
2
∣∣∣∣∣∣ σJ (u)

(1+αJu)

∣∣∣∣∣∣2) du} ·

exp
{
−
∫ s
t

(
σe − α σJ (u)

(1+αJu)

)⊤
dBu

}
 (if δ = 1).

(3.18)

When δ = 1, we obtain a closed-form, analytical solution of the term structure of interest

rates. The solution in the case of T → ∞ is placed in Appendix A. For the derivation of it,

see Nakamura, Nakayama, and Takahashi (2008). On the other hand, when δ ̸= 1, we obtain

no explicit, analytical solution of the spot yields, because this model with δ ̸= 1 obtains no

closed-form solution of J . Accordingly, we solve numerically the decoupled FBSDEs (3.3).

For the details of our numerical method, see Appendix B.

4 Nominal yield curve

So far we have confined attention to the real economy. However, in practice, most fixed

income products pay in nominal terms, not in real terms. A real zero coupon bond is a

security that pays one unit of consumption goods at its maturity, whereas a nominal zero

coupon bond pays one unit of currency at its maturity. This section investigates the nominal

term structure by introducing a price index process.

First, set two additional state variables: the price index and its expected growth rate

(that is, the expected inflation rate). In particular, the expected inflation process follows a

mean-reversion process. Precisely, let Nt denote the price index process and ε is its expected

inflation rate as follows:

dNt
Nt

= εtdt+ σ⊤
n dBt, N0 ∈ R+

dεt = θ(ε̄− εt)dt+ σ⊤
ε dBt, ε0 ∈ R

where θ (the speed of the mean reversion) is a positive constant, ε̄ (the mean-reversion level

of the expected inflation rate) is a constant. Also, σn and σε ∈ R4×1 are constant vectors.

The processes defined in the previous subsections are modified appropriately.

11



The pricing equation is as follows: with regard to the nominal price of any asset P̂t,

P̂t
Nt

= Et

[
πs
πt

P̂s
Ns

]
.

Note that, for any variable x in real terms, x̂ denotes the nominal value of x. In particular,

with regard to the nominal bond that pays one unit of currency at maturity s.

P̂t
Nt

= Et

[
πs
πt

1
Ns

]
. (4.1)

Using Eq.(4.1), look at the role of the inflation factors (that is, the price index process N

and the expected inflation process ε) in the equilibrium pricing. Decompose the right hand

side of the equilibrium pricing formula Eq.(4.1) into two parts: the real pricing kernel πs

πt
and

the real payoff at the maturity 1
Ns

. This model implicitly assumes that the agent maximizes

his utility of real consumption, not of nominal one. In such economic circumstances, the

real pricing kernel πs

πt
is the same as the one in the previous real economy.7 In other words,

the inflation factors influence the equilibrium price only through the real payoff, not through

the real pricing kernel. A higher (lower) level of the price index depreciates (increases,

respectively) the real value of the nominal payoff. Hence, when the inflation factors covariate

more positively with the real pricing kernel, the price (the premium) of the nominal bond

declines (increases, respectively).

Specifically, Let P̂ (t, s) and R̂(t, s) denote time-t price of zero coupon bonds maturing at

time s and the spot yields from time t to time s, respectively:

P̂ (t, s) = Et

[
exp

{
−
∫ s

t

rudu

}
exp

{
−
∫ s

t

λ⊤u dBu −
1
2

∫ s

t

||λu||2 du
}
· Nt
Ns

]
, (4.2)

R̂(t, s) = − 1
s− t

log P̂ (t, s). (4.3)

From Eq.(4.2) and Eq.(4.3),

R̂(t, s) = − 1
s− t

logEt

[
exp

{
−
∫ s

t

rudu

}
exp

{
−
∫ s

t

λ⊤u dBu −
1
2

∫ s

t

||λu||2 du
}
· Nt
Ns

]
.

7Suppose, on the contrary to our model, that the agent maximizes his utility of nominal consumption. Then, the inflation
factors can influence the real pricing kernel.
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Applying Ito’s formula to 1
Nt

simply,

d

(
1
Nt

)
= − 1

(Nt)2
dNt +

1
Nt

||σn||2 dt

=
1
Nt

{(
−εt + ||σn||2

)
dt− σ⊤

n dBt

}

Thus,

R̂(t, s) = − 1
s− t

logEt

 exp
{
−
∫ s
t
rudu

}
exp

{
−
∫ s
t
λ⊤u dBu − 1

2

∫ s
t
||λu||2 du

}
·

exp
{
−
∫ s
t

(
εu − ||σn||2

)
du
}

exp
{
−
∫ s
t
σ⊤
n dBu − 1

2

∫ s
t
||σn||2 du

}


= − 1
s− t

logEt

 exp
{
−
∫ s
t

(
ru + εu − ||σn||2 − σ⊤

n λu

)
du
}
·

exp
{
−
∫ s
t

(λu + σn)
⊤
dBu − 1

2

∫ s
t
||λu + σn||2 du

}


= − 1
s− t

logEt

 exp
{
−
∫ s
t
r̂udu

}
·

exp
{
−
∫ s
t
λ̂⊤u dBu − 1

2

∫ s
t

∣∣∣∣∣∣λ̂u∣∣∣∣∣∣2 du}
 (4.4)

where r̂t and λ̂t are defined as:

r̂t = rt + εt − ||σn||2 − σ⊤
n λt, (4.5)

λ̂t = λt + σn. (4.6)

From an analogue of Eq.(3.17), r̂t and λ̂t can be interpreted as a nominal instantaneous

riskless rate and the nominal market price of risk, respectively.

Similarly to the arguments regarding the real yield curve in the previous section, when

δ = 1, we obtain a closed-form, analytical solution of the term structure of interest rates

(see Appendix A), whereas, when δ ̸= 1, we numerically solve for the yield curve. For the

numerical method, see Appendix B.

5 Quantitative analysis: Macroeconomic implications

In this section, we draw macroeconomic implications from quantitative results regarding the

real and the nominal yield curves under the SDU characterized by the SS aggregator. We

confine attention to the case of non-unitary EIS (δ ̸= 1), which takes on the value either of

13



0.5 or 1.5 in our numerical analyses.8 This magnitude of EIS (i.e., 1/δ) that we focus on is

similar to the ones chosen by Bansal and Yaron (2004) and Hansen, Heaton, Roussanov and

Lee (2008). In fact, it is consistent with a large previous empirical literature.9 With regard

to α, we set α ∈ {0, 0.9} when δ = 0.5 and α ∈ {0, 3, 9} when δ = 1.5. Note that we restrict

α to be non-negative, although α can take negative values. This is because, with α fixed at a

positive value, by changing from δ = 0.5 into δ = 1.5, the role of α is reversed; when δ = 0.5,

the agent is comparatively less risk-averse, whereas when δ = 1.5, she is comparatively more

risk-averse. Therefore, our model is rich enough under the restriction of α ≥ 0. Set β = 0.01.

Under the above-specified underlying economic structures, we take a sufficiently large

value of T ; we set T = 400 years. The instantaneous riskless rate and the spot yields are

evaluated at time t = 0. We set the parameters and the variance and covariance matrices of

the state variables as in Table 1.

For simplicity, we assume that the correlation between inflation and real factors are zero.

By doing so, we confine attention to the effect of the expected inflation on a nominal term

structure of interest rates.

Table 1: Set of Parameters

For δ = 0.5.

β 0.01 α 0 or 0.9
||σe|| 0.05 ||σn|| 0.1
ν0 0.03 ε0 0.03
ν̄ 0.03 ε̄ 0.03
k 0.5 θ 0.1

||σν || 0.02 ||σε|| 0.02
ρeν 0.5 or -0.5 ρeε, ρνε 0.5 or -0.5

ρen, ρνn, ρεn 0

For δ = 1.5.

β 0.01 α 0, 3 or 9
||σe|| 0.05 ||σn|| 0.05
ν0 0.03 ε0 0.03
ν̄ 0.03 ε̄ 0.03
k 1 θ 0.05

||σν || 0.02 ||σε|| 0.01
ρeν 0.5 or -0.5 ρeε, ρνε 0.5 or -0.5

ρen, ρνn, ρεn 0

5.1 Level of the yield curve

Let us examine the real instantaneous riskless rate at time t = 0, which we regard as the

level of the yield curve in real terms. In Eq.(3.9), with δ fixed and α changed, only the

fourth term αδ σ⊤
e σJ (t)

(1+α)Jt
and the fifth term 1

2
α
∣∣∣∣∣∣ σJ (t)

(1+α)Jt

∣∣∣∣∣∣2 can be changed. Look at the case of

8Under the SS aggregator, the utility form with the unitary EIS is not a limit of the one with the non-unitary EIS as δ → 1,
because of the technical reasons.

