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Abstract

This paper provides a new method to construct a dynamic opti-
mal portfolio for asset management. This method generates a target
payoff distribution using the cheapest dynamic trading strategy. As
a practical example, the method is applied to hedge fund replica-
tion. This dynamic portfolio strategy is regarded as an extension of a
hedge fund replication methodology that was developed by Kat and
Palaro (2005a, b) and Papageorgiou, Remillard and Hocquard (2008)
to address multiple trading assets with both long and short positions.
Empirical analyses show that such an extension significantly improves
the performance of replication in practice.

1 Introduction

Modern portfolio theory has been applied to asset management in practice
since the seminal works of Markowitz (1952) and Merton (1969, 1971). This
paper considers a tractable portfolio construction problem for portfolio man-
agers. While Markowitz (1952) proposed a portfolio optimization method
where the portfolio that minimizes its variance under a given expected return
is chosen, this paper presents a method to create the dynamic portfolio that
attains a target payoff distribution with the minimum cost in a continuous-
time complete market. Moreover, this cost minimization problem is shown
to be equivalent to a standard expected utility maximization problem that
was studied by Merton (1969, 1971).

Practical performance evaluations of mutual and hedge funds are usually
based upon the basic statistics of their returns, such as certain orders of
moments and their combinations (e.g., Sharpe ratio). In particular, many
researchers have pointed out that hedge fund returns exhibit non-normality
(see, for example, Malkiel and Saha (2005) and Hakamada et al. (2007)).
Thus, high orders of moments should be also considered for investment in
hedge funds (see, for example, Gregoriou and Kaiser (2006) and Cvitanić,
Polimenis and Zapatero (2008)). Dybvig (1988a) proposed a distributional
analysis approach to evaluating investment performances. This approach
modified the Sharpe and Jensen measures by incorporating all of the moments
of a return distribution.

Our method extends the distributional analysis approach initiated by
Dybvig (1988a). Theorem 1 in Dybvig (1988a) claims that the cheapest
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way to attain a given payoff is to allocate terminal wealth in the reverse
order of the state price density in an equally probable finite state complete
market. This article extends that claim to a continuous-time complete market
framework. The uniqueness of the cheapest payoff is also proven. Theorem
2 in Dybvig (1988a) asserts that a trading strategy maximizes an increasing
and concave von Neumann-Morgenstern utility in an equally probable finite
state complete market if and only if it is the cheapest strategy among those
that generate the same payoff distribution. This paper shows a similar result
holds in a continuous-time complete market setting, as well. Hence, it is
ensured that our portfolio optimization problem is equivalent to an expected
utility maximization problem.

Dybvig (1988a) intended an extension of the capital asset pricing model
(CAPM) and techniques for evaluating investment performance and testing
its efficiency. In addition, Dybvig (1988b) used the distributional analysis to
investigate the efficiency of the standard dynamic trading strategies that are
followed by practitioners. However, this paper applies the idea to creating
the dynamic optimal portfolio that achieves a target payoff distribution. For
a target distribution, there is an interesting example: hedge fund replication.

Hedge fund replication products appeared in financial markets after
the late 2000s. Large investment banks and asset management companies
launched such products one after another. They have been developing their
own original methods by employing highly sophisticated financial models and
statistical methods. Some have developed replication techniques by collabo-
rating with the pioneers in hedge fund research (see, for example, Takahashi
and Yamamoto (2009) or Tuchschmid et al. (2010, 2012)). These products
overcome some of the disadvantages of hedge fund investment: high cost, low
transparency, and low liquidity. The importance of transparency and liquid-
ity has been recognized since the subprime and Lehman shocks. Therefore,
these products have gained increased attention. Tuchschmid et al. (2010,
2012) examined the performances of existing hedge fund clone products.

Many financial firms offer the clones of various investment strategies.
Most of the replication products attempt to replicate the performances of
aggregate composite hedge fund indexes from HFR, Dow Jones Credit Suisse,
and so on. Others attempt to replicate the performances of some specific al-
ternative investment strategies, such as equity long/short or market-neutral.

The existing methodologies for hedge fund replication can be catego-
rized into the following three approaches: the rule-based, factor-based, and
distribution-replicating approach. The rule-based approach mimics the typi-
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cal trading strategies that are employed by hedge funds. The trading rules in
Duarte et al. (2007) can be regarded as rule-based fixed-income hedge fund
clone techniques.

Factor-based cloning attempts to replicate the risk exposures of the target
fund. If this method succeeds, then the return of the clone tracks that of
the target fund on a month-to-month basis. Lo and Hasanhodzic (2007)
and Fung and Hsieh (2007a, 2007b) studied this approach. Factor analysis
techniques that have been developed for hedge funds since the late 1990s,
such as that of Fung and Hsieh (1997, 2000, 2001) and Agarwal and Naik
(2004), are directly applied to the replication.

The distribution-replicating approach aims to replicate the distributions
of hedge fund returns. Amin and Kat (2003) first attempted this replication.
However, hedge funds attract investors not only by their return distributions
but also by their low correlations with the returns of traditional asset classes,
such as stocks and bonds. Therefore, Kat and Palaro (2005a, b) extended the
method to replicate both the distribution and the dependence structure on
the investor’s existing portfolio. Kat and Palaro (2005a, b) tried to replicate
them through a dynamic trading of the investor’s existing portfolio (approx-
imated by a portfolio of stock index futures and bond futures) and another
asset (replicating instrument). Papageorgiou et al. (2008) proposed an alter-
native way to perform Kat-Palaro’s replication methodology by utilizing a
hedging scheme for options in an incomplete market. The payoff distribution
model can be applied to not only hedge fund replication but also to other
investment strategies and risk managements. For example, Hocquard et al.
(2012) applied it to portfolio insurance.

This article extends the work of Kat and Palaro (2005a, b) and Papa-
georgiou et al. (2008). While the methods developed by the two research
papers use one replicating instrument with long positions only, our method
allows multiple replicating instruments with both long and short positions
for creating a replicating portfolio. With regard to practical applications,
this paper replicates the return distributions of three different hedge fund
strategies: managed futures, multi-strategy, and global macro indices from
Dow Jones Credit Suisse. Such fund managers are seeking attractive in-
vestment opportunities in financial markets around the world. They employ
dynamic trading strategies, including leverage and short sales, to make profits
from such opportunities. Our methodology is able to reflect their investment
behaviors. Managed futures funds gained high returns by taking short po-
sitions on risky assets in the months immediately following the bankruptcy
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of Lehman Brothers. As this new replication method allows for short posi-
tions, it is much easier to replicate a managed futures fund that shows good
performance even in substantial bear markets. Historical out-of-sample sim-
ulations show that our scheme provides much better performances than do
the replications with one replicating instrument and its long positions only.

This paper is organized as follows. The following section briefly reviews
the existing distribution replication methodology with one replicating in-
strument and its long positions only. Section 3 describes the new dynamic
portfolio optimization method, which is an extension of the distribution repli-
cation method to multiple replicating instruments with both long and short
positions. Then, Section 4 applies the new method to the replication of hedge
fund indexes. Section 5 concludes this paper. Finally, the Appendix gives the
proofs of the theorems as well as the derivation of the dynamic replicating
portfolios.

