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Abstract 

 

Under the Basel II Accord, banks and other Authorized Deposit-taking Institutions 

(ADIs) have to communicate their daily risk estimates to the monetary authorities 

at the beginning of the trading day, using a variety of Value-at-Risk (VaR) models 

to measure risk. Sometimes the risk estimates communicated using these models 

are too high, thereby leading to large capital requirements and high capital costs. 

At other times, the risk estimates are too low, leading to excessive violations, so 

that realised losses are above the estimated risk. In this paper we analyze the profit 

maximizing problem of an ADI subject to capital requirements under the Basel II 

Accord as ADI‟s have to choose an optimal VaR reporting strategy that minimizes 

daily capital charges. Accordingly, we suggest a dynamic communication and 

forecasting strategy that responds to violations in a discrete and instantaneous 

manner, while adapting more slowly in periods of no violations. We apply the 

proposed strategy to Standard & Poor‟s 500 Index and show there can be 

substantial savings in daily capital charges, while restricting the number of 

violations to within the Basel II penalty limits. 

 

 

Key words and phrases: Daily capital charges, endogenous violations, frequency 

of violations, optimizing strategy, risk forecasts, value-at-risk. 

 

JEL Classifications: G32, G11, G17, C53. 
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1. Introduction 

 

The Value-at-Risk (VaR) concept has become a standard tool in the exploding area 

of risk measurement and management. In brief, VaR is defined as an estimate of 

the probability and size of the potential loss to be expected over a given period. 

This concept has become especially important following the 1995 amendment to 

the Basel Accord, whereby banks and other Authorized Deposit-taking Institutions 

(ADIs) were permitted to use internal models to calculate their VaR thresholds (see 

Jorion (2000) for a detailed discussion of VaR). Consequently, the last few years 

have witnessed a growing literature comparing modelling approaches and 

implementation procedures to answer the question of how to measure VaR, with 

many research studies arguing in favour or against various VaR models.  

 

The amendment to the Basel Accord was designed to reward institutions with 

superior risk management systems. A back-testing procedure, whereby the realized 

returns are compared with the VaR forecasts, was introduced to assess the quality 

of the internal models. In cases where internal models lead to a greater number of 

violations than could reasonably be expected, given the confidence level, the ADI 

is required to hold a higher level of capital (see Table 1 in the Appendix for the 

penalties imposed under the Basel II Accord). If an ADI‟s VaR forecasts are 

violated more than 10 times in any financial year, the ADI may be required to 

adopt the „Standardized‟ approach. The imposition of such a penalty is severe as it 

affects the profitability of the ADI directly through higher capital charges, has a 

damaging effect on the ADI‟s reputation, and may lead to the imposition of a more 

stringent external model to forecast the ADI‟s VaR thresholds. That is why 

financial managers tend to prefer following strategies that are passive and 

conservative.  

 

Excessive conservatism has a negative impact on the profitability of ADIs as 

higher capital charges are subsequently required. Academics and practitioners 

should ask the question if there is room to minimise the capital charges not only 

using different models to forecast VaR but also through a communication strategy 

given the Basel II Accord. ADIs are not allowed to violate more than 10 times in 

any financial year, but any number less than 10 is permitted. Therefore, the 
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decision maker should seek a strategy that allows an endogenous decision as to 

how many times ADIs should violate in any financial year.  

 

In this paper we formulate the profit maximizing problem of an ADI subject to 

capital requirements under the Basel II Accord. It is suggested that ADI‟s may 

choose an optimal reporting policy that can strategically under-report or over-

report their VaR forecasts in order to minimize daily capital charges. Accordingly, 

we characterize a strategic market risk disclosure policy meant to reduce daily 

capital charges and to manage the number of violations. We suggest that the 

decision maker should take some actions in each state based on the trade-off 

between expected capital requirements and the expected number of violations. 

Financial managers could adopt a different strategy in favourable situations (a 

small number of violations) than in unfavourable situations (a large number of 

violations). The amount of expected risk that the manager should report to the 

monetary authority (namely, a fraction of the VaR estimated using a given 

procedure) should increase with the number of violations.  

 

In a favourable situation, the decision maker could take more risk (perhaps 

reporting an expected risk lower than the one suggested by the model used to 

forecast volatility). In cases of a small number of violations, communication of a 

low amount of risk allows profiting from the lower capital requirement, subject to 

having an acceptable trade-off with the upside-risk of increasing the number of 

violations. If the capital requirement is lower, more funds can be invested in assets 

at the cost of a marginal increase in the probability of violation. In a situation of a 

high number of violations, the decision maker must take less risk, and reporting 

high expected risk (even higher than the forecast) is needed to decrease the 

probability of violations. 