9For the reference, see Bansal and Yaron (2004).
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Table 2: The values of the covariance processes at time 0: δ = 0.5, α = 0.9.

σ⊤
e σJ

(1+α)Jt

σ⊤
ν σJ

(1+α)Jt

σ⊤
n σJ

(1+α)Jt

σ⊤
ε σJ

(1+α)Jt

∣∣∣∣∣∣ σJ (t)
(1+α)Jt

∣∣∣∣∣∣2
ρeν = 0.5, ρeε, ρνε = 0.5 0.00171 0.000631 -0.0000000827 0.000438 0.00145
ρeν = 0.5, ρeε, ρνε = −0.5 0.00171 0.000631 -0.0000000827 -0.000438 0.00145
ρeν = −0.5, ρeε, ρνε = 0.5 0.000726 0.000144 0.0000000598 0.000435 0.000489
ρeν = −0.5, ρeε, ρνε = −0.5 0.000726 0.000144 0.0000000598 -0.000435 0.000489

δ = 0.5. Set α ∈ {0, 0.9}. From the numerical results (Table 2), the covariance between the

endowment growth rate and the utility in equilibrium (i.e., σ⊤
e σJ(t)) is positive at time t = 0;

σ⊤
e σJ (t)

(1+α)Jt
is 0.00171 (when ρeν = 0.5) and 0.000726 (when ρeν = −0.5) at time 0. When α > 0

and δ < 1 (that is, the agent is comparatively less risk-averse), the investor possesses the

motive of shorting the bonds; the fourth term is positive. Also, the fifth term is positive due

to the concavity effect. Accordingly, a positive level of α pushes up the level of yield curve

in comparison with the case of the time separable utility (α = 0). Moreover, a higher level

of α causes a higher level of the motive of shorting the bonds in the fourth term and a higher

level of the concavity effect in the fifth term. Therefore, a higher α results in a higher level

of the instantaneous riskless rate. In our examples, the correlation between the endowment

growth rate and the expected endowment growth rate (ρeν) takes on the value either of 0.5

or −0.5. From Figure 2, when α = 0.9, ρeν > 0 results in a slightly higher level of the yield

curve in comparison with ρeν < 0. The reason is as follows. From Table 2, both
∣∣∣∣∣∣ σJ (t)

(1+α)Jt

∣∣∣∣∣∣2
and σ⊤

e σJ (t)
(1+α)Jt

are larger when ρeν > 0 than when ρeν < 0 at time t = 0.10 Accordingly, the

fourth term and the fifth term both are larger when ρeν = 0.5 than when ρeν = −0.5; the

yield curve is lifted up higher when ρeν = 0.5. With a higher level of α, the lift is higher.

Next, look at the case of δ = 1.5. We take α ∈ {0, 3, 9}. From the numerical results (Ta-

ble 3), the covariance between the endowment growth rate and the utility in equilibrium

(i.e., σ⊤
e σJ(t)) is positive at time t = 0, as in the case of δ = 0.5; since J < 0, σ⊤

e σJ (t)
(1+α)Jt

is

−0.00146 (when ρeν = 0.5) and −0.00100 (when ρeν = −0.5) for α = 3 and −0.00140 (when

ρeν = 0.5) and −0.00101 (when ρeν = −0.5) for α = 9 at time 0. When α > 0 and δ > 1

(that is, the agent is comparatively more risk-averse), the fourth term αδ σ⊤
e σJ (t)

(1+α)Jt
is negative,

implying that the investor possesses the motive of holding the bonds. This is a contrast to

10Note that these results are consistent with the case of δ = 1 that is shown in Appendix A.
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Table 3: The values of the covariance processes at time 0: δ = 1.5.

σ⊤
e σJ

(1+α)Jt

σ⊤
ν σJ

(1+α)Jt

σ⊤
n σJ

(1+α)Jt

σ⊤
ε σJ

(1+α)Jt

∣∣∣∣∣∣ σJ (t)
(1+α)Jt

∣∣∣∣∣∣2
α = 3 ρeν = 0.5, ρeε, ρνε = 0.5 -0.00146 -0.000437 0.0000000333 -0.000170 0.000309

ρeν = 0.5, ρeε, ρνε = −0.5 -0.00146 -0.000437 0.0000000333 0.000170 0.000309
ρeν = −0.5, ρeε, ρνε = 0.5 -0.00100 0.0000523 0.0000000307 -0.000174 0.000158
ρeν = −0.5, ρeε, ρνε = −0.5 -0.00100 0.0000523 0.0000000307 0.000174 0.000158

α = 9 ρeν = 0.5, ρeε, ρνε = 0.5 -0.00140 -0.000417 0.0000000318 -0.000163 0.000282
ρeν = 0.5, ρeε, ρνε = −0.5 -0.00140 -0.000417 0.0000000318 0.000163 0.000282
ρeν = −0.5, ρeε, ρνε = 0.5 -0.00101 0.0000528 0.0000000310 -0.000175 0.000160
ρeν = −0.5, ρeε, ρνε = −0.5 -0.00101 0.0000528 0.0000000310 0.000175 0.000160

the above case of δ = 0.5. The fifth term 1
2
α
∣∣∣∣∣∣ σJ (t)

(1+α)Jt

∣∣∣∣∣∣2 is positive due to the concavity

effect, as in the case of δ = 0.5. A higher level of α causes a higher level of the motive of

purchasing the bonds in the fourth term and a higher level of the concavity effect of the fifth

term. Since these two effects are opposite, the total effect is uncertain analytically. In the

numerical examples (Figure 1),
∣∣∣∣∣∣ σJ (t)

(1+α)Jt

∣∣∣∣∣∣2 is approximately 0.00016 ∼ 0.00031 at time 0.

Accordingly, the fourth term is stronger than the fifth term; the level of the yield curve is

lower when α = 9 than when α = 3, in either case of ρeν = 0.5 or ρeν = −0.5. More precisely,

σ⊤
e σJ (t)

(1+α)Jt
is smaller when ρeν = 0.5 than when ρeν = −0.5. This is consistent with the case

of δ = 1 that is shown in Appendix A, as discussed in footnote 10. Following the logic, we

can guess that, when ρeν is lower than −0.5, σ⊤
e σJ (t)

(1+α)Jt
could be larger; moreover, it could be

positive. The total effect of the fourth term and the fifth term could then be positive. If so,

on the contrary to the above numerical result, the level of the yield curve would be higher

when α > 0 than when α = 0. On the other hand, by contrast, when ρeν > 0 and α > 0, the

level of the yield curve is low.

Next, with regard to the level of the nominal yield curve, from Eq.(4.5), the difference

between the real instantaneous riskless rate and the nominal one is r̂t − rt = εt − ||σn||2 −

σ⊤
n λt. With regard to the far right term, from Eq.(3.11), σ⊤

n λt = σ⊤
n

(
δσe − α σJ (t)

(1+α)Jt

)
.

Due to the parametric assumption of zero correlation between the inflation rate and the

real factors and between the inflation rate and the expected inflation rate, σ⊤
n λt is negligible

(Table 2, Table 3). Accordingly, α does not influence the difference r̂t−rt. In these numerical

examples, the nominal instantaneous riskless rate at time t = 0 is higher than the real one

by approximately 2.00% when δ = 0.5 and 2.75% when δ = 1.5 (Figure 1, Figure 2).
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Figure 1: δ = 1.5 Yield curves
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Figure 2: δ = 0.5 Yield curves
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5.2 Slope of the yield curve

With the slope of the yield curve, from Eq.(3.18),

R(t, s) = − 1
s− t

logEt

 exp
{
−
∫ s
t

(
β + δµe(u) − δ

2 ||σe||
2 + α(1+α)

2

∣∣∣∣∣∣ σJ (u)
(1+α)Ju

∣∣∣∣∣∣2) du} ·

exp
{
−
∫ s
t

(
δσe − α σJ (u)

(1+α)Ju

)⊤
dBu

}


= − 1
s− t

logEt

exp


−
∫ s
t

 (1 − δ)β + δνu − δ
2 ||σe||

2

+α(1+α)
2

∣∣∣∣∣∣ σJ (u)
(1+α)Ju

∣∣∣∣∣∣2
 du

−
∫ s
t

(
δσe − α σJ (u)

(1+α)Ju

)⊤
dBu


 . (5.1)

To obtain some intuitive understandings of this equation, we impose two simplifications.

