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Abstract 

 

We model a timing game of bubbles and crashes a la Abreu and Brunnermeier 

(2003), in which arbitrageurs compete with each other to beat the gun in a stock market. 

However, unlike Abreu and Brunnermeier, instead of assuming sequential awareness, 

the present paper assumes that with a small probability, each arbitrageur is behavioral 

and committed to ride the bubble at all times. We show that with incomplete 

information, even rational arbitrageurs are willing to ride the bubble. In particular, the 

bubble can persist for a long period as the unique Nash equilibrium outcome. 

 

Keywords: Bubbles and Crashes, Timing Games, Behavioral Arbitrageurs, Positive 

Feedback Traders, Reputation, Characterization, Uniqueness 

 

JEL Classification Numbers: C720, C730, D820, G140 
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1. Introduction 

 

This paper demonstrates the theoretical foundation underlying the willingness of 

rational arbitrageurs to ride the bubble in a stock market. We model the stock market as 

a timing game with incomplete information among arbitrageurs; the model is inspired 

by that of Abreu and Brunnermeier (2003).3 However, our model does not require the 

assumption of sequential awareness that has played a central role in the above paper. 

Instead, we assume that each arbitrageur is not necessarily rational, i.e., he is behavioral 

with a small probability, in that he is committed to ride the bubble at all times. With the 

assumption of incomplete information, the present paper shows that even rational 

arbitrageurs are willing to ride the bubble for a long period. 

The efficient market hypothesis in modern financial theory asserts that by 

reflecting all relevant information, the stock price is always adjusted to the fundamental 

value. However, there are considerable evidences that contradict this hypothesis: the 

stock price sometimes increases beyond the fundamental value and continues to 

increase until it goes into a free fall. Advocates of behavioral finance, such as Shleifer 

(2000) and Shiller (2000), argued that the bubble is driven by positive feedback traders, 

who incorrectly believe that the stock price will grow in perpetuity. The efficient market 

hypothesis, on the other hand, claims that rational arbitrageurs quickly undo this 

mispricing. The arbitrageurs’ selling pressures then dampen the enthusiasm of the 

positive feedback traders, immediately bursting the bubble. 

In contrast to this ideal of rational arbitrageurs, actual professional arbitrageurs 

who are mostly considered to be rational generally do not think that the best strategy is 
                                                 

3 See also Abreu and Brunnermeier (2002) and Brunnermeier and Morgan (2006). 
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to undo mispricing in this manner; instead, they would like to ride the bubble. On the 

basis of historical experiences, several authors such as Kindleberger (1978) and Soros 

(1994) even emphasized a self-feeding aspect of bubbles and crashes: speculative price 

movements involve multiple professional arbitrageurs who continuously drive the stock 

price up and then sell out at the top to the positive feedback traders. 

However, we may disagree with this view, because the arbitrageurs may compete 

with each other in order to exit the market by selling out, i.e., beat the gun or time the 

market at the earliest. This phenomenon along with the backward induction method 

prevents the persistence of a bubble. Hence, in order for this view to be convincing, we 

need to demonstrate a further theoretical foundation, based on which each rational 

arbitrageur is willing to terminate this chain reaction of competition and develop a 

reputation among them to ride the bubble. 

On the basis of these arguments, the present paper models the stock market as a 

timing game, where the stock market operates during the time interval [0,1] , and each 

arbitrageur selects a time to exit the market by selling out his share. As long as no 

arbitrageur has sold out, the bubble continues to be driven by the positive feedback 

traders. Once any arbitrageur sells out, the other arbitrageurs vie with each other to 

follow in the footsteps of this arbitrageur. As soon as their selling pressures exceed a 

critical amount of shares, the positive feedback traders fail to support the stock price, 

and then the bubble crashes. 

The key assumption of this paper is that every arbitrageur is not necessarily 

rational. With a small probability, he is behavioral and committed to ride the bubble at 

all times. We also assume incomplete information, in that whether each arbitrageur is 

behavioral or rational is unknown to the other arbitrageurs. On witnessing the 
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persistence of a bubble, each rational arbitrageur is increasingly convinced that the other 

arbitrageurs are behavioral, which incentivizes him to further postpone timing the 

market. On the basis of this reasoning, each arbitrageur is convinced in the early stage 

of the timing game that the other arbitrageurs are subject to ride the bubble for a long 

period, even if they are rational. 

In this respect, we should mention the relevance to the reputation theory in finitely 

repeated games with incomplete information explored by Kreps, Milgrom, Roberts, and 

Wilson (1982). With the assumption of incomplete information on whether players are 

rational or crazy enough to have blind faith in implicit collusion, any rational player is 

willing to mimic the crazy players’ collusive behavior. The present paper will apply the 

basic concept of this theory to the timing games of bubbles and crashes. 

With restrictions that the growth rate of a bubble and the probability of each 

arbitrageur’s being behavioral are not very small, it is shown that there exists the unique 

Nash equilibrium. This equilibrium is symmetric and is named the bubble-crash 

equilibrium, where a particular point of critical time ˆ (0,1)τ ∈  exists, such that (i) the 

bubble never crashes before the critical time τ̂ , whereas (ii) after the critical time τ̂ , 

the time at which the bubble crashes is randomly determined according to a constant 

hazard rate. This hazard rate is very high when the ratio between the total amount of 

shares that the arbitrageurs possess and the critical amount of share is close to unity; in 

this case, the bubble can persist for a long period, even if all arbitrageurs are almost 

certain from the beginning that the bubble will crash just around a particular fixed time. 

Without these restrictions, another symmetric Nash equilibrium may exist, which 

is named the quick-crash equilibrium. In this equilibrium, any rational arbitrageur 

certainly sells out at the initial time, and therefore, the bubble never persists, except for 
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the case in which all arbitrageurs are behavioral. The present paper provides a general 

characterization of all symmetric Nash equilibria. This characterization implies that 

whenever the bubble-crash and quick-crash equilibria coexist, there also exists another 

symmetric Nash equilibrium named the hybrid equilibrium. In it, each rational 

arbitrageur randomizes between the quick-crash equilibrium strategy and a modified 

version of the bubble-crash equilibrium strategy. In general, there exists no other 

symmetric Nash equilibrium apart from the bubble-crash, quick-crash, and hybrid 

equilibria. 