2 Review of the Existing Distribution Repli-

cation Methodology

Before describing the new dynamic portfolio optimization method, let us re-
view the distribution replication methodology developed by Kat and Palaro
(2005a, b) and Papageorgiou et al. (2008), which helps us to understand
the motivation of this study. Consider an investor who has been investing
in traditional assets, such as stocks and bonds, and who plans to invest in a
hedge fund. Assume that he/she is attracted to the hedge fund because of its
return distribution and the structure of dependence upon his/her portfolio.
Kat and Palaro (2005a, b) proposed to replicate the return distribution of
the hedge fund and its dependence structure on the investor’s existing port-
folio by a dynamic trading strategy of the investor’s portfolio (approximated
by a portfolio of stock index futures and bond futures) and another asset
(replicating instrument).

Let S0 be a risk-free asset, S1 be the investor’s existing portfolio, and S2

be a replicating instrument. Assume that S1 is also tradable. Let 0 and T
be the start and terminal dates of the investment, respectively (for exam-
ple, they are assumed to be the start and end of the month, respectively).
Although Papageorgiou et al. (2008) assumed an incomplete market, this
paper assumes a complete market. Suppose that the financial assets follow
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stochastic differential equations (SDEs)

dS0
t = rtS

0
t dt,

dS1
t = µ1

tS
1
t dt+ σ11

t S
1
t dW

1
t ,

dS2
t = µ2

tS
2
t dt+ σ21

t S
2
t dW

1
t + σ22

t S
2
t dW

2
t ,

where W 1
t and W 2

t are independent Wiener processes, and rt, µ
i
t, and σij

t

(i, j = 1, 2) satisfy some measurability and integrability conditions. Normal-
ize the initial asset values so that S0

0 = S1
0 = S2

0 = 1. Then, the log returns
of S1 and S2 are represented as R1

T = logS1
T and R2

T = log S2
T , respectively.

Let RT be the random variable that represents the log return of the
target hedge fund. Kat and Palaro (2005a, b) proposed to replicate the joint
distribution of

(
R1

T , RT

)
through the dynamic trading of S1 and S2. They

created a payoff function of S1 and S2 that has the same joint distribution as
the target hedge fund, and they then replicated the payoff using a dynamic
trading strategy for S1 and S2. They found function g̃, which satisfies the
following equation.

P
(
R1

T ≤ a, g̃
(
R1

T , R
2
T

)
≤ b
)
= P(R1

T ≤ a,RT ≤ b) for any a, b,

or equivalently,

P
(
g̃
(
R1

T , R
2
T

)
≤ b
∣∣R1

T = a
)
= P(RT ≤ b|R1

T = a) for any a, b.

The function g̃(·, ·) is given by

g̃(a, b) = F−1
RT |a(FR2

T |a(b)),

where FRT |a and FR2
T |a are the conditional distribution functions ofRT andR2

T

under R1
T = a. As the function of the asset prices, the payoff is represented

as
ĝ(S1

T , S
2
T ) = exp

{
g̃
(
logS1

T , log S
2
T

)}
. (1)

Payoff ĝ(S1
T , S

2
T ) has the same joint distribution with the investor’s portfolio

as does the target hedge fund.
Once one has obtained the payoff function, then the replicating strategy

encounters the same problem with pricing and hedging derivatives. The
dynamic replicating strategy is given by the delta-hedging strategy of the
payoff ĝ(S1

T , S
2
T ). If the initial cost for the trading strategy is less (more)
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than one, then the target payoff distribution is realized by a lower (higher)
cost. The remaining (shortage of) money is invested (funded) in the risk-free
asset. This means that the shape of the probability density function can be
replicated, but the mean return is higher (lower) than the target fund by the
difference of the initial cost. In this case, the replicating instrument does
(does not) include a greater investment opportunity than does the target
hedge fund. Note that the payoff function ĝ(·, ·) is increasing with respect
to the second argument. The delta-hedging strategy therefore never takes a
short position for S2. In pp. 17-18 of Kat and Palaro (2005a), the authors
claim that users of this method should choose the replicating instrument S2,
which includes a positive expected return factor that is uncorrelated to the
return of the investor’s portfolio. The long positions for S2 are thus justified.
Therefore, the choice of a replicating instrument is a very important problem.

As just described, this methodology can replicate the shape of the prob-
ability density function, but it cannot fit the mean. If you found a greater
investment opportunity than the target fund, the mean return would be su-
perior, and vice versa. Therefore, the usage of only one asset is restrictive.
Papageorgiou et al. (2008) synthesized multiple assets to create one repli-
cating instrument by equal-weighing, but such a portfolio would not always
be optimal. The extension of the investment universe would bring in higher
mean returns. The dynamic portfolio strategy presented in the next section
can be considered to be an extension of this distribution replication method
to multiple replicating instruments with both long and short positions.

3 The Cheapest Dynamic Portfolio that Gen-

erates a Target Payoff Distribution

Let us begin with a complete probability space (Ω,F ,P) with n-dimensional
standard Brownian motion Wt = (W 1

t , · · · ,W n
t )

′, 0 ≤ t ≤ T , where ′ repre-
sents transposition so that Wt is a column vector. W0 = 0 is almost surely
satisfied. Let {FW

t }0≤t≤T be the filtration generated by Wt. This paper uses
the augmented filtration

Ft = σ(FW
t ∪N ) for any t < T,

where N denotes P-null subsets of FW
T .

Let S0 be a risk-free asset, S1 be the investor’s existing portfolio, and
S2, · · · , Sn be risky assets. Suppose that the price processes of the financial
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assets Si (i = 0, · · · , n), {Si
t}Tt=0, follow SDEs

dS0
t = rtS

0
t dt, (2)

dSi
t = µi

tS
i
tdt+

i∑
j=1

σij
t S

i
tdW

j
t (i = 1, · · · , n), (3)

where rt, µ
i
t, and σ

ij
t are progressively measurable and satisfy∫ T

0

|rt|dt <∞ a.s.,

∫ T

0

|µi
t|dt <∞ a.s.,∫ T

0

(σij
t )

2dt <∞ a.s.

for any 1 ≤ j ≤ i ≤ n.
All of the initial asset values are normalized, so that S0

0 = · · · = Sn
0 = 1.

The following notations for n-dimensional vectors and an n × n matrix are
introduced. St = (S1

t , · · · , Sn
t )

′, µt = (µ1
t , · · · , µn

t )
′, 1⃗ = (1, · · · , 1)′, and

σt =

σ
11
t O
...

. . .

σn1
t · · · σnn

t

 ,

where ′ represents transposition so that St, µt and 1⃗ are column vectors.
Suppose that σt is almost surely invertible. There then exists the unique

market price of the risk
θt = σ−1

t (µt − rt1⃗).

In other words, the financial market is complete. The financial market is
denoted by M = (r, µ, σ).

In a complete market M, the unique state price density process is given
by

Ht = exp

{
−
∫ t

0

rudu−
1

2

∫ t

0

||θu||2du−
∫ t

0

θ′udWu

}
.
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The no-arbitrage price of any FT -measurable payoff X is given by x =
E[HTX]. X can be replicated by a dynamic trading of the financial assets
with initial cost x (see, for example, Karatzas and Shreve (1998)).

When multiple risk assets are tradable, then there are infinitely many
payoffs that have a target distribution. This paper proposes to choose the
cheapest of these payoffs. Dybvig (1988a) showed that the cheapest way to
attain a given payoff is to allocate the terminal wealth in the reverse order of
the state price density in an equally probable finite state complete market. As
will be seen later, this claim is also valid in our setting under some conditions.
In the following, we find the cheapest payoffs that attain a target marginal
distribution and a joint distribution with the investor’s existing portfolio.