First, set k = 0: that is, νu = νt +
∫ u

t
σ⊤

ν dBw. Second, σJ (t)
(1+α)Jt

is replaced by a constant

matrix, denoted by σ̃J . The reasoning for these two treatments will be discussed below. Let

Ra(t, s) denote the spot yield that is approximated based on these two simplifications.

Ra(t, s) = rat − δ2 ||σν ||2
(s− t)2

6
− δ2σ⊤

e σν
(s− t)

2
+ αδσ⊤

ν σ̃J
(s− t)

2
. (5.2)

where

rat := lim
s↓t

Ra(t, s) = Ra(t, t) = δνt + (1 − δ)β − δ(1 + δ)
2

||σe||2 +
α

2
||σ̃J ||2 + αδσ⊤

e σ̃J .

That is, ra
t represents this instantaneous riskless rate and stands for the level of the yield

curve. Call this approximation normality approximation. For the details of the derivation of

this normality approximation, see Appendix C.

Eq.(5.2) provides us with some intuitive interpretations of the results in real terms. How-

ever, Eq.(5.2) is not exactly the spot yield that we are solving for numerically, in the sense

that it is obtained on the assumptions of (1) k = 0 and of (2) σJ (t)
(1+α)Jt

being replaced by the

constant matrix σ̃J . With regard to the first assumption, we can guess that a higher level

of the speed (k > 0) results in a flatter yield curve than in the case of zero speed of the

mean reversion (k = 0). On the other hand, with regard to the second assumption, under

our parametric assumptions in Table 1,
∣∣∣∣∣∣ σJ (t)

(1+α)Jt

∣∣∣∣∣∣2 is constant over the first 30 years, which

period of time we are focusing on (Figure 3).

We can conjecture that this is because our EIS parameter is relatively close to unity.
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Figure 3: The mean value of
∣∣∣∣∣∣ σJ (t)

(1+α)Jt

∣∣∣∣∣∣2 over first 30 years in the case of δ = 1.5, α = 9, ρeν = 0.5 and
ρeε = ρνε = −0.5. The other parameters are set as Table 1. The value is calculated as sample mean in the
Monte-Carlo simulation. In each time-step, the (standard deviation)/(mean) ratio is 5× 10−2 at most. It is
small enough to regard the process as deterministic.

Accordingly, the second simplification is a pertinent approximation under our parametric

examples.11 In short, Eq.(5.2) is a useful tool to study our numerical results in an intu-

itive way.

Look at our numerical results regarding the slope of the real yield curve based on Eq.(5.2)

in more details. With δ fixed, let us examine the effect of α on the slope of the real yield

curve. As a benchmark case, look at the case of the time separable utility (α = 0). First,

−δ2 ||σν ||2 (s−t)2

6
is derived from δ

∫ u

t
σ⊤

ν dBw in Eq.(C.1) shown in Appendix C. From Eq.(3.9),

we know that
∫ u

t
σ⊤

ν dBw represents the accumulation of the uncertainty of the equilibrium

instantaneous riskless rate from time t to time u under the normality approximation. Ac-

cordingly, the term −δ2 ||σν ||2 (s−t)2

6
corresponds to expected discounting. By the Jensen’s

inequality, this term is negative – call this effect the “convexity effect of the expected dis-

counting.” Therefore, −δ2 ||σν ||2 (s−t)2

6
pushes down the slope of the yield curve; the down-

ward effect is increasing by square in maturity length.

Second, when σ⊤
e σν > 0,12 the term −δ2σ⊤

e σν
(s−t)

2
reduces the slope of the curve. In other

11Note that Eq.(5.2) is not necessarily be a good approximation in general.
12From Eq.(3.9), σν corresponds, at least partly, to the volatility of the equilibrium instantaneous riskless rate. Moreover,

if
σJ (t)

(1+α)Jt
is characterized by a constant matrix, then δσν is equal to it. Thus, σ⊤

e σν > 0 means that real interest rates are

pro-cyclical.
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words, under σ⊤
e σν > 0, the long-term bonds play a role of hedging income risk, because

holding the bonds mitigates the uncertainty of the future utility. Therefore, the investor is

willing to purchase the bonds at a lower rate of return; the term −δ2σ⊤
e σν

(s−t)
2

is negative.

Call this effect a hedging effect. On the other hand, when σ⊤
e σν < 0, the effect is reversed.

Note that the effect of this term is linear in maturity length.

In total, when ρeν = 0.5, both the first and the second effects are negative; the yield

curve is sloping down. In addition, the slope should be more steeply under δ = 1.5 than

under δ = 0.5. On the other hand, when ρeν = −0.5, the first effect and the second effect

are opposite. The total effect is uncertain analytically. Still, the first effect is getting bigger

by square in maturity length, whereas the second effect is linear in maturity length. Even

although the yield curve may be sloping up (i.e., the second effect may be overwhelming the

first one) in short maturity length, it can slope down (the first effect is overwhelming the

second one) at longer maturity. Regardless of such detailed arguments, however, the real

yield curve under α = 0 is almost flat in either case of δ because we are setting a high level of

the speed of the mean reversion of the expected endowment growth rate (k = 0.5 for δ = 0.5

and k = 1 for δ = 1.5).

Next, look at the case of the time-nonseparable utility (α ̸= 0). In this case, the

term αδσ⊤
ν σ̃J

(s−t)
2

is effective; that is, this term is specific to the time nonseparable util-

ity. In parallel to the arguments regarding the level of the yield curves in the previous

subsection, when α > 0, the term αδσ⊤
ν σ̃J

(s−t)
2

stands for the motive of shorting (holding)

the long-term bonds when σ⊤
ν σ̃J > 0 (when σ⊤

ν σ̃J < 0, respectively). When σ⊤
ν σ̃J > 0

(when σ⊤
ν σ̃J < 0), the motive of shorting (holding) the long-term bonds pushes up (pushes

down, respectively) the slope of the yield curve. With a higher level of α, the effect of this

term is increasing. Note that, when α < 0, the effect is reversed. Also, the effect is bigger

when δ = 1.5 than when δ = 0.5. However, as discussed above, we set a high level of the

speed of the mean reversion of the expected endowment growth rate. The real yield curve

is almost flat under α ̸= 0 as well. Still, when δ = 1.5 and ρeν = 0.5 , we can observe in

Figure 1 that the yield curve is sloping down slightly in short maturity area. This is because

(1) the negative effect of the term αδσ⊤
ν σ̃J

(s−t)
2

< 0 is added to the negative effects of the
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convexity effect −δ2 ||σν ||2 (s−t)2

6
and the hedging effect −δ2σ⊤

e σν
(s−t)

2
, (2) all those negative

effects are amplified when δ is bigger, and (3) there is a small effect of the mean reversion

in short maturity area. The downward slope in such a short-maturity area is steeper when

α is higher.

Note that, whereas we set such a high speed of the mean reversion of the expected

endowment process, we set a lower speed θ of the mean reversion of th expected inflation

process. By doing so, we can confine more attention to the effect of the expected inflation

on the nominal yield curve.

From such a perspective, examine the slope of the yield curve in nominal terms. From

Eq. (4.4),

R̂(t, s) = − 1
s− t

logEt

 exp
{
−
∫ s
t

(
ru + εu − ||σn||2 − σ⊤

n λu

)
du
}
·

exp
{
−
∫ s
t

(λu + σn)
⊤
dBu − 1

2

∫ s
t
||λu + σn||2 du

}


= − 1
s− t

logEt

 exp


−
∫ s
t

 (1 − δ)β + δνu − δ
2 ||σe||

2

+α δ2
∣∣∣∣∣∣ σJ (u)

(1+α)Ju

∣∣∣∣∣∣2 + εu − 1
2 ||σn||

2

 du

−
∫ s
t

(
δσe − α σJ (u)

(1+α)Ju
+ σn

)⊤
dBu


 .

Like the above arguments in real terms, impose three simplifications: (1) k = 0, (2) θ = 0,

and (3) σJ (t)
(1+α)Jt

is replaced by the constant matrix σ̃J . The approximated nominal spot yields,

denoted by R̂a(t, s), are written as:

R̂a(t, s) =


Ra(t, s) + (r̂at − rat )

− ||σε||2 (s−t)2
6 − δσ⊤

ν σn
(s−t)

2 − δσ⊤
ν σε

(s−t)2
6

−δσ⊤
e σε

(s−t)
2 + ασ⊤

ε σ̃J
(s−t)

2 − σ⊤
n σε

(s−t)
2

 . (5.3)

where r̂a
t , ra

t +(εt−||σn||2−σ⊤
n λt) denotes the corresponding nominal instantaneous riskless

rate. From an analogue of Eq.(4.5), the term r̂a
t −ra

t = εt−||σn||2−σ⊤
n λt represents the level

difference between the real and the nominal yield curves. Note that a higher level of the

speed of the mean reversion θ > 0 results in a flatter yield curve than this equation Eq.(5.3)

shows. For the details of the derivation of this normality approximation, see Appendix C.