There exist previous works that identified conditions under which the bubble exists 

(see the survey by Brunnermeier (2008)). Among these works, the paper by Abreu and 

Brunnermeier (2003) is particularly relevant to the present paper. This paper modeled 

the stock market as a timing game similar to ours, and was the first to present a 

theoretical background that explained that the resilience of the bubble stems from the 

inability of arbitrageurs to coordinate their selling strategies. Abreu and Brunnermeier 

assumed that the arbitrageurs become sequentially aware that the bubble has developed. 

Instead of this sequential awareness, the present paper assumes that each arbitrageur is 

not necessarily rational and provides an alternative explanation with regard to the 

inability of arbitrageurs to coordinate their selling strategies, mainly because they use 

mixed strategies. 

 The rest of the paper is organized as follows. Section 2 defines timing games of 

bubbles and crashes, and Section 3 investigates the quick-crash equilibrium. In Section 

4, we investigate the bubble-crash equilibrium. Section 5 investigates the hybrid 

equilibria, and Section 6 characterizes all symmetric Nash equilibria. In Section 7, we 

show a sufficient condition under which the bubble-crash equilibrium is the unique 
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Nash equilibrium, where we take into account all asymmetric Nash equilibria. Section 8 

concludes the paper. 

 

 

2. The Model 

 

This paper considers the trade in a company’s shares during the time interval [0,1] . 

The fundamental value of this company is considered to be 0y ≥ . We assume that the 

market interest rate is set equal to zero and no dividends are paid. There exist 2n ≥  

arbitrageurs, each of whom decides the time to sell out his stockholding that is 

normalized to a single share. Let {1,..., }N n=  denote the set of arbitrageurs. 

Figure 1 illustrates a typical pattern of bubbles and crashes. At the initial time 0, 

the arbitrageurs recognize that the bubble has occurred, where the stock price is set 

equal to 1 y+ . The bubble persists as long as at most 1n −  arbitrageurs have sold out 

their shares, where n  is a fixed positive integer and n n< . The difference between the 

stock price and the fundamental value grows exponentially according to a constant rate 

0ρ > ; the stock price per share is considered to be te yρ +  at any time [0,1]t∈ .4 

 

[Figure 1] 

 

Once any arbitrageur sells out his share, this selling pressure triggers all the other 

arbitrageurs to sell out immediately, which bursts the bubble because their collective 

                                                 

4 Unlike Abreu and Brunnermeier, not the absolute value of the stock price but the distance 
from the fundamental value grows exponentially. 
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selling pressure exceeds the critical amount of shares n . We assume that even if no 

arbitrageur sells out at or before the terminal time 1, the bubble crashes just after the 

terminal time for exogenous reasons.5 

Against the abovementioned background, it is implicit to assume the presence of 

many positive feedback traders who have psychological biases that lead them to engage 

in momentum trading. They incorrectly believe that the stock price will grow in 

perpetuity and attempt to support the high stock price. The moment n  or more 

arbitrageurs sell out their shares, the positive feedback traders fail to support the stock 

price, which causes it to decline to the fundamental value y . In this respect, like Abreu 

and Brunnermeier (2002, 2003) and Brunnermeier and Morgan (2006),6 our dynamic 

model shares aspects of coordinated attacks with the static models of currency attacks 

in international finance, such as Obstfeld (1996) and Morris and Shin (1998). These 

models assumed the necessity of speculators’ coordination to break a currency peg.7 

                                                 

5 This paper assumes that short selling is prohibited. Without this assumption, any single 
arbitrageur can burst the bubble alone; this case is essentially the same as the case of 1n = , 
where the critical amount of shares equals one. Even in this case, we could show that the bubble 
may survive; however, this possibility is significantly limited. 
6 Abreu and Brunnermeier (2002, 2003) assumed that whether or not each arbitrageur has sold 
out is unobservable to the other arbitrageurs, whereas Brunnermeier and Morgan (2006) 
assumed that it is observable and all arbitrageurs rush to sell out once any arbitrageur times the 
market. The present paper follows Brunnermeier and Morgan. However, by adding irrelevant 
complexities, we can apply the basic concept of this paper to the case in which arbitrageurs’ 
transactions are observable, and endogenize the assumption of their rushing in the same manner 
as Brunnermeier and Morgan. 
7 It might be helpful to think about the game of “musical chairs” as a metaphor for our model: 

there exist n  players and n  chairs that are arranged in a circle, where n n< , i.e., the 
number of chairs is less than the number of players. Each player has a whistle in his mouth. 
Music starts at the initial time 0. While the music is playing, the players walk in unison around 
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On the basis of the above arguments, we define a strategy for each arbitrageur 

i N∈  as a cumulative distribution :[0,1] [0,1]iq →  that is nondecreasing, right 

continuous, and satisfies 0( ) 1iq τ = . Following any strategy iq , arbitrageur i  plans to 

sell out at or before any time [0,1]ia ∈  with the probability of ( ) [0,1]i iq a ∈ . Let iQ  

denote the set of strategies for arbitrageur i .We will consider i iq a=  to be a pure 

strategy if 

( ) 0iq τ =  for all [0, )iaτ ∈ , and ( ) 1iq τ =  for all 0[ , ]iaτ τ∈ . 

Significantly, this paper assumes that any arbitrageur i N∈  is not necessarily 

rational, and therefore, does not necessarily follow any strategy in the set iQ . Let us fix 

any arbitrary real number [0,1]ε ∈ . With regard to the probability of ε , arbitrageur i  

is behavioral, in that he is committed to ride the bubble, i.e., sell out just after any other 

arbitrageur first sells out. Hence, any such behavioral arbitrageur does not trigger the 

burst of the bubble of his own accord. With regard to the remaining probability of 1 ε− , 

arbitrageur i  is rational, and follows any strategy in iQ . Whether each arbitrageur is 

behavioral or rational is independently determined and is not common knowledge 

among the arbitrageurs. In other words, each arbitrageur does not know whether the 

other arbitrageurs are rational or behavioral. 

Suppose that each arbitrageur i N∈  plans to sell out at time [0,1]ia ∈ . Let us 

                                                                                                                                               

the chairs. When a player blows the whistle, the music is immediately shut off, and then every 

player must race to sit down in one of the chairs. The n  players who could sit down are 
regarded as the winners; each winner obtains te yρ +  dollars, while any loser obtains y  
dollars, provided some player blew the whistle and the music was shut off at time [0,1]t∈ . 

