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Abstract

This paper studies the probability distribution and option pricing for
drawdown in a stochastic volatility environment. Their analytical approx-
imation formulas are derived by the application of a singular perturbation
method (Fouque et al. [7]). The mathematical validity of the approxima-
tion is also proven. Then, numerical examples show that the instantaneous
correlation between the asset value and the volatility state crucially affects
the probability distribution and option prices for drawdown.

1 Introduction

In asset management business, drawdown related risk measures, such as maxi-
mum drawdown, are considered very important for the risk investigation of mu-
tual or hedge funds. Drawdown related risk measures are defined in a dynamic
setting. Let {St}0≤t≤T be a stochastic process that represents the net asset
value of a fund. Drawdown of {St}0≤t≤T at time t is defined by Dt = Mt − St,
where Mt = max0≤u≤t Su. In other words, drawdown is the lost wealth of
investors from the record high level. Maximum drawdown is its historical max-
imum. (See Fig. 1.) Drawdown related risk measures fit hedge fund managers
as well as investors. Most hedge funds set high water mark provision in the fee
structures. It means that hedge fund managers receive a fixed rate performance
fee of exceeding the high water mark, or record high level. In other words, they
cannot get performance fee during suffering drawdown. Therefore, the risk for
fund managers is exactly drawdown.

∗The University of Tokyo
†Institute of Statistical Mathematics
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Methods of portfolio optimization with controlling drawdown have been de-
veloped so far. Grossman and Zhou [11] proposed an portfolio optimization of
a risk-free asset and a risky asset under drawdown constraints in the Black-
Scholes economy. It solved the optimization problem by dynamic programming.
Cvitanic and Karatzas [3] extended it to multi-risky asset and more general
settings, and solved the optimization problem by martingale method. Chekhlov
et al. [2] introduced a risk measure conditional drawdown (CDD) and proposed
a portfolio optimization method with controlling CDD. Hakamada et al. [12]
and Krokhmal et al. [15] applied the method to portfolio construction of hedge
funds.

Properties of (maximum) drawdowns have also been studied. Magdon-Ismail
et al. [18] and Magdon-Ismail and Atiya [16] researched the probability distri-
bution of maximum drawdowns for Brownian motion and geometric Brown-
ian motion, respectively. Belentepe [1] examined the probability distribution
drawdown for geometric Brownian motion, and then considered how portfo-
lio diversification reduced the expected drawdown. Vecer [22] studied relation
between directional trade and maximum drawdown (and drawup), and Vecer
[23] considered pricing and hedging contingent claims on maximum drawdown.
These two research papers implemented the analysis by Monte Carlo simulation
under the assumption that the underlying asset followed geometric Brownian
motion. Pospisil and Vecer [20] analyzed it by a PDE method under the same
assumption.

This article studies the probability distribution and option pricing for draw-
down in a stochastic volatility environment by an analytical approach. The
option for drawdown can be a powerful risk management tool. Their analytical
approximation formulas are derived by applying a singular perturbation method
(Fouque et al. [7]). Fouque et al. [7] argues the method for option pricing in
detail. The accuracy of the approximation is examined in Yamamoto and Taka-
hashi [25]. In this paper, it is shown that the first order stochastic volatility
term is linearly related to the instantaneous correlation between asset value and
volatility state. The mathematical validity of the approximation for European
option is shown by Fouque et al. [8]. This article proves that the validity is
also held for the analysis of drawdown. Our numerical examples clarified that
the correlation affects the probability distribution and option prices for draw-
down. If asset value and volatility state are positively correlated, the expected
drawdown is higher than those for uncorrelated case or Black-Scholes economy,
and the standard deviation of drawdown is lower than those cases. Due to the
effect of the correlation on the probability distribution, the option prices for
drawdowns are also affected by the correlation.

The organization of the paper is as follows. The next section studies the
probability distribution and pricing options of drawdowns in the Black-Scholes
economy. In section 3, they are considered in a stochastic volatility environment.
Section 4 presents numerical examples. Section 5 concludes. In appendix A, the
singular perturbation method for our problem is explained. Appendix B proves
the convergence result of the approximation.
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2 Drawdown in the Black-Scholes Economy

First, probability distribution and option pricing for drawdown are considered in
the Black-Scholes economy. Let (Ω,F , P, {Ft}0≤t≤T<∞) be a complete probabil-
ity space with a filtration satisfying the usual conditions. There are a risk-free
asset with a constant risk-free rate r, and a risky asset. In (Ω,F , P, {Ft}) ,
it is assumed that the risky asset price {St} follows the stochastic differential
equation (SDE)

dSt = µStdt + σStdW 1
t ,

where {W 1
t } is a standard Brownian motion, and µ and σ is a constant. Defining

Mt = max0≤u≤t Su, the drawdown from time 0 to t is given by

Dt = Mt − St.

In other words, drawdown is the lost wealth of investors from the record high
level. For the purpose of convenience, we calculate the joint probability of

Figure 1: Drawdown and Maximum Drawdown

(ST ,MT ) through their logarithm. Let Xt = log St and Zt = log Mt. Then,

dXt =
(
µ − σ2

2

)
dt + σdW 1

t , X0 = x0,

and Zt = max0≤u≤t Xu We first calculate the simultaneous probability density
function of (XT , ZT ). For Zt < b, let

PBS(t, x; a, b) = P(XT ≤ a, ZT ≤ b | Xt = x,Zt < b).
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Then, by Feynman-Kac’s theorem, PBS(t, x; a, b) is the solution of the boundary
value problem 

LBSPBS(t, x; a, b) = 0,

PBS(t, b; a, b) = 0,

PBS(T, x; z, b) = 1{x≤a}

where

LBS =
∂

∂t
+

(
µ − σ2

2

) ∂

∂x
+

σ2

2
∂2

∂x2
.

