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Abstract

This chapter presents a basic of the methodology so-called an asymptotic expansion
approach, and applies this method to approximation of prices of currency options with
a libor market model of interest rates and stochastic volatility models of spot exchange
rates. The scheme enables us to derive closed-form approximation formulas for pricing
currency options even with high flexibility of the underlying model; we do not model

a foreign exchange rate’s variance such as in Heston [27], but its volatility that follows
a general time-inhomogeneous Markovian process. Further, the correlations among
all the factors such as domestic and foreign interest rates, a spot foreign exchange rate
and its volatility, are allowed. At the end of this chapter some numerical examples are
provided and the pricing formula is applied to the calibration of volatility surfaces in
the JPYUSD option market.

1. Introduction

In this chapter we present a brief review of an asymptotic expansion approach for
the evaluation problems in finance and give approximation schemes for currency op-
tions under stochastic volatility processes of spot exchange rates in stochastic interest
rates environment as important applications of this methodology. In particular, we use
models of volatility processes, not variance processes such as in [27], and apply a libor
market model developed by Brace, Gatarek and Musiela [7] and Miltersen, Sandmann
and Sondermann [53] to modeling term structures of interest rates. Moreover, the
correlations among all the factors such as domestic and foreign interest rates, a spot
foreign exchange rate and its volatility, are allowed.

Currency options with maturities beyond one year become common in global cur-
rencies’ markets and even smiles or skews for those maturities are frequently observed.
Because it is well known that thefects of interest rates become more substantial in
longer maturities, we have to take term structure models into account for the currency
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options. Further, stochastic volatility models grdump components of foreign ex-
change rates are necessary for calibration of smiles and skews. As for term structure
models, market models become popular in matured interest rates markets since cali-
brations of caps, floors and swaptions are required and market models are regarded as
most useful.

Hence, development of a model with stochastic volatilities/@npimps of ex-
change rates and with a libor market model of interest rates is inevitable. Moreover,
a closed-form formula is desirable in practice especially for calibrations since they
are very time consuming by numerical methods such as Monte Carlo simulation. Be-
cause it is too diicult to obtain an exact closed-form formula, we derive closed-form
approximation formulas by an asymptotic expansion approach where a volatility of
a spot exchange rate follows a general time-inhomogeneous Markovian process, and
domestic and foreign interest rates are generated by a libor market model.

Here is the literature on currency options: Garman and Kohlhagen [19] and Grabbe
[22] started research for currency options based on a contingent claim analysis; the
framework of Black and Scholes [6], Merton [51] and Black [5] was directly applied
to pricing currency options. [22]'s formula also included the case of stochastic interest
rates following Gaussian processes though he did not specify the processes explicitly.
Rumsey [66] and Melino and Turnbull [50] developed models under the deterministic
interest rates assumption.

Amin and Jarrow [3] and Hilliard, Madura and Tucker [28] derived formulas of
currency options with Gaussian stochastic interest rates; in particular, [3] combined
term structure models under the framework of Heath, Jarrow and Morton(HIM) [23]
with currency options.

Amin and Bodurtha [2] and Takahashi and Tokioka [83] gave numerical solutions
to price currency American options with stochastic interest rates by lattice methods;
[2] used HIM [23] models and [83] applied Hull and White [29], [30] term struc-
ture models. Dempster and Hutton [13] considered terminable (Bermudéaredt
tial swaps with Gaussian interest rates models by using the pafietatitial equa-
tions(PDE) approach.

Schibgl [70] extended market models to a cross-currency framework. He did not
take stochastic volatilities into account and focus on cross currency derivatives such
as diferential swaps and options orfférential swaps as examples; currency options
were not considered. Mikkelsen [52] considered cross-currency options with market
models of interest rates and deterministic volatilities of spot exchange rates by simu-
lation. Piterbarg [61] developed a model for cross-currency derivatives such as Power-
Reverse-Dual-Currency(PRDC) swaps with calibration to currency options; neither
market models nor stochastic volatility models were used.