 

The remainder of the paper is as follows. In Section 2 we present the problem 

faced by ADI‟s subject to the Basel II Accord Amendment. Section 3 reviews 

some of the most frequently used univariate VaR forecasting models. In Section 4 

we present the new market risk disclosure strategy. Section 5 gives some 

experimental results, and Section 6 summarizes the main conclusions. 
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2. Maximizing Profits, Value-at-Risk and Daily Capital Charges  

 

We consider an ADI that invests an amount A in a portfolio of risky assets. At the 

beginning of the period, the return on the ADI‟s portfolio, rA, is random. For 

purposes of modelling market risk, we assume that    2,A A Ar N . The ADI‟s 

portfolio is financed by deposits (D) and equity capital (E), where rE denotes the 

cost of holding equity.  

A simplified balance sheet of an ADI is at each point of time: 

ADI balance sheet 

Assets, A Deposits, D 

 Equity, E 

Equity is held by shareholders and necessarily E = A - D 

Consider a competitive ADI which faces the risky returns, rA, on its assets 

and the market rate for deposits rD. Thus the ADI profit for day t can be stated as 

follows 

 
t At t Dt t Et tr A r D r E     (1) 

Given the volume of assets and deposits, an increase in E reduces expected 

profits, so the ADI is interested in using the lowest possible equity.  

At any given time, ADI‟s are required to satisfy capital requirement (CRqt) 

according to the associated risks. Specifically, this means: 

    ' 0 0     t t t t tE E A CRq A with E A and  (2) 

 

The Basel II Accord stipulates that daily CRqt for market risk must be set at the 

higher of the previous day‟s VaR and the average VaR over the previous 60 

business days, multiplied by a factor m = [3+k], where k is a penalty in the form of 

a higher multiplicative factor when there are more than 4 violations in the 

preceding financial year.  
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A violation occurs when actual (negative) returns are worse than the predicted VaR, 

that is, rAt < -VaRt. Therefore, the capital requirement for market risk can be written 

as: 

 

  
60

1

1
( 1), 3 ( )

60
t

p

CRq Max VaR t k VaR t p


 
      

 
  (3) 

 

k is to be set within a range of 0 to 1 (see (4) below) depending on the supervisor‟s 

assessment of the ADI‟s risk management practices and on the results of a simple 

back test (Basel Committee on Banking Supervision (1996)). The multiplication 

factor is determined by the number of times losses exceed the day‟s VaR figure 

(Basel Committee on Banking Supervision (1996)). The minimum multiplication 

factor of 3 is in place to compensate for a number of errors that arise in model 

implementation: simplifying assumptions, analytical approximations, small sample 

biases and numerical errors will tend to reduce the true risk coverage of the model 

(Stahl (1997)). The increase in the multiplication factor is then designed to scale up 

the confidence level implied by the observed number of exceptions to the 99 per 

cent confidence level desired by the regulators.  

 

 

0 4

0.40 5

0.50 6

0.65 7

0.75 8

0.85 9

1 10

if nov

if nov

if nov

if novk

if nov

if nov

if nov


 

 


 
 







 (4) 

 

Where nov is the number of violations during the previous financial year.
1
 In 

calculating the nov, ADIs will be required to compare the forecasted VaR numbers 

with realised profit and loss figures for the previous 250 trading days. In 1995, the 

1988 Basel Accord (Basel Committee on Banking Supervision (1988) was 

amended to allow ADIs to use internal models to determine their VaR thresholds 

                                                 
1
 Penalties of the Basel II Accord 
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(Basel Committee on Banking Supervision (1995)). However, ADIs wishing to use 

internal models must demonstrate that their models are sound. 

 

Value-at-Risk refers to the lower bound of a confidence interval for a (conditional) 

mean. If interest lies in modelling the random variable, 
 
Y

t
, it could be decomposed 

as follows: 

 

 
1( | )t t t tY E Y F   . (5) 

 

This decomposition suggests that 
 
Y

t
 is comprised of a predictable component, 

  
E(Y

t
| F

t1
) , which is the conditional mean, and a random component, 

 


t
. The 

variability of 
 
Y

t
, and hence its distribution, is determined entirely by the variability 

of 
 


t
. If it is assumed that 

 


t
 follows a distribution such that: 

 2( , )  t t tD  (6) 

 

where 
 


t
 and 

 


t
 are the unconditional mean and standard deviation of 

 


t
, 

respectively, these can be estimated using a variety of parametric and/or non-

parametric methods. The VaR threshold for 
 
Y

t
 can be calculated as: 

 

 
1( | )t t t tVaR E Y F    (7) 