By method of images (See, for example, Wilmott et al. [24].), PBS is obtained
by

PBS(t, x; a, b) = N(d1(T − t, x))− exp{(2µ/σ2 − 1)(b−x)}N(d2(T − t, x)), (1)

where

d1(s, x) =
a − x − (µ − σ2/2)s

σ
√

s
, d2(s, x) =

a + x − 2b − (µ − σ2/2)s
σ
√

s
.

Differentiating (1) with respect to a and b, we get the simultaneous density
function of (XT , ZT ). Then, for any function g of (ST ,MT ), E[g(ST ,MT )] is
evaluated by

E[g(ST , MT )] =
∫ ∞

x0

∫ b

−∞
g(ea, eb)

∂2P 0
BS

∂a∂b
(0, x; a, b)dadb.

For example, the distribution function F (c) = P (DT ≤ c) and nth moment of
drawdown is obtained by setting g(ST ,MT ) = 1{MT −ST ≤a} and g(ST ,MT ) =
(MT − ST )n, respectively.

Next, proceed to the calculation of option prices for drawdown. In the
economy, the risk neutral measure is defined by

P∗(A) = E[exp(−θW 1
T − θ2T/2)1A] for A ∈ F ,

where θ = µ−r
σ . By Maruyama-Girsanov’s theorem, when {W 1∗

t } is defined by

W 1∗
t = W 1

t + θt,

it is a standard Brownian motion under P∗. Let

P ∗
BS(t, x; a, b) = P∗(XT ≤ a, ZT ≤ b | Xt = x,Zt < b).

Since Xt follows the SDE

dXt =
(
r − σ2

2

)
dt + σdW 1∗

t ,

the previous argument under the risk neutral measure shows that P ∗
BS(t, x; a, b)

is given by
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P ∗
BS(t, x; a, b) = N(d∗

1(T − t, x))− exp{(2r/σ2 − 1)(b−x)}N(d∗
2(T − t, x)), (2)

where

d∗1(s, x) =
a − x − (r − σ2/2)s

σ
√

s
, d∗2(s, x) =

a + x − 2b − (r − σ2/2)s
σ
√

s
.

Therefore, the call option prices for drawdown with strike K and maturity T at
time 0 is given by

C(0, x) = E∗[e−rT (MT−ST−K)+] = e−rT

∫ ∞

x0

∫ b

−∞
(eb−ea−K)+

∂2P ∗
BS

∂a∂b
(0, x; a, b)dadb.

If we have asset S and this option, the drawdown of S exceeding K is covered
by the option. Therefore, this option can be a powerful risk management tool
against drawdowns.

3 Drawdown in a Stochastic Volatility Environ-
ment

Next, the argument of previous section is extended to a stochastic volatility
circumstance. In (Ω,F , P, {Ft}) , it is assumed that the risky asset price {St}
follows the SDE

dSt = µStdt + σtStdW 1
t ,

where {W 1
t } is a standard Brownian motion, and µ is a constant. The volatility

σt is the stochastic process expressed as follows by using Ornstein-Uhlenbeck
(OU) process {Yt}.

σt = f(Yt),

dYt =
1
ϵ
(m − Yt)dt + ν

√
2
ϵ
dW 2

t , Y0 = y0,

where f is a positive increasing function, and {W 2
t } is a standard Brownian

motion that have instantaneous correlation ρ ∈ (−1, 1) with {W 1
t },

d〈W 1,W 2〉 = ρdt.

It is assumed that f and 1
f are bounded: there are constants l1 and l2 such that

0 < l1 ≤ f(y) ≤ l2 < ∞ for any y ∈ R.

Explanations for the parameters are given shortly. m is a constant, and ϵ and ν
are positive constants. In accordance with [7], the fast mean-reverting stochastic
volatility is supposed, and consequently ϵ is a positive small number. As shown
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in Fouque et al. [7], {Yt} has the normal invariant distribution N(m, ν2). Fi-
nally, ρ is a constant that expresses the instantaneous correlation between {St}
and {Yt}.

We calculate the simultaneous probability density function of (XT , ZT ). For
a < b, let

PSV (t, x, y; a, b) = P(XT ≤ a, ZT ≤ b | Xt = x, Yt = y, Zt < b). (3)

Then, by Feynman-Kac’s theorem, PSV (t, x, y; a, b) is the solution of the bound-
ary value problem 

L ϵ
SV PSV (t, x, y; a, b) = 0,

PSV (t, b, y; a, b) = 0,

PSV (T, x, y; a, b) = 1{x≤a},

where
L ϵ

SV =
1
ϵ
L0 +

1√
ϵ
L1 + L2,

L0 = ν2 ∂2

∂y2 + (m − y) ∂
∂y ,

L1 =
√

2νρf(y) ∂2

∂x∂y ,

L2 = ∂
∂t +

(
µ − 1

2f(y)2
)

∂
∂x + 1

2f(y)2 ∂2

∂x2 .