Even if no player blows the whistle, the music is automatically shut off at the terminal time 1. 
By assuming that any player who blows the whistle has the advantage of rushing for a seat, we 
can regard this game as being the same as our model. 
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arbitrarily set any nonempty subset of arbitrageurs H N⊂ , and let us suppose that any 

arbitrageur i H∈  is rational, while any arbitrageur \i N H∈  is behavioral. Note that 

any behavioral arbitrageur \i N H∈  never sells out at his planned time ia ; he is 

instead committed to wait for any other arbitrageur to time the market. Let us denote by 

[0,1]τ ∈  the time at which any rational arbitrageur sells out first, which is defined as 

the earliest time at which the rational arbitrageurs plan to sell out, i.e., 

min{ | }ia i Hτ = ∈ . 

Let {1,..., }l H∈  denote the number of rational arbitrageurs who plans to sell out at 

this earliest time τ , i.e., 

{ | }il i H a τ= ∈ = . 

If l n> , then, with the probability of n
l

, any rational arbitrageur i H∈  who plans to 

sell out at time τ  sells out before the crash of the bubble, and earns e yρτ + . With 

regard to the remaining probability of 1 n
l

− , he fails to sell out before the crash and 

earns only the fundamental value y . 

If l n≤ , then he certainly sells out before the crash. In this case, n l−  further 

arbitrageurs can sell out before the crash. Hence, even any arbitrageur who either is 

behavioral or plans to sell out after time τ  has the opportunity to sell out before the 

crash with regard to the positive probability of n l
n l
−
−

.8 

On the basis of these observations, we define the expected earning of any rational 

                                                 

8 It is implicit to assume that the behavioral arbitrageurs have the following advantage over the 
positive feedback traders: the behavioral arbitrageurs can sell out immediately after some 
rational arbitrageur times the market, while the positive feedback traders cannot sell out until 
the stock price declines to the fundamental value. 
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arbitrageur i H∈  by 

  min[1,, ]( )i
Kv H a e y
l

ρτ= +   if ia τ= , 

and 

max[, ]) ,0(iv K l
n l

H a e yρτ−
−

= +  if ia τ> . 

Let 1 nQ Q Q= ×⋅ ⋅ ⋅× , and let 1( ,..., )nq q q Q= ∈  denote a strategy profile. The payoff 

function :iu Q R→  for each arbitrageur i N∈  is defined as follows. For every 

q Q∈ , let us specify ( )iu q  as being equal to the expected value of ( , )iv H a  in terms 

of ( , )a H , i.e., 

1

:
( ) [ ( , ) (1 ) | ]n H H

i i
H N i N

u q E v H a qε ε− −

⊂ ∈

≡ −∑ . 

A strategy profile q Q∈  is said to be a Nash equilibrium if 

( ) ( , )i i i iu q u q q−′≥  for all i N∈  and all i iq Q′∈ . 

A strategy profile q Q∈  is said to be symmetric if 1iq q=  for all i N∈ . 

Let us introduce several notations as follows. For each strategy profile q Q∈ , let 

us denote the probability that the bubble has crashed at or before any time [0,1]t∈  by 

  ( ; ) 1 [ (1 ){1 ( )}]i
i N

D t q q tε ε
∈

≡ − + − −∏ . 

Note that (1; ) 1 1nD q ε≡ − <  whenever 0ε > , which implies that the bubble does not 

necessarily crash during the time interval of [0,1] , because it is with the positive 

probability of 0nε >  that all arbitrageurs are behavioral. Let us define the hazard rate 

at which the bubble crashes at any time [0,1]t∈  by 

( ; )

( ; )
1 ( ; )

D t q
tt q

D t q
θ

∂
∂≡

−
. 

Moreover, for each arbitrageur i N∈  and each strategy profile q Q∈ , let us denote 

the probability that the bubble has crashed at or before any time t , provided arbitrageur 
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i  never bursts the bubble of his own accord, by 

\{ }
( ; ) 1 [ (1 ){1 ( )}]i i j

j N i
D t q q tε ε−

∈

= − + − −∏ . 

 

 

3. Quick-Crash Equilibrium 

 

We denote by * (0,...,0)q ≡  the symmetric strategy profile, named the quick-crash 

strategy profile, according to which any rational arbitrageur plans to sell out at the 

initial time 0. Hence, according to *q , the bubble quickly crashes at the initial time 0. 

Figure 2 illustrates *( ; )D t q , which is kept equal to a constant value of 1 nε− . 

 

[Figure 2] 

 

Proposition 1: The quick-crash strategy profile *q  is a Nash equilibrium if and only if 

(1) 1

,

( 1)! (1 ) {min[1, ] max[0, ]}
!( 1 )! 1

H n H

H N
i H H

n Hn n
H n H H n H

φ

ε ε − −

⊂
∉ ≠

−−
− −

− − + −∑  

 1( 1)n eρε −≥ − . 

 

Proof: For every i N∈ , 

1* 1

,

( 1)!( ) (1 ) min[1, ]
!( 1 )! 1

H n H n
i

H N
i H H

n nu q y
H n H H

φ

ε ε ε− − −

⊂
∉ ≠

−
= − + +

− − +∑ , 

and for every (0,1]ia ∈ , 

1*

,

( 1)!( , ) (1 ) max[0, ]
!( 1 )!

H n H
i i i

H N
i H H

n Hnu a q
H n H n H

φ

ε ε − −
−

⊂
∉ ≠

−−
= −

− − −∑  
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1 ian e yρε −+ + . 

Hence, for every (0,1]ia ∈ , 

* *( ) ( , )i i i iu q u a q−−  

1

,

( 1)! (1 ) {min[1, ] max[0, }
!( 1 )! 1

H n H

H N
i H H

n Hn n
H n H H n H

φ

ε ε − −

⊂
∉ ≠

−−
= − −

− − + −∑  

1(1 )ian eρε −+ − . 

From iae eρρ ≥  for all (0,1]ia ∈ , and from the above observations, it follows that the 

inequality of (1) is necessary and sufficient for *q  to be a Nash equilibrium. 

Q.E.D. 