First, let us find the cheapest payoff that has a target marginal distribu-
tion. Let ξ be a random payoff that has a target distribution. For conve-
nience, the minus logarithm state price density process Lt is introduced as
follows.

Lt = − logHt =

∫ t

0

rudu+
1

2

∫ t

0

||θu||2du+
∫ t

0

θ′udWu. (4)

Because Arrow-Debreu securities are tradable in a complete market, this pa-
per proposes to create a payoff using HT (or LT ). Let Fξ and FLT

denote the
distribution functions of ξ and LT , respectively. Assume that Fξ is an invert-
ible function. If X is defined as follows, then X has the same distribution as
ξ.

X = f(LT ), (5)

where
f(l) = F−1

ξ

(
FLT

(l)
)
.

Because F−1
ξ and FLT

are increasing, the payoff X increases in LT , and
therefore it is in the reverse order of the state price density HT . Thus, X is
the cheapest payoff among the payoffs that have the same distribution as ξ.
The next theorem asserts that X is the unique, cheapest payoff among the
random variables that has the same distribution as ξ.

Theorem 1 Assume that ξ is a positive FT -measurable random variable,
and Fξ and FLT

are continuous and strictly increasing. In a complete market
M, the unique cheapest payoff X that has the same distribution as ξ is given
by equation (5).
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Proof. See Appendix 6.1.

Additionally, the choice of the cheapest payoff for some marginal distri-
bution can be justified in terms of the expected utility maximization theory.
It can be shown that the cost minimization for a marginal payoff distribution
is equivalent to a von Neumann-Morgenstern utility maximization. Dybvig
(1988a) proved this claim in the equally probable finite state setting. The
next theorem proves this claim in a continuous-time framework.

Theorem 2 Assume that ξ is a positive FT -measurable random variable,
and Fξ and FLT

are continuous and strictly increasing. If X is the cheapest
payoff that has the same distribution with ξ (i.e., X is defined by equation
(5)), then in a complete market M, there exists a strictly increasing and
strictly concave von Neumann-Morgenstern utility function u(·), such that
(a) limz→+0 u

′(z) = +∞, (b) limz→+∞ u′(z) = 0, and the dynamic trading
strategy that attains payoff X is the optimal investment strategy for u(·).

Conversely, if a dynamic trading strategy maximizes a strictly increas-
ing and strictly concave von Neumann-Morgenstern utility function u(·) that
satisfies conditions (a) and (b), then it attains the cheapest payoff for some
distribution.

Proof. See Appendix 6.2.

Next, let us find the cheapest payoff that has a target joint distribution
with the investor’s existing portfolio, S1. Denote the conditional distribution
functions of ξ and LT under condition S1

T = s by Fξ|s and FLT |s, respectively.
Assume that Fξ|s is invertible for any s. If X is defined as follows, then
(S1

T , X) has the same joint distribution as (S1
T , ξ).

X = g(S1
T , LT ), (6)

where
g(s, l) = F−1

ξ|s (FLT |s(l)).

Because F−1
ξ|s and FLT |s are increasing, the payoff X increases in LT , and it

is therefore in the reverse order of the state price density, HT . Thus, X is
the cheapest payoff among the payoffs that have the same joint distribution
with the investor’s existing portfolio as ξ. The next theorem asserts that
X is the unique, cheapest payoff among the random variables whose joint
distributions with S1

T are the same as ξ.
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Theorem 3 Assume that ξ is a positive FT -measurable random variable,
and Fξ|s and FLT |s are continuous and strictly increasing for any s > 0.
In a complete market M, the unique cheapest payoff X among the random
variables whose joint distributions with S1

T are the same as ξ is given by
equation (6).

Proof. See Appendix 6.3.

Let us derive the dynamic portfolio that replicates the cheapest payoffs.
Let πi

t (i = 0, · · · , n) represent the money amount that is invested in asset
i at time t. The n-dimensional vector πt is defined by πt = (π1

t , · · · , πn
t )

′,
which denotes a portfolio of risky assets. Let x be the initial cost that is
required to realize the cheapest payoff XT for some payoff distribution. The
initial cost x is invested in the financial assets by a dynamic self-financing
trading strategy to generate the payoff XT . In other words, the portfolio
value at time t, Xt, satisfies

Xt = π0
t + π′

t1⃗,

for any t. In a differential form, this is expressed as

dXt = rtXtdt+ π′
t(µt − rt1⃗)dt+ π′

tσtdWt.

The dynamic portfolio can be obtained concretely for the case of Marko-
vian coefficients. See Appendix 6.4 for details. The following discussion in
this paper applies a special case of Appendix 6.4, where r, µ, and σ are deter-
ministic functions of the time t. The next proposition provides the dynamic
replicating portfolios in this case.

Proposition 1 Assume that r, µ and σ are deterministic functions of the
time t. Then, in a complete market M, the dynamic portfolio that generates
payoff f(LT ) is given by

πM
t = σ′(t)−1ϕM

t , (7)

where

ϕM
t =

θ(t)

Ht

Et[HTf
′(LT )]. (8)

The portfolio that attains the payoff g(S1
T , LT ) is given by

πJ
t = σ′(t)−1ϕJ

t , (9)
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where ϕJ
t = (ϕJ1

t , · · · , ϕJn
t ) is given by

ϕJ1
t =

θ1(t)

Ht

Et[HTg2(S
1
T , LT )] +

σ11(t)

Ht

Et[HTg1(S
1
T , LT )S

1
T ], (10)

ϕJi
t =

θi(t)

Ht

Et[HTg2(S
1
T , LT )], for i = 2, · · · , n, (11)

where gi (i = 1, 2) represents the partial derivative of g with respect to the
i-th argument.

Portfolios πM
t and πJ

t are obtained if the conditional expectations in equa-
tions (8), (10), and (11) are evaluated.

The interpretations for the optimal portfolio constituent factors are as fol-
lows. As for πM

t , 1
Ht
Et[HTf

′(LT )] is the present value of the sensitivity of the
terminal payoff with respect to the change in LT . This quantity corresponds
to delta in the option theory. The size of the risky asset portfolio increases
in this quantity. This factor contributes to generating the target distribu-
tion. In addition, the replicating strategy allocates the wealth to tradable
assets according to the market price of the risk, θi(t). Through this process,
the cheapest strategy is realized. The difference between πJ

t and πM
t is the

second term in equation (10). This is the present value of the sensitivity of
the terminal payoff with respect to the change of W 1

T . This term contributes
to the generation of the structure of dependence upon the investor’s existing
portfolio.

For the case of deterministic coefficients, the computational burden to
obtain the dynamic replicating portfolio does not increase in its number of
replicating instruments. To get the dynamic portfolio for the marginal dis-
tribution, the conditional expectation in equation (8) needs to be evaluated.
All that we then need is the distribution of LT under the information given
at times 0 and t. As LT follows a one-dimensional Gaussian distribution, the
conditional expectation can be numerically computed by Monte Carlo sim-
ulations or one-dimensional numerical integration. To obtain the dynamic
portfolio for the joint distribution, we need the conditional expectations of
equations (10) and (11). They can be numerically computed by the Monte
Carlo simulations or by two-dimensional numerical integrations because all
that we need are the joint distributions of (logS1

T , LT ) under the information
given at times 0 and t. As Lt is given by equation (4), LT is represented as

LT =

∫ T

0

r(t)dt+
1

2

∫ T

0

||θ(t)||2dt+
∫ T

0

θ1(t)dW 1
t +

n∑
i=2

∫ T

0

θi(t)dW i
t .