Our asymptotic expansion approach have been applied to a broad claspaf-It
cesses appearing in finance. It started with pricing average options; Kunitomo and
Takahashi [38] derived a first order approximation and Yoshida [91] applied an asymp-
totic expansion method developed in statistics for stochastic processes. Takahashi[74],
[75] presented second or third order schemes for pricing various options in a general
Markovian setting with a constant interest rate. [39] provided approximation formulas
for pricing bond options and average options on interest rates in term structure models
of HIM [23] which is not necessarily Markovian.

Moreover, Takahashi and Yoshida [85], [86] extended the method to dynamic port-
folio problems in a general Markovian setting and proposed a new variance reduction
scheme of Monte Carlo simulation with an asymptotic expansion. For mathematical
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validity of the method based on Watanabe [89] in the Malliavin calculus, see Chapter
7 of Malliavin and Thalmaier [48], Yoshida [90], Kunitomo and Takahashi [40] and
Takahashi and Yoshida [85], [86].

Other applications and extensions of asymptotic expansions to numerical prob-
lems in finance are found as follows: Kawai [34], Kobayashi,Takahashi and Tokioka
[36], Takahashi and Saito [77],utkebohmert [42], [43], Kunitomo and Takahashi
[41], Kunitomo and Kim [37], Muroi [55], Takahashi [76], Matsuoka, Takahshi and
Uchida [49], Takahashi and Uchida[84], and Takahashi and Takehara [78], [79], [80].
Moreover, the computation scheme necessary for actual evaluation of the asymptotic
expansion in a general setting is given by Takahashi, Takehara and Toda [81].

The organization of this chapter is as follows: First, after some preliminaries of
mathematics in Section 2., we present the framework of an asymptotic expansion in
Section 3.1. in a general model. Second, Section 4. describes a basic structure of our
cross-currency model as the particular setting. Then, Section 5. applies the asymptotic
expansion approach to the evaluation problem in twiedént ways. Finally, Section
6. shows numerical examples. Some proofs, computation scheme, and concrete ex-
pressions in propositions and theorems are omitted due to limitation of space and will
be found mainly in [78], [80] and [81].

2. Preliminary Mathematics

We shall first prepare the fundamental results includiigorem 2.3f Watanabe
[89]. The theory by [89] on the Malliavin Calculus and Theorem 2.2 of Yoshida [90],
[91] are the fundamental ingredients to show the validity of our asymptotic expansion
method.

For our purpose, we shall freely use the notations by Ikeda and Watanabe [31] as
a standard textbook. The interested readers should see Watanabe [88], [89], Ikeda and
Watanabe [31], Yoshida [90], [91], Shigekawa [72] or Nualart [58].

2.1. Some Notations and Definitions

Let W be ther-dimensional Wiener space, which is a Banach space consisting of the
totality of continuous functionsv : [0, T] — R (w(0) = 0) with the topology induced

by the norm|| w ||= max<i<t [W(t)| . Let alsoH be the Cameron-Martin subspace of
W, whereh(t) = (h/(t)) € H is inW and is absolutely continuous on [0] with square
integrable derivativéa(t) endowed with the inner product defined by

r T . .
<hy,hp >p= Z f hli(9hk(9)ds. (1)
=10

We shall use the notation of thd—norm as|h|ﬁ =< h,h >y for anyh € H.
A function f : W — R is called a polynomial functional if there exigt € N,
hy,hy,---,hy € H and a real polynomiap(xi, X, - - -, X,) of n-variables such that
f(w) = p([h](W). [h2](W). - - -, [hn](W)) for by = (W) € H, where

r T . J .
[hiw) = > hidw! (@)
i fo

are defined in the sense 0% stochastic integrals.
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The standard_p-norm of R-valued Wiener functionaF is defined by||F|l, =
(fW|F|pP(dvv))1/p . Also a sequence of the norms Bfvalued Wiener functionalF
foranyse R, andp € (1, ) is defined by

IFllps = (1 = £)¥?Fllp (3)

where £ is the Ornstein-Uhlenbeck operator amd ||, is the L,-norm. The O-U
operator in (3) means thak ¢ £)%2F = ¥ (1 + n)¥2J,F , whereJ, are the pro-
jection operators in the Wiener's homogeneous chaos decomposition ihey are
constructed by the totality dR-valued polynomials of degree at mastlenoted by
P, .

