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Abstract 

 

Large and very large portfolios of financial assets are routine for many individuals and 

organizations. The two most widely used models of conditional covariances and correlations 

are BEKK and DCC. BEKK suffers from the archetypal "curse of dimensionality" whereas 

DCC does not. This is a misleading interpretation of the suitability of the two models to be 

used in practice. The primary purposes of the paper are to define targeting as an aid in 

estimating matrices associated with large numbers of financial assets, analyze the similarities 

and dissimilarities between BEKK and DCC, both with and without targeting, on the basis of 

structural derivation, the analytical forms of the sufficient conditions for the existence of 

moments, and the sufficient conditions for consistency and asymptotic normality, and 

computational tractability for very large (that is, ultra high) numbers of financial assets, to 

present a consistent two step estimation method for the DCC model, and to determine whether 

BEKK or DCC should be preferred in practical applications. 

 

 

Keywords: Conditional correlations, conditional covariances, diagonal models, forecasting, 

generalized models, Hadamard models, scalar models, targeting. 
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1. Introduction  

 

Large and very large portfolios of financial assets are routine for many individuals and 

organizations. Consequently, a careful analysis, specification, estimation, and forecasting of 

financial asset returns dynamics, and the construction and evaluation of financial portfolios, 

are essential in the tool kit of any financial planner and analyst. Correlations are used to 

determine portfolios, with appropriate attention being given to hedging and asset 

specialization strategies, whereas variances and covariances are used to forecast Value-at-

Risk (VaR) thresholds to satisfy the requirements of the Basel Accords. 

There are different models for different purposes, such as correlation models to create and 

evaluate a portfolio, and covariance models to forecast VaR on a daily basis for a given 

portfolio (see, for example, McAleer (2005)). The two most widely used models of 

conditional covariances and correlations are BEKK and DCC, as developed in Engle and 

Kroner (1995) and Engle (2002), respectively.  

There are many similarities between BEKK and DCC. A scalar version of BEKK was 

compared with DCC, which is inherently scalar in practice, in Caporin and McAleer (2008). It 

was found empirically that scalar versions of the two models are very similar in forecasting 

conditional variances, covariances and correlations, which would suggest that they would also 

be similar in forecasting VaR thresholds and daily capital charges. 

Accordingly, there are pertinent aspects regarding alternative versions of the two models that 

have not yet been addressed and clarified in the literature. These may be summarized as 

follows:  

(i) BEKK and DCC co-exist, despite one model being able to do virtually everything the 

other can do, thereby raising the pertinent question: Do we really need both BEKK 

and DCC? 
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(ii) DCC is used to forecast conditional correlations only
3
, while its structure could easily 

be applied to forecast conditional covariances; 

(iii) BEKK is used to forecast conditional covariances, although it may also be used to 

forecast conditional correlations indirectly; 

(iv) The inherent differences between BEKK and DCC do not seem to be widely known. 

This situation is particularly relevant as DCC is equivalent to a scalar BEKK model 

applied to the standardized residuals, and can thereby be interpreted as a conditional 

correlation matrix only because of the standardization; 

(v) The structural and statistical differences and similarities between the two models have 

not previously been analysed.  

Engle and Kroner (1995) is the most widely cited paper in the history of the journal in which 

it appeared, but most citations would seem to be of a theoretical rather than empirical nature. 

The model is an archetypical example of an overparameterized model, thereby leading to the 

“curse of dimensionality”. Engle (2002) is also widely cited, but most citations would seem to 

be of an empirical rather than theoretical nature. 

The prevailing empirical wisdom would seem to be that DCC is preferred to BEKK because 

of the curse of dimensionality associated with the latter model. We argue that this is a 

misleading interpretation of the suitability of the two models to be used in practice. 

The primary purpose of the paper is to define targeting as an aid in estimating matrices 

associated with large numbers of financial assets, discuss the use of targeting in estimating 

conditional covariance and correlation matrices in financial econometrics. In addition, we 

describe the following aspects: the similarities and dissimilarities between BEKK and DCC, 

both with and without targeting, on the basis of structural derivation; the analytical forms of 

the sufficient conditions for the existence of moments, and the sufficient conditions for 

consistency and asymptotic normality; the computational tractability for very large (that is, 

ultra high) numbers of financial assets; the use of consistent two step estimation methods for 

                                                           
3
 note we slightly deviate from the usual naming of DCC as covariance model since we focus on its correlation 

dynamic only, leaving aside the marginals capturing the conditional variance dynamic 
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the DCC model to enable it to be used sensibly in practical situations; and, finally, the 

determination of whether BEKK or DCC is to be preferred in empirical applications. 

The plan of the remainder of the paper is as follows. Section 2 introduces the notation and 

models. The section compares alternative BEKK and DCC specifications, their corresponding 

mean specifications, the associated curse of dimensionality, the definition of the long run 

solution of a covariance (correlation) model as the unconditional expectation of the 

covariance (correlation), and the necessary and sufficient conditions for a covariance 

(correlation) model to be “targeted”. The asymptotic results associated with various forms of 

the BEKK and DCC models are analyzed and summarized in Section 3. Some concluding 

remarks are given in Section 4. 