In our numerical examples, we set no correlation between the inflation rate and the real

22



factors and between the inflation rate and the expected inflation rate. Accordingly,

R̂a(t, s) =

 Ra(t, s) + (r̂a
t − ra

t )

− ||σε||2 (s−t)2

6
− δσ⊤

e σε
(s−t)

2
− δσ⊤

ν σε
(s−t)2

6
+ ασ⊤

ε σ̃J
(s−t)

2

 . (5.4)

where r̂a
t − ra

t = εt − ||σn||2 +ασ⊤
n σ̃J . We can conjecture that σ⊤

n σ̃J is negligible as discussed

above.

Examine Eq.(5.4), basically in parallel to the above arguments in real terms. First,

− ||σε||2 (s−t)2

6
stands for a nominal convexity effect regarding the expected discounting. Sec-

ond, −δσ⊤
e σε

(s−t)
2

and −δσ⊤
ν σε

(s−t)2

6
represent the motive of holding (shorting) the nominal

long-term bonds when σ⊤
e σε > 0 (σ⊤

e σε < 0) and σ⊤
ν σε > 0 (σ⊤

ν σε < 0), respectively. Third,

the far right term ασ⊤
ε σ̃J

(s−t)
2

with α > 0 means the motive of shorting (holding) the long-

term bonds when σ⊤
ε σ̃J > 0 (when σ⊤

ε σ̃J < 0, respectively). Note that, for α < 0, the effect

of this term is reversed.

Now, we investigate our numerical results regarding the slope of the nominal yield curves

in the following four cases (that is, {δ, ρeε} ∈ {{0.5, 1.5} × {0.5, −0.5}}), based on Eq.(5.4).

Recall that, for simplicity, we have set ρeε = ρνε. Look at the case of δ = 0.5. See Figure 2.

Suppose ρeε = ρνε = 0.5. First, the nominal convexity effect is negative. Second, −δσ⊤
e σε

(s−t)
2

and −δσ⊤
ν σε

(s−t)2

6
represent the motive of holding the nominal long-term bonds; these terms

are both negative. Therefore, when α = 0, the slope of the yield curve is definitely negative.

Third, σ⊤
ε σ̃J is positive in this case, from Table 2.13 Thus, the far right term ασ⊤

ε σ̃J
(s−t)

2
> 0

represents the motive of shorting the long-term bonds. In the numerical results, in total, the

slope is negative when α > 0, because the far right term is relatively weak. Also, for a higher

level of α, the slope is flatter, because the positive effect of the far right term is larger.

Suppose ρeε = ρνε = −0.5. See Figure 2 again. First, the nominal convexity effect

is negative. Second, −δσ⊤
e σε

(s−t)
2

and −δσ⊤
ν σε

(s−t)2

6
represent the motive of shorting the

nominal long-term bonds; these terms are both positive. Third, σ⊤
ε σ̃J is negative in this

case, from Table 2. Thus, the far right term ασ⊤
ε σ̃J

(s−t)
2

< 0 represents the motive of holding

the long-term bonds. In the numerical results, when α = 0, the slope of the yield curve is

13This result is consistent with the one in the case of δ = 1 as in Appendix A. Such consistency holds true of the following
three cases as well.
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negative, because the first convexity effect is relatively strong. In addition, when α = 0.9,

the slope is also negative, since the far right term ασ⊤
ε σ̃J

(s−t)
2

< 0. Also, for a higher level

of α, the slope is steeper, because the negative effect of the far right term is larger.

Next, look at the case of δ = 1.5. See Figure 1. Suppose ρeε = ρνε = 0.5. First,

the nominal convexity effect always pushes down the slope. Second, when ρeε = ρνε = 0.5,

−δσ⊤
e σε

(s−t)
2

and −δσ⊤
ν σε

(s−t)2

6
represent the motive of holding the nominal long-term bonds;

theses terms are both negative. Third, σ⊤
ε σ̃J < 0 in this case, from Table 3. Therefore, for

α > 0, the far right term ασ⊤
ε σ̃J

(s−t)
2

represents the motive of holding the long-term bonds;

the term is negative. In total, since all these terms are negative, the slope is definitely

negative. The negative slope is steeper when α = 9 than when α = 3, because the far right

term shows the stronger motive of holding the long-term bonds.

On the other hand, look at the case of ρeε = ρνε = −0.5. See Figure 1 again. First,

the nominal convexity effect is the same as above. Second, the effects of −δσ⊤
e σε

(s−t)
2

and

−δσ⊤
ν σε

(s−t)2

6
are reversed in comparison with the above case. That is, they stand for the

motive of shorting the nominal long-term bonds; these terms are both positive. Third, σ⊤
ε σ̃J

is positive in this case, from Table 3. Accordingly, the far right term ασ⊤
ε σ̃J

(s−t)
2

> 0 repre-

sents the motive of shorting the long-term bonds. The total effect is uncertain analytically.

In our numerical examples, the slope is almost positive when α > 0 because the convexity

effect is overwhelmed by the far right term, although the slope is slightly negative when

α = 0. In addition, for a higher level of α > 0, the slope is steeper due to the far right term.

Focusing on the last case, together with the result regarding the level of the yield curve,

we find that, when α > 0, the level of the nominal yield curve (i.e., the instantaneous

riskless rate) is lower than when α = 0, whereas the slope is almost positive when α > 0. In

particular, when ρeν > 0 and α > 0, the level tends to be low. Thus, the case resolves the

risk-free rate puzzle and, at the same time, results in an upward slope of the yield curve.

This result is consistent with actual nominal yield curves.14

14When α < 0 and δ < 1, we may obtain similar results to replicate a nominal yield curves, because the agent is comparatively
more risk averse in the parametric situation as well. However, since δ is relatively small, the effect of the risk aversion on the
yield curve tends to be small. Accordingly, it may be difficult to achieve the above desirable results, since α is restricted to be
larger than −1 by Assumption 2.1.
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6 Conclusion

This paper constructs a continuous-time term structure model in environments with (i)

SDU with non-unitary EIS and (ii) mean-reverting expectations on the inflation and the

real output growth. With regard to future work, we will apply this model to an empirical

analysis. Also, we will explore a numerical method of solving BSDEs with non-Lipschitz

conditions in order to deal with the EIS that is sufficiently away from unity.
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A Factor Decomposition of yield curves in case of δ = 1

When δ = 1, we obtain closed-form solutions for the real/nominal term structure of interest

rates. In this appendix, we place some results of the factor decompositions of a term structure

of real/nominal interest rates in the case when T → ∞. For the derivation of them, see

Nakamura, Nakayama, and Takahashi (2008).

Let the superscript s denote the value under the time separable utility (i.e., α = 0). Then,

rst = νt − ||σe||2

rt = rst + (Additional endowment shock)

Rs(t, s) = (Real expectations) + (Separable utility’s real term premium) + (Real convexity effect)

R(t, s) = Rs(t, s) + (Additional endowment shock) + (Additional expected endowment shock)

r̂st = rst + εt + (Nominal risk aversion)

r̂t = r̂st + (Additional endowment shock) + (Additional inflation shock)

R̂s(t, s) = Rs(t, s) + (Expected inflation rate) + (Nominal risk aversion)

+ (Separable utility’s nominal term premium) + (Nominal convexity effect)

R̂(t, s) = R̂s(t, s) + (Additional endowment shock) + (Additional inflation shock)

+ (Additional expected endowment shock) + (Additional expected inflation shock).
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where

TES , 1
β

(
σe +

σν
k + β

)
(Real expectations) , rst + (ν̄ − νt)

(
1 − 1 − e−k(s−t)

k(s− t)

)
(Separable utility’s real term premium) , −σ

⊤
ν σe
k

(
1 − 1 − e−k(s−t)

k(s− t)

)
(Real convexity effect) , −||σν ||2

2k2

(
1 − 2

1 − e−k(s−t)

k(s− t)
+

1 − e−2k(s−t)

2k(s− t)