Let P(= P(R)) denote the totality oR-valued polynomials on the Wiener space
(W, P). ThenPis dense irL, and can be extended to the totality of smooth functionals
S(= S(R)) (the R-valuedC®> functions with derivatives of polynomial growth orders).
Then we can construct the Banach spﬁI?as the completion oP with respect to
I - Ilp.s- The dual space oDy is the D* wherese R, p> 1, and ¥p+1/q= 1. Set

D® = m90,1<p<+o<> D’S),
D™ = US>O,l<p<+oo D'_)S7
~ 00

D =nNso Ul<p<+oo D,Sy
and

—00 —
D = Us>0 Ni<pctoo Dps~

More generally, for a separable Hilbert spdtea functionf : W — E is called
a polynomial functional if there exist e N, hy, hy,---,hy € H and real polynomials
pi (X1, X2, - - -, Xn) Of N-variables such that

d
f(w) = Z pi([ha](w), [ha](w), - - -, [ha) (W) &
i1

for somed € N, whereey,---,e4 € E. The totality of E—valued polynomial func-
tions and the totality oE—valued smooth functionals are denotedR(E) andS(E),
respectively. Then, similar arguments as above hold and we can construct the spaces
DS(E)(s € R, p € (1,)), D*(E), D™(E), D(E) and D™"(E). We call elements
in Df,(E), s > 0 Wiener functionals and elementsi}(E), s < 0 generalized Wiener
functionals.

ForF € P andh € H, the derivative of- in the direction ot is defined by

DhF(w) = ‘Ipi_%g{F W+ &h) — F(w)} . (4)

Then forF € P andh € H there existDF € P(H ® R)

such thatDnF(w) =< DF(w), h >y, where< - >y is the inner product oH andDF
is called theH—derivative ofF. Also for F € Sthere exists a uniquBF € S(H ® R) .
By extending the above construction ferto S(E), there existDF € S(H ® E) such
thatDyF(w) =< DF (W), h >y.

By repeating this procedure, we can sequentially defind-ttle orderH-derivative
DKF € S(H® ® E) for k > 1 and it is known that the norh. llp,s is equivalent to the
norm 338 o [IDX - [|p. In particular, forF = (F') € Di(R?), we define the Malliavin-
covariance by

omc(F) = (< DF'(W), DFI(w) >1) (i,j=1,---.d). (5)
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The coupling
=) < D,F >p=~E), ® € D"(E), F € D*(E)

is denoted byE[< @, F >g] and it is called ageneralized expectatiorin particular,

1 € D™ where 1 is the functional identically equal to 1. Hence,®o€ D™, p-- <

®, 1 >p- is called the generalied expectationdofind is denoted by the usual notation
E[®] because it is compatible wh@he Ui peo L.

2.2. Definitions and Existence of Asymptotic Expansions

Let X®w) = (X@i(w)) (i = 1,---,d ;& € (0,1]) be a Wiener functional with a
parametee. Then we need to define the asymptotic expansio@{w) with respect
to & in the proper mathematical sense. Kor 0, X)(w) = O(c*) in Dy(E) ase | 0
means that

X(©)
X llps k”p's < 400, (6)

limsup
el0 &

Ifforall p>1,s>0andevenk=12,---,
XEOW) - (g1 + g2 + -+ + £ "gk) = O(&") (7)
in Dy(E) ase | O, then we say thax®(w) has an asymptotic expansion :
XOW) ~ g1 + oz + - ®
in D*(E) ase | 0 with g3, g2, - - - € D(E).