12



The distribution of
∑n

i=2

∫ T

0
θi(t)dW i

t under the information given at time 0

or t is the Gaussian distribution with mean 0 or
∑n

i=2

∫ t

0
θi(u)dW i

u and vari-

ance
∑n

i=2

∫ T

0
{θi(u)}2du or

∑n
i=2

∫ T

t
{θi(u)}2du, respectively. Therefore, the

joint distributions of (log S1
T , LT ) can be described by two-dimensional Gaus-

sian distributions. Thus, the extension to multiple replicating instruments
does not bring any computational disadvantage to the dynamic replicating
portfolios.

4 Application to Hedge Fund Replication

This section applies the dynamic portfolio strategy developed in the pre-
vious section to the replication of hedge fund return distributions. In the
framework of hedge fund replication, this is considered to be an extension of
the hedge fund replication methodology developed Kat and Palaro (2005a, b)
and Papageorgiou et al. (2008) to multiple replicating instruments with both
long and short positions. Empirical studies are performed in the following
subsections.

First, the data used in this study are described. Then, the strategy de-
scriptions of three hedge fund strategies that are replicated in this study
are given. Next, the empirical methodologies are explained. Finally, out-of-
sample replicating simulations for the three hedge fund strategies are per-
formed.

4.1 Data Description

This paper uses Dow Jones Credit Suisse Hedge Fund Indices as representa-
tive measurements of hedge fund performances. The monthly return data can
be downloaded from its homepage. Table 4 exhibits the summary statistics
on the monthly log returns of Dow Jones Credit Suisse Hedge Fund Indices.
The table shows the statistics calculated using three different data periods:
(a) the total period (1995-2011), (b) the first period (1995-2000), and (c) the
second period (2001-2011). By comparing the moments of the return distri-
butions in the different periods in Table 4, most of the hedge fund strategies
have historically changed their return distributions.

In practice, the return distribution of a target hedge fund is estimated
by using historical data, and then the estimated distribution is replicated.
Therefore, it is difficult for the distribution replication approach to replicate
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a hedge fund whose return distribution substantially changes with time. For
the purpose of the replication for such hedge fund strategies, a factor-based or
rule-based method should be tried first. The factor-based approach is often
used for the all strategies hedge fund index (see Tuchschmid et al. (2010,
2012) for example). Takahashi and Yamamoto (2009) replicated the Asian
long/short equities strategy using a factor-based method. For the replication
of the fixed income arbitrage strategy, the rule-based approach in Duarte et
al. (2010) would be helpful.

First, the dynamic replicating strategy is applied to the replication of the
managed futures index because its return distribution does not change much
historically. The application to the managed futures strategy is meaningful
because the factor-based approach does not work for this strategy. As the
managed futures funds change market risk exposures dynamically, it is dif-
ficult to find static factors that explain the return of this strategy (see, for
example, Hakamada et al. (2007)). To examine the effectiveness of the new
replication method, the performance of the replication for the multi-strategy
index is also studied. Finally, the replication result for the global macro in-
dex is shown to demonstrate the difficulty of replicating a hedge fund whose
return distribution suffers substantial changes during a time series.

The distributions of the log returns on the hedge fund indices during
the second period (2001-2011) are replicated monthly. For the purpose of
their estimations, the return data in the first period (1995-2000) are also
used. In this study, a Japanese investor is assumed, and the replicating
strategies are based in JPY. However, the hedge fund index is denominated
by USD. When the performances of replicating strategies are compared to
their replication target index, the returns of the replication strategies are
converted into USD with currency hedging (this means that the interest
difference between USD and JPY is added to the returns of the replicating
strategies). In the following out-of-sample simulation, it is assumed that the
management fee for the replicating strategies is 1% per year.

Assume that the investor’s existing portfolio is composed of 50% Japanese
bonds and 50% Japanese stocks, which can be approximated by the equally
weighted portfolio of TOPIX and Japanese government bonds (JGBs). The
futures contracts on TOPIX and long-term JGB are listed on the Tokyo
Stock Exchange. Replicating strategies utilize the equally weighted portfolio
of these contracts as a proxy for the investor’s existing portfolio, S1.

As replicating instruments, we used the following products: the cur-
rency pairs USD/JPY, EUR/JPY, GBP/JPY, CHF/JPY, and AUD/JPY;
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the long-term JGB, US 10 year treasury note, TOPIX and S&P500 futures
as financial futures contracts; WTI crude oil futures as a commodity futures
contract; JPY-denominated gold; and Libor rates as risk-free rates. Repli-
cating strategies roll front futures contracts on the last trading day.

The transaction costs are assumed to be one basis point for the short
and long of all trading instruments. All of the daily market price data are
obtained from Bloomberg. The statistics of the monthly log returns on these
contracts are exhibited in Table 5. USD-denominated contracts are converted
into JPY because the base currency of the replicating strategies is JPY.

4.2 Strategy Descriptions

As mentioned in the previous subsection, managed futures, multi-strategy and
global macro indices are replicated. Their strategy descriptions are as follows.

4.2.1 Managed Futures

Managed futures funds (often referred to as CTAs or Commodity Trading
Advisors) typically focus on investing globally in listed bond, equity, com-
modity futures and currency markets. Managed futures fund managers tend
to employ systematic trading programs that largely rely upon historical price
data and market trends. A significant amount of leverage is often employed
as the strategy involves the use of futures contracts. In general, CTAs do
not have a particular bias towards bull or bear for any particular market.
In the months immediately following the bankruptcy of Lehman Brothers,
the managed futures funds achieved high returns by taking short positions
on the futures contracts of risky assets because very strong downward trends
appeared in the risky asset markets all over the world.

4.2.2 Multi-Strategy

Multi-strategy funds typically are characterized by their ability to allocate
capital based upon perceived opportunities among several hedge fund strate-
gies. Through the diversification of capital, managers seek to deliver consis-
tently positive returns regardless of the directional movement in the equity,
interest rate, or currency markets. The strategies adopted in a multi-strategy
fund may include convertible bond arbitrage, long/short equity, statistical
arbitrage and merger arbitrage. The benefits of diversification may reduce

15



the risk profile and help to smooth the returns, reduce the volatility, and
decrease the asset-class and single-strategy risks. As shown in Table 4, the
standard deviation of the return is very small, and a high return-to-risk ratio
is attained as compared to those of single strategies.

4.2.3 Global Macro

Global macro funds typically focus on identifying extreme price valuations
and often take leverage against the anticipated price movements in the eq-
uity, currency, interest rate, and commodity markets. Managers typically
employ a top-down global approach to concentrate on forecasting how polit-
ical trends and global macroeconomic events affect the valuation of financial
instruments. Profits can be made by correctly anticipating price movements
in global markets and having flexibility in a broad investment mandate with
the ability to hold positions in any market with any instrument. They may
utilize systematic trend following models and/or discretionary judgment. Ta-
ble 4 indicates that the return distribution of this strategy index has changed
substantially with time. For example, the standard deviation calculated us-
ing the return data from 1995 to 2000 is 3.06%, while the one calculated
using the return data from 2001 to 2011 is 1.51%. The performance of the
global macro index from 2001 to 2011 is the best among the Dow Jones
Credit Suisse Hedge Fund Indices. It attained the highest return with the
lowest standard deviation.