    

 Note that *q  is a Nash equilibrium if 0ε = , i.e., it is certain that all arbitrageurs 

are rational. In this case, the left-hand side of (1) equals zero, while its right-hand side 

equals min[1, ] 0n
n

> , which automatically implies the inequality of (1). The assumption 

of 0ε =  also implies the uniqueness of the Nash equilibrium; any rational arbitrageur 

dislikes losing the opportunity to become the single winner of the timing game. This 

presses him to hasten the time to beat the gun slightly earlier than the others. This aspect 

of tail-chasing competition eliminates all equilibria other than *q . 

 This logic, however, cannot be applied to the case of 0ε > . Even if any arbitrageur 

plans to sell out at the terminal time 1, he still has the opportunity of becoming the 

single winner with regard to the positive probability of 0nε > ; the assumption of 

0ε >  may apply the brakes to their tail-chasing competition. The rest of this paper will 

focus on the case of 0ε > . 
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4. Bubble-Crash Equilibrium 

 

This section specifies a symmetric strategy profile ( )i i Nq q Q∈= ∈ , named the 

bubble-crash strategy profile, according to which the bubble persists for a long period. 

Let us suppose that the growth rate of a bubble 0ρ >  and the probability of each 

arbitrageur being behavioral (0,1)ε ∈  satisfies 

(2)   1n neρε − ≥ , i.e., ( ) ln1 0n n ε
ρ

−
− ≤ < , 

which implies that ρ  and ε  are not very small. Let us define a particular time 

[0,1)τ ∈  by 

(3)   ( ) ln1 n n ετ
ρ

−
≡ + , 

where the inequality of (2) guarantees [0,1)τ ∈ . We specify the bubble-crash strategy 

profile q  as follows: for every i N∈ , 

( ) 0i iq a =  for all [0, )ia τ∈ , 

and 

(4)   

(1 )1 exp[ ]
( )

1

i

i i

a
n nq a

ρε

ε

−−
−=

−
 for all [ ,1]ia τ∈ . 

Note from (3) that ( ) 0iq τ = , which implies that iq  is continuous. According to q , 

the bubble never crashes before the specified time τ . The following theorem states that 

q  is a Nash equilibrium. 

 

Theorem 2: With the inequality of (2), the bubble-crash strategy profile q  is a Nash 

equilibrium, and 

(5)   ( ) n n
iu q e yρε −= + . 
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Proof: Since the bubble never crashes before the time τ , it follows from the continuity 

of q  that 

( , ) ia
i i iu a q e yρ

− = +  for all [0, )ia τ∈ . 

Since q  is continuous, it follows 

   ( , ) ( , )i i i i iu q e y u a qρττ − −= + >  for all ˆ[0, )ia τ∈ . 

For every [ ,1]ia τ∈ , 

   1( , ) {1 ( ; )} ( ; )
1

i

i

a
a t

i i i i i i i i
t

nu a q e D a q e dD t q y
n

ρ ρ

τ
− − −

=

−
= − + +

− ∫ . 

The specification of q  implies 

   ( ; ) 0i iD t q− =  for all [0, )t τ∈ , 

and 

(6)   
1 (1 )1( ; ) 1

n tn n n
i iD t q e

ρ
ε

−
−−

−
−= −  for all [ ,1]t τ∈ . 

From (6), the following first-order conditions hold for all [ ,1]ia τ∈ : 

(7)   1( , ) [ {1 ( ; )} ( ; )]
1

i

i

a
a t

i i i i i i i i
i i t

nu a q e D a q e dD t q
a a n

ρ ρ

τ
− − −

=

∂ ∂ −
= − +

∂ ∂ − ∫  

   1 ( ; ){1 ( ; )} (1 )
1

i ia a i i i
i i i

i

n D a qe D a q e
n a

ρ ρρ −
−

− ∂
= − − −

− ∂
 

( ; ){1 ( ; )}
1

i ia a i i i
i i i

i

n n D a qe D a q e
n a

ρ ρρ −
−

− ∂
= − −

− ∂
 

1 (1 )1 ( ; ) 0
1

i
i i

n aa an i i in n

i

n n D a qe e e
n a

ρρ ρρ ε
−

−− −− − ∂
= − =

− ∂
, 

where, from (6), we have derived 
1 (1 )1( ; ) 1 i

n ani i i n n

i

D a q n e
a n n

ρ
ρε

−
−−− −∂ −

=
∂ −

, 

which implies the last equality of (7). Hence, we have proved that 
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( , ) ( , )i i i i iu q u a qτ − −=  for all [ ,1]ia τ∈ . 

From the above arguments, we have proved that q  is a Nash equilibrium, i.e., 

( ) ( , )i i i iu q u q q−≥  for all i iq Q∈ . 

From (3), 

   ( , ) n n
i iu q e y e yρτ ρτ ε −

− = + = + , 

which along with ( ) ( , )i i iu q u qτ −≥  implies the equality of (5).    Q.E.D. 

 

From the specification of q , the probability ( ; )D t q  that the bubble has crashed 

at or before any time [0,1]t∈  is given by 

( ; ) 0D t q =      if 0 t τ≤ < , 

and 

   
(1 )

( ; ) 1
n tn n neD t q

ρ
ε

−
−= −    if 1tτ < ≤ . 

See Figure 3, which illustrates ( ; )D t q . 

 

[Figure 3] 

 

From the specification of q , the hazard rate ( ; )t qθ  at any time [0,1]t∈  equals 

( ; ) 0qθ τ =       if 0 t τ≤ < , 

and 

ˆ( ; ) nq
n n

τ ρθ τ =
−

    if 1tτ < ≤ . 

After the critical time τ , the time at which the bubble crashes is randomly determined 

according to a constant hazard rate n
n n
ρ
−

. By slightly postponing the time to beat the 

gun from time ia  to ia + ∆ , arbitrageur i  obtains the gain {1 ( ; )}ia
i i ie D a qρρ −−  
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from the increase in stock price, whereas he suffers the loss 1 ( ; )(1 )
1

ia i i i

i

n D a qe
n a

ρ −− ∂
−

− ∂
 

from the decrease in winning probability. Since any time choice is the best response in 

[ ,1]τ , the above gain and loss must be balanced, which implies the equalities of (7), i.e., 

the first-order condition. 