Also if for every k = 1,2,--., there existss > 0 such that, for allp > 1,
XE(W), 01,02, - - - € D,*(E) and

XE(W) = (g1 + 892 + -+ + £ gi) = O(") ©)
in D,(E) ase | 0, then we say thax(®)(w) e D™"(E) has an asymptotic expansion:
XEO(W) ~ g1+ £gp + -+ - (10)
in D""(E) ass | Owith gy, gp,-- € D (E) .

Let S(RY) be the real Schwartz space of rapidly decreagfigfunctions onR¢?
andS'(RY) be its dual space that is the space of the Schwartz tempered distributions.
Also X®) e D*(RY) is said to be non-degenerate (in the sense of Malliavin) if for any
p > 1 the Malliavin-covariance oX® satisfies

sup E[(detforyc(X®)]) "] < co. (11)
£€(0,1]

Suppose thaX© e D*(RY) satisfies the nondegeneracy condition (11). Then, it
has been known that every Schwartz tempered distribdt{egon R¢ can be lifted up
or pulled-back to a generalized Wiener functiofialX® (denoted byT (X©))) in D~
under the Wiener mapw € W - X®(w) € RY. SinceT o X©) e D, it can act on
any test functional i, which is much larger thab*.

With these formulations and notations we are ready to Jtag®rem 2.3f [89].



Theorem 1 [ Theorem 2.3 of Watanabe [89] : Let {X©(w); e € (0,1]} be a family
of elements D™ (RY) such that it has the asymptotic expansion:

XEOMW) ~ g1+ egp +--- iIND®(R%Y ase | 0

with g € D*(RY), i = 1,2, --- and satisfies

|im;upn(detchc(x‘f>))‘l||p <o forall1<p<oo (12)
whereoyc(X©@) = (o1(X©)) is the Malliavin covariance of R (w):
o1(X) =< DX (w), DXEI(W) >p. Let T € S'(RM). Then,d(e,w) = T o X (W)
has the asymptotic expansionin® (and a fortiori in D=>):

D(e,W) ~ 1 + e +--- IND ™ ase |0

and¢; € D=, i =0,1,--- are determined by the formal Taylor expansion:
T(01 +[eQ2 + €G3 +--])
3 @) o gilegs + g+ "

a

D(e, W)

1+ edat

where (i) the summation is taken over all multi-indices and (ii) for every multi-index
@ = (ay, a0, - - -, ag) and a= (ag, a, - - -, ag) € RY, we set as usual

al =alay! ---agtand & = agla‘zlz...agd_

[90], [91] provided so called “the truncated version” of this theorem. His result
is very important from viewpoint of applications because in his version checking the
non-degeneracy o) (w) whene = 0 is enough, which is usually much easier than in
the original one. Moreover, he also derived conditional expectation formulas up to the
second order that are very useful to obtain explicit approximations. See [90], [91] for
the detail.

3. An Asymptotic Expansion Approach

3.1. An Asymptotic Expansion in a General Markovian Setting

Let (W, P) be ther-dimensional Wiener sCPace. We consided-dimensional ditu-
sion procesx© = (X = (X ... X%} which is the solution to the following
stochastic dterential equation:

X9 = VA2, dt+ eVI(X)dW (i = 1.---.d) (13)
X9 = x5 e R

whereW = (W2, - .-, W) is ar-dimensional standard Wiener process, ard(0, 1] is
a known parameter.

Suppose thaty = (V3,---,VJ) : RY% (0,1] = RY andV = (V%,---,V9): RY
RY ® R' satisfy some regularity conditions.(edp andV are smooth functions with
bounded derivatives at any order.)