)
(Additional endowment shock) , α

β

(
||σe||2 +

σ⊤
e σν
k + β

)
(Additional expected endowment shock) , 1

k

α

β

(
σ⊤
ν σe +

||σν ||2

k + β

)(
1 − 1 − e−k(s−t)

k(s− t)

)
(Expected inflation rate) , Et

[
1

s− t
log

Ns
Nt

]
+

||σn||2

2

(Nominal risk aversion) , −||σn||2 − σ⊤
n σe

(Separable utility’s nominal term premium) , −σ
⊤
ε σe
θ

(
1 − 1 − e−θ(s−t)

θ(s− t)

)
−

[
σ⊤
n σε
θ

(
1 − 1 − e−θ(s−t)

θ(s− t)

)
+
σ⊤
n σν
k

(
1 − 1 − e−k(s−t)

k(s− t)

)]
(Nominal convexity effect) , −||σε||2

2θ2

(
1 − 2

1 − e−θ(s−t)

θ(s− t)
+

1 − e−2θ(s−t)

2θ(s− t)

)
− σ⊤

ε σν
kθ

(
1 − 1 − e−k(s−t)

k(s− t)
− 1 − e−θ(s−t)

θ(s− t)

+
1 − e−k(s−t)

k(s− t)
1 − e−θ(s−t)

θ(s− t)

)

(Additional inflation shock) , α

β

(
σ⊤
n σe +

σ⊤
n σν
k + β

)
(Additional expected inflation shock) , 1

θ

α

β

(
σ⊤
ε σe +

σ⊤
ε σν
k + β

)(
1 − 1 − e−θ(s−t)

θ(s− t)

)

Note that, in this paper, TES stands for “Total endowment shock.”

B Numerical method

The outline of our numerical method is as follows. We use directly the transformed utility V̂

in Eq.(2.4), instead of the utility V , for our numerical approximation. We derive numerically

equilibrium utility and equilibrium volatility, denoted by (U, σU), that are corresponding to

(V̂ , σV̂ ). We then transform these numerically obtained (U, σU) back into (J, σJ) by using
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the inverse transformation of Eq.(2.3) and substitute them into the formulation of the yield

curves that is derived in Section 3 and Section 4.

We can characterize the equilibrium transformed utility process U in continuous time,

which will be solved for numerically below, by imposing c = e:


det

et
= µe(t)dt+ σ⊤

e dBt, e0 ∈ R+,

dνt = k(ν̄ − νt)dt+ σ⊤
ν dBt, ν0 ∈ R,

dUt = −g(et, Ut, σU (t))dt+ σU (t)⊤dBt, UT = 0.

(B.1)

where

g(e, U, σU ) =


e1−δ

1−δ − βU + α
2 (U)−1||σU ||2 if δ > 0 and δ ̸= 1,

log e− βU + α
2 ||σU ||

2 if δ = 1.
(B.2)

As in Appendix A, when δ = 1, we have achieved an explicit (closed-form), analytical solution

to it. On the other hand, when δ ̸= 1, we do not obtain any such solution, although there

exists a unique solution to Eq.(B.1) under Assumption 2.1. Thus, we analyze numerically

the case of δ ̸= 1 by applying the method of Gobet, Lemor and Warin (2005) as follows. The

approximation method consists of three steps.

B.1 Discretization

We first introduce some notations and definitions as follows. For a σ-algebra F , L2(F) is

the space of square integrable, F -measurable, possibly multidimensional, random variables.

Let {tn = nh = nT/N}N
n=0 denote discretized times where h > 0 and N ∈ N are the length

of each time step and the number of time steps respectively. N is set to be sufficiently large.

Let an R-valued sequence {etn}N
n=0 denote a sequence of the discretized-time version of the

original process {et}0≤t≤T . With regard to the other processes, define similarly: {Btn}N
n=0,

{νtn}N
n=0, {σJ,tn}N

n=0, {Jtn}N
n=0, {µtn}N

n=0, {σU,tn}N
n=0, and {Utn}N

n=0. Also, ∆Bti , Bti+1
−Bti .

With regard to the approximation of the forward processes et and νt, we use a standard

scheme. In this appendix, we omit the description of the scheme. Assume, instead, that the

approximated forward processes, denoted by {ẽtn}N
n=0 and {ν̃tn}N

n=0, are obtained. By doing

so, we can focus our discussion on the backward approximation of the utility process.
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Look at the original process that is characterized by the BSDE:

dUt = −g(et, Ut, σU (t))dt+ σU (t)⊤dBt withUT = 0 given.

By discretizing the continuous time [0, T ] into discretization times {tn}N
n=0, consider the

following procedure of approximating {Utn , σU(tn)} in a backward manner:

1. Set ŨtN = UtN = 0.

2. For n = N − 1 to 0, compute

(Ũtn , σ̃U (tn)) = arg min
(U, σU )∈L2(Ftn )

E
[
Ũtn+1 − U + g(ẽtn , U, σU )h− σ⊤

U∆Btn
]2
. (B.3)

3. Output {Ũtn}N
n=0, {σ̃U(tn)}N

n=0.

Therefore, an optimal solution (Ũtn , σ̃U(tn)) of the problem (B.3) can be characterized by

σ̃U,l(tn) =
Etn

[
Ũtn+1∆Bl,tn

]
h

, for l = 1, · · · , d, (B.4)

Ũtn = Etn

[
Ũtn+1

]
+ g

(
ẽtn , Ũtn , σ̃U (tn)

)
h (B.5)

where the subscript l denotes the dimension of σU(t).

B.2 Regression

Second, we replace the conditional expectation that appears in Eq.(B.4)-Eq.(B.5) by an

L2 projection on the space generated by a finite number of functions of Xt = (et, νt) (call

them function bases), because {Ut}0≤t≤T and {σU(t)}0≤t≤T are Markov processes. We derive

a solution combining the projection on the function bases and I Picard iterations. The

integer I is a fixed parameter. Assume that the integer I is sufficiently large that the

iterations result in reaching at a fixed point, if any.

More specifically, since {Ut}0≤t≤T and {σU(t)}0≤t≤T are Markov processes, Ut and σU(t)

can be expressed as functions of the state variables et and νt for each t. This logic is similar

to the recent computation method of American option pricing (e.g., Clément, Lamberton,

and Protter (2002)). Define a sequence of measurable real-valued functions defined on the
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state space as pl,n(xtn) , (pl,n,1(xtn), · · · , pl,n,K(xtn))⊤ for n ∈ {0, 1, · · · , N − 1}, and l ∈

{0, 1, · · · , d} and a finite integer K, satisfying the following conditions:

Assumption B.1 For each n ∈ {0, 1, · · · , N − 1} and l ∈ {0, 1, · · · , d}, the sequence of

{pl,n,k(Xtn)}k∈{1,2,··· ,K} is total in L2(F tn).

Assumption B.2 For each n ∈ {0, 1, · · · , N − 1} and l ∈ {0, 1, · · · , d},

If
K∑
k=1

λkpl,n,k(Xtn) = 0 a.s., then λk = 0 for k ∈ {1, 2, · · · ,K}.

Notice that the subscript l = 0 of a variable represents that the variable is corresponding to

Ut. Call the sequence of {pl,n,k(Xtn)}k∈{1,2,··· ,K} function bases. Note that K stands for the

finite number of the function bases that generate the vector space. Recall that d denotes

the dimension of the Brownian motion B. We then approximate the conditional expectation

with respect to Xtn by the orthogonal projection on the space generated by the function

bases {pl,n,k(Xtn)}k∈{1,2,··· ,K}. For example, we may take indicator functions of the state

variables et and νt as the function bases.

This approximation corresponds to the linear regression of Utn and σU(tn) to the function

bases in each time step:

Utn ≈ b⊤
0,np0,n(etn , νtn), σU,1(tn) ≈ b⊤

1,np1,n(etn , νtn), · · · , σU,d(tn) ≈ b⊤
d,npd,n(etn , νtn),

where bl,n is a coefficient vector (bl,n,1, · · · , bl,n,K)⊤ for each l = 0, 1, · · · , d and each n. In

particular, we set the following form of U(t, e, ν): for δ > 0 and δ ̸= 1,

U(t, e, ν) = q(t)
e1−δ

1 − δ
+m(t)ν + n(t).

where q(t), m(t), n(t) are deterministic functions only of time t. That is,

pl,n,1(e, ν) =
e1−δ

1 − δ
, pl,n,2(e, ν) = ν, pl,n,3(e, ν) = 1, for l = 0, 1, 2, and n = 0, · · · , N − 1.