From the specification of q , it follows 

   

( ) (1 )exp[ ]

(1 )1 ( ) exp[ ] 1

i

i

q t t
t n n n n

tq t
n n

ρ ρ

ρ

∂ −
∂ − −=

−− −
−

. 

Note 
ˆ

( )

lim 0
1 ( )

i

t
i

q t
t

q tτ↓

∂
∂ =

−
, which implies that around the critical time τ̂ , any rational 

arbitrageur almost certainly postpones timing the market. Note also 
1

( )

lim
1 ( )

i

t
i

q t
t

q t↑

∂
∂ = +∞

−
, 

which implies that as the terminal time 1 is drawing near, any rational arbitrageur is in a 

great hurry to time the market. Hence, the reason why even rational arbitrageurs have 

incentive to ride the bubble is as follows, which bears an analogy to the reputation 

theory in finitely repeated games: 

(i) As the terminal time 1 is drawing near, any arbitrageur is almost convinced that 

the other arbitrageurs are behavioral. 

(ii) At any time around the critical time τ̂ , any arbitrageur is convinced through his 

rational reasoning that the other arbitrageurs are likely to ride the bubble even if 

they are rational. 

Note that the hazard rate after the critical time τ̂  diverges to infinity as the ratio 

between the total amount of shares that the arbitrageurs possess and the critical amount 

of shares n
n

 approaches to unity. Note also that the critical time τ  depends on, not 
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this ratio, but ( ) lnn n ε− . This implies that the bubble can persist for a long period 

even if all arbitrageurs are almost certain that the bubble will crash just around a 

particular fixed time, i.e., τ . 

 

 

5. Hybrid Equilibria 

 

This section specifies another symmetric strategy profile named the hybrid strategy 

profile, according to which any rational arbitrageur sells out at the initial time 0 with a 

probability that is positive, but less than unity. We arbitrarily set a time ˆ (0,1)τ ∈ , 

where we assume 

(8)   ( ) ln ˆmax[0,1 ] 1n n ε τ
ρ

−
+ < < . 

Let us specify (0,1)k∈  by 

(9)   

ˆ(1 )1 exp[ ]

1
n nk

ρ τε

ε

−−
−≡

−
, 

where the inequality of (8) guarantees (0,1)k∈ . Associated with ˆ (0,1)τ ∈ , let us 

specify the hybrid strategy profile ˆ ˆ( )i i Nq q Qτ τ
∈= ∈  as follows: for every i N∈ , 

ˆ ( )i iq a kτ =  for all ˆ[0, )ia τ∈ , 

and 

ˆ

(1 )1 exp[ ]
( ) ( )

1

i

i i i i

a
n nq a q aτ

ρε

ε

−−
−= =

−
 for all ˆ[ ,1]ia τ∈ , 

where specification (9) of k  implies ˆ ˆ( )ik qτ τ= , i.e., ˆ
iqτ  is continuous. According to 

ˆqτ , any rational arbitrageur i N∈  plans to sell out at the initial time 0 with the 
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probability of 0k > . With regard to the remaining probability of 1 0k− > , the rational 

arbitrageur plans to ride the bubble up to the time τ̂ , and he later follows the same 

strategy as the bubble-crash strategy iq . The following proposition shows the necessary 

and sufficient condition under which ˆqτ  is a Nash equilibrium. 

 

Proposition 3: The hybrid strategy profile ˆqτ  is a Nash equilibrium if and only if 

(10)   1{1 (1 ) } { ( ) 1}
1 (1 )

n n nk e
k

ρ εε
ε

− −− − −
− −

 

1

:
,

( 1)![ {(1 ) } {1 (1 ) }
!( 1 )!

H n H

H N
i H H

n k k
H n H

φ

ε ε − −

⊂
∉ ≠

−
= − − −

− −∑  

{min[1, ] max[0, ]}]
1

n Hn
H n H

−
⋅ −

+ −
. 

 

Proof: See the Appendix. 

 

When the hybrid Nash equilibrium is played, the merit from riding the bubble is 

severely limited, i.e., ˆ ˆ( ) (0, )i i iu q u qτ τ
−= 1 y< +  must hold, because the time choice of 0 

is a best response. The inequality of τ̂ τ>  implies that once the bubble takes off, it 

tends to grow further than the bubble induced by the bubble-crash equilibrium (See 

Figure 4, which illustrates ˆ( ; )D t qτ ). 

 

[Figure 4] 

 

From the specification of ˆqτ , it follows that 
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ˆ(1ˆ )

( ; ) 1
n

n n neD t q
ρ ττ ε

−
−= −  and ˆ( ; ) 0t qτθ =   if ˆ0 t τ< < , 

and 

   ˆ (1 )
( ; ) 1

n tn n neD t q
ρτ ε

−
−= −   and ˆ( ; ) nt q

n n
τ ρθ =

−
 if ˆ 1tτ < ≤ . 

Since the first-order condition is the same between the hybrid equilibrium ˆqτ  and the 

bubble-crash equilibrium q  at any time ˆ[ ,1]t τ∈ , it follows that the associated hazard 

rate is the same between ˆqτ  and q , i.e., 

ˆ( ; ) ( ; ) nt q t q
n n

τ ρθ θ= =
−

 for all ˆ( ,1]t τ∈ . 

The following proposition shows that if the quick-crash equilibrium *q  and the 

bubble-crash equilibrium q  coexist, there also exists ˆ ( ,1)τ τ∈  such that the related 

hybrid strategy profile ˆqτ  is another Nash equilibrium.9 

 

Proposition 4: If the inequalities of (1) and (2) hold without equality, then there exists 

ˆ ( ,1)τ τ∈  such that ˆqτ  is a Nash equilibrium. 

 

Proof: For every [0,1]h∈ , let us define 

1( ) {1 (1 ) } { ( ) 1}
1 (1 )

n n nB h h e
h

ρ εε
ε

− −≡ − − −
− −

 

1

:
,

( 1)![ {(1 ) } {1 (1 ) }
!( 1 )!

H n H

H N
i H H

n h h
H n H

φ

ε ε − −

⊂
∉ ≠

−
− − − −

− −∑  

{min[1, ] max[0, ]}]
1

n Hn
H n H

−
⋅ −

+ −
. 