2. A Comparison of the BEKK and DCC Specifications 

 

The univariate models underlying DCC can be based on various conditional volatility 

specifications, such as the asymmetric GJR model of Glosten, Jagannathan and Runkle (1992) 

or the asymmetric/leverage EGARCH model of Nelson (1991). Similarly, both the BEKK and 

DCC structures might be generalized in alternative ways to introduce asymmetry, leverage 

and/or other stylized facts that are observed in financial returns variances and correlations. 

However, as the primary focus of the paper is to compare the analytical and statistical 

performances of directly comparable BEKK and DCC models which are feasible under large 

cross-sectional dimensions, univariate and multivariate asymmetry and leverage are not 

considered. Moreover, forecasting comparisons of various versions of BEKK and DCC is left 

for further research (see also Caporin and McAleer (2008) for some results based on small 

scale models). 

In this section we introduce the most relevant specifications which could be considered when 

fitting BEKK and DCC conditional covariance (and correlation) models to real data. We 

present the mean specification, the two conditional covariance and correlation models, and 

discuss the issues associated with the respective model structures and asymptotic properties. 

Within this section, we also highlight those issues that have not yet been addressed critically 

in the literature. 
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We will make use of the following operators below:  denotes the Hadamard, or element-by-

element, product;  dg a  is a diagonal matrix, with scalar a along the main diagonal; 

 diag A  is a  vector formed from the elements of the main diagonal of A; 1tI   is the 

information set to time t-1; and i is a vector composed of unit elements. 

 

2.1 Mean specification, curse of dimensionality and the concept of “targeting” 

In order to make a fair comparison of models for the conditional second-order moments, we 

assume that the mean dynamics are common across all possible specifications, and are 

adequately captured by an un-specified conditional model. As a result, the mean innovations 

(or residuals) will be identically distributed according to a multivariate density with 

conditional covariance matrix 
t , and possibly dependent on a set of parameters θ (including, 

for instance, degrees of freedom or coefficients driving the distribution asymmetry). 

Let 
tx  denote a k-dimensional vector of financial variables (returns), 

t  represent the 

expected mean of 
tx  obtained from a conditional mean model, and 

t  the mean innovation 

vector, as follows: 

 

 

 

1

1

| ~ ,

| ~ 0,

t

t t t

t

t t t t

x I D

x I D



 







            (1)
 

 

In the following, we do not consider the effects of different mean specifications. The mean 

could be fixed at sample values, or could be based on a variety of time series models. The 

relevant issue is that, for each pair of covariance models we compare, the mean models are 

identical. 

 

Definition 1: The long run solution of a conditional covariance (correlation) model is given 

by the unconditional expectation of the dynamic conditional covariance (correlation). 
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We present below two illustrative examples based on the simplest GARCH and BEKK 

models. These examples will be also used in the following
4
. 

 

Example 1: GARCH(1,1) 

Consider the simple GARCH(1,1) model for asset i: 

 

2 2 2

, , 1 , 1i t i i i t i i t        ,  i = 1, …, k        (2) 

 

It can be easily shown that the unconditional variance (the long run solution) of the model is 

given by: 

 

 
12 1i i i i   


   .         (3)  

 

Example 2: Scalar BEKK 

Consider the Scalar BEKK model of Ding and Engle (2001), which is given as 

 

1 1 1t t t tCC     
              (4) 

 

The unconditional covariance matrix of the model is 

 

                                                           
4
 These examples are intended to be illustrative of the arguments, and do not purport to be exhaustive. 
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   1 1 1 1 1 1t t t t t t tE E CC CC E E           
             
   

, 

     1 1 1     t t t t tE E E E   
      
 

, 

     t t tE CC E E       , 

   
1

1tE CC  


      .        (5) 

The long-run solution for the BEKK model can be derived easily by mimicking the approach 

traditionally adopted for the GARCH(1,1) model. 

Two topics that are discussed in the financial econometrics literature regarding 

covariance/correlation model estimation, namely the “curse of dimensionality” and 

“targeting”. The first issue is perceived as the most serious problem in covariance modeling, 

while the second could be considered as a tool for disentangling the serious problem. 

It is known that many fully parameterized conditional covariance models have the number of 

parameters increasing at an order larger than the number of assets, otherwise known as the 

“curse of dimensionality”. For example, the most general BEKK model of Engle and Kroner 

(1995) has parameters increasing with order O(k
4
), its commonly used specification increases 

with order O(k
2
), the VECH model parameter number has order O(k

4
),  and the Generalized 

DCC model of Engle (2002) increases with order O(k
2
) (further comments regarding the 

numbers of parameters and the cited models will be discussed in the following subsections). 