 

where   is the critical value from the distribution of 
 


t
 to obtain the appropriate 

confidence level. It is possible for 
 


t
 to be replaced by alternative estimates of the 

conditional variance in order to obtain an appropriate VaR (for a useful review of 

recent theoretical results for conditional volatility models, see Li et al. (2002), 

while McAleer (2005) reviews a variety of univariate and multivariate, conditional, 

stochastic and realized. volatility models). The next section describes several 

models that are widely used to forecast the 1-day ahead conditional variances and 

VaR thresholds. 
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Summarizing, the ADI is assumed to maximize expected profit with respect to the 

composition of its financial assets and the forecasted VaR. Thus, the standard 

optimization problem is given as: 

 
,
   

t t
At t Dt t Et t

A VaR
Max r A r D r E  (8) 

 

Subject to (2), (3), (4) and (7) 

 

A necessary condition to maximize 錯誤! 找不到參照來源。 in a given 

period of (say) 250 days, is to minimize the total CRqt for the period. The standard 

approach in the literature is to report in (3) the estimate of VaR obtained from a 

given model (see, for example, Sarma et al. (2003)). In this paper, we incorporate 

the additional flexibility of modifying the forecast of VaR from a given model.  

The leading econometric models for forecasting VaR are modified to 

accommodate alternative risk strategies. We propose a simple and intuitive rule for 

modifying the values of the forecasts from the models. The rule becomes more 

conservative as the number of violations increases, and more aggressive in periods 

of few or no violations, by incorporating penalties and rewards that are based on 

performance. The new approach contains the standard rule as a special case. 

 

3. Models for Forecasting VaR 

 

As discussed previously, ADIs can use internal models to determine their VaR 

thresholds. There are alternative time series models for the conditional volatility, 

 


t
. In what follows, we present several conditional volatility models to evaluate 

our strategic market risk disclosure, namely GARCH, GJR and EGARCH, with 

both normal and t distribution errors. For an extensive discussion of the theoretical 

properties of several of these models, see Ling and McAleer (2002a, 2002b, 2003a). 

As an alternative to estimating the parameters, we use the exponential weighted 

moving average (EWMA) method by Riskmetrics
TM 

(1996) that calibrates the 

unknown parameters. The models are presented in increasing order of complexity. 
 

 

3.1 GARCH 
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For a wide range of financial data series, time-varying conditional variances can be 

explained empirically through the autoregressive conditional heteroskedasticity 

(ARCH) model, which was proposed by Engle (1982). When the time-varying 

conditional variance has both autoregressive and moving average components, this 

leads to the generalized ARCH(p,q), or GARCH(p,q), model of Bollerslev (1986). 

It is very common to impose the widely estimated GARCH(1,1) specification in 

advance.  

 

Consider the stationary AR(1)-GARCH(1,1) model for daily returns, ty :   

 

 1 2 1 2, 1t t ty y        (9) 

 

for nt ,...,1 , where the shocks to returns are given by:  

 

 
2

1 1

, ~ (0,1)

,

t t t t

t t t

h iid

h h

  

   



  
 (10) 

 

and 0, 0, 0      are sufficient conditions to ensure that the conditional 

variance 0th . The stationary AR(1)-GARCH(1,1) model can be modified to 

incorporate a non-stationary ARMA(p,q) conditional mean and a stationary 

GARCH(r,s) conditional variance, as in Ling and McAleer (2003b). 

 

3.2 GJR 

 

In the symmetric GARCH model, the effects of positive shocks (or upward 

movements in daily returns) on the conditional variance, th , are assumed to be the 

same as the negative shocks (or downward movements in daily returns). In order to 

accommodate asymmetric behaviour, Glosten, Jagannathan and Runkle (1992) 

proposed a model (hereafter GJR), for which GJR(1,1) is defined as follows:  

 

 
2

1 1 1( ( )) ,t t t th I h            (11) 
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where 0,0,0,0    are sufficient conditions for ,0th  and )( tI   is 

an indicator variable defined by: 

 

  
1, 0

0, 0

t

t

t

I






 


 (12) 

 

 as t  has the same sign as t . The indicator variable differentiates between 

positive and negative shocks, so that asymmetric effects in the data are captured by 

the coefficient  . For financial data, it is expected that 0  because negative 

shocks have a greater impact on risk than do positive shocks of similar magnitude. 

The asymmetric effect, ,  measures the contribution of shocks to both short run 

persistence, 2  , and to long run persistence, 2    . 

 

3.3 EGARCH 

 

An alternative model to capture asymmetric behaviour in the conditional variance 

is the Exponential GARCH, EGARCH(1,1), model of Nelson (1991), namely:  

 

 
 

     


 

    1 1
1

1 1

log log , | | 1t t
t t

t t

h h
h h

 (13) 

 

where the parameters  ,   and   have different interpretations from those in the 

GARCH(1,1) and GJR(1, 1) models.  