The linearity of the function U(t, e, ν) in e1−δ

1−δ
and ν is the reason why we have taken the

transformation of the utility from V to U in this numerical analysis.

The above procedure is then rewritten as:
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1. Set ŨtN = 0.

2. For n = N − 1 to 0,

(a) Set b0
l,n = 0 ∈ RK for l = 0, · · · , d.

(b) For i = 1 to I, compute

{bil,n}dl=0 = arg min
{bl,n}d

l=0

E
[
Ũtn+1 − b⊤

0,np0,n(ẽtn , ν̃tn)

+g
(
ẽtn ,b

i−1⊤
0,n p0,n(ẽtn , ν̃tn), · · · ,bi−1⊤

d,n pd,n(ẽtn , ν̃tn)
)
h

+
d∑
l=1

b⊤
l,npl,n(ẽtn , ν̃tn)∆Bl,tn

]2

,

(c) Compute

Ũtn = bI⊤0,np0,n(ẽtn , ν̃tn), σ̃U,1(tn) = bI⊤1,np1,n(ẽtn , ν̃tn), · · · , σ̃U,d(tn) = bI⊤d,npd,n(ẽtn , ν̃tn)

3. Output {Ũtn}N
n=0, {σ̃U(tn)}N

n=0.

B.3 Monte Carlo procedure

Finally, we evaluate numerically the expectation operation in the above procedure by a

Monte-Carlo procedure. Let M denote the number of Monte-Carlo simulations. M is set

to be sufficiently large. Let the set of R-valued sequences {{em
tn}

N
n=0}M

m=1 denote a sequence

of the discretized-time version of the original process {et}0≤t≤T . With regard to the other

processes, define similarly: {{Bm
tn}

N
n=0}M

m=1, {{νm
tn}

N
n=0}M

m=1, {{σm
J,tn

}N
n=0}M

m=1, {{Jm
tn}

N
n=0}M

m=1,

{{µm
tn}

N
n=0}M

m=1, {{σm
U,tn

}N
n=0}M

m=1, and {{Um
tn}

N
n=0}M

m=1. Also, ∆Bm
ti

, Bm
ti+1

−Bm
ti

.

To summarize, our algorithm is:

Algorithm

1. Set Ũm
tN

= 0 for all m.

2. For k = N − 1 to 0:

(a) Set b0
l,n = 0 ∈ RK for l = 0, · · · , d.
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(b) For i = 1 to I, compute

{bil,n}dl=0 = arg min
{bl,n}d

l=0

1
M

M∑
m=1

[
Ũmtn+1

− b⊤
0,np0,n

(
ẽmtn , ν̃

m
tn

)
+hf

(
ẽtn , ν̃tn ,b

i−1⊤
0,n p0,n(ẽmtn , ν̃

m
tn), · · · ,bi−1⊤

d,n pd,n(ẽmtn , ν̃
m
tn)
)

−
d∑
l=0

b⊤
l,npl,n(ẽ

m
tn , ν̃

m
tn)∆Bml,n

]

(c) Compute for m = 1, · · · ,M :

Ũmtn = ρ0,n

(
bI⊤0,np0,n(ẽmtn , ν̃

m
tn)
)
,

σ̃mU,1(tn) = ρ1,n

(
bI⊤1,np1,n(ẽmtn , ν̃

m
tn)
)
, · · · , σ̃mU,d(tn) = ρd,n

(
bI⊤d,npd,n(ẽ

m
tn , ν̃

m
tn)
)

3. Output {{Ũm
tn}0≤n≤N}1≤m≤M and {{σ̃m

Utn
}0≤n≤N}1≤m≤M .

where ρl,n : R → R, l = 0, · · · , d are truncation functions, which are introduced to ex-

clude outliers. We omit the details of the truncation functions (see Gobet, Lemor and

Warin (2005)). From Eq.(2.3) and Ito’s formula, for each m and each n, J̃m
tn , σ̃

m
J,tn

are ob-

tained. In our numerical examples, we set M = 70, 000, N = 4, 000, and I = 10.

Now, we have obtained the approximations of those original processes for some very

small h. From an analogue of Eq.(3.18), define:

R̃(0, tn) , − 1
tn

log
1
M

M∑
m=1


exp

{
−
∑n
i=0

(
β + δµ̃me,ti −

δ
2 ||σe||

2 + α(1+α)
2

∣∣∣∣∣∣∣∣ σ̃m
J,ti

(1+α)J̃m
ti

∣∣∣∣∣∣∣∣2
)
h

}
·

exp

{
−
∑n
i=0

(
δσe − α

σ̃m
J,ti

(1+α)J̃m
ti

)⊤

∆Bmti

}
 ,

where µ̃m
e,ti

, ν̃m
ti
−β. For 0 ≤ n ≤ N and for the small h, define R̃(0, tn) as our discrete-time

version of the real spot yields at tn. We can calculate the nominal yield curve similarly.

B.4 Appendix to Appendix B

There is one caveat. Gobet, Lemor and Warin (2005) assume the Lipschitz condition:

Assumption B.3 The driver g satisfies the following continuity estimate:

|g(e, U, σU ) − g(e′, U ′, σ′
U )| ≤ C(|e− e′| + |U − U ′| + |σU − σ′

U |)
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Figure 4: The analytical value and the numerical value of the real yield curves in the case of δ = 1, α =
−1, ||σe|| = 0.01, ||σν || = 0.01, ρeν = 0.2, β = 0.03 and k = 0.5. To draw the graph, we use the analytical
form obtained in Nakamura, Nakayama and Takahashi (2008). The numerical value is calculated as sample
mean in the Monte-Carlo simulation.

for any (e, U, σU), (e′, U ′, σ′
U) ∈ R × R × R2.

This assumption is sufficient to ensure the existence of a unique solution (e, ν, U, σU) to

Eq.(B.1). On the other hand, from Eq.(B.2), our model does not satisfy the Lipschitz

condition of the driver g with respect to σU .

Still, our numerical method works well. We can conjecture the reason with the following

two points. First, let us look at the case of δ = 1, for the reference. We have the analytical

solution of the yield curve, which is shown as in Appendix A. At the same time, by setting

U(t, e, ν) = q(t)log e+m(t)ν+n(t) in the second procedure of the above algorithm, we obtain

a numerical solution in the case of δ = 1. We can then compare the numerical solution with

the analytical solution. The comparison shows that the difference is 4 basis points, at

most; this is quite small relative to the level of the spot yields. Hence, the discrete-time

approximation replicates the analytical results well; our numerical method performs well

under our parametric assumptions in the case of δ = 1 (Figure 4).
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Second, in the case of δ ̸= 1, we show in Section 5 that the numerical results are well-

explained under the normality approximation. In fact, there,
∣∣∣∣∣∣ σJ (t)

(1+α)Jt

∣∣∣∣∣∣2 is constant over the

first 30 years, which period of time we are focusing on (see the above-mentioned Figure 3).

We can then conjecture that the numerical method works well, like in the case of δ = 1,

because δ is set to be not far away from unity in our numerical analyses.

C Normality Approximation of yield curves

We impose two simplifications. First, set k = 0: that is, νu = νt +
∫ u

t
σ⊤

ν dBw. In real terms,

substituting this into Eq.(5.1),

R(t, s) = − 1
s− t

logEt

exp


−
∫ s
t

 δ
∫ u
t
σ⊤
ν dBw +

{
δνt + (1 − δ)β − δ

2 ||σe||
2
}

+α(1+α)
2

∣∣∣∣∣∣ σJ (u)
(1+α)Ju

∣∣∣∣∣∣2
 du

−
∫ s
t

(
δσe − α σJ (u)

(1+α)Ju

)⊤
dBu




Note:

∫ s

t

(
δ

∫ u

t

σ⊤
ν dBw

)
du =

∫ s

t

σ⊤
ν

(∫ s

u

δ dw

)
dBu = δ

∫ s

t

(s− u)σ⊤
ν dBu.