In order to control the growth in the number of parameters, several restricted specifications 

have been proposed in the literature, such as the scalar and diagonal models presented in Ding 

and Engle (2001), the block structured specifications suggested by Billio, Caporin and Gobbo 

(2005), Billio and Caporin (2009), Asai, Caporin and McAleer (2009), Bonato, Caporin and 

Ranaldo (2009), and the parameter restrictions inspired by spatial econometrics concept 

introduced in Caporin and Paruolo (2009). However, restrictions generally operate on the 

parameters driving the dynamics, while little can be done on the model intercepts which 

include O(k
2
) parameters in both the conditional covariance and correlation models. This still 

exposes the models to the curse of dimensionality (to the best of our knowledge, Caporin and 

Paruolo (2009) is the only paper proposing parameter restrictions on the model intercepts). 
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The “targeting” constraint then becomes useful because it imposes a structure on the model 

intercept based on sample information. Within “targeting”, the constants in the dynamic 

equations are structured in order to make explicit the long run target, which is then fixed 

using a consistent (sample) estimator. As a result, the number of parameters to be estimated 

by maximizing a conditional log-likelihood function can be reduced substantially. Although 

targeting can be applied to both BEKK and DCC, in practice it has been used only for DCC. 

Targeting can be very useful computationally when the number of financial assets is large 

(say, k > 20), but can become essential when the number of assets is very large (such as k > 

100).  

We define the “targeting” constraint in the following proposition: 

 

Definition 2: A conditional covariance (correlation) model is “targeted” if and only if the 

following two conditions are satisfied: 

i) the intercept is an explicit function of the long run covariance (correlation); 

ii) the long run covariance (correlation) solution is replaced by a consistent estimator of 

the unconditional sample covariance (correlation) of the observed data. 

 

Remark 1: Condition i) implicitly requires the long run solution of the covariance 

(correlation) model to be equal to the long run covariance (correlation), and ensures that the 

long run solution does not depend on any parameters. Thus targeting should be distinguished 

from the imposition of parametric restrictions. 

 

Remark 2: Condition ii) implies the use of all the available sample data in constructing a 

consistent estimator of the observed long run covariance (correlation). The definition of 

targeting excludes estimating the long run matrices using latent variables. Such exclusion is 

essential because estimation of latent variables in the conditional volatility literature does not 

ensure by construction the consistency of the estimator used for the sample covariance 

(correlation). 
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Remark 3: Further to Remark 2, and contrary to what has been stated to have been proved in 

the literature, consistency and asymptotic normality of the estimated parameters of any 

version of DCC has not yet been established (see the Appendix). 

 

The following examples clarify these aspects. 

 

Example 1 (continued) 

In the GARCH(1,1) model of equation (2), there are three parameters to estimate for each 

asset, namely ωi, αi and βi, i = 1,2, …, k. We know that the long run solution of the model is 

 
12 1i i i i   


   . This result could be used to make explicit the long run variance in the 

GARCH equation by replacing the conditional variance constant, ωi, with an alternative 

expression: 

 

 2 2 2 2

, , 1 , 11i t i i i i i t i i t            ,       (6) 

 

where the long run variance becomes a parameter to be estimated. 

Equation (6) is equivalent to the standard GARCH(1,1) model as there are three parameters to 

be estimated, namely αi, βi and 2

i . The model is targeted if, in this alternative representation, 

2

i  is matched with the sample information, in which case there would only be two 

parameters to be estimated by maximum likelihood, namely αi and βi. Therefore, we may 

estimate the long run variance using the sample variance estimator of ,i t , and substitute this 

into the model, thereby reducing the number of parameters to be estimated (namely, 3 

parameters in equation (2) but only 2 parameters in equation (6)). Consistency of the other 

parameters is not influenced as the sample variance can be consistently estimated.  
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Example 2 (continued) 

In a similar manner to Example 1, we can replace the intercept of the BEKK model of 

equation (4) using the long run solution in (5), thereby obtaining 

 

  1 1 11t t t t      
        .        (7) 

 

Equation (7), without additional constraints, has two parameters associated with the dynamics 

and k(k+1)/2 in the intercept,   (the parameters in the long run covariance). Targeting 

implies the use of a sample covariance estimator for   and the maximization of the likelihood 

function with respect to the parameters   and   (maximization is made conditionally on the 

estimates of the long run covariance). The introduction of targeting reduces the number of 

intercept parameters, thereby making estimation feasible, even for large cross-sectional 

dimensions. However, the model will be still computationally complicated for large k because 

the likelihood evaluation of the model in (7) requires the inversion of a covariance matrix of 

dimension k.  

 

Although targeting can be computationally useful in terms of reducing the number of 

parameters to be estimated by maximum likelihood, sometimes dramatically, it requires care 

in terms of the sample estimator that is used. If targeting were to use an inconsistent estimator 

to reduce the number of parameters, as is typical in the literature, the resulting estimators will 

also be inconsistent. 

 

2.2 BEKK models 
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Engle and Kroner (1995) introduced the BEKK class of multivariate GARCH models. The 

specification they proposed was sufficiently general to allow the inclusion of special factor 

structures (see Bauwens et al., 2006). In this paper, we consider the simplest BEKK 

specification with all orders set to 1: 

 

1 1 1t t t tCC A A B B   
                (8) 

 

where A and B are k k parameter matrices (not necessarily symmetric) and C is a lower 

triangular parameter matrix. The fully parameterized model includes 2.5k
2
+0.5k parameters. 

The conditional covariance matrices are positive definite, by construction, and the conditional 

variances are positive, regardless of the parameter signs. Covariance stationarity of the BEKK 

model is discussed in Engle and Kroner (1995), together with a representation that is more 

general than the one given in (8), but which does not seem to have been used in empirical 

applications. 