The value of PSV is approximated up to the order of
√

ϵ by singular perturbation
method. From Appendix A, the approximation up to the first order stochastic
volatility correction is given by

PSV (t, x, y; a, b) ≈ P 0
SV (t, x; a, b) +

√
ϵP 1

SV (t, x; a, b), (4)

where P 0
SV (t, x; a, b) is equal to the value of PBS with constant volatility pa-

rameter σ̄, which is defined by σ̄ =
√
〈f2〉, where 〈·〉 represents the expectation

under the invariant distribution of Y : N(m, ν2). P 1
SV (t, x; a, b) is the first order

stochastic volatility correction term, which is of order
√

ϵ. The first two terms
of the expansion do not depend on y. According to A.2, P 0

SV is the solution of
the boundary value problem

〈L2〉P 0
SV (t, x; a, b) = 0 in 0 < x < b and t < T,

P 0
SV (t, b; a, b) = 0,

P 0
SV (T, x; a, b) = 1{x≤a},

where 〈L2〉 = ∂
∂t +

(
µ− σ̄2

2

)
∂
∂x + σ̄2

2
∂2

∂x2 . By method of images, P 0
SV is given by

P 0
SV (t, x; a, b) = N(d1(T − t, x))− exp{(2µ/σ̄2 − 1)(b−x)}N(d2(T − t, x)), (5)

where

d1(s, x) =
a − x − (µ − σ̄2/2)s

σ̄
√

s
, d2(s, x) =

a + x − 2b − (µ − σ̄2/2)s
σ̄
√

s
.
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As described in A.3, the first order stochastic volatility correction term
P 1

SV (t, x; a, b) is the solution of the boundary value problem
〈L2〉P 1

SV (t, x; a, b) = V
(

∂3

∂x3 − ∂2

∂x2

)
P 0

SV (t, x; a, b) in 0 < x < b and t < T,

P 1
SV (t, b; a, b) = 0,

P 1
SV (T, x; a, b) = 0.

(6)
V is a constant defined by

V =
ρν√

2
〈fφ′〉, (7)

where φ′ is a function of y defined in (16).
Defining

P̂SV (t, x; a, b) =
1
V

P 1
SV (t, x; a, b) + (T − t)

( ∂3

∂x3
− ∂2

∂x2

)
P 0

SV (t, x; a, b),

the inhomogeneous boundary value problem (6) is transformed into the following
homogeneous problem;

〈L2〉P̂SV (t, x; a, b) = 0 in 0 < x < b and t < T,

P̂SV (t, b; a, b) = (T − t)
(

∂3

∂x3 − ∂2

∂x2

)
P 0

SV (t, b; a, b),

P̂SV (T, x; a, b) = 0.

P̂SV is obtained by numerical integration as follows. The probabilistic rep-
resentation of P̂SV is

P̂SV (t, x; a, b) = E

[
(T − τ)

( ∂3

∂x3
− ∂2

∂x2

)
P 0

SV (τ, b; a, b)1{τ≤T}

∣∣∣X0
t = x

]
,

where X0
t is the stochastic process that satisfies SDE

dX0
t =

(
µ − σ̄2

2

)
dt + σ̄dW 1

t ,

and τ is the first time after t that X0 hits b. Changing a variable and using the
distribution of the first hitting time of Brownian motion (see e.g. Karatzas and
Shreve [14], Chapter 2, Proposition 8.5),

P̂SV (t, x; a, b) =
∫ T

t

(T − s)
( ∂3

∂x3
− ∂2

∂x2

)
P 0

SV (s, b; a, b)h(s; x, b)ds, (8)

where

h(s; x, b) =
b − x

σ̄
√

2π(s − t)3
exp

[
− {b − x − (µ − σ̄2/2)(s − t)}2

2σ̄2(s − t)

]
.
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If the integration in (8) is evaluated numerically, P 1
SV (t, x; a, b) is obtained

by

P 1
SV (t, x; a, b) = V

{
P̂SV (t, x; a, b) − (T − t)

( ∂3

∂x3
− ∂2

∂x2

)
P 0

SV (t, x; a, b)
}

.

Consequently, the approximation of PSV is obtained by

PSV (t, x; a, b) ≈ P 0
SV (t, x; a, b) +

√
ϵP 1

SV (t, x; a, b). (9)

The next theorem confirms the validity of the approximation.

Theorem 1 Under the assumption that f and 1
f is bounded, at a fixed point

t < T , x, y ∈ R,

PSV (t, x, y; a, b) = P 0
SV (t, x; a, b) +

√
ϵP 1

SV (t, x; a, b) + O(ϵ).

Proof. See Appendix B.

Differentiating this with respect to a and b, the approximate simultaneous
probability density function of (XT , ZT ) is obtained. Stochastic volatility affects
the simultaneous probability distribution of (XT , ZT ) through V defined in (7).
V depends on ρ, which represents the instantaneous correlation between the
asset value and the volatility, and ν, which scales the volatility of volatility. For
any function g of (ST ,MT ), E[g(ST ,MT )] is approximately evaluated by

E[g(ST ,MT )] =
∫ ∞

x0

∫ b

−∞
g(ea, eb)

∂2P 0
SV

∂a∂b
(0, x; a, b)dadb

+
√

ϵV

∫ ∞

x0

∫ b

−∞
g(ea, eb)

∂2P̂SV

∂a∂b
(0, x; a, b)dadb

−
√

ϵV T

∫ ∞

x0

∫ b

−∞
g(ea, eb)

( ∂5P 0
SV

∂x3∂a∂b
− ∂4P 0

SV

∂x2∂a∂b

)
(0, x; a, b)dadb.