                                                 

9 Proposition 4 does not imply the uniqueness of ˆ ( ,1)τ τ∈ ; the hybrid strategy profile ˆqτ , 
which is related to this proposition, is a Nash equilibrium. 
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Note that ( )B h  is continuous, (0) 0B > , and (1) 0B < , which imply that there exists 

(0,1)h∈  such that ( ) 0B h = . This implies the equality of (10).      Q.E.D. 

 

 

 

6. Characterization of Symmetric Nash Equilibria 

 

The following theorem characterizes all symmetric Nash equilibria, which states 

that there exists no other symmetric Nash equilibrium apart from the quick-crash 

equilibrium *q , bubble-crash equilibrium q , and hybrid equilibrium ˆqτ . 

 

Theorem 5: If any strategy profile q Q∈  is a symmetric Nash equilibrium, then either 

*q q= , q q= , or ˆq qτ= , where τ̂  satisfies (10). 

 

Proof: We set any symmetric Nash equilibrium q Q∈  arbitrarily, where we assume 

*q q≠ . We show that 1( )q τ  is continuous in [0,1] . Suppose that 1( )q τ  is not 

continuous in [0,1] , i.e., there exists 0τ ′ >  such that 1 1lim ( ) ( )q q
τ τ

τ τ
′↑

′< . Since 

min[1, ] max[0, ] 0
1

n n l
l n l

−
− >

+ −
 for all {0,..., 1}l n∈ − , it follows from the symmetry of 

q  that by selecting any time that is slightly earlier than time τ ′ , any arbitrageur can 

drastically increase the probability of his wining the timing game. This implies that no 

arbitrageur selects time τ ′ , which is a contradiction. 

 Let 

  1
1 1max{ (0,1] : ( ) (0)}q qτ τ τ= ∈ = . 
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We show that 1( )q τ  is increasing in 1[ ,1]τ . Suppose that 1( )q τ  is not increasing in 

1[ ,1]τ . From the continuity of 1q  and the definition of 1τ , we can select 1, [ ,1]τ τ τ′ ′′∈  

such that τ τ′ ′′< , 1 1( ) ( )q qτ τ′ ′′= , and the time choice τ ′  is a best response. Since no 

arbitrageur selects any time τ  in ( , )τ τ′ ′′ , it follows from the continuity of q  that by 

selecting time τ ′′  instead of τ ′ , any arbitrageur can increase the winner’s gain from 

e yρτ ′ +  to e yρτ ′′ +  without decreasing his wining probability. This is a contradiction. 

Note that any time choice 1[ ,1]τ τ∈  is a best response, because 1( )q τ  is 

increasing in 1[ ,1]τ . This implies the following first-order conditions for all 1[ ,1]τ τ∈ : 

    1 1 1 1
1 1

( , ) ( ; )1{1 ( ; )} 0
1

u q dD qne D q e
n d

ρτ ρττ τρ τ
τ τ

− −
−

∂ −
= − − =

∂ −
,  

i.e., 

    1
1 1( ; ) 1D q Ce

ρτ
λτ

−
−

− = − , 

where C  is a positive real number. Since q  is symmetric and continuous, it follows 

that 

(11)    11
1 1(1; ) 1 1 nD q Ce

ρ
λ ε

−
−−

− = − = − , 

and 

(12)    
1

1 1
1 1 1 1( ; ) 1 (0; )D q Ce D q

ρτ
λτ

−
−

− −= − = . 

From (11), it follows that 1 1nC e
ρ
λε − −= , and therefore, 

(13)    
(1 )

1 1
1 1( ; ) 1 nD q e

ρ τ
λτ ε
−

− −
− = −  for all 1[ ,1]τ τ∈ . 

 Suppose 1(0) 0q = . Then, the symmetry of q  implies 1 1(0; ) 0D q− = , which along 

with (12) and (13) implies 

  1 ( ) ln1 n n ετ
ρ

−
= + . 
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Hence, it follows from (3) that 1τ τ= , and therefore, q q= . 

 Suppose 1(0) 0q > . Let 1(0)k q= . From (12) and (13), 

    1
( ) ln( )

1 (1 )1
n n

k
ε
ετ

ρ

−
− −= + , 

which along with (9) implies 1 ˆτ τ= , i.e., ˆq qτ= . Since ˆq qτ=  is a Nash equilibrium, 

it follows from Proposition 3 that 1 ˆτ τ=  must satisfy (10).     Q.E.D. 

 

The outline of this proof is as follows. Fix any symmetric Nash equilibrium q Q∈  

arbitrarily (see Figure 5, where it was supposed that ( ; )D t q  is discontinuous at time 

0t > ). Note that any arbitrageur can drastically increase his wining probability by 

selling out slightly earlier than time t , i.e., at time t − ∆ . This contradicts the Nash 

equilibrium property. Hence, ( ; )D t q , i.e., q  must be continuous. 

 

[Figure 5] 

 

See Figure 6, where it was supposed that ( ; )D t q  is constant in the interval 

[ , ]τ τ′ ′′ , and the time choice τ ′  is a best response. Since no arbitrageur sells out in the 

interval ( , )τ τ′ ′′ , any arbitrageur can increase the winner’s gain from e yρτ ′ +  to 

e yρτ ′′ +  without decreasing his wining probability. This contradicts the Nash 

equilibrium property. Hence, it follows that there must exist a time τ̂  such that 

( ; )D t q  is constant in ˆ[0, ]τ , whereas ( ; )D t q  is increasing in ˆ[ ,1]τ . 

 

[Figure 6] 
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During the interval ˆ[ ,1]τ , the first-order condition must hold, i.e., the hazard rate 

( , )t qθ  must equal n
n n
ρ
−

 (see Figure 7; it must be noted that 1τ τ=  implies q q= ; 

1 1τ =  implies *q q= ; and 1 1τ τ< <  implies ˆq qτ= , where 1τ̂ τ= ). 

 

[Figure 7] 

 

 

7. Uniqueness 

 

In order for either the quick-crash strategy profile *q  or the hybrid strategy 

profile ˆqτ  to be a Nash equilibrium, the time choice of 0 must be a best response. This 

along with Theorem 5 implies that whenever the time choice of 0 is a dominated 

strategy, the bubble-crash strategy profile q  is the unique symmetric Nash equilibrium. 

The following theorem states that the uniqueness holds even if we take all asymmetric 

Nash equilibria into account. 