 

As noted in McAleer et al. (2007), there are some important differences between 

EGARCH and the previous two models, as follows: (i) EGARCH is a model of the 

logarithm of the conditional variance, which implies that no restrictions on the 

parameters are required to ensure 0th ; (ii) moment conditions are required for 

the GARCH and GJR models as they are dependent on lagged unconditional 

shocks, whereas EGARCH does not require moment conditions to be established 

as it depends on lagged conditional shocks (or standardized residuals);  
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EGARCH captures asymmetries differently from GJR. The parameters   and   in 

EGARCH(1,1) represent the magnitude (or size) and sign effects of the 

standardized residuals, respectively, on the conditional variance, whereas   and 

   represent the effects of positive and negative shocks, respectively, on the 

conditional variance in GJR(1,1). 

 

3.4 Exponentially Weighted Moving Average (EWMA) 

 

The three conditional volatility models given above are estimated under the 

following distributional assumptions on the conditional shocks: (1) normal, and (2) 

t. As an alternative to estimating the parameters of the appropriate conditional 

volatility models, Riskmetrics
TM 

(1996) developed a model which estimates the 

conditional variances and covariances based on the exponentially weighted moving 

average (EWMA) method, which is, in effect, a restricted version of the ARCH() 

model. This approach forecasts the conditional variance at time t as a linear 

combination of the lagged conditional variance and the squared unconditional 

shock at time 1t  . The EWMA model calibrates the conditional variance as: 

 

 2

1 1(1 )     t t th h  (14) 

 

where   is a decay parameter. Riskmetrics
™ 

(1996) suggests that   should be set 

at 0.94 for purposes of analysing daily data. As no parameters are estimated, there 

is no need to establish any moment or log-moment conditions for purposes of 

demonstrating the statistical properties of the estimators. 
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4. A Dynamic Decision Rule for Strategic Market Risk Disclosure 

 

Recent empirical studies (see, for example, Berkowitz and O'Brien (2001) and 

Gizycki and Hereford (1998)) indicate that some financial institutions overestimate 

their market risks in disclosures to supervisory authorities. This implies a costly 

restriction to the banks trading activity. ADIs may prefer to report high VaR 

numbers to avoid the possibility of regulatory intrusion. This conservative risk 

reporting suggests that efficiency gains may be feasible. It may be possible to 

increase profits by embedding this VaR report problem in a more general profit 

maximization framework. Therefore, as ADIs already have effective tools for the 

measurement of market risk, while satisfying the qualitative requirements, ADI 

managers could wilfully attempt to reduce the daily capital charges by 

implementing a context-dependent market risk disclosure policy. For a discussion 

of alternative approaches to optimize VaR and daily capital charges, see McAleer 

(2008). 

 

As we saw in section 2, a necessary condition to maximize profits is to minimize 

daily capital charges while the number of violations remains below 10. 

Accordingly, in this section, as a solution to the general ADI‟s profit maximization 

problem, we propose to calculate forecasts of VaR based on the models described 

in the previous section and reporting a modified value of it, called Market Risk 

Disclosure (MRD) Policy, as follows: 

 

  t t t tReport MRD P VaR  (15) 

 

where Pt  varies with the number of violations to communicate risk to the monetary 

authority. The variable Pt is a measure of how conservative or aggressive the MRD 

is in comparison with the estimated risk: Pt < 1 corresponds to an aggressive 

strategy because the MRD is below the estimated risk, whereas Pt >1 represents a 

conservative approach. Notice that when Pt = 1, the standard reporting strategy is a 

special case of the new strategy for forecasting and communication.  
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Dynamic Learning Strategy (DYLES) 

 

In (15), Pt is given by  

 

 
0 1 25,

1

* , 



   
t

P R

t t s

s

P P nov I  (16) 

 

The dynamic learning function, Pt , consists of three additive terms: 

 

(1) 
0P  is an initial condition and, as time passes, has a decreasing effect on DYLES. 

 

(2)  P  is the penalty for each violation: any additional violation should be 

penalized, thereby increasing the market risk disclosure and making our strategy 

more conservative. 

 

(3) 
1tnov  is the number of violations up to period t-1.  

 

(4)  R  is the reward (that is, the reduction in the penalty) for each 25-day period 

without any violations.  

 

(5) I25,t indicates whether there has been a violation in a given period. We divide 

the 250-day testing period, into 10 fixed periods of 25 days. At the end of each 25-

day interval, we check whether there have been any violations during the period. If 

there have been no violations, the reward consists of decreasing the penalty by  R
.  