Next, suppose that a functian: R® — R to be smooth and all derivatives have
polynomial growth orders. Theg(X%f)) has its asymptotic expansion;

9(X¥) ~ gor + egur + -

in LP for everyp > 1(or inD*) ase | 0. gyt € D*(n = 0,1, ---), the codicients in
the expansion, can be obtained by formal Taylor’s formula and represented based on
multiple Wiener-Ito integrals.

(e) .
Let Ay = %kzo andA,,,i = 1,---,d denote thé-th elements ofy. In particu-
lar, Ay is represented by

t
Ay = f YiYy (9 Vo(X(?, 0)du + V(X{™)dW,) (14)
0
whereY denotes the solution to thefférential equation;

dY; = aVo(X?, 0)Y,dt; Yo = Ig.

AVp(x.€)

j.
o » Vg is the

Here,dV;p denotes thel x d matrix whose [, k)-element isakv(j) =
j-th element oo, andly denotes thel x d identity matrix.
Fork>2,A,,i=1,---,dis recursively determined by the following:

t
Ae = f FVL(XO, 0)ds )
0
k k! | t 1 d . 8 |
_ 1 N ,-
Z (k=1 Z Z foﬂ! Z 051,...,%55 Vo (XS ’O)H'Aﬁj,sds
1=1 ﬁ:l% Lﬁ\l dl,“',dﬁ:l i1
k tg & d | s
F RN [N D heavied] | Alaw
ﬁzlreLﬁvk,l 0 : ”Zldl,'",dp:l i1

wheredl = 2, & and

s~ Oy 0,

B
Lﬁ,k:{l—éz(|1,-..,|ﬁ);|j ZO(j :]_,...,IB)’ZH_ :k}

j=1

Then,gor andgsr can be written as

gor = g(x\?),
d

Ot = Zaig(x$°))A'1T-
i=1

Forn > 2, gn7 is expressed as follows:

n

oo Slar 18] 3 gt o e

S, =1 piePy
(16)
where

n
Sn = {§=(sl,~--,sn);320(|=1,--~,n),2|s|=n},

1=1

d
Ps = {ﬁ5=(pi,~--,p3); pﬁzoa=1,-~,d),2p?=s}.

i=1



Next, normalizeg(X\) to

9(X¥) - gor

€

Gl =

for e € (0, 1]. Then,
G ~ gyr + egor + -+

in LP for everyp > 1(or inD*). Moreover, let
V(xt) = (99(9) [Yr Y 'V (¥

and make the following assumption:
T
(Assumption 1) =7 = f VXO, v (x©, 1y dt > 0.
0

Note thatg;t follows a normal distribution with variancer; the denstiy function of
g1t denoted byfg,. (X) is given by

f ot exp- X

[¢ing - '_271'21' p{- 22

Hence, Assumption 1 means that the distributiomygf does not degenerate. In ap-
plication, it is easy to check this condition in most cases. HereafterS bet the real
Schwartz space of rapidly decreasidg-functions onR andS’ be its dual space that
is the space of the Schwartz tempered distributions. Next, dakeS’. Then, by
Watanabe theory([89], [90]P(G©)) has an asymptotic expansiond1*(a fortiori in
D) ase | 0. In other words, the expectation ®{G'?) is expanded around= 0 as
follows: ForM =0,1,2,---,

_ 1 j—m+1
E[®(GY)] = 3 ﬂ (m)(ng){ Z chmk I_l g(n+1)T} +0(e™)
j=0 keKim
i l
= 2> —E[0M(@r) 3 CME[XI™|grr ||+ ofe™)
keKjm

fq)(m)(x) Z CHKE [ XP™| gyr = x| g, ()dx+ 0(e)

keKjm

%f@(x) > cimk(- 1)m E[xlmk|g1T = x| fg,r (¥)}dx+ o(e™)

j=0 keKjm
17)
where®™(g;7) = _63‘%)0 ,
X=gir
j—-m+1 j—m+l
Kj,m: {(kls,kj—ml),kn > 0’ Z kn = m Z nK\ = J}s
n=1 n=1
j—m+1
jmk  _ Kn
X = 1—1 Yneyr>
j—m+1
chmk  _
ﬂ Kl Kpomo! kJ —
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As shown under a simple setting in the next subsection, the conditional expec-
tations in (17) can be expressed as linear combinations of a finite number of Hermite
polynomials ofg;t. Then, you can easily implement thefdrentiation and integration
in (17) using the following property of a Gaussian distribution;