 

Theorem 6: The bubble-crash strategy profile q  is the unique Nash equilibrium if 

(14)   1 1n eρε − > . 

 

Proof: We will show that q  is the unique symmetric Nash equilibrium. Note that 

    1 1(0, ) 1u q−′ ≤  and 1
1 1(1, ) nu q eρε −

−′ >  for all 1 1q Q− −′ ∈ . 

This along with the inequality of (14) implies that the time choice of 0 is dominated by 

the time choice of 1, i.e., 
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    1 1 1 1(1, ) (0, )u q u q− −′ ′>  for all 1 1q Q− −′ ∈ . 

Hence, any symmetric Nash equilibrium q Q∈  must satisfy 1(0) 0q = , which along 

with Theorem 5 implies q q= . Since the inequality of (14) implies the inequality of (2), 

we have proved that q  is the unique symmetric Nash equilibrium. 

 We will show that q  is the unique Nash equilibrium even if all asymmetric Nash 

equilibria are taken into account. We set any Nash equilibrium q Q∈  arbitrarily. 

 First, we show that ( )iq τ  must be continuous in [0,1]  for all i N∈ . Suppose 

that ( )iq τ  is not continuous in [0,1] . Then, there exists 0τ ′ >  such that 

lim ( ) ( )i iq q
τ τ

τ τ
′↑

′<  for some i N∈ . Since min[1, ] max[0, ] 0
1

n n l
l n l

−
− >

+ −
 for all 

{0,..., 1}l n∈ − , it follows that any other arbitrageur can drastically increase his winning 

probability by selecting any time that is slightly earlier than time τ ′ . Hence, any other 

arbitrageur never selects any time that is either the same as, or slightly later than, the 

time τ ′ . This implies that arbitrageur i  can increase the winner’s gain by postponing 

timing the market further without decreasing his winning probability. This is a 

contradiction. 

Second, we show that ( ; )D qτ  must be increasing in 1[ ,1]τ , where we denote 

  1 max{ (0,1] : ( ) (0) }i iq q for all i Nτ τ τ= ∈ = ∈ . 

Suppose that ( ; )D qτ  is not increasing in 1[ ,1]τ . Hence, from the continuity of q , we 

can select 1, ( ,1]τ τ τ′ ′′∈  such that τ τ′ ′′< , ( ; ) ( ; )D q D qτ τ′ ′′= , and the time choice τ ′  

is a best response for some arbitrageur. Since no arbitrageur selects any time τ  in 

( , )τ τ′ ′′ , it follows from the continuity of q  that by selecting time τ ′′  instead of τ ′ , 

any arbitrageur can increase the winner’s gain from e yρτ ′ +  to e yρτ ′′ +  without 

decreasing his winning probability. This is a contradiction. 
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  Third, we show that q  must be symmetric. Suppose that q  is asymmetric. Since 

the inequality of (14) implies that the time choice of 0 is a dominated strategy, it follows 

1 0τ > , and 

(15)   ( ) 0iq τ =  for all i N∈  and all 1[0, ]τ τ∈ . 

Since q  is continuous and ( ; )D qτ  is increasing in 1[ ,1]τ , from the supposition 

1 0τ >  and the equality of (15), it follows that there exist 0τ ′ > , τ τ′′ ′> , and i N∈  

such that 

     1( ) ( )jq t q t=  for all j N∈  and all [0, ]t τ ′∈ , 

(16)   

( ; ) ( ; )

min
1 ( ; ) 1 ( ; )

i h

h i
i h

D q D q
t t

D q D q

τ τ

τ τ≠

∂ ∂
∂ ∂>

− −
 for all ( , )t τ τ′ ′′∈ , 

and 

(17)   

( ; ) ( ; )

min 0
1 ( ; ) 1 ( ; )

i h

h i
i h

D q D q
t t

D q D q

τ τ

τ τ≠

′′ ′′∂ ∂
∂ ∂= >

′′ ′′− −
, 

where the last inequality was derived from the increasing property of ( ; )D qτ  in 

1[ ,1]τ . Since ( ; )D qτ  is increasing in 1[ ,1]τ , any time choice t  in ( , )τ τ′ ′′  must be a 

best response for any arbitrageur j N∈  who satisfies 

( ; ) ( ; )

min
1 ( ; ) 1 ( ; )

j h

h i
j h

D t q D t q
t t

D t q D t q≠

∂ ∂
∂ ∂=

− −
. 

Since this equality implies 
( )

0jq t
t

∂
>

∂
, it follows from the continuity of q  that the 

following first-order condition holds for arbitrageur j ; for every ( , )t τ τ′ ′′∈ , 

( , ) ( ; )1{1 ( ; )} 0
1

j j j j
j j

u q dD qne D q e
n d

ρτ ρττ τ
ρ τ

τ τ
− −

−

∂ −
= − − =

∂ −
, 

i.e., 
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( ; )
1 min
1 1 ( ; )

h

h i
h

D t q
n t
n D t q

ρ
≠

∂
− ∂=
− −

. 

Hence, from (16), 

    

( ; )
1
1 1 ( ; )

i

i

D t q
n t
n D t q

ρ

∂
− ∂<
− −

, 

which implies that the first-order condition does not hold for arbitrageur i  for every 

( , )t τ τ′ ′′∈ , where 

   ( , ) 1 ( ; ){1 ( ; )} 0
1

i i i i
i i

u q n dD qe D q e
n d

ρτ ρττ τρ τ
τ τ

− −
−

∂ −
= − − <

∂ −
. 

This inequality implies that arbitrageur i  prefers time τ ′  rather than any time in 

( , )τ τ ε′ ′′ + , and therefore, 

   ( ; ) 0iD q
t
τ∂

=
∂

 for all ( , )τ τ τ ε′ ′′∈ + , 

where ε  was positive but close to zero. This is a contradiction, because the inequality 

of (17) implied ( ; ) 0iD q
t
τ ′′∂

>
∂

. Hence, we have proved that any Nash equilibrium q  

must be symmetric.            Q.E.D. 