 

The indicator function, 25,tI , performs the counting: it takes the value one when 

there have been no violations during a fixed 25-day period, and zero otherwise. It 

can only change value at the end of each 25-day period. At that point, the reward is 

either given or it is not:  
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25

25,

1 25 , 1, 2, ...,10 0

0

   
 


t t

t

if t j j and nov nov
I

otherwise
 (17) 

 

By using DYLES in (16), we gain flexibility by considering past information in 

reaching a decision for any given day. The flexible learning strategy proposed is in 

the spirit of Benjaafar et al. (1995, p. 438), who formalize the notion of flexibility 

in sequential decision making, and conclude: 

 

"... a flexible, or reversible, position is preferred when the decision maker is 

uncertain about the future and/or expects to learn more with the passage of 

time. A flexible position gives decision makers the possibility to change 

their minds upon the receipt of new information. In this sense, flexibility 

limits the risks of an early commitment ... expected value should not 

decrease with an increase in flexibility ..." 

 

Thus the optimization problem may now be formalized as:  

 

 
0 , ,

mod ,

250 601
( 1), 3 ( )

160

1

250

. .

10,

(4) (16)

  
 

     
 

 
 
 



P RP

VaR el

Max P VaR t k PVaR t pt t
p j p

Min

s t

nov

Equations and

 (18) 

 

In the above formulation, the solutions to (18) belong to the parametric class 

implied by (16). This is a simplification of the more general problem given in 

錯誤! 找不到參照來源。 and (15) (see, for example, Mulvey (1995), Hirano 

(2008) and Topaloglu (2008) for discussions of simplifying decision problems). 

 

The new rule in (16) can be interpreted as the second and subsequent stages in the 

optimization problem, in the sense of Sahinidis (2004, p. 972):  
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“Traditionally, the second-stage variables are interpreted as corrective 

measures or recourse against any infeasibilities arising due to a particular 

realization of uncertainty. However, the second-stage problem may be 

also an operational-level decision problem following a first-stage plan and 

the uncertainty realization”. 

 

For the optimization approach proposed in this paper, we optimize over the 

parameters of the second-stage problem jointly with the choice of VaR model at 

the first stage. 

 

In the proposed approach, MRD policies are assessed by comparing mean capital 

requirements during the last 250 days. A MRD strategy that minimizes (18), while 

restricting nov to be less than 10 is said to be optimal in terms of minimum daily 

CRq, as compared with the leading alternative strategies. 

 

Choosing a market risk disclosure policy implies choosing both a VaR model and a 

parameter value for the communication rule. Thus, the proposed decision rule 

evaluates the performance of ADIs under alternative combinations of parameter 

values and VaR models, bearing in mind that there is not always a single parameter 

combination, Θ
*
, that dominates uniformly over all VaR models. For a related 

general discussion of multi-stage stochastic programming, see Möller et al. (2008).  

 

We find that when the ADI manager uses DYLES to market risk disclosures, 

taking into account the number of violations, the average daily capital charges 

during the 260 trading days of 2007 can decrease by up to 14%. A special case of 

the endogenous violations discussed above, in which the number of violations is 

not a choice variable but is exogenously determined, is analysed in McAleer and 

da Veiga (2008a, 2008b).  

 

DYLES is designed to decrease the capital requirements of a MRD policy based on 

a given VaR, while restricting the number of violations in a given period within the 

limits of the Basel II Accord. 
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DYLES works in a complementary manner with the volatility model, but behaves 

quite differently from the volatility models: 

 

 It operates in a discrete and fast manner when there is a violation, whereas 

the volatility models adjust smoothly to violations. 

 

 It is context sensitive as it takes different values depending on the history 

of the violations. It is more conservative when there have been many 

violations, and is less conservative when there have been fewer violations. 

 

 It operates asymmetrically over time, as it reacts immediately when there 

is a violation, but moves discretely when there is a period without any 

violations. 

 

The parameters of the penalty function would need to be calibrated for a given 

asset and for each model to calculate VaR. In the next section, we provide some 

insights as to how well this function works for a given portfolio and for different 

models of the conditional variance.  

 

5. Experimental Results 

 

When we have proposed a new MRD policy based on a dynamic learning penalty 

function, we are interested in assessing how well it performs in terms of daily 

capital costs and the number of violations compared with the alternative strategy 

(that is, no strategy) of not responding to either violations or the absence of 

violations.  

 

Owing to the dearth of theoretical results in this area, we examine the behaviour of 

our penalty function using calibration. As the basis for comparison we use 

Standard and Poor‟s Composite 500 index from 1 January 2007 to 31 December of 

2007. The parameters in the vector 
0 0, 0, 0       

P RP  in (17) have to be 

positive, and calibration suggests the following intervals:  
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 0 0.6, ...,1.2P   ,  

 0.06, ..., 0.12P  , 

 0.1, ..., 0.4R  . 