(6 ) (0] = £ (6.2 (0 (18)

for n > 0 whereHu(x; ) is then-th order Hermite polynomial defined by

255 d"
Hn(x 2) = (-X)"€* /22@

e X/Z, (19)
These are proven in more general cases by [81] which provides us the methods for ac-
tual computation oE[X»™|g;r = X] and formulas useful for high-order computation.

Thus, once you compute the conditional expectations explicitly, you also have the
explicit expansion oE[®(G(©))]. Moreover, the asymptotic expansion of the probabil-
ity function of G can be obtained by lettin@ be s, the delta function with a mass
atx.

3.2. An Asymptotic Expansion in a Black-Scholes Economy: a
simple application

In this subsection, the asymptotic expansion approach described so far is applied to an
evaluation problem in a simple Black-Scholes-type economy in order to make a whole
procedure in application clearer.

Let (W, P) be a one-dimensional Wiener space. Heredfés considered as a
risk-neutral equivalent martingale measure and a risk-free interest rate is set to be
constantly zero for simplicity. Then, the underlying economy is specified wikh.a (
valued)single risky ass&® = {S{9} satisfying

t
S =S+ f (S, 5)dWs (20)
0

wheree € (0, 1] is a constant parameter; R2 — R satisfies some regularity condi-
tions. We will consider the following pricing problem;

V(0,T) = E[®(S¥)] (21)

where® is a paydrf function andg[ - ] is an expectation operator under the probability

measureP. For their rigorous definitions, see Section 2.

kg (€)
Let A = %lszo. Here we represemy;, Ay andAg explicitly by

t
Ax = f (S, 9)dW, (22)
0
t
Ay = 2 f 30 (SY, 5)AgdWs, (23)
0
t
fa = 3 [ (o094 00(SO. 9hd)dWs (29
0

9



recursively and theB! has its asymptotic expansion

62 3

3 €
S(T) =So+ eAT + ZAZT + §A3T +0(e). (25)

Note thatS® = lim o S = S, for all t.
Next, normalizé(;) with respect ta as

s - 8O

€

GO =

for e € (0, 1]. Then,

€2

GO = A7 + %AZT + §A3T +0(€°) (26)

in LP for everyp > 1. Here the following assumption is made:

.
Yo = f (P, tydt > 0. (27)
0

Note thatA;1 follows a normal distribution with mean 0 and variar¥e and hence
this assumption means that the distributiorAgf does not degenerate. It is clear that
this assumption is satisfied Whemsﬁo),t) > 0 for somet > 0.

Then settingM = 2, (17), the expansion d& [©(G)], is written as follows in
the setting we are considering (hereafter in this section the asymptotic expansion of
E[®(G))] up to the second order will be considered):

E[®G9)] = fR D(X) fa, (X)dX+ € fR d)(x)(—l)a%{E[AZT |A = X] fas (X)}dx

+ € ( fR (1>(x)(—1)63x{E[A3T |Arr = X] fa,, (X)}dx

2
+% fR CD(X)(—l)Z%{E |(Azr)? 1At = x| fAﬂ(x)}dX) +0(€).

(28)

wherefa,; (X) is a probability density function ofyr following a normal distribution;

exp(—x—z) . (29)

far (X) = 25

1
Vorir
Then, all we have to do to evaluate this expansion is a computation of the conditional

expectations in (28).