 

The brief sketch of this proof is as follows. We can prove the continuity of q  and 

the increasing property of q  in a manner similar to the proof of Theorem 5. In order to 

show that any Nash equilibrium q  must be symmetric, we have used the inequality of 

(14) as follows. The first-order condition implies 

(18)   

( ; )
1

1 ( ; ) 1

i

i

D t q
nt

D t q n
ρ

∂
−∂ =

− −
 for all i N∈  and all 1[ ,1]t τ∈ . 

The inequality of (14) implies 

(19)   1( ) 0iq τ =  for all i N∈ , 
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which along with (18) implies that 1iq q=  for all i N∈ , i.e., q  is symmetric. 

Without the inequality of (14), however, we may not be able to show this symmetry; we 

may not be able to exclude the possibility that any asymmetric Nash equilibrium q  

exists, such that 

(0) 0iq >  and (0) (0)i jq q≠  for some i N∈  and some \ { }j N i∈ . 

 

 

8. Conclusion 

  

This paper modeled the stock market as a timing game with incomplete 

information, where it was assumed that each arbitrageur is not necessarily rational, and 

is committed to ride the bubble with a small but positive probability. We showed a 

sufficient condition under which there exists the unique Nash equilibrium, where this 

equilibrium induces the bubble to persist for a long period even if all arbitrageurs are 

rational. We also characterized all symmetric Nash equilibria in general. 

It is important to generalize our model in several directions. For instance, the 

present paper assumed that each arbitrageur has a single share in common. If we drop 

this assumption and permit heterogeneity among arbitrageurs in terms of their 

shareholdings, it might be conjectured that larger shareholders are more likely to insist 

on riding the bubble than smaller ones. This type of interesting but careful analysis is, 

however, beyond the purpose of this paper, and is regarded as a pending problem for 

possible future researches. 
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Appendix: Proof of Proposition 3 

 

From the specification of ˆqτ , it follows that ˆ(0, )i iu qτ
−  equals 

(A-1)  1

:
,

( 1)! {(1 ) } {1 (1 ) } min[1, ]
!( 1 )! 1

H n H

H N
i H H

n nk k
H n H H

φ

ε ε − −

⊂
∉ ≠

−
− − −

− − +∑  

1{1 (1 ) }nk yε −+ − − + , 

and for every (0,1]ia ∈ , ˆ( , )i i iu a qτ
−  equals 

(A-2)  1

:
,

( 1)! {(1 ) } {1 (1 ) } max[0, ]
!( 1 )!

H n H

H N
i H H

n Hn k k
H n H n H

φ

ε ε − −

⊂
∉ ≠

−−
− − −

− − −∑  

1{1 (1 ) } iank e yρε −+ − − +   if ˆ(0, )ia τ∈ , 

and 

(A-3)  1

:
,

( 1)! {(1 ) } {1 (1 ) } max[0, ]
!( 1 )!

H n H

H N
i H H

n Hn k k
H n H n H

φ

ε ε − −

⊂
∉ ≠

−−
− − −

− − −∑  

{1 ( ; )}ia k
i i ie D a qρ

−+ −  

0

1 ( ; )
1

ia
t k

i i
t

n e dD t q y
n

ρ
−

=

−
+ +

− ∫  if ˆ[ ,1]ia τ∈ . 

Moreover, from the specification of ˆqτ , 

   1ˆ( ; ) 1 { (1 )(1 )}n
i iD t q kτ ε ε −

− = − + − −  for all ˆ[0, )t τ∈ , and 

(A-4)  
1 (1 )ˆ 1( ; ) 1i i

n tn n neD t q
ρτ ε

−
−−

−
−= −  for all ˆ[ ,1]t τ∈ . 

Since q  is continuous, 

   ˆ ˆ ˆ1ˆ( , ) ( , ) {1 (1 ) } ( ) 0ian
i i i i iu q u a q k e eρτ τ ρττ ε −

− −− = − − − >  for all ˆ(0, )ia τ∈ . 

From (A-1) and (A-2), for every i N∈  and every ˆ(0, )ia τ∈ , 
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ˆ ˆ(0, ) ( , )i i i i iu q u a qτ τ
− −−  

1

:
,

( 1)! {(1 ) } {1 (1 ) } {min[1, ] max[0, ]}
!( 1 )! 1

H n H

H N
i H H

n Hn nk k
H n H H n H

φ

ε ε − −

⊂
∉ ≠

−−
= − − − −

− − + −∑  

1{1 (1 ) } (1 ) 0iank eρε −+ − − − > . 

From the equalities of (9) and (10), it follows that for every i N∈ , 

ˆ ˆˆ(0, ) ( , )i i i iu q u qτ ττ− −−  

1

:
,

( 1)! {(1 ) } {1 (1 ) } {min[1, ] max[0, ]}
!( 1 )! 1

H n H

H N
i H H

n Hn nk k
H n H H n H

φ

ε ε − −

⊂
∉ ≠

−−
= − − − −

− − + −∑  

ˆ1{1 (1 ) } (1 ) 0nk eρτε −+ − − − = , 

where the last equality was derived from (9) and (10). From (A-3), the following 

first-order condition holds for every ˆ[ ,1]ia τ∈ ; 

(A-5)  ˆ ˆ ˆ

0

1( , ) [ {1 ( ; )} ( ; )]
1

i

i

a
a t

i i i i i i i i
i i t

nu a q e D a q e dD t q
a a n

ρτ τ ρ τ
− − −

=

∂ ∂ −
= − +

∂ ∂ − ∫  

ˆ
ˆ ( ; ){1 ( ; )}

1
i ia a i i i

i i i
i

n n D a qe D a q e
n a

τ
ρ ρτρ −

−

− ∂
= − −

− ∂
 

1 ˆ(1 )1 ( ; ) 0
1

i i

n ta an i i in n

i

n n D a qe e e
n a

τρρ ρρ ε
−

−− −− − ∂
= − =

− ∂
, 

where, from (A-4), we have derived 
1ˆ (1 )1( ; ) 1 n tni i i n n

i

D a q n e
a n n

τ ρ
ρε

−
−−− −∂ −

=
∂ −

, 

which implies the last equality of (A-5). Hence, 

ˆ ˆˆ( , ) ( , )i i i i iu q u a qτ ττ − −=  for all ˆ[ ,1]ia τ∈ , 

and therefore, we have proved that 

ˆ ˆ( ) ( , )i i i iu q u q qτ τ
−≥  for all i iq Q∈  and all i N∈ . 
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Figure 1 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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