The first term is the Black-Scholes part, and the second and third terms are
the first order stochastic volatility correction part. Note that the first order
correction term is linearly related to V , and therefore linearly related to ρ.

Next, proceed to the calculation of option prices for drawdown. While risk-
neutral measure is uniquely determined in the Black-Scholes economy, there are
infinitely many risk-neutral measures in this economy, because the market is
incomplete. The risk-neutral measure depends on the market price of volatility
risk. For simplicity, it is assumed that the stochastic process of St under risk-
neutral measure P∗ is described as follows.

dSt = rStdt + σtStdW 1∗
t , S0 = ex0 ,

where {W 1∗
t } is a standard Brownian motion under P∗. The volatility σt is

the stochastic process expressed as follows by using Ornstein-Uhlenbeck (OU)
process {Yt}.

σt = f(Yt),
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dYt =
1
ϵ
(m − Yt)dt + ν

√
2
ϵ
dW 2∗

t , Y0 = y0,

where {W 2∗
t } is a standard Brownian motion that have instantaneous correlation

ρ ∈ (−1, 1) with {W 1∗
t }. Let

P ∗
SV (t, x; a, b) = P∗(XT ≤ z, ZT ≤ b | Xt = x,Zt < b).

The previous argument under the risk neutral measure shows that the approx-
imate value of P ∗

SV is obtained by changing µ appeared in (9) to r. Then, the
approximate prices of call option for drawdown with strike K and maturity T
at time 0 is given by

C(0, x) = E∗[e−rT (MT−ST−K)+] = e−rT

∫ ∞

x0

∫ b

0

(eb−ea−K)+
∂2P ∗

SV

∂a∂b
(0, x; a, b)dadb.

Sure, it can be calculated under other risk-neutral measures. In other words,
we can allow for market price of volatility risk as Fouque et al. [7]. Parameters
σ̄ and

√
ϵV can be calibrated from the implied volatilities of liquid European

call options (see e.g. Fouque et al. [7]).

4 Numerical Examples

This section presents some numerical examples. First, expectation and standard
deviation of drawdown are studied. We set S0 = 100, and assign

f(y) =
{

10−10 + ey (y < 0),
10−10 + 2 − e−y (y ≥ 0).

Then, f and 1/f are bounded. The parameter settings are as follows. Since
Fouque et al. [7] found fast mean-reverting volatility, this paper also considers
the case; ϵ = 1/200, for example. We set µ = 0.15, m = −1.89, ν = 0.40, and
T = 1/12. Then, σ̄ = 0.2. Since stochastic volatility affects the distribution of
drawdown through parameter ρ, we consider three patterns: ρ = −0.75, 0, 0.75.
As previously mentioned, when ρ = 0, the first order stochastic volatility cor-
rection term is 0. Therefore, the statistics for ρ = 0 is equal to those in the
Black-Scholes economy with σ = 0.2.

ρ = −0.75 ρ = 0 ρ = 0.75
Expectation 3.68 4.10 4.52
Standard Deviation 3.83 3.14 2.16

Table 1: Expactations and standard deviations of drawdowns

Table 1 exhibits the expectations and standard deviations of drawdowns.
Positive instantaneous correlation between the asset and the volatility state
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Figure 2: Probability Density of Drawdown

increases expected drawdown, while negative correlation decreases. And the
positive correlation decreases standard deviation of drawdown, while negative
correlation increases it.

Fig. 2 shows the probability density function estimated by Monte Carlo
simulation. This graph enables us to observe the effect of correlations on the
probability distribution of drawdown visually. The density functions of draw-
downs for the cases of ρ = 0 and Black-Scholes look very similar. From this
figure, it is confirmed again that a positive correlation increases expected draw-
down, while a negative correlation decreases it.

Next, proceed to numerical studies of options for drawdown. The parameter
settings are same as the above analysis, and we set the risk-free rate as r = 0.02.
For determination of strike level, expectations and standard deviations under
the risk-neutral measure are also calculated. In the analysis, approximation
accuracies are also studied.

In order to obtain the estimate value of the options for the two cases, Monte
Carlo simulations with antithetic variables method are conducted. The num-
ber of the simulation is 1,000,000. Since the volatility of Y is very high, the
time step should be very small in order to converge the simulations of Y .
Time step is determined in the following way. For the case of f(y) = ey,
the distribution of Y at the terminal date is known analytically. In order
to match the distribution of simulations and analytic one, ∆t = 1/100, 000
is needed. Therefore, this time step is used in our analysis. Table 2 ex-
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hibits the numerical results. The statistics calculated by the approximation
method and Monte Carlo simulations are reported. In addition, we exhibit dif-
ference and difference rate between the approximation value and Monte Carlo
value, which are given by (Approximate value − Monte Carlo value) and
(Approximate value − Monte Carlo vaue)/(Monte Carlo value) respectively.
We note that there are other ways than Monte Carlo methods. For example,
Pospisil and Vecer [20] applied a PDE method in the analysis of maximum
drawdown.

ρ = −0.75 ρ = 0 ρ = 0.75
Expectations
Approximation 4.049 4.574 5.099
Monte Carlo 4.056 4.502 4.943
Difference -0.007 0.072 0.156
Difference rate -0.16Å? 1.60Å? 3.16Å?
Standard Deviations
Approximation 4.014 3.347 2.395
Monte Carlo 3.847 3.390 2.794
Difference 0.167 0.047 -0.39
Difference rate 4.35Å? -1.28Å? -14.27Å?