Hence,

R(t, s) = − 1
s− t

logEt

exp


−
∫ s
t

(
δ
∫ u
t
σ⊤
ν dBw

)
du−

∫ s
t

(
δνt + (1 − δ)β − δ

2 ||σe||
2
)
du

−
∫ s
t

(
α(1+α)

2

∣∣∣∣∣∣ σJ (u)
(1+α)Ju

∣∣∣∣∣∣2) du
−
∫ s
t

(
δσe − α σJ (u)

(1+α)Ju

)⊤
dBu




= − 1
s− t

logEt

exp


−δ
∫ s
t
(s− u)σ⊤

ν dBu − (s− t)
{
δνt + (1 − δ)β − δ

2 ||σe||
2
}

−
∫ s
t

(
α(1+α)

2

∣∣∣∣∣∣ σJ (u)
(1+α)Ju

∣∣∣∣∣∣2) du
−
∫ s
t

(
δσe − α σJ (u)

(1+α)Ju

)⊤
dBu




=


δνt + (1 − δ)β − δ

2 ||σe||
2

− 1
s−t logEt

exp

 −α(1+α)
2

∫ s
t

∣∣∣∣∣∣ σJ (u)
(1+α)Ju

∣∣∣∣∣∣2 du
+
∫ s
t

(
−δ {σe + (s− u)σν} + α σJ (u)

(1+α)Ju

)⊤
dBu


 .


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Second, impose another simplification: σJ (t)
(1+α)Jt

is replaced by a constant matrix, denoted by

σ̃J . Applying Ito’s formula to this,

Ra(t, s) =



δνt + (1 − δ)β − δ
2 ||σe||

2

− 1
s−t log


exp



−α(1+α)
2

∫ s
t
||σ̃J ||2 du

+1
2

∫ s
t


δ2||σe||2 + (s− u)2δ2 ||σν ||2

+α2 ||σ̃J ||2 − 2αδσ⊤
e σ̃J

+2(s− u)δσ⊤
ν (δσe − ασ̃J)

 du







=


δνt + (1 − δ)β − δ(1+δ)

2 ||σe||2 + α
2 ||σ̃J ||2 + αδσ⊤

e σ̃J

− 1
s−t

 δ2

2 ||σν ||2
∫ s
t
(s− u)2du+ δ2σ⊤

e σν
∫ s
t
(s− u)du

−αδσ⊤
ν σ̃J

∫ s
t
(s− u)du


 .

Since
∫ s

t
(s− u)du = (s−t)2

2
and

∫ s

t
(s− u)2du = (s−t)3

3
,

Ra(t, s) =


δνt + (1 − δ)β − δ(1+δ)

2 ||σe||2 + α
2 ||σ̃J ||2 + αδσ⊤

e σ̃J

− 1
s−t

 δ2

2 ||σν ||2 (s−t)3
3 + δ2σ⊤

e σν
(s−t)2

2

−αδσ⊤
ν σ̃J

(s−t)2
2




=

 δνt + (1 − δ)β − δ(1+δ)
2 ||σe||2 + α

2 ||σ̃J ||2 + αδσ⊤
e σ̃J

−δ2 ||σν ||2 (s−t)2
6 − δ2σ⊤

e σν
(s−t)

2 + αδσ⊤
ν σ̃J

(s−t)
2

 .
Note that, as s ↓ t,

lim
s↓t

Ra(t, s) = Ra(t, t)

= δνt + (1 − δ)β − δ(1 + δ)
2

||σe||2 +
α

2
||σ̃J ||2 + αδσ⊤

e σ̃J

=: rat .

That is, ra
t represents this instantaneous riskless rate and stands for the level of the yield

curve. Thus,

Ra(t, s) = rat − δ2 ||σν ||2
(s− t)2

6
− δ2σ⊤

e σν
(s− t)

2
+ αδσ⊤

ν σ̃J
(s− t)

2
. (C.1)

In nominal terms, the approximated nominal spot yields, denoted by R̂a(t, s), are written
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as:

R̂a(t, s) = − 1
s− t

logEt


exp


−
∫ s
t


(1 − δ)β + δ

(
νt +

∫ u
t
σ⊤
ν dBw

)
− δ

2 ||σe||
2 + α δ2 ||σ̃J ||

2

+
(
εt +

∫ u
t
σ⊤
ε dBw

)
− 1

2 ||σn||
2

 du

−
∫ s
t

(δσe − ασ̃J + σn)
⊤
dBu





=


(1 − δ)β + δνt − δ

2 ||σe||
2 + α δ2 ||σ̃J ||

2 + εt − 1
2 ||σn||

2

− 1
s−t logEt

exp

 −
∫ s
t
δ(s− u)σ⊤

ν dBu −
∫ s
t
(s− u)σ⊤

ε dBu

−
∫ s
t

(δσe − ασ̃J)⊤ dBu −
∫ s
t

(σn)
⊤
dBu



 .

Applying Ito’s formula again,

R̂a(t, s) =


Ra(t, s) + (r̂at − rat )

− ||σε||2 (s−t)2
6 − δσ⊤

ν σn
(s−t)

2 − δσ⊤
ν σε

(s−t)2
6

−δσ⊤
e σε

(s−t)
2 + ασ⊤

ε σ̃J
(s−t)

2 − σ⊤
n σε

(s−t)
2

 .

where r̂a
t , ra

t + (εt − ||σn||2 − σ⊤
n λt) denotes the nominal instantaneous riskless rate.

D Optimal consumption/portfolio choice

This appendix solves a maximization problem of the representative agent to obtain the

optimal utility process characterized by Eq.(3.3) and the equilibrium pricing kernel Eq.(3.5).

Our solution method is basically according to the standard method of stochastic controls (Ma

and Yong (1999)). This is also a direct application of Skiadas (2007).

A consumption process c = {ct; t ∈ [0, T ]} is assumed to be real-valued, non-negative

and {Ft}0≤t≤T -adapted, and satisfies some mathematical regularity conditions for a utility

function to be well-defined. The set of the consumption processes c is denoted by C. Let

H denote the Hilbert space of every x ∈ L(R) such that E0

[∫ T

0
(xt)

2 dt+ (xT )2
]
< ∞ with

the inner product (x|y) , E0

[∫ T

0
xtyt dt+ xTyT

]
for x, y ∈ H. Assume that C is in H and

is convex. The agent ranks her consumption plan c ∈ C based on SDU of consumption Vt(c)

(we may also write simply Vt) for each t ∈ [0, T ], which is characterized by:

dVt = −f(ct, Vt,Σt)dt+ Σ⊤
t dBt; VT = 0.

Assume that f(c, V,Σ) is differentiable in c, V,Σ. Also, we assume the existence of a unique
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well-defined Vt for each consumption process c ∈ C and, moreover, that V0 is strictly increas-

ing, concave, and homothetic in c. We can also write Vt as follows:

Vt = Et

[∫ T

t

f(cs, Vs,Σs)ds

]
.

There are security markets that consist of (m+ 1) securities whose prices are denoted by

(P0, S1, · · · , Sm) ∈ Rm+1. Specifically, the markets are characterized by the following excess

return processes:

dP0(t)
P0(t)

= rtdt; P0(0) = 1,

dRt =
(
dS1(t)
S1(t)

,
dS2(t)
S2(t)

, · · · , dSm(t)
Sm(t)

)⊤

= µR(t) dt+ σR(t)⊤dBt; R0 = r̄.

Assume that there is no arbitrage in the markets, that is, there is some m-dimensional vector

process η = {ηt; 0 ≤ t ≤ T} such that

µR = σ⊤
Rη.

In addition, to guarantee completeness, we assume that σR is nonsingular for a.e.-t, a.s. We

define the pricing kernel π = {πt; 0 ≤ t ≤ T} by

dπt
πt

= −rt dt− η⊤t dBt.

Let ψt ∈ Rm (for each t) denote a time-t allocation rate on the risky securities, and ψ ,
{ψt; 0 ≤ t ≤ T}. The wealth process held by the agent is characterized by the following

stochastic differential equiation:

dWt = (rtWt − ct)dt+Wtψ
⊤
t dRt; W0 = w.

For notational convenience, define σW (t) = WtσR(t)ψt. Thus,

dWt = (rtWt − ct + η⊤σW (t))dt+ σW (t)⊤dBt; W0 = w.

Now, we solve a maximization problem of the agent with respect to (c, ψ). A pair (c, ψ) is said

to be optimal if c maximizes his expected utility when (c, ψ) is financed. The maximization
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problem is defined as: for all t,

Jt = max
c,ψ

Vt(c)

subject to

dWt = (rtWt − ct + η⊤σW (t))dt+ σW (t)⊤dBt; W0 = w.

Fix a pair (c, ψ). For notational convenience, define s , (c, V,Σ) ∈ S corresponding to

the pair (c, ψ) where S denotes a convex subset of some Euclidean space X. The pair (c, ψ)

and the corresponding s satisfy the following two conditions.

Condition D.1 For a pair (c, ψ) and the corresponding s,

(fc, fV , fΣ) ∈ ∂f(s) ,
{
δ ∈ X; f(s+ h) ≤ f(s) + δ⊤h, ∀h subject to s+ h ∈ S

}
(D.1)

where fx , ∂f
∂x

for x = c, V,Σ.