Fully parameterized BEKK models are feasible only for small values of k, typically less than 

10. In order to make the model feasible for large cross-sectional dimensions, two restricted 

parameterizations have been proposed in Ding and Engle (2001), namely the diagonal and 

scalar specifications. 

In the scalar BEKK model, the parameter matrices A and B in (8) are replaced by ½A   ii  

and ½B   ii , leading to the following specification: 

 

1 1 1t t t tCC     
     .         (9) 

 

In the diagonal specification, the parameter matrices A and B are set to be diagonal as 

 A dg a  and  B dg b , so that the model has the following structure: 
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           1 1 1 1 1 1t t t t t t tCC dg a dg a dg b dg b CC aa bb        
               . (10) 

 

An additional representation of a BEKK-type model may be based on the Hadamard matrix 

product: 

 

1 1 1t t t tCC A B   
      .        (11) 

 

In this case, the parameter matrices A and B must be symmetric and positive definite, and the 

number of parameters is still O(k
2
). Generally, (11) is not estimated directly, but rather by 

imposing a structure for A and B to ensure positive definiteness (by making A and B equal to 

the product of triangular matrices, as in the case of the intercept). Positive definiteness of 

conditional covariance matrices is guaranteed, by construction (see Ding and Engle, 2001). 

Finally, we note that the diagonal specification in (10) is a restricted parameterization of the 

BEKK model in equation (8) and also of the Hadamard BEKK model in equation (11). 

Similarly, the scalar BEKK model in (9) can also be obtained from (11) by setting A   ii  

and B   ii . We also highlight that imposing diagonal A and B matrices in (11) is not 

considered since this restriction induces constant covariances. 

Although it is not necessary to do so, BEKK can be specified with targeting. The introduction 

of this feature may require appropriate constraints to be imposed at the estimation step in 

order to guarantee that the covariance matrices are positive definite. As argued in Proposition 

2, the targeting constraints require two elements: a modification in the model structure, and 

matching some of the model parameters with appropriate sample estimators. 

Define the sample covariance matrix t tE     
 

, which can be consistently estimated by 

the sample estimator. The BEKK equations may be redefined, as follows: 
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Scalar BEKK with targeting:     1 1 1t t t t     
          (12) 

Diagonal BEKK with targeting:         1 1 1t t t taa bb   
           (13) 

BEKK with targeting:      1 1 1t t t tA A B B   
            (14) 

Hadamard BEKK with targeting:     1 1 1t t t tA B   
           (15) 

 

In all of these specifications, it follows that  tE    , as 1 1t tE   
   
 

 and  1tE    . 

However, positive definiteness of the conditional covariance matrices must be imposed at the 

estimation step by constraining the matrix of intercepts in the model, otherwise the estimates 

cannot be interpreted as covariance matrices. 

For the BEKK, diagonal BEKK and Hadamard BEKK models, we can guarantee positive 

definiteness of the conditional covariance matrices by imposing positive definiteness of 

A A B B     ,        dg a dg a dg b dg b     and A B    , respectively. In the 

scalar case, the inequality constraint 1    imposes positive definiteness of the 

conditional covariances. 

Although the constraints may seem to be quite simple, their computational complexity is 

extremely relevant, in particular, when the cross-sectional dimension is simply moderate 

rather than high. In fact, imposing positive definiteness of the intercepts of (13), (14) or (15) 

results in a set of highly non-linear constraints on the parameters. One way of imposing 

positive definiteness is through the imposition of positivity of the eigenvalues of the 

intercepts. However, such a constraint is non-linear in the parameters and is extremely 

complicated, except for the scalar case. 

In addition, covariance stationarity constraints should be taken into account. These are 

generally simple in restricted specifications, as shown by Engle and Kroner (1995). However, 

in fully parameterized cases, these additional constraints significantly increase the 

computational complexity of the model. 
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Example 3: Constraints in the bivariate BEKK model with targeting 

Consider the simple case with k = 2. We assume that the positive definiteness of the 

conditional covariance matrices is imposed by constraining the eigenvalues of the intercepts 

in equations (12) to (15) to be positive. The model intercepts can be represented as 

Scalar BEKK with targeting:   1           (16) 

Diagonal BEKK with targeting:       aa bb aa bb           ii     (17) 

BEKK with targeting:   A A B B          (18) 

Hadamard BEKK with targeting:   A B A B       ii      (19) 

In (16), positive definiteness is imposed by restricting parameters to be positive and their sum 

to be less than 1. In (17) positive definiteness is achieved by imposing positive definiteness of 

 aa bb   ii . In turn, this requires imposing positivity of the eigenvalues of  aa bb   ii  

which translates into the following constraints 

 

4 4 2 2 4 4 2 2

1 2 1 2 1 2 1 2 1 2 1 22 2 2 2

1 2 1 2 2 2 2 2 2 2 2 2

1 1 2 2 1 2 2 1 1 2 1 2

4 4 2 2 4 4 2 2

1 2 1 2 1 2 1 2 1 2 1 22 2 2 2

1 2 1 2 2 2

1 1

4 2 8 2 81 1 1 1 1
1 0

2 2 2 2 2 2 2 2 2 8

4 2 8 2 81 1 1 1 1
1

2 2 2 2 2 2 2

           
   