Table 2: Expectations and standard deviations under risk-neutral measure

Table 2 shows that the expected drawdowns can be calculated with some
accuracy by our approximation method. The relation between ρ and expected
drawdowns is also confirmed by Monte Carlo simulations. As for standard
deviations, for the case of ρ = -0.75 and 0.75, the differences result in relatively
high compared to those for expectations. However, the relation between ρ and
standard deviations can be also found by Monte Carlo simulations.

Next, calculate option prices for drawdown. In practice, strike levels vary
among option buyers according to their risk attitudes. Hence, three different
strikes are chosen based on the empirical statistics of drawdown. First, the
strike is set to the expected drawdown E[DT ]. The other two strikes are above
and below 1 standard deviation from expected drawdown. Note that since the
statistics are different by ρ, strikes vary according to ρ in this analysis.

Reading across the rows of the table, the option prices decrease in ρ. This
is because dispersion of DT decrease in ρ as shown in Table 2, where dispersion
levels are measured by standard deviation.

Next, the approximation accuracy of our method is discussed. For the case
of ρ = 0, the errors of the approximation method are about 2% for all strikes.
As for ρ = 0.75 and ρ = −0.75, the errors for the options with strikes E[DT ] −
SD[DT ] are relatively small compared to other strikes. Finally, note that the
difference rates for the options with strikes E[DT ]−SD[DT ] are relatively high
for the case of ρ = 0.75 and ρ = −0.75. This strike corresponds to out-of-
the-money (OTM) for the plain vanilla option. Yamamoto and Takahashi [25]

11



ρ = −0.75 ρ = 0 ρ = 0.75
Strike: E[DT ]
Approximation 1.605 1.382 1.105
Monte Carlo 1.494 1.353 1.137
Difference 0.111 0.029 -0.032
Difference rate 7.41Å? 2.12Å? -2.79Å?
Strike: E[DT ] − SD[DT ]
Approximation 3.843 3.543 2.972
Monte Carlo 3.850 3.474 2.951
Difference -0.007 0.069 0.022
Difference rate -0.19Å? 1.98Å? 0.73Å?
Strike: E[DT ] + SD[DT ]
Approximation 0.577 0.400 0.246
Monte Carlo 0.505 0.407 0.287
Difference 0.072 -0.008 -0.041
Difference rate 14.27Å? -1.94Å? -14.18Å?

Table 3: Option prices for drawdown

reported the result that the difference rates of this method for plain vanilla
European call OTM options are also relatively high. Our result agrees with
that evidence.

5 Conclusion

This article studied the probability distribution and option pricing for drawdown
in a stochastic volatility environment. Their analytical approximation formulas
were derived by the application of a singular perturbation method (Fouque et al.
[7]), and it showed that the first order stochastic volatility term is linearly related
to the instantaneous correlation between asset value and volatility state. The
mathematical validity of the approximation was also shown. Then, numerical
examples clarified that the correlation crucially affects the probability distri-
bution and option prices for drawdown. If they are positively correlated, the
expected drawdown is higher than those for uncorrelated case or Black-Scholes
economy, and standard deviation of drawdown is lower than those cases. Due
to the effect of the correlation on the probability distribution of drawdown, the
option prices for drawdowns are also affected by the correlation.

Appendix
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A Singular Perturbations

This appendix presents singular perturbation method (Fouque et al. [7]) for our
problem. First, the general framework is described. Then, the Black-Scholes
term and the first order stochastic volatility correction term are derived. Further
details of this method for option pricing are argued in Fouque et al. [7].

A.1 Formal Expansion

First, a formal asymptotic expansion is conducted. The economical setting is
the same as section 3. Consider the drawdown of the underlying asset S frome
time 0 to T . Let PSV (t, x, y; a, b) be defined by (3). By Feynman-Kac’s theorem,
PSV satisfies the following partial differential equation (PDE);

L ϵ
SV PSV = 0 in (0, T ) × (−∞, b) × R (10)

where
L ϵ

SV =
1
ϵ
L0 +

1√
ϵ
L1 + L2,

L0 = ν2 ∂2

∂y2 + (m − y) ∂
∂y ,

L1 =
√

2νρf(y) ∂2

∂x∂y

L2 = ∂
∂t +

(
µ − 1

2f(y)2
)

∂
∂x + 1

2f(y)2 ∂2

∂x2 .

PSV can be obtained by solving PDE with the boundary condition and the
terminnal condition. It is assumed that PSV has an asymptotic expansion

PSV = P 0
SV +

√
ϵP 1

SV + ϵP 2
SV + ϵ

√
ϵP 3

SV + · · · . (11)

Singular perturbation method inserts this formal expantion into (10). Then, it
derives the PDE that each coefficient of

√
ϵ power satisfies, and solves the PDEs

one after another.

A.2 Black-Scholes term

P 0
SV is calculated first. Inserting the formal expansion (11) into (10) and com-

paring the coefficients of ϵ−1 gives L0P
0
SV = 0. L0 is the generator of an ergodic

Markov process and acts only on y. Therefore, P 0
SV must be a constant with

respect to y, which implies that we can write

P 0
SV = P 0

SV (t, x; a, b).