4.3 Empirical Methodologies

This subsection describes the statistical methods applied in this paper. While
in-sample and out-of-sample empirical studies are performed in empirical fi-
nance, replication performance with an out-of-sample basis is more important
for the purpose of practical hedge fund replication. Hence, the results of only
out-of-sample simulations are reported.1

Out-of-sample replications are implemented from January 2001 to De-
cember 2011 on a month-to-month basis. Monthly log return distributions
are replicated through daily dynamic portfolio strategies. The replicating
strategies for the marginal distribution (7) and joint distribution with the
investor’s existing portfolio (9) are implemented. For comparative purposes,

1The results of in-sample studies are given upon request.
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the replicating strategy for the joint distribution by a single instrument is
also applied, which is the delta-hedging strategy for a target payoff (1).

The theory in the previous section is developed under the assumption
that a target payoff distribution is given, but no one knows the true return
distributions of hedge fund indices. To implement replicating strategies in
practice, they should be estimated by utilizing historical data. This paper
examines the impact on the performance of replicating strategies when dif-
ferent distribution models are used. As hedge fund returns exhibit skews and
fat tails, the two different types of generalization of Gaussian distribution are
considered with the aim of modeling higher moments. The first are hyper-
bolic and normal inverse Gaussian (NIG) distributions, which are subclasses
of the generalized hyperbolic distribution class. The second are Gaussian
mixture distributions.

The generalized hyperbolic distribution (GH) class is often used in finan-
cial data modeling (see, for example, Mcneil et al. (2005) or Hellmich and
Kassberger (2011)). Its density function is given by

gh(x;λ, α, β, δ, µ) = a(λ, α, β, δ, µ){δ2 + (x− µ)2}λ/2−1/4

×Kλ−1/2(α
√
δ2 + (x− µ)2) exp{β(x− µ)},

where

a(λ, α, β, δ, µ) =
(α2 − β2)λ/2

√
2παλ−1/2δλKλ(δ

√
α2 − β2)

and Kλ(x) is the modified Bessel function of the third kind with index λ.
The parameters (α, β, δ) are assumed to satisfy δ > 0 and |β| ≤ α if λ < 0;
δ > 0 and |β| < α if λ = 0; and δ ≥ 0 and |β| < α if λ > 0. For λ = 1,
one arrives at the hyperbolic distribution. For λ = −1/2, one achieves the
NIG distribution. For α → ∞, δ → ∞, and δ/α → σ2, one obtains a
Gaussian distribution with mean µ+βσ2 and variance σ2. In the case of the
GH distribution class, the return data are fitted to Gaussian, hyperbolic and
normal inverse Gaussian distributions by maximum likelihood. The best-
fitted model is then selected by Akaike’s information criterion (AIC).

The Gaussian mixture distribution class is used in Papageorgiou et al.
(2008). The probability density function of the Gaussian mixture with m
regimes (GM(m)) is given by

gm(x;m, {πk}mk=1, {µk}mk=1, {σ2
k}mk=1) =

m∑
k=1

πkϕ(x;µk, σ
2
k),
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where ϕ(x;µ, σ2) is the density function of the Gaussian distribution with
mean µ and variance σ2. In the case of Gaussian mixture distributions, the
return data are fitted to GM(m) (m = 1, 2, 3, 4, 5) by an EM-algorithm.
Then, the best-fitted model is selected by AIC.

For the replication of the joint distribution with the investor’s existing
portfolio, the dependence structure between the target hedge fund index and
the investor’s existing portfolio should be modeled and estimated. Copula is
applied for modeling flexible dependence structures. For example, the Clay-
ton copula has more dependence in the lower tail than in the upper tail. This
allows for the copula to capture the strong dependence in bear markets and
the weak dependence in bull markets. For example, Mitchell and Pulvino
(2005) showed that risk arbitrage hedge funds tend to exhibit a similar de-
pendence structure. See, for example, Joe (1997) or Nelsen (1999) for the
introduction of copula. The best-fitted copula is selected from Gaussian,
Clayton, Gumbel, and Frank copulas using maximum likelihood.

4.4 Out-of-Sample Simulation

Let us replicate the log return distributions of the three indices on an out-of-
sample basis. The monthly updated marginal distribution and joint distri-
bution with the investor’s portfolio are estimated monthly by the procedure
described in the previous subsection. The last five years of data that are
available at the start of the month are used for the estimations.

First, consider a replication for managed futures index. For this strategy,
the currency pair USD/JPY, WTI crude oil and S&P 500 futures contracts,
and JPY-denominated gold are used as replicating instruments. We consider
that managed futures fund managers trade these instruments in practice.
The stochastic processes for these asset prices should be estimated. Setting
the coefficients to be constants during each month, we assume that they
follow log-normal processes. The parameters are updated monthly where we
use an exponentially weighted moving average method. This method can
reflect market trends in the parameters of the trading assets. Most managed
futures fund managers analyze market trends and take positions to follow the
market trends in practice. Let {rin}Nn=1 be the time-series data of the daily
log return of asset i. Suppose that ri1 is the last sample data and riN is the
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oldest sample. The variance of asset i is estimated by

V ar(ri) =
N∑
k=1

λk−1∑N
n=1 λ

n−1
rik

2
.

The covariances are estimated in the same manner. The drift coefficient µi

is estimated by

µi =
N∑
k=1

λk−1∑N
n=1 λ

n−1
rik +

1

2
V ar(ri).

Here, the decay factor λ is assumed to be 0.99. The half value period is then
68 days.

Replicating strategies that utilize GH and GM distribution classes are
implemented. For comparative purposes, the replicating strategy of a single
replicating instrument for the joint distribution is also applied, where the
replicating instrument is the equally weighted portfolio of the four instru-
ments used in this replication. Table 1 exhibits the summary statistics of the
log returns of the managed futures index and its replicating strategies.

The replicating strategies with the GH distribution class attained higher
returns than they did with the GM distributions. The following two reasons
for this difference can be considered. First, a Gaussian mixture distribu-
tion has an over-fitting problem as it may have many free parameters. In
other words, it is not robust to out-of-sample predictions but is able to fit
the model to in-sample data. Second, the replicating strategy for a dis-
tribution whose density function has multiple peaks does not seem to be
reasonable as an investment strategy. f ′(LT ) in equation (8) is represented
as f ′(LT ) = ϕLT

(LT )/ϕξ(f(LT )), where ϕLT
and ϕξ are the density functions

for LT and ξ, respectively. This means that the gross position amount is
determined by the density function of the target distribution. If the den-
sity of the target distribution has multiple peaks, then the gross position
amount of the replicating strategy can change substantially with the state
of Lt. Although the replicating strategy can regenerate such a multi-peak
return histogram, it is doubtful that such a dynamic strategy is reasonable
or superior for investment.