           

           
   

 

       
     

    

       
    

  2 2 2 2 2 2

2 2 1 2 2 1 1 2 1 2

0
2 2 8         


  

 (20) 

 

Similar restrictions, but clearly more complex (6 parameters involved rather than 4), are 

required for (19). Finally, in the case of (18), positive definiteness is imposed by requiring the 

eigenvalues of the entire intercept to be positive, which induces two non-linear constraints 

involving the 8 model parameters and the long run covariance elements. 
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Other than for the scalar case, it is clear that imposing positive definiteness and covariance 

stationarity for various versions of BEKK is extremely complicated when there is more than 

one asset. The different degrees of complexity of several BEKK models can also be drawn 

from Table 1, where columns 3 to 5 report the parameter numbers for each specification in a 

general representation, and also for the cases k=10 and k=100. 

 

2.3 DCC models 

 

The Dynamic Conditional Correlation (DCC) model was introduced by Engle (2002) as a 

generalization of the Constant Conditional Correlation (CCC) model of Bollerslev (1990). In 

this case, the focus is on the separate modeling of the conditional variances and conditional 

correlations. 

The covariance matrix is decomposed as follows: 

 

t t t tD R D             (21) 

 1, 2, ,, ,...t t t k tD diag             (22) 

 蝸 ,      t t t t t tR Q Q Q Q dg Q           (23) 

 

where Dt includes the conditional volatilities which are modeled by a set of univariate 

GARCH equations (see Bollerslev (1990) and Engle (2002)). The dynamic correlation matrix, 

Rt , is not explicitly driven by a dynamic equation, but is derived from a standardization of a 

different matrix Qt which has a dynamic structure. The form of Qt determines the model 

complexity and the feasibility in large cross-sectional dimensions. 
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Several specifications have been suggested for Qt. We present here the most simple 

specifications, which can be matched with the BEKK cases illustrated in equations (8)-(11). 

The DCC model (or Hadamard DCC) is given in Ding and Engle (2001) and Engle (2002) as: 

 

   蝸
1 1 1 1 1t t t t t tQ S A D D S B Q S     

      ,      (24) 

 

where A and B are symmetric parameter matrices and S is a long run correlation matrix. As 

distinct from standard practice, we maintain explicitly in the model the dependence on the 

conditional variances. This model has parameter numbers of order O(k
2
), meaning that the 

model is affected by the curse of dimensionality. Notably, the model has been proposed in the 

literature directly with a targeting constraint, thereby highlighting the long run component. 

However, we note that imposing targeting in (24) is counterintuitive since the Qt are then 

standardized to obtain dynamic conditional correlations. Targeting was included as a tool for 

the reduction of the numbers of parameters, given that the S matrix could be estimated by the 

sample correlation matrix, so that A and B can be estimated by maximum likelihood, 

conditional on the value assigned to S. 

Aielli (2008) shows that the sample correlation is an inconsistent estimator of S, thereby 

eliminating the advantage of targeting as a tool for controlling the curse of dimensionality for 

DCC models. A deeper discussion of the asymptotics is given in the following section. 

The Hadamard DCC (HDCC) model without targeting has the following structure: 

 

蝸
1 1 1 1 1t t t t t tQ CC A D D B Q     

    ,       (25) 

 

where C is a lower triangular matrix whose diagonal elements are constrained in order to 

ensure CC’ is a correlation matrix. Considering now the alternative specifications for Qt, we 
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first highlight that diagonal specifications cannot be used for the GDCC model, as for the 

Hadamard BEKK. 

An alternative fully parameterized model, the Generalized DCC (GDCC) specification, is 

given by Cappiello, Engle and Sheppard (2006). The dynamic equation driving the 

conditional correlation matrix are as follows for the cases with and without targeting, 

respectively: 

 

   蝸
1 1 1 1 1t t t t t tQ S A D D S A B Q S B     

       ,      (26) 

蝸
1 1 1 1 1t t t t t tQ CC AD D A BQ B     

     ,       (27) 

 

where A and B are parameter matrices (not necessarily symmetric), while S and C are as in 

equations (24) and (25). The GDCC model has parameter numbers increasing with order O(k
2
) 

as the Hadamard DCC.  However, despite the introduction of correlation targeting, the two 

models, Hadamard DCC and Generalized DCC, are infeasible with large cross sectional 

dimensions because the parameter matrices A and B in both models include O(k
2
) parameters.  

Two major restricted specifications may be considered, namely the diagonal and scalar 

models. Notably, as in the BEKK model, the scalar representation is a special case of both the 

HDCC and GDCC models, while the diagonal specification of GDCC may be associated with 

a restricted HDCC model. 