 

 P0 < 0.6 (aggressive strategies) would imply numbers of violations in excess of 10, 

and P0 greater than 1.2 (conservative risk reporting) would lead to high daily 

capital requirements. 

 

The calibration procedure is as follows 

: 

1. We assume the models described in Section 3 to be the internal ADI‟s 

models that are used to forecast the 1-day ahead conditional variances and 

VaR thresholds. 

2. For all possible parameter combinations of  , we calculate Pt , as given in 

(17). 

3. Given the VaR calculated in step 1 and Pt  in step 2, calculate the market 

risk disclosure using (11). 

4. The number of violations (NoV) and the average capital requirements 

(AvCRq) for the whole period are reported.  

5. Finally, we compare NoV and the AvCRq requirements with the no 

strategy policy. 

 

5.1  Data and volatility measures 

 

The data used for the calibration of DYLES are the closing daily prices for 

Standard and Poor‟s Composite 500 Index. Data were obtained from the Ecowin 

Financial Database for the period 3 January 2000 to 31 December 2007.  

 

The returns at time t ( )tR  are defined as: 

  1log / t t tR P P , (19) 

 

where tP  is the market price.  
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[Insert Figure 1 around here] 

 

Figure 1 shows the Standard and Poor‟s returns. The series exhibit clustering, 

which could be captured by an appropriate time series model. The descriptive 

statistics for the index returns are given in Table 2. The mean is close to zero, and 

the range is between – 6% and 5.57%. The Jarque-Bera Lagrange multiplier test 

for normality rejects the null hypothesis of normally distributed returns. As the 

series displays a high kurtosis, this would seem to indicate the existence of extreme 

observations, which is not surprising for financial returns data. 

 

[Insert Table 2 around here] 

 

Several measures of volatility are available in the literature. In order to gain some 

intuition, we adopt the measure proposed in Franses and van Dijk (1999), where 

the true volatility of returns is defined as: 

 

   
2

1|  t t t tV R E R F , (20) 

 

where 1tF  is the information set at time t-1. Figure 2 shows the S&P volatility 

defined as in (20). The series exhibit clustering, which needs to be captured by an 

appropriate time series model. The volatility of the series appears to be high during 

the early 2000‟s, followed by a quiet period from 2003 to the beginning of 2007. 

The volatility appears to increase dramatically around 2007, due in large part to the 

worsening global credit environment. This increase in volatility persists until the 

end of the period, and continues during 2008. 

 

[Insert Figure 2 around here] 

  

[Insert Table 3 around here] 

 

5.2  Results 
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In Table 3 we see the differences between using DYLES or a passive strategy for 

the S&P and several VaR models. After calibration, we have chosen the set of 

parameters P0 = 1.2, θ
P
 = 0.12, θ

R
 = 0.3, which is the combination which seems to 

be most widely optimal across the various models.  
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Figure 1 
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Table 2 

0
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Series: SP_RETURNS

Sample 3/01/2000 18/01/2008

Observations 2086

Mean       0.000431

Median   0.001107

Maximum  5.573610

Minimum -6.004513

Std. Dev.   1.094369

Skewness   0.048622

Kurtosis   5.760783

Jarque-Bera  663.2940

Probability  0.000000
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We observe in the last column that the capital requirement decreases in all cases 

between 0.4% (3 basis points) and 14.01% (96 basis points) when using DYLES, 

except when the GARCH-t model is used. Moreover, the number of violations 

decreases when they were above 10 and increases, within the limits, when there are 

few violations. The exception in Table 4 in the Appendix shows that the best result 

for the GARCH-t model and DYLES is for  = [1.0, 0.11, 0.3] with 9 violations 

and 5.80% as AvCRq, that is, 90 basis points less than the no strategy policy. 

 

We conclude that DYLES always beats the passive strategy when properly 

calibrated. Due to its context-sensitive behaviour, DYLES tends to concentrate the 

distribution of the number of violations. In cases where there is conservative 

behaviour, it tends to increase the number of violations, whereas when the number 

of violations is large, it tends to reduce it to below the limit of 10. 

 

When properly used, DYLES can decrease the daily capital requirements 

substantially, up to 96 basis points in the case analyzed above, while restricting the 

number of violations to within the limits of the Basel II Accord.  

 

[Insert Figure 3 around here] 

 

In order to gain some intuition, in Figure 3 we present a comparison of DYLES 

with the results for Riskmetrics
TM

. 