Similarly, comparing the terms of order ϵ−1/2, it can be seen that P 1
SV also does

not depend on y.
Comparing the constant (with respect to ϵ) terms gives

L0P
2
SV + L2P

0
SV = 0, (12)

13



which is a Poisson equation for P 2
SV with respect to the operator L0 in the

variable y. The necessary condition for (12) to admit a solution is

〈L2P
0
SV 〉 = 〈L2〉P 0

SV = 0, (13)

which is referred to as centering condition in Fouque et al. [7]. 〈·〉 represents
the expectation with respect to the invariant measure of Y , N(m, ν2). Since
P 0

SV does not depend on y, P 0
SV gets outside the bracket in the first equality.

〈L2〉 is represented as

〈L2〉 =
∂

∂t
+

(
µ − σ̄2

2

) ∂

∂x
+

1
2
σ̄2 ∂2

∂x2
,

where σ̄2 = 〈f2〉. P 0
SV is obtained by solving this PDE with boundary and

terminal condition {
P 0

SV (t, b; a, b) = 0,

P 0
SV (T, x; a, b) = 1{x≤a}.

Therefore, P 0
SV is equal to P 0

BS under volatility σ̄, whose square is equal to the
expected instantaneous variance of X under the invariant measure of Y .

A.3 First order term

Next, proceed to the calculation for the first order stochastic volatility correction
term. As centering condition (13) is satisfied, we can write

L2P
0
SV = L2P

0
SV − 〈L2〉P 0

SV =
1
2
(f(y)2 − σ̄2)

( ∂2

∂x2
− ∂

∂x

)
P 0

SV .

Then, from (12), we have

L0P
2
SV = −1

2
(f(y)2 − σ̄2)

( ∂2

∂x2
− ∂

∂x

)
P 0

SV .

Let φ(y) is a solution of the Poisson equation

L0φ = (f(y)2 − σ̄2), (14)

P 2
SV is given by

P 2
SV (t, x, y; a, b) = −1

2
φ(y)

( ∂2

∂x2
− ∂

∂x

)
P 0

SV + c(t, x), (15)

where c(t, x) is a function of (t, x) that does not depend on y. Solving the
Poisson equation (14),

φ′(y) =
1

ν2Φ(y)

∫ y

−∞
(f(z)2 − σ̄2)Φ(z)dz, (16)

where Φ(y) is the probability density function of N(m, ν2).

14



Comparing the coefficients of ϵ1/2,

L0P
3
SV + L1P

2
SV + L2P

1
SV = 0,

which is again a Poisson equation for P 3
SV with respect to L0. The centering

condition is
〈L1P

2
SV + L2P

1
SV 〉 = 0.

Since P 1
SV does not depend on y,

〈L2〉P 1
SV = −〈L1P

2
SV 〉.

Inserting (15),

〈L2〉P 1
SV =

〈L1φ〉
2

( ∂2

∂x2
− ∂

∂x

)
P 0

SV .

Since
〈L1φ〉 =

√
2ρν〈fφ′〉 ∂

∂x
,

P 1
SV satisfies

〈L2〉P 1
SV = V

( ∂3

∂x3
− ∂2

∂x2

)
P 0

SV , (17)

where
V =

ρν√
2
〈fφ′〉.

Then, P 1
SV is obtained by solving the PDE (17) with terminal condition and

boundary condition {
P 1

SV (t, b; a, b) = 0,

P 1
SV (T, x; a, b) = 0.

B Proof of Theorem 1

Theorem 1 can be also shown by the similar argument in Fouque et al. [8] that
proved the validity of the approximation of the singular perturbation method
for European call option.

The outline of the proof is as follows. We first introduce the regularized
value Pδ, whose terminal condition is slightly smoothed by a (small) smoothing
parameter δ. The associated price approximation is obtained by Pδ ≈ P 0

δ +
√

ϵP 1
δ

just like the approximation of PSV . Lemma B. 1, 2, and 3 in the following show
the convergence of (i) PSV ≈ Pδ, (ii) P 0

SV +
√

ϵP 1
SV ≈ P 0

δ +
√

ϵP 1
δ , and (iii)

Pδ ≈ P 0
δ +

√
ϵP 1

δ , respectively.
First, PSV (T, x, y; a, b) is smoothly regularized by replacing it with its Black-

Sholes value with volatility σ̄, with time to maturity δ, and without knock-out
barrier. In other words, Pδ(T, x, y; a, b) is defined by

Pδ(T, x, y; a, b) = N(d1(δ, x)),
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By the same argument in section 3, P 0
δ and P 1

δ are given by

P 0
δ (t, x; a, b) = N(d1(T − t+ δ, x))− exp{(2µ/σ̄2 −1)(b−x)}N(d2(T − t+ δ, x)),

(18)

P 1
δ (t, x; a, b) = V

{
P̂δ(t, x; a, b) − (T − t)

( ∂3

∂x3
− ∂2

∂x2

)
P 0

δ (t, x; a, b)
}

,

where

P̂δ(t, x; a, b) =
∫ T

t

(T − s)
( ∂3

∂x3
− ∂2

∂x2

)
P 0

δ (s, b; a, b)h(s; x, b)ds,

h(s; x, b) =
b − x

σ̄
√

2π(s − t)3
exp

[
− {b − x − (µ − σ̄2/2)(s − t)}2

2σ̄2(s − t)

]
.

To establish the proof of the theorem, we use the following lemmas.