In convex analysis, for a concave function f , the set defined on the right-hand side of Eq.(D.1)

is called the supergradient of the function f at s.

Next, define a process Et(fV , fΣ) that is characterized by the following SDE:

dEt(fV , fΣ)
Et(fV , fΣ)

= fvdt+ fΣdBt; E0(fV , fΣ) = 1.

As some integrability restriction,

Condition D.2 For the pair (c, ψ),

Et

[
sup

0≤t≤T
Et(fV , fΣ)2

]
<∞.

In the remaining, we omit the subscript time t unless it causes any confusion. Recall the

assumption that the set of the consumption processes C is convex.

Lemma D.1 Under Conditions D.1 and D.2, for the pair (c, ψ) and the corresponding s

and for any x such that x ∈ H and c + x ∈ C and c + x is feasible,

V0(c + x) ≤ V0(c) + (π|x).
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where π = E(fV , fΣ)fc that is assumed to belong to H.

Proof. Set x ∈ H and c + x ∈ C and c + x is feasible. Define

δ , V (c + x) − V (c)

∆ , Σ(c + x) − Σ(c)

p , f(c, V,Σ) + fcx+ fV δ + fΣ∆

From Condition D.1, p ≥ 0. By direct algebra,

dδ = dV (c + x) − dV (c).

Since, by construction,

dV = −f(c, V,Σ)dt+ ΣdB; VT = 0,

we have

dδ = −(fcx+ fV δ + fΣ∆ − p)dt+ ∆⊤dB; δT = fcxT − pT = 0.

Therefore,

d(Eδ) = (−Efc + Ep)dt+ · · · dB

Since, by Condition D.2, Et

[
sup0≤t≤T (Et(fV , fΣ))2

]
<∞,

E0δ0 = E0

[∫ T

0

(Efcx− Ep)dt+ EfcxT − EpT

]
= (Efc|x) − (E|p).

Since E0 = 1,

δ0 = V (c + x) − V (c) ≤ (π|x).

The desired result is obtained.

Impose the following additional condition:

Condition D.3 For the pair (c, ψ), E0 [supt πtWt] <∞.
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Then,

Lemma D.2 Under Condition D.3, for the pair (c, ψ) and for any x such that x ∈ H and

c + x ∈ C and c + x is feasible,

(π|x) ≤ 0 with equality when x = 0.

Proof. By construction,

d(πW ) = πcdt+ · · · dB.

By Condition D.3,

π0W0 = E0

[∫ T

0

πscs ds+ πT cT

]
= (π|c).

For any x such that x ∈ H and c + x ∈ C and c + x is feasible,

π0W0 ≥ (π|c + x)

Therefore, (π|x) ≤ 0.

Now, we obtain our main theoretical result in this appendix:

Proposition D.1 Suppose Conditions D.1, D.2, D.3, and π = E(fV , fΣ)fc ∈ H. Then a

pair (c, ψ) is optimal.

Proof. By Lemma D.1 and Lemma D.2, we obtain the result directly.

Finally, we specify the utility function form and market structure and solve for an equi-

librium (c, ψ) and pricing kernel explicitly using market clearing conditions. In fact, the

optimization with respect to ψ requires explicit specification of the market structure char-

acterized by (µR, σR). To be consistent with the model in the main text, assume that there

exists a single risky security with positive net supply. That is, m = 1. Also, there is a single

riskless asset with zero supply, whose price is P0. The excess return process of the risky

security (with some initial investment w1 given) is characterized by:

W1dR1 = (W1µR1 + e)dt+W1σ
⊤
R1
dB; W1(0) = w1 > 0

where W1 denotes the amount of the investment in the risky security. Recall that e is
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the endowment of the consumption goods and its process is characterized by Eq.(3.1) and

Eq.(3.2). Since the utility is strictly increasing and the consumption good is perishable,

ψ = (1, 0, · · · , 0)⊤ holds true to clear the markets in equilibrium, that is, all is invested in

the risky security in equilibrium. Therefore, in equilibrium,

ct = et for all t

W (0) = w1

dW = W (r + µR1)dt+Wσ⊤
R1
dB.

Thus, the optimal utility process is characterized by Eq.(3.3). The endowment works as a

dividend, all of which is consumed at each instant.

We here focus on the particular type (i.e., Skiadas-Schroder type) of SDU that is used in

the above main text:

dVt = −f(ct, Vt)dt+ Σ⊤
t dBt; VT = 0,

where, for constants α, β, δ,

f(c, v) ,

 (1 + α)
{
c1−δ

1−δ |v|
α

1+α − βv
}

(if δ ̸= 1),

(1 + αv)
{

log c− β
α log(1 + αv)

}
(if δ = 1).

Put parametric assumptions:

β ≥ 0 and

 α > −1 and 1 − δ < min
{

1, 1
1+α

}
(if δ ̸= 1),

α ≤ β (if δ = 1).

The assumptions ensure the existence of a unique well-defined Vt for each consumption

process c ∈ C. Moreover, V0 is strictly increasing, concave, and homothetic in c.

Since fΣ = 0 in this formulation, from Lemma D.1,

πt = exp
{∫ t

0

fv(eu, Ju) du
}
fc(et, Jt).

We obtain Eq.(3.5).
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E Proofs of theorems

E.1 Proof of Eq.(3.4)

Proof: From Eq.(2.1), Vt +
∫ t

0
f(cu, Vu) du is a martingale:

Vt +
∫ t

0

f(cu, Vu) du = Et

[∫ T

0

f(cu, Vu) du

]
.

Since the drift of the process of Vt +
∫ t

0
f(cu, Vu) du must be zero, by applying Ito’s formula

to Vt = J(t,Xt),

0 = f(e, J) + ∂tJ + ∂xJ b+
1
2

tr
{
a ∂xxJ a

⊤} ; J(T,XT ) = 0, (E.1)

where Xt , (et, νt), at , (etσe, σν)
⊤, bt , (etµe(t), k(ν̄ − νt))

⊤, ∂tJ := ∂J
∂t

, ∂xJ := ∂J
∂x

, and

∂xxJ := ∂2J
∂x2 . Hence, we obtain Eq.(3.4).

E.2 Proof of Lemma 3.1

Proof: Applying Ito’s formula to πt in Eq.(3.5),

dπt
πt

= fv(et, Jt)dt+
dfc(et, Jt)
fc(et, Jt)

. (E.2)

Comparing Eq.(3.6) with Eq.(E.2), we see that λt must be the diffusion coefficient of −dfc

fc
.

Then an application of Ito’s formula to fc leads to Eq.(3.7).

E.3 Proof of Proposition 3.1

Proof: Consider the case of δ ̸= 1. Substitute Eq.(2.2) into Eq.(3.7) and Eq.(3.8). We

need to identify f ∗
v and

df∗
c

f∗
c

. With regard to the market price of risk λ, substituting −f
∗
cc

f∗
c

=

δ

e
and −f

∗
cv

f ∗
c

= − α

(1 + α)Jt

into Eq.(3.7), we obtain Eq.(3.11). Next, with regard to the

instantaneous riskless rate rt, applying Ito’s formula to f∗
c ,

df∗c
f∗c

=
f∗cc
f∗c
de+

f∗cv
f∗c

dJ +
1
2

(
f∗ccc
f∗c

(de)2 + 2
f∗ccv
f∗c

(de)(dJ) +
f∗cvv
f∗c

(dJ)2
)
.
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Hence,

rt = −f∗v − D f∗c
f∗c

= −f∗v −
{
f∗cc
f∗c

D et +
f∗cv
f∗c

D Jt +
1
2

(
f∗ccc
f∗c

||etσe||2 + 2
f∗ccv
f∗c

etσ
⊤
e σJ(t) +

f∗cvv
f∗c

||σJ(t)||2
)}

= β + δµe(t) −
1
2

(
f∗ccc
f∗c

||etσe||2 + 2
f∗ccv
f∗c

etσ
⊤
e σJ(t) +

f∗cvv
f∗c

||σJ(t)||2
)

= β + δµe(t) −
δ(1 + δ)

2
||σe||2 + δα

σ⊤
e σJ(t)

(1 + α)Jt
+
α

2

∣∣∣∣∣∣∣∣ σJ(t)
(1 + α)Jt

∣∣∣∣∣∣∣∣2 .
Eq.(3.9) and Eq.(3.10) are obtained. The proof for δ = 1 is similar.
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