 

a. The returns data are for the Standard and Poor‟s index during the last 100 

days of 2007. 

b. The stepwise line corresponds to the values of DYLES (Pt) during the 

period for which  = [1.2, 0.12, 0.3]. 

c. Of the two bottom lines, the one that starts higher is the VaR calculated by 

Riskmetrics
TM 

 

d. Of the two bottom lines, the one (line with symbols) that starts lower (with 

greater risk) is the VaR of Riskmetrics
TM

 + DYLES, which is our RMD. 
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Table 3 

 

 Benefits from DYLES, Standard and Poor’s,  = [1.2, 0.12, 0.3] 

 

 

Model 

 

DYLES 

 

Passive 

Improvement 

DYLES vs Passive 

 NoV AvCRq NoV AvCRq NoV AvCRq Basic points 

EGARCH 9 5.94% 13 6.24% -4 4.8% 30 

EGARCH-t 7 5.86% 9 6.82% -2 14.1% 96 

GARCH 8 6.00% 11 6.54% -3 8.3% 54 

GARCH-t 7 7.00% 3 6.70% 4 -4.5% -30 

GJR 8 6.00% 9 6.75% -1 11.1% 75 

GJR-t 8 7.01% 4 7.04% 4 0.4% 3 

Riskmetrics
TM 

8 5.98% 12 6.61% -4 9.5% 63 
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Note that when the Riskmetrics
TM

 + DYLES line is above the Riskmetrics
TM

 line, it 

implies less risk and leads to lower daily capital requirements. The improvement in 

capital requirements is given by the difference between the red (dark) and blue 

(light) lines in Figure 3. This is attributable exclusively to the penalty function of 

the dynamic learning function strategy (DYLES). 

 

Figure 4 shows the four previous series for the whole sample, from 1 January 2007 

to 31 December 2007. As we can see, the lines representing the Riskmetrics
TM

 VaR 

and the RMD policy move together when there is no violation. As soon as a 

violation occurs, the DYLES strategy becomes more conservative and moves away 

from zero until a period of no violations occurs, when it becomes more aggressive 

and moves toward zero. 

 

[Insert Figure 4 around here] 

  

Overall, the capital requirements for DYLES are lower than when DYLES is not 

used by 9.5% (63 basis points). The number of violations also decreases from 12 to 

8. This is a general pattern observed across different VaR models to varying 

degrees, as seen in Table 3 above. 

 

This example suggests that, with proper calibration, the DYLES strategy can help 

decrease daily capital requirements while restricting the number of violations to 

within the desired limits.  

 

Tables 4-7 in the Appendix show the NoV and AvCRq for values of  when two 

conditions are met: (i) NoV is less than 10; and (ii) AvCRq is less than 6.00%. The 

first criterion is consideredbecause we want our MRD to be sound for the monetary 

authority, while the second considers a reduction in the AvCRq by 9% (61 basis 

points) when compared with the Riskmetrics
TM

 procedure. 
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Figure 3. S&P, DYLES, VaR RiskMetrics
TM

, VaR RiskMetrics
TM

 + DYLES 

Last 100 Observations Θ = [1.2, 0.12, 0.3] 
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Figure 4  

 

Standard&Poor’s / VaR Riskmetrics
TM

 / VaR Riskmetrics
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 + DYLES / DYLES  

260 observations.  = [1.2, 0.12, 0.3]. 
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Based on Tables 4-7 and the previous analysis, we conclude that there are 

combinations of parameters in  that can reduce the daily capital requirements 

compared with existing models and strategies, while producing an acceptable 

number of violations. It would seem to be straightforward to find a parameter 

vector  with a systematically smaller AvCRq and NoV below 10 for all the 

models, when compared with the no strategy policy.  

  

It is noteworthy that, while VaR is used by numerous financial institutions, it is not 

without shortcomings. The VaR measure can under or overestimate risk. There is 

even debate as to how best to model the behaviour of volatility in market returns. 

Relying on DYLES, which modulates market risk disclosure, can reduce the 

effects of these deficiencies, as DYLES concentrates NoV throughout the models 

tested. In some of the cases discussed above, DYLES can control the number of 

violations at low cost in terms of the daily capital requirements.  

 

6. Conclusion 

 

Under the Basel II Accord, ADIs have to communicate their risk estimates to the 

monetary authorities, and use a variety of VaR models to estimate risks. ADIs are 

subject to a back-test that compares the daily VaR to the subsequent realized 

returns, and ADIs that fail the back-test can be subject to the imposition of 

standard models that can lead to higher daily capital costs. Additionally, the Basel 

II Accord stipulates that the daily capital charge that the bank must carry as 

protection against market risk must be set at the higher of the previous day‟s VaR 

or the average VaR over the last 60 business days, multiplied by a factor k. An 

ADI‟s objective is to maximize profits, so they wish to minimize their capital 

charges while restricting the number of violations in a given year below the 

maximum of 10 allowed by the Basel II Accord.  