Figure 1 shows the net asset values of the managed futures index and
replicating strategies with the GH distribution class. The replicating strate-
gies with multiple instruments performed very well. Although the replicat-
ing strategy with a single replicating instrument outperformed the managed
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Table 1: Summary Statistics on the Log Returns of the Managed Futures
Index and Its Replicating Strategies (2001-2011)

Managed Futures Multiple Multiple Single
Index Marginal Joint Joint

Mean 0.52％ 0.89％ 0.87％ 0.61％
Std. Dev. 3.45％ 3.61％ 3.49％ 2.92％

Mean/Std. Dev 0.15 0.25 0.25 0.21
Skew -0.15 0.33 0.20 -0.61

Kurtosis 2.37 2.95 2.77 5.10
Max 8.28％ 12.03％ 9.82％ 6.92％
Min -9.02％ -7.49％ -7.59％ -12.46％

Correlation with
-0.03 0.07 0.03 0.34

the investor’s portfolio
Correlation with

0.57 0.56 0.11
the target index

(a) The Generalized Hyperbolic Class

Managed Futures Multiple Multiple Single
Index Marginal Joint Joint

Mean 0.52％ 0.86％ 0.66％ 0.59％
Std. Dev. 3.45％ 3.63％ 3.49％ 2.97％

Mean/Std. Dev 0.15 0.24 0.19 0.20
Skew -0.15 0.26 0.07 -0.56

Kurtosis 2.37 2.83 2.65 4.04
Max 8.28％ 12.03％ 9.67％ 6.92％
Min -9.02％ -7.43％ -7.86％ -11.32％

Correlation with
-0.03 0.07 0.00 0.34

the investor’s portfolio
Correlation with

0.57 0.57 0.12
the target index

(b) Gausiann Mixture Distributions
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futures index, it was not able to replicate an attractive character of the
managed futures strategy: good performance under strong bear markets.
Especially in the months immediately following the bankruptcy of Lehman
Brothers, managed futures funds achieved high returns by taking short posi-
tions on the futures contracts of risky assets because very strong downward
trends appeared in the risky asset markets all over the world. Replication
with a single instrument incurred a large loss during this period because it
cannot take short position on the instrument. However, replications with
multiple replicating instruments succeeded in replicating good performance
under the strong bear market by taking short positions on risky assets. As
shown in Table 1, replicating strategies with multiple instruments have higher
correlations with the managed futures index than do those with a single in-
strument.

Figure 1: The net asst vales of the managed futures index and its replicating
strategies with the GH distribution class (Jan 2001-Dec 2011).

Next, the replication for the multi-strategy index is performed. For this
replication, all of the foreign exchange and futures contracts listed in subsec-
tion 4.1 are used as replicating instruments. They are put into an equally
weighted portfolio that is used for the replication with a single instrument.
In the estimation procedure for the trading instruments, the decay factor λ
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is assumed to be 0.9975. Other procedures are the same as in the replica-
tions for the managed futures. Table 2 shows the summary statistics of the
replication results. The replications with the GH distribution class obtained
higher mean returns than did those with GM distributions for this case, as
well.

Table 2: Summary Statistics on the Log Returns of the Multi-Strategy Index
and Its Replicating Strategies (2001-2011)

Multi-Strategy Multiple Multiple Single
Index Marginal Joint Joint

Mean 0.52％ 0.49％ 0.55％ 0.30％
Std. Dev. 1.62％ 1.94％ 1.72％ 1.16％

Mean/Std. Dev 0.32 0.25 0.32 0.26
Skew -2.03 -0.28 0.37 -0.75

Kurtosis 11.21 6.70 5.64 5.30
Max 4.19％ 7.74％ 7.41％ 2.98％
Min -7.63％ -7.55％ -4.20％ -4.56％

Correlation with
0.54 0.15 0.16 0.55

the investor’s portfolio
Correlation with

0.20 0.10 0.53
the target index

(a) Generalized Hyperbolic Class

Multi-Strategy Multiple Multiple Single
Index Marginal Joint Joint

Mean 0.52％ 0.37％ 0.41％ 0.27％
Std. Dev. 1.62％ 1.85％ 1.63％ 1.39％

Mean/Std. Dev 0.32 0.20 0.25 0.20
Skew -2.03 -2.02 -2.25 -3.91

Kurtosis 11.21 9.50 12.11 31.62
Max 4.19％ 4.03％ 3.71％ 2.92％
Min -7.63％ -8.58％ -8.80％ -10.65％

Correlation with
0.54 0.09 0.32 0.60

the investor’s portfolio
Correlation with

0.15 0.29 0.61
the target index

(b) Gaussian Mixture Distributions

Figure 2 shows the net asset values of the multi-strategy index and repli-
cating strategies with the GH distribution class. The replication for the joint
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distribution with multiple assets outperformed the multi-strategy index. The
replication for the marginal distribution slightly underperformed the multi-
strategy index, but it attained a close return level. The extension to multiple
assets much improved the performance for this case, as well.

Figure 2: The net asst vales of the multi-strategy index and its replicating
strategies with the GH distribution class (Jan 2001-Dec 2011).

Finally, let us replicate the global macro index. In this replication, the
entire procedure is exactly the same as it was in the replication for the multi-
strategy case. Table 3 shows the summary statistics of the replication results.
The replications with the GH distribution class attained higher mean returns
than did those with GM distributions for the global macro case, as well. This
phenomenon is observed for all of the replications for the three strategies.

Figure 3 shows the net asset values of the global macro index and the
replicating strategies for the GH distribution class. Replicating strategies
could not attain returns that were as high as those of the global macro
index. The following two reasons for this failure are considered. First, the
return distribution of the global macro index changes substantially with time.
Therefore, it is difficult to replicate it on an out-of-sample basis. Second, the
performance of the global macro index during the sample period is very high.
As previously mentioned, the performance of the global macro index from
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Table 3: Summary Statistics on the Log Returns of the Global Macro Index
and Its Replicating Strategies (2001-2011)

Global Macro Multiple Multiple Single
Index Marginal Joint Joint

Mean 0.89％ 0.63％ 0.74％ 0.42％
Std. Dev. 1.51％ 2.79％ 2.71％ 2.02％

Mean/Std. Dev 0.59 0.23 0.27 0.21
Skew -1.41 -0.37 0.03 -0.31

Kurtosis 9.21 5.66 5.49 7.63
Max 4.35％ 10.20％ 10.46％ 7.81％
Min -6.86％ -9.37％ -8.63％ -8.99％

Correlation with
0.22 0.14 0.07 0.39

the investor’s portfolio
Correlation with

0.49 0.41 0.30
the target index

(a) The Generalized Hyperbolic Class

Global Macro Multiple Multiple Single
Index Marginal Joint Joint

Mean 0.89％ 0.55％ 0.57％ 0.44％
Std. Dev. 1.51％ 2.83％ 2.86％ 2.07％

Mean/Std. Dev 0.59 0.19 0.20 0.21
Skew -1.41 -1.00 -0.93 -1.68

Kurtosis 9.21 7.47 7.82 16.96
Max 4.35％ 10.20％ 10.46％ 7.81％
Min -6.86％ -11.07％ -10.87％ -12.96％

Correlation with
0.22 0.12 0.15 0.42

the investor’s portfolio
Correlation with

0.46 0.47 0.36
the target index

(b) Gaussian Mixture Distributions
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2001 to 2011 is the best among the Dow Jones Credit Suisse Hedge Fund
Indices. Although replicating strategies with multiple instruments underper-
formed the global macro index, the extension to multiple assets improves the
performance substantially.

Figure 3: The net asst vales of the global macro index and its replicating
strategies with the GH distribution class (Jan 2001-Dec 2011).

5 Conclusion

This article presented a new method to construct the cheapest dynamic
portfolio that generates a target payoff distribution or its joint distribution
with the investor’s existing portfolio. It was shown that the cost minimiza-
tion is equivalent to the maximization of a certain class of von Neumann-
Morgenstern utility functions. This method is regarded as an extension of
the hedge fund replication methods that were developed by Kat and Palaro
(2005a, b) and Papageorgiou, Remillard and Hocquard (2008). Their meth-
ods replicate the distribution of the target hedge fund and its dependence
upon the investor’s existing portfolio by trading the investor’s portfolio and
one replicating instrument with only long positions. Our method extends
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their approach to allow for the trading of multiple assets with both long and
short positions.

Finally, the method was applied to the replications of three hedge fund
strategies: managed futures, multi-strategy and global macro. The replica-
tion performances were examined on an out-of-sample basis. The results
showed that the performances of the replications improved substantially as
compared to the case of one replicating instrument with only long positions.
Additionally, two different distribution classes, the Generalized Hyperbolic
(GH) distribution class and Gaussian Mixture (GM) distributions, are ap-
plied to the estimation of the target hedge fund indices’ returns; replications
with the GH distribution class outperformed those with the GM distribution
for all of the three strategies. As a next research topic, the implementation of
the Markovian coefficients case, including a stochastic volatility model and a
stochastic interest rate model, is a challenging task. Additionally, the appli-
cations of our method to creating attractive new trading strategies and risk
management are interesting topics.
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6 Appendix

6.1 Proof of Theorem 1

First, let us show that the cheapest way to obtain a target distribution is
achieved by allocating the terminal wealth in the reverse order of the state
price density. The reverse order of the state price density is mathematically
defined as follows. Let Z be a random variable. For ω∗ ∈ Ω, define UZ(ω

∗)
as

UZ(ω
∗) = {ω : HT (ω) < HT (ω

∗)} ∩ {ω : Z(ω) < Z(ω∗)},

and let
VZ = ∪ω∗∈ΩUZ(ω

∗).

Z is the reverse order of the state price density if

P(VZ) = 0.

Assume that the FT -measurable random variable Z has the same distribution
as ξ, and is not the reverse order of the state price density. Then, there exist
a−1 < a+1 ≤ a−2 < a+2 , such that

HT (ω1) < HT (ω2) for any (ω1, ω2) ∈ A1 × A2, (12)

where A1 = {a−1 < Z < a+1 }, A2 = {a−2 < Z < a+2 }, and P(A1) = P(A2) > 0.
Z is not the reverse order of HT on A1 ∪ A2.

The following discussion shows that a payoff cheaper than Z can be cre-
ated without changing the distribution by switching the values on A1 and
A2. Let p

±
i = P(Z ≤ a±i ), I1 = (p−1 , p

+
1 ], and I2 = (p−2 , p

+
2 ]. Define Z

′ as

Z ′ = G(Fξ(Z)),

where function G is defined as

G(p) =


F−1
ξ (p) on (0, 1) \ (I1 ∪ I2),
F−1
ξ (p+ p−2 − p−1 ) on I1,

F−1
ξ (p+ p−1 − p−2 ) on I2.

Here, note that p+1 − p−1 = p+2 − p−2 . Then, Z
′ has the same distribution as ξ

because the equation
P(Z ′ ≤ a) = Fξ(a) (13)
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holds true for any a > 0, as shown in the following. For 0 < a ≤ a−1 ,

P(Z ′ ≤ a) = Fξ(a).

For a ∈ (a−1 , a
+
1 ],

P(Z ′ ≤ a) = P(Z ′ ≤ a−1 ) + P(a−1 < Z ′ ≤ a)

= P(Z ≤ a−1 ) + P(a−1 < G(Fξ(Z)) ≤ a)

= p−1 + P(Fξ(a
−
1 ) < Fξ(Z) + p−2 − p−1 ≤ Fξ(a))

= Fξ(a).

The same arguments prove that equation (13) holds true for any a in the
other intervals.

The difference in the costs is given by

E[HTZ]− E[HTZ
′] = E[HT (Z − Z ′)1A2 ]− E[HT (Z

′ − Z)1A1 ].

As Z ′ is created by switching the values of Z ′ on A1 and A2, (Z−Z ′)1A2 and
(Z ′ − Z)1A1 have the same distribution. Noting inequality (12),

E[HTZ]− E[HTZ
′] > 0.

To summarize, Z ′ has the same distribution as ξ with a cheaper cost than
Z. Therefore, to obtain the same distribution as ξ at time T , the terminal
wealth should be in the reverse order of the state price density. Because X is
the reverse order of HT , X is one of the cheapest payoffs that has the same
distribution as ξ.

Next, let us prove the uniqueness. Let X ′ be a random variable that has
the same distribution as ξ, and is the reverse order of HT . Then, P (VX′) = 0.
For any ω∗ ∈ Ω \ VX′ ,

P{ω : LT (ω) ≤ LT (ω
∗)} = P{ω : X ′(ω) ≤ X ′(ω∗)}.

Therefore,
FLT

(LT (ω
∗)) = Fξ(X

′(ω∗)).

By operating F−1
ξ to the both sides of the equation,

F−1
ξ (FLT

(LT (ω
∗))) = X ′(ω∗).

Hence, X ′ = X. 2
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6.2 Proof of Theorem 2

Let x be the initial cost for the payoff X (i.e., x = E[HTX]). As X is defined
by equation (5), HT = exp[−f−1(X)]. exp[−f−1(·)] is a positive, strictly
decreasing function. Define u(·) as

u(z) = λ

∫ z

0

exp[−f−1(ζ)]dζ,

where λ is a positive number. Then, u(·) is strictly increasing and strictly
concave. It is also true that limz→+0 u

′(z) = +∞ and limz→+∞ u′(z) = 0.
Moreover, u′(X) = λHT . This is the first order condition of the optimality
for von Neumann-Morgenstern utility u(·) (see, for example, Karatzas and
Shreve (1998)). The budget constraint x = E[HTu

′−1(λHT )] is also satisfied.
Conversely, assume a dynamic trading strategy with the initial cost x′,

generating payoff the X ′ maximizes a strictly increasing and strictly con-
cave von Neumann-Morgenstern utility u(·) satisfying conditions (a) and (b).
Then, u′(X ′) = λ′HT is satisfied for some λ′ > 0. Therefore, X ′ is the re-
verse order of HT . According to the argument in the proof of Theorem 1,
this strategy attains the cheapest payoff among the random variables whose
distribution is the same as X ′. 2

6.3 Proof of Theorem 3

The basic idea is the same as the proof of theorem 1. Let Z be a random
variable whose joint distributions with S1

T is the same as (S1
T , ξ). Define

SZ ⊂ R+ and B1
Z ⊂ Ω as

SZ = {s : Z is not reverse order of HT under the condition S1
T = s},

B1
Z = {ω : S1

T (ω) ∈ SZ}.
Assume that P(B1

Z) > 0. For any s ∈ SZ , there exist a
s−
1 < as+1 ≤ as−2 < as+2 ,

such that
HT (ω1) < HT (ω2) for any (ω1, ω2) ∈ As

1 × As
2, (14)

where As
1 = {S1

T = s, as−1 < Z < as+1 }, As
2 = {S1

T = s, as−2 < Z < as+2 },
and P(As

1|S1
T = s) = P(As

2|S1
T = s) > 0. Let ps±i = P(Z ≤ as±i |S1

T = s),
Is1 = (ps−1 , ps+1 ] and Is2 = (ps−2 , ps+2 ]. Introduce random variable Z ′, defined by

Z ′ =

{
G1(S1

T , Fξ|S1
T
(Z)) on B1

Z ,

Z on Ω \B1
Z ,
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where G1 is defined as

G1(s, p) =


F−1
ξ|s (p) for p ∈ (0, 1) \ (Is1 ∪ Is2),
F−1
ξ|s (p+ ps−2 − ps−1 ) for p ∈ Is1 ,

F−1
ξ|s (p+ ps−1 − ps−2 ) for p ∈ Is2 .