Lemma 1 For fixed t < T , x, y ∈ R, there exist constants δ1 > 0, ϵ1 > 0, and
c1 > 0 such that

|PSV − Pδ| ≤ c1

√
δ

for any 0 < δ < δ1 and 0 < ϵ < ϵ1.

Lemma 2 For fixed t < T , x, y ∈ R, there exist constants δ2 > 0, ϵ2 > 0, and
c2 > 0 such that

|(P 0
SV +

√
ϵP 1

SV ) − (P 0
δ +

√
ϵP 1

δ )| ≤ c2δ

for any 0 < δ < δ2 and 0 < ϵ < ϵ2.

Lemma 3 For fixed t < T , x, y ∈ R, there exist constants δ3 > 0, ϵ3 > 0, and
c3 > 0 such that

|Pδ − P 0
δ −

√
ϵP 1

δ | ≤ c3ϵ

for 0 < δ < δ3 and 0 < ϵ < ϵ3.

Proofs of the lemmas are given in the following subsections.
Because of the lemmas, there exist constants δ̄ > 0, ϵ̄ > 0, and c1, c2, c3 > 0

such that

|PSV − P 0
SV −

√
ϵP 1

SV |
≤ |PSV − Pδ| + |(P 0

SV +
√

ϵP 1
SV ) − (P 0

δ +
√

ϵP 1
δ )| + |Pδ − P 0

δ −
√

ϵP 1
δ |

≤ c1δ
1/2 + c2δ + c3ϵ

for 0 < δ < δ̄ and 0 < ϵ < ϵ̄. Setting δ = ϵ2,

|PSV − P 0
SV −

√
ϵP 1

SV | ≤ c1ϵ + c2ϵ
2 + c3ϵ.

Consequently, there exist constants ϵ̄ > 0, and c > 0 such that

|PSV − P 0
SV −

√
ϵP 1

SV | ≤ cϵ

for 0 < ϵ < ϵ̄.
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B.1 Proof of Lemma B.1

From the definitions,

PSV (t, x, y; a, b) = Et[1{XT ≤a}1{ZT ≤b}],

Pδ(t, x, y; a, b) = Et[N(d1(δ,XT ))1{ZT ≤b}],

where Et[·] represents the conditional expectation under Xt = x, Yt = y, Zt < b.
Then, we have

|PSV − Pδ| = |Et[{1{XT ≤a} − N(d1(δ,XT ))}1{ZT ≤b}]|
≤ Et[|1{XT ≤a} − N(d1(δ,XT ))|]
= Et[(1 − N(d1(δ,XT ))1{XT ≤a}] + Et[N(d1(δ,XT ))1{XT >a}]
= Et[Et[N(−d1(δ,XT ))1{XT ≤a}| Yu : t ≤ u ≤ T ]]

+Et[Et[N(d1(δ,XT ))1{XT >a}| Yu : t ≤ u ≤ T ]]

Under the condition {Yu}t≤u≤T is observed, the conditional distribution of XT

is N(m, v), where

m = x +
(
µ − σ̄2

2

)
(T − t) + ρ

∫ T

t

f(Ys)dW 2
s , v = (1 − ρ2)

∫ T

t

f(Ys)2ds.

The first term is evaluated as

Et[N(−d1(δ,XT ))1{XT ≤a}| Yu : t ≤ u ≤ T ]

=
1√
2πv

∫ a

−∞
N(−d1(δ, z))e−

(z−m)2

2v dz

=
1√
2πv

∫ a

−∞

1√
2π

∫ z−a+(µ− σ̄2
2 )δ

σ
√

δ

−∞
e−

w2
2 e−

(z−m)2

2v dwdz

=
1√
2π

∫ (µ/σ̄−σ̄/2)
√

δ

−∞
e−

w2
2

1√
2πv

∫ a

a+σ̄
√

δz−(µ−σ̄2/2)δ

e−
(z−m)2

2v dzdw

≤ c(δ +
√

δ)
1√
2π

∫ (µ/σ̄−σ̄/2)
√

δ

−∞
e−

w2
2 dw

≤ c(δ +
√

δ).

for some c > 0. The first inequality is followed from the boundedness of 1
f . The

same argument also gives

Et[N(d1(δ,XT ))1{XT >a}| Yu : t ≤ u ≤ T ] ≤ c(δ +
√

δ).

Consequently, there exist constants δ1 > 0, and c1 > 0 such that

|PSV − Pδ| ≤ c1

√
δ

for any 0 < δ < δ1.
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B.2 Proof of Lemma B.2

From the definitions, we can see that

(P 0
SV +

√
ϵP 1

SV ) − (P 0
δ +

√
ϵP 1

δ )
= P 0

SV (t, x; a, b) − P 0
δ (t, x; a, b)

+
√

ϵV

∫ T

t

(T − s)
( ∂3

∂x3
− ∂2

∂x2

)
(P 0

SV − P 0
δ )(s, b; a, b)h(s; x, b)ds

−
√

ϵV (T − t)
( ∂3

∂x3
− ∂2

∂x2

)
(P 0

SV − P 0
δ )(t, x; a, b).

Notice that we can write

P 0
δ (t, x; a, b) = P 0

SV (t − δ, x; a, b).

P 0
SV , P 0

δ and their successive derivatives with respect to x are differentiable in
t. Therefore, we conclude that for t < T , x ∈ R, there exist δ2 > 0, ϵ2 > 0, and
c2 > 0 such that

|(P 0
SV +

√
ϵP 1

SV ) − (P 0
δ +

√
ϵP 1

δ )| ≤ c2δ

for any 0 < δ < δ2 and 0 < ϵ < ϵ2.