The alternative DCC specifications are reported in the following equations: 

 

- Scalar DCC with targeting:     蝸
1 1 1 1 1t t t t t tQ S D D S Q S       

      (28) 

- Scalar DCC without targeting: 蝸
1 1 1 1 1t t t t t tQ CC D D Q       

      (29) 

- Diagonal DCC with targeting:        蝸
1 1 1 1 1t t t t t tQ S aa D D S bb Q S     

       (30) 
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- Diagonal DCC without targeting:      蝸
1 1 1 1 1t t t t t tQ CC aa D D bb Q     

     , (31) 

 

where α and β are scalars, a and b are vectors, while C and S are as in equations (24) and (25), 

respectively. 

The most frequently estimated version of DCC (put simply, the DCC model) is what we will 

call the scalar DCC model, for purposes of strict comparability with its scalar BEKK 

counterpart. Note that the models without targeting require the joint estimation of all the 

parameters, including the long run correlations. If targeting is excluded, all models are 

affected by the curse of dimensionality. Such a result can be observed in Table 1, where the 

parameter dimension for DCC without targeting is comparable to that of the standard BEKK 

models. 

 

3. Asymptotic Theory 

 

Several papers have purported to establish the consistency and asymptotic normality of the 

Quasi Maximum Likelihood Estimation (QMLE) of BEKK and DCC. Apart from two papers 

that have proved consistency and asymptotic normality of BEKK, albeit under high-order 

stated but untestable assumptions, the proofs for DCC have typically being based on unstated 

regularity conditions. When the regularity conditions have been stated, they are untestable or 

irrelevant for the stated purposes. These comments will become clearer in the remainder of 

this section. 

 

3.1 BEKK 

Jeantheau (1998) proved consistency of BEKK under the multivariate log-moment condition. 

However, the derivation of the log-moment condition requires the assumption of the existence 

of sixth order moments, which cannot be tested. 
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Using the consistency result proved in Jeantheau (1998), Comte and Lieberman (2003) 

established the asymptotic normality of the QMLE of BEKK under eighth order moments 

which, though stated explicitly, cannot be tested. 

The consistency and asymptotic normality results for Scalar and Diagonal BEKK follow as 

special cases of the results given above, while those of Hadamard BEKK can be derived 

similarly by noting that the Hadamard BEKK has a companion VECH representation with 

diagonal parameter matrices. 

The proofs of Jeantheau (1998) and Comte and Lieberman (2003) can also be generalized to 

include the BEKK representations where the long run solution of the model enters explicitly 

in the intercept. In such a case, appropriate modifications of the regularity conditions are 

required. 

Therefore, the asymptotic theory for BEKK models is established, albeit under untestable 

conditions. 

 

3.2 DCC 

The primary appeal of the DCC specification, at least in its scalar representation, is supposed 

to be its computational tractability for very large numbers of financial assets, with two step 

estimation reducing the computational complexity relative to systems maximum likelihood 

estimation. 

This presumption is appropriate if: 

i) the model can be targeted; 

ii) the two step estimators are consistent; 

iii) the parameter number increase as a power function of the cross-sectional dimension 

with an exponent smaller than or equal to 1. 

Point i), targeting, reduces by 0.5k(k-1) the number of parameters to be estimated by QMLE, 

given that it fixes part of the intercept. Differently, point ii) ensures that correct inferential 

procedures could be derived from the estimated parameters and the likelihood (including 
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parameter testing, model restrictions and LM tests against more general representations). 

Furthermore, it ensures that the forecasts will not be influenced by parameter distortions. 

Finally, point iii) controls for the parameters in the model dynamic. Conditions i) and iii) 

avoid the curse of dimensionality, while the inclusion of just one of the two previous points 

(either i) or iii)) makes the model feasible only for small dimensional systems (the full model 

parameters will increase at least with power O(k
2
)). 

Engle (2002) suggests the introduction of targeting (point i)), the use of scalar representations 

(point iii)), and assumes that the standard regularity conditions yielding consistent and 

asymptotically normal QML two step estimators are satisfied (point ii)). 

However, Aielli (2008) has proved that two step estimation of DCC models with targeting is 

inconsistent. In fact, Aielli shows that the sample correlation estimator is an inconsistent 

estimator of the matrix S in the dynamic equations (24), (26), (28) and (30). As a result, the 

parameters driving the dynamics cannot be consistently estimated by QML, conditional on an 

inconsistent estimator of S. His result is based on the observation that the unconditional 

expectations of Qt may differ from the unconditional expectation of 蝸
t t t tD D   , the first being 

a covariance while the second is a correlation, by construction. In fact, the Qt matrices are 

never referred to as correlations, sometimes as non-standardised correlations, which, 

presuming positive definiteness and symmetry, are covariance matrices. As a result, the 

sample correlation estimator of 蝸
t t t tD D    is not a consistent estimator of the S matrix. The 

long run solution cannot be estimated with a sample estimator which, in turn, eliminates the 

targeting constraint in point i) and, as a consequence, makes the parameter number at least of 

order O(k
2
). In turn, this affects consistency of the QML estimates of the other parameters as 

well as their asymptotic distribution, also eliminating point ii). Therefore, all the purported 

proofs for models with targeting in Engle (2002) and Engle and Sheppard (2001) must be 

reconsidered. 