In the following, it will be shown tha,t, Ast, (Ao7)? can be expressed as sum-
mations of a finite number of iteratedlintegrals. First, note tha,r is

T 1
Aot =2 f f 30 (S, 1) (S2, to)dW, d W, (30)
0 0
that is a twice-iterated &t integral.
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Next, by application of fi’s formula to (24) we obtain

Ast

tl tz
f [ [ a0 a5, o (6.t v,
1
6 fo fo fo 30 (S2, t1)o(SP, 1) (S, ts)dW, dW, AW,

T 1
3 f f oS, t)oH(SP, tr)dtdW, (31)
0 0

+

+

Similarly, we have

T 1 10}
(Aor)? 16 f f f f 05 (S?, 1) (S, 1) (S, ta)or (S, ta) AW, AW, AWV, AV,
0
T 1 153 3 0 0 0 o
f f f f 30 (S, 1) (S, 1) (S, ta) (S, ta) AW, AW, AW, AV,
0

T 1
+ 8 f f f 30(S?, )00 (SP, 1) *(SY, ta)dtsd W, d W,
0 0

0

+
(o]

T g to
8 [ [ [ a0 wacs. e oS0, L), dudw,
0 0
T g
+ 8 f f f (00(8. 1)) a(sg’),tz)a(sgf),ts)de3dezdt1
0

+ f f (9cr (s, tl) )" 4SS to)ddty. (32)

Moreover, there is a well-known result on conditional expectations of iteraded It
integrals.

Proposition 1 Let J,(f,) denote the n-times iterated 1td integral of(L")-function

fo:
T [1 tn_l
() 1= f f f ot t)AVM - - - WG, W,
0 0 0

forn > 1and J(fo) := fo(constan}.
Then, its expectation conditional oa(d) = X is given by
Ha(X 11all2 7))

(lalZ. )"
(33)

T ty th-1
E[3n(f)191() = ¥] = ( fo fo fo folts, 1)) - A(ta)dty - dlodly
whereT =[0,T]landt e T(i=1,2,---,n).
(proof) See [59] or [81]z

Then, thanks to this proposition, the conditional expectations in (28) can be com-
puted as

T ) ©) 1.y-2(c(0) Ha(X Z1)
E[Aor|Ar = X] 2 9o (S, 1) (S, 1) o?(S,, to)dtdt ~=
0 0

T

E[Asr|Arr = X]

11

(34)

T 1 to
(6 [ [ [ a0 t)r(s?.wao(s. t)r(s?. ) (s, thdtdtadty
0 0 0



T e o ©) 2,(0) 2,c(0) Ha(x; Z7)
+ 6 Fo(8. (6. 1S k(S )ty |
0 0 0

T

T o w0 ©) 2,a(0) Hi(x 21)
3 0 (J'(St1 ,t]_)O'(Stl ,tl)O' (Stz ,tg)dtzdtl T (35)
0 0
and
E[(Azr)IArT = X
tl Iz
= (16 f f f f 30 (SP, 1)) (SP, 13 (S, 1) (S, 12) (S, t3)02 (S, ta) diudtsdpdly
R A © 1.2, ©) © 1y 2, H4(X 1)
+ 8 00‘(St1 ,tl)O'(Stl ,tj_)O' (St2 ,tz)ao-(St3 ,tg)O'(S t3)0’ (S t4)dt4dt3dt2dt1 e E—
0 0 T
T tl tz
+ (16 f f f 35S, 1) (S, )3 (S, ) (SY, 1) 2(SY, ta)dtsdtpdly
0 0 0
T rb ot 2 Ha(x; =
+ 8 f f f (0(S2. 1)) a'z(Sg),tg)o-z(Sg),tg)dt3dt2dt1)%
T
+ f f (0 (s, tl) )" A(SY. tr)dtdty. (36)

Substituting these into (28), we have the asymptotic expansi@®{G)| u
to e2-order.

Here, at the