B.3 Proof of Lemma B.3

To evaluate the residual of the approximation, we first define the residual term
by

Pδ = P 0
δ +

√
ϵP 1

δ − Rδ.

In the argument for pricing of barrier option, Ilhan et al. [13] showed that if
the payoff at the terminal time is smooth,

|Pδ − P 0
δ −

√
ϵP 1

δ | = O(ϵ).

In other words, there exist constants ϵ3 > 0 and cδ (cδ depends on δ.) such that

|Rδ| ≤ cδϵ

for any 0 < ϵ < ϵ3.
Next, we give a concrete expression of cδ. In t < T and x < b, Rδ satisfies

L ϵ
SV Rδ = L ϵ

SV (P 0
δ +

√
ϵP 1

δ − Pδ)

=
1
ϵ
L0P

0
δ +

1√
ϵ
(L0P

1
δ + L1P

0
δ ) + (L1P

1
δ + L2P

0
δ )

= L2P
0
δ ,

because L ϵ
SV Pδ = 0, and P 0

δ and P 1
δ do not depend on y. At the terminal time

T , Rδ has

Rδ(T, x, y; a, b) = P 0
δ (T, x; a, b) +

√
ϵP 1

δ (T, x; a, b) − Pδ(T, x, y; a, b)

= −e(2ν/σ̄2−1)(b−x)N(d2(δ, x))
≡ Hδ(x, y).
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At the boundary x = b,
Rδ(t, b, y; a, b) = 0,

because Pδ(t, b, y; a, b) = P 0
δ (t, b; a, b) = P 1

δ (t, b; a, b) = 0.
Therefore, the probabilistic representation of Rδ is given by

Rδ(t, x, y; a, b) = Et

[
Hδ(XT , YT )1{τ>T} −

∫ τ

t

L2P
0
δ (s,Xs; a, b)ds

]
= Et[Hδ(XT , YT )1{τ>T}]

+
1
2
Et

[ ∫ τ

t

(f(Ys)2 − σ̄2)
( ∂

∂x
− ∂2

∂x2

)
P 0

δ (s,Xs; a, b)ds

]
,

where τ represents the first time after t that Xt hits b. We can easily see that
the first term is bounded. Let us evaluate the second term. Since f is bounded,∣∣∣∣∣Et

[ ∫ τ

t

(f(Ys)2 − σ̄2)
( ∂

∂x
− ∂2

∂x2

)
P 0

δ (s, Xs; a, b)ds

]∣∣∣∣∣
≤ cEt

[ ∫ T

t

∣∣∣( ∂

∂x
− ∂2

∂x2

)
P 0

δ (s,Xs; a, b)
∣∣∣ds

]
for some δ > 0. Note that we have

Et

[ ∫ T

t

∣∣∣( ∂

∂x
− ∂2

∂x2

)
P 0

δ (s,Xs; a, b)
∣∣∣ds

]

= Et

[ ∫ T

t

Et

[∣∣∣( ∂

∂x
− ∂2

∂x2

)
P 0

δ (s,Xs; a, b)
∣∣∣∣∣∣ Yu : t ≤ u ≤ s

]
ds

]
.

Since P 0
δ (s, x; a, b) is given by (18),

∂P 0
δ

∂x
(s, x; a, b) = −n(d1(T − s + δ, x))

σ̄
√

T − s + δ

+
(2µ

σ̄2
− 1

)
e(2µ/σ̄2−1)(b−x)N(d2(T − s + δ, x))

−e(2µ/σ̄2−1)(b−x) n(d2(T − s + δ, x))
σ̄
√

T − s + δ
,

∂2P 0
δ

∂x2
(s, x; a, b) = −n(d1(T − s + δ, x))d1(T − s + δ, x)

σ̄2(T − s + δ)

−
(2µ

σ̄2
− 1

)2

e(2µ/σ̄2−1)(b−x)N(d2(T − s + δ, x))

+2
(2µ

σ̄2
− 1

)
e(2µ/σ̄2−1)(b−x) n(d2(T − s + δ, x))

σ̄
√

T − s + δ

+e(2µ/σ̄2−1)(b−x) n(d2(T − s + δ, x))d2(T − s + δ, x)
σ̄2(T − s + δ)

,
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where n(·) is the density function of standard normal distribution: n(z) =
1√
2π

e−
z2
2 .

By the same argument with the proof of Lemma 5.2. in Fouque et al. [8]
(pp. 1664), we can show that

Et

[∣∣∣( ∂

∂x
− ∂2

∂x2

)
P 0

δ (s,Xs; a, b)
∣∣∣∣∣∣ Yu : t ≤ u ≤ s

]
≤ c(1 + (T − s + δ)−1/2),

for some c > 0. Integrating the above inequality with respect to s, we have

Et

[ ∫ T

t

Et

[∣∣∣( ∂

∂x
− ∂2

∂x2

)
P 0

δ (s,Xs; a, b)
∣∣∣∣∣∣ Yu : t ≤ u ≤ s

]
ds

]
≤ c(1 + δ1/2).

Therefore, cδ can be written as cδ = c(1 + δ1/2). Consequently, there exist
constants δ3 > 0, ϵ3 > 0, and c3 > 0 such that

|Rδ| ≤ c3ϵ

for 0 < δ < δ3 and 0 < ϵ < ϵ3.
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