The need to introduce the long run solution matrix S into the estimation step of QML makes 

DCC (even in the scalar case) inconsistent with its primary intended purpose, namely the 

computational tractability for large cross sections of assets (see Table 1). 
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Aielli (2008) suggests a correction to the DCC model to resolve the previous inconsistency 

between unconditional expectations. However, the new model proposed does not allow 

targeting, as given in Definition 2. Furthermore, the asymptotic results are not fully reported 

(the author presumes a number of regularity conditions without stating them). It is worth 

mentioning that Aielli’s model was used in Engle, Sheppard and Shephard (2008), under the 

assumption that it included targeting, which is not possible. 

Aielli’s results preclude the estimation of the DCC model with targeting, but this does not 

affect the DCC specifications without targeting. Hence, the asymptotic properties are still not 

known. Clearly, despite the possibility of estimating DCC models in a single step, the curse of 

dimensionality will always be present as the intercept include 0.5k(k-1) parameters in the long 

run correlation matrix. 

In summary, the purported asymptotic theory for DCC models has simply been stated without 

formal proofs of the conditions required for the results to hold, and without checking any of 

the assumptions underlying the general results in Newey and McFadden (1994). 

 

3.3 Consistent estimation of correlation matrices from BEKK 

McAleer et al. (2008) showed that scalar BEKK and diagonal BEKK could be derived as a 

multivariate extension of the vector random coefficient autoregression (RCA) model of Tsay 

(1987) (see Nicholls and Quinn (1982) for a statistical analysis of random coefficient models). 

However, BEKK and Hadamard BEKK cannot be derived using the RCA approach. 

Caporin and McAleer (2008) show that a theoretical relation can be derived comparing scalar 

DCC and BEKK models with and without targeting. They suggest the derivation of 

conditional correlations from BEKK representations, and refer to these derived models as 

Indirect DCC (which, despite its name, is not a different model but rather a bi-product of the 

BEKK estimates). 

As there is presently no consistency result for DCC parameters estimated by QML, the 

theorem below will represent a first contribution in the area. Its advantage will be clarified in 

the following: 
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Theorem 1: The indirect DCC Conditional Correlation matrices derived from BEKK 

representations are consistent estimates of the underlying true conditional correlations. 

 

Proof: The conditional covariance matrix Qt satisfy the decomposition 
t t t tQ D D  . If the 

dynamic covariances have been estimated by a BEKK model with or without targeting, they 

are consistent. The matrices Dt contain the conditional volatilities along the main diagonal. In 

turn, these may be obtained as part of the conditional variance matrix Qt or from a different 

univariate or multivariate GARCH model. In all cases, they will include consistent estimates 

of the conditional volatilities, as given by the results for BEKK models, or in Bougerol and 

Picard (1992) (for univariate models), and Ling and McAleer (2003) (for VARMA-GARCH 

specifications). Therefore, the indirect conditional correlations, 1 1

t t t tD Q D   , are given by 

the product of consistent estimators of the conditional covariance matrices and conditional 

standard deviations, and are therefore consistent. 

 

This shows how the BEKK model may be used for obtaining consistent estimates of the 

conditional correlation matrix. The BEKK model may be also used to derive starting values 

for a full system estimation of DCC models by QML. In this case, the intercept may be 

calibrated as the sample mean of indirect conditional correlations while the DCC parameter 

may be calibrated at the corresponding parameters in a given BEKK model. 

An example showing the indirect derivation of dynamic conditional correlations from scalar 

BEKK estimates is given in Caporin and McAleer (2008). 

 

4. Conclusions 

 

The efficient management and monitoring of large and very large portfolios of financial assets 

are routine for many individuals and organizations. Quantitative tools are then used to analyze 
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financial asset returns for the purposes of generating forecasts, and then constructing, 

managing and evaluating financial portfolios. There are different models for different 

purposes, such as correlation models to create and evaluate a portfolio, and covariance models 

to forecast VaR on a daily basis for a given portfolio.  

BEKK and DCC are the two most widely used models of conditional covariances and 

correlations, as developed in Engle and Kroner (1995) and Engle (2002), respectively. The 

two models are similar in many respects but, despite this situation, the literature has not 

addressed some critical issues pertaining to these models, namely: clarification of the reasons 

for BEKK and DCC to co-exist when one model can do virtually everything the other model 

can do; determination as to why DCC is used to forecast conditional correlations rather than 

conditional covariances, and why BEKK is used to forecast conditional covariances rather 

than conditional correlations; examination of the inherent differences between BEKK and 

DCC, especially when DCC is equivalent to a scalar BEKK model applied to the standardized 

residuals; and comparisons of the structural and statistical differences and similarities 

between the two models. 

The paper tackled some of these issues. In particular, we organized and rationalized the 

theoretical literature on the BEKK and DCC models, highlighting that the latter model has 

asymptotic properties under untestable moment conditions. In short, the purported asymptotic 

properties of DCC are simply stated under a set of untested and untestable regularity 

conditions. 

In addition, we clarified the concept of targeting as a tool for reducing the curse of 

dimensionality associated with multivariate conditional covariance models. 

Finally, we provided a result which demonstrated that the BEKK model can be used to obtain 

consistent estimates of dynamic conditional correlations, with a direct link to the Indirect 

DCC given in Caporin and McAleer (2008). 

In summary, the paper demonstrated that, from a theoretical perspecrtive, the optimal model 

for estimating conditional covariances (and conditional correlations) is the scalar BEKK 

model, regardless of whether targeting was used. 
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APPENDIX: A review of the purported proofs of consistency and asymptotic normality 

of various DCC models. 

 

(1) Engle and Sheppard (2001) 

 

The authors assume, but do not verify, that the standard regularity conditions required 

for two step GMM to yield consistent and asymptotically normal estimators, as given, 

for example, in Newey and McFadden (1994), are satisfied for the DCC model. This 

ignores the fact that temporal dependence of correlations was not considered in Newey 

and McFadden (1994). 

 

 

(2) Ding and Engle (2001) 

 

The authors discuss estimation of various multivariate conditional covariance 

(correlation) models, without discussing their statistical properties. 

 

Two diagnostic checks are presented, without establishing their statistical properties, 

and evaluates the tests using Monte Carlo simulations. 

 

 

(3) Engle (2002) 

 

The author assumes “reasonable regularity conditions” and “standard regularity 

conditions” (p. 342), without stating them, and refers to the theoretical results in Engle 

and Sheppard (2001) ( see point 1) above). 

 

 

(4) Cappiello, Engle and Sheppard (2006) 

 

The authors develop an extension of the DCC model to incorporate asymmetries, but 

do not establish the asymptotic properties of the estimators. 

 

 

(5) Aielli (2008)  

 

The authors makes the following statements: 

 

"We assume that QL regularities are satisfied. Basically, this requires correct 

specification and identification of the first two conditional moments …” (p.10) 

 



28 

 

“a vector of QML estimators, then, it is consistent by assumption of QL regularities.” 

(p. 11) 

 

Thus, the author assumes that typical regularity conditions are satisfied, without 

stating them. 

 

 

(6) Engle, Shephard and Sheppard (2008)  

 

The authors refer to Aielli’s (2008) model and estimation method, but not to his 

purported proofs of consistency and asymptotic normality. Moreover, they do not refer 

to the main result in Aielli (2008), which is the inconsistency of QMLE for Engle’s 

(2002) scalar DCC parameters. In addition, it seems they have used Aielli’s model 

with targeting, which is impossible, by construction. 

 

The authors purport to prove consistency and asymptotic normality. However, 

Theorem 1 for consistency is not a proof of consistency of the estimator of the 

appropriate parameter, while Theorem 2 for asymptotic normality assumes 

consistency of the estimator of the appropriate parameter (which was not proved in 

Theorem 1). 

 

 

(7) McAleer et al (2008)   

 

In comparison with the purported proofs of consistency and asymptotic normality of 

the QML estimators of the DCC parameters in the literature, McAleer et al. (2008) 

develop a generalized autoregressive conditional correlation (GARCC) model when 

the standardized residuals for each asset follow a multivariate random coefficient 

autoregressive (RCA) process. The scalar and diagonal versions of BEKK are also 

shown to be special cases of a multivariate RCA process. 

 

As a multivariate generalization of Tsay’s (1987) RCA model, GARCC provides a 

motivation for the conditional correlations to be time varying. Although GARCC is 

non-nested with respect to DCC model, the non-nestedness arising from different 

parametric restrictions that are imposed in the two models, special cases of GARCC 

are virtually identical to the scalar and Hadamard versions of DCC. The analytical 

forms of the sufficient conditions for the existence of moments are derived, and the 

sufficient conditions for the asymptotic properties of the QML estimators are 

established.  
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Table 1: Model dimension and asymptotic properties. 

Model Two step Number of parameters Consistency Asymptotic 

Normality K assets K=10 K=100 

Scalar BEKK without targeting No  0.5 1 2k k    57 5052 Yes Yes 

Diagonal BEKK without targeting No  0.5 1 2k k k   75 5250 Yes Yes 

BEKK without targeting No   20.5 1 2k k k   255 25050 Yes Yes 

Hadamard BEKK without targeting No  1.5 1k k   165 15150 Yes Yes 

Scalar BEKK with targeting No 2  2 2 Yes Yes 

Diagonal BEKK with targeting No 2k  20 200 Yes Yes 

BEKK with targeting No 22k  200 20000 Yes Yes 

Hadamard BEKK with targeting No  1k k   110 10100 Yes Yes 

Scalar DCC with targeting Yes 2  2 2 No No 

Diagonal DCC with targeting Yes 2k  20 200 No No 

Generalized DCC with targeting Yes 22k  200 20000 No No 

Hadamard DCC with targeting Yes  1k k   110 10100 No No 

Scalar DCC without targeting Yes  0.5 1 2k k    47 4952 ? ? 

Diagonal DCC without targeting Yes  0.5 1 2k k k   65 5150 ? ? 

Generalized DCC without targeting Yes   20.5 1 2k k k   245 24950 ? ? 

Hadamard DCC without targeting Yes    0.5 1 1k k k k    155 15050 ? ? 

Note. For DCC models, the number of parameters does not include the univariate GARCH parameters, namely 3K at a minimum, 

that are estimated for each asset. The number of parameters for DCC is higher if various asymmetric and leverage-based univariate 

models were to be used in conjunction with DCC. 

 