Here, note that ps+1 − ps−1 = ps+2 − ps−2 . Then, (S1
T , Z

′) has the same distri-
bution as (S1

T , Z), and Z
′ is cheaper than Z because of the same argument

in the proof of Theorem 1. Therefore, to obtain the cheapest payoff whose
joint distribution with S1

T is the same as (S1
T , ξ), the terminal wealth should

be the reverse order of HT under the condition that S1
T is known. Therefore,

the X defined by equation (6) is the cheapest payoff.
Next, let us prove the uniqueness. Suppose that X ′ is a random variable

whose joint distribution with S1
T is the same as (S1

T , ξ) and is the reverse
order of HT under the condition that S1

T is known. Then, P(B1
X′) = 0. For

s ∈ R+ \ SZ and ω∗ ∈ {S1
T = s}, define U s

X′(ω∗) as

U s
X′(ω∗) = {ω : ST (ω) = s,HT (ω) < HT (ω

∗), and X ′(ω) < X ′(ω∗)},

and let
V s
X′ = ∪ω∗∈{S1

T=s}U
s
X′(ω∗),

CX′ = (Ω \B1
X′) \ (∪s∈SX′V

s
X′).

Then, P(V s
X′|S1

T = s) = 0. Because it is satisfied that

P(∪s∈SX′V
s
X′) =

∫
SX′

P(V s
X′|S1

T = s)FS1
T
(ds) = 0,

P(CX′) = 1. For any s ∈ R+ \ SZ and ω∗ ∈ CX′ ,

P{ω : LT (ω) ≤ LT (ω
∗)|S1

T = s} = P{ω : X ′(ω) ≤ X ′(ω∗)|S1
T = s}.

Therefore,
FLT |s(LT (ω

∗)) = Fξ|s(X
′(ω∗)).

By operating F−1
ξ|s to both of the sides of the equation,

F−1
ξ|s (FLT |s(LT (ω

∗))) = X ′(ω∗).

Hence, X ′ = X. 2
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6.4 Derivation of the Dynamic Replicating Portfolios

For the case of the Markovian coefficients, the concrete expressions for the
cheapest dynamic portfolios can be obtained.2 Suppose that a k-dimensional
state variable Yt follows SDE

dYt = µY (Yt)dt+ σY (Yt)dWt (15)

and rt, µt, and σt can be described by differentiable functions of state variable
Yt: rt = r(Yt), µt = µ(Yt), and σt = σ(Yt). The following proposition gives
the dynamic portfolios that generates the payoffs.

Proposition 2 Assume that r, µ and σ are functions of Yt following SDE
(15). Then, in a complete market M, the dynamic portfolio that generates
payoff f(LT ) is given by

πM
t = σ′(t)−1ϕM

t , (16)

where

ϕM
t = Xtθt +

1

Ht

E[HT{f ′(LT )−XT}DLT
|Ft]. (17)

DLT
is given by

DLT
=

∫ T

t

∂r(Ys)At,sσ
Y (Yt)ds+

∫ T

t

n∑
j=1

θj(Ys)∂θ
j(Ys)At,sσ

Y (Yt)ds

+

∫ T

t

n∑
j=1

∂θ(Ys)At,sσ
Y (Yt)dW

j
s + θ(Yt)

′,

where At,s is a k × k-valued unique solution of the SDE

dAt,s =
n∑

i=1

∂σY
i (Ys)At,sdW

i
s

with an initial condition At,t = I. σY
i (·) and I denotes the i-th row of the

matrix σY (·) and the k × k identity matrix, respectively.

2The martingale method with Malliavin calculus easily gives us the dynamic portfolio
that generate the payoffs. See, for example, Karatzas and Shreve (1998) for the basics of
the martingale method and Nualart (2006) for the introduction to Malliavin calculus. As
for the application of Malliavin calculus to the dynamic optimal portfolio and its closed
form evaluation, see, for example, Ocone and Karatzas (1991) and Takahashi and Yoshida
(2004).
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The portfolio that attains payoff g(S1
T , LT ) is given by

πJ
t = σ′(t)−1ϕJ

t , (18)

where

ϕJ
t = Xtθt +

1

Ht

E[HTg1(S
1
T , LT )DS1

T
+HT{g2(S1

T , LT )−XT}DLT
|Ft]. (19)

gi (i = 1, 2) represents the partial derivative of g with respect to the i-th
argument. DS1

T
is given by

DS1
T
= S1

T

∫ T

t

{∂µ1(Ys)− σ11(Ys)∂σ
11(Yu)}At,sσ

Y (Yt)ds

+ S1
T

∫ T

t

∂σ11(Ys)At,sσ
Y (Yt)dW

1
s

+ (S1
Tσ

11(Yt), 0, · · · , 0).

Proof. By the argument in Karatzas and Shreve (1998), πt is described as

πt = σ′
t
−1

(
Xtθt +

ψt

Ht

)
, (20)

where ψt is given by the following martingale representation

Mt = E[HTXT |Ft] = x+

∫ t

0

ψ′
udWu.

Applying the Clark-Ocone formula (see, for example, pp. 46 in Nualart
(2006)), ψt is given by

ψt = E[Dtη|Ft], (21)

where η = HTXT , and Dt denotes the Malliavin derivative: Dtη =
(D1tη, · · · ,Dntη).

To generate the marginal payoff distribution, XT = f(LT ). Then, Dtη
can be calculated as

Dtη = (DtHT )XT +HTf
′(LT )DtLT . (22)

To generate the joint distribution with the investor’s portfolio, XT =
g(S1

T , LT ). Then, Dtη can be calculated as

Dtη = (DtHT )XT +HTg1(S
1
T , LT )DtS

1
T +HTg2(S

1
T , LT )DtLT , (23)
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where gi (i = 1, 2) represents the partial derivative of g with respect to the
i-th argument.

DtHT , DtLT and DtS
1
T are calculated as

DtHT = −HTDtLT ,

DtLT =

∫ T

t

∂r(Ys)DtYsds+

∫ T

t

n∑
j=1

θj(Ys)∂θ
j(Ys)DtYsds

+

∫ T

t

n∑
j=1

∂θ(Ys)DtYsdW
j
s + θ(Yt)

′,

DtS
1
T = S1

T

∫ T

t

{∂µ1(Ys)− σ11(Ys)∂σ
11(Yu)}DtYsds

+ S1
T

∫ T

t

∂σ11(Ys)DtYsdW
1
s

+ (S1
Tσ

11(Yt), 0, · · · , 0).

In this case, DtYs can be calculated concretely. Let At,s be a k × k-valued
unique solution of the SDE

dAt,s =
n∑

i=1

∂σY
i (Ys)At,sdW

i
s

with the initial condition At,t = I, where σY
i (·) denotes the i-th row of matrix

σY (·), and I is the k × k identity matrix. DtYs is represented as

DtYs = At,sσ
Y (Yt) (24)

(see, for example, pp. 126 in Nualart (2006)). Therefore, the proposition is
obtained. 2

Proposition 1 in the main text can be directly derived from this proposi-
tion.
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