 

Alternative VaR models currently in use can lead to high daily capital 

requirements or an excessive number of violations. In this paper we formulated the 

profit maximizing problem of an ADI subject to capital requirements under the 

Basel II Accord as ADI‟s are required to choose an optimal reporting strategy that 

may strategically under-report or over-report their VaR forecasts in order to 
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minimize daily capital charges. We also proposed a new dynamic learning strategy, 

DYLES, designed to minimize the daily capital requirements, while restricting the 

number of violations to below the penalty limit. We designed a market risk 

disclosure strategy driven by the number of violations to communicate the risk to 

the monetary authority. The strategy is context sensitive, and depends on the 

history of violations. It is intended to penalize VaR models when a loss exceeds the 

reported VaR by increasing the risk for the following periods. On the other hand, 

after a given period with no violations, the criterion offers a reward by decreasing 

the reported risk. 

 

In order to illustrate the practicability of DYLES, we applied it to the Standard and 

Poor 500 Index using seven different VaR models. After estimation of the VaR 

models and calibration of the parameters, we showed that it could lower the daily 

capital requirements substantially (by up to 14.3%, or 95 basis points, when we 

compared, for example, the GJR-t model + DYLES to the no strategy 

Riskmetrics
TM

 policy), while restricting the numbers of violations to within the 

Basel II Accord limits (9 for GJR-t + DYLES and 12 for the no strategy 

Riskmetrics
TM

  policy ).  

 

Simplicity would seem to have been the key to the popularity of VaR, particularly 

as a means of providing information to an ADI‟s senior management. DYLES is as 

simple and intuitive as VaR. When there is a violation, it increases immediately, 

thereby becoming more conservative and decreasing the risks of further violations, 

whereas after a period of no violations, it becomes less conservative, thereby 

allowing lower daily capital requirements. 

 

The preceding arguments suggest that DYLES can be used profitably by ADIs to 

reduce their average daily capital requirements, while restricting the numbers of 

violations to the Basel II Accord penalty limits.  
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Appendix 1 

 

 

Table 1: Basel Accord Penalty Zones 

 

Zone Number of Violations Increase in k 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 

 

Note: The number of violations is given for 250 business days. 

The penalty structure under the Basel II Accord is specified for 

the number of penalties and not their magnitude, either 

individually or cumulatively.   
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Table 4  

 

MRD results when NoV < = 10 and CRq < 6.1% 

 

EGARCH EGARCH-t 

NoV AvCRq P0 
P
 

R 
NoV AvCRq P0 

P
 

R 

7 5.97% 0.9 0.10 0.1 9 5.91% 0.8 0.11 0.3 

9 5.91% 0.9 0.12 0.3 9 5.94% 1.1 0.06 0.2 

9 6.00% 1.0 0.10 0.3 9 5.95% 1.1 0.11 0.3 

9 5.70% 1.2 0.06 0.2 9 5.87% 1.2 0.09 0.3 

9 5.91% 1.2 0.07 0.2 8 5.70% 1.2 0.11 0.3 

7 5.93% 1.2 0.10 0.2 7 5.86% 1.2 0.12 0.3 

9 5.94% 1.2 0.12 0.3 

     

 

 

 

 

 

 

Table 5  

 

MRD results when NoV < = 10 and CRq < 6.1% 

 

GARCH GARCH-t 

NoV AvCRq P0 
P
 

R 
NoV AvCRq P0 

P
 

R 

9 5.89% 0.8 0.11 0.3 7 6.00% 0.9 0.11 0.2 

9 5.93% 1.1 0.11 0.3 9 5.80% 1.0 0.11 0.3 

8 5.85% 1.2 0.11 0.3 8 5.87% 1.1 0.11 0.3 
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Table 6  

 

MRD results when NoV < = 10 and CRq < 6.1% 

 

GJR GJR-t 

NoV AvCRq P0 
P
 

R 
NoV AvCRq P0 

P
 

R 

9 5.85% 0.6 0.11 0.2 8 6.00% 0.6 0.10 0.2 

9 5.92% 1.1 0.06 0.2 8 5.90% 1.0 0.07 0.2 

9 5.92% 1.1 0.12 0.3 9 5.66% 1.0 0.12 0.3 

9 5.87% 1.2 0.11 0.3 9 5.90% 1.1 0.10 0.3 
 

 

 

 

 

 

 

 

 

Table 7  

 

MRD results when NoV < = 10 and CRq < 6.1% 

 

Riskmetrics
TM 

NoV AvCRq P0 
P
 

R 

9 5.81% 0.8 0.11 0.3 

8 5.76% 1.2 0.11 0.3 

8 5.98% 1.2 0.12 0.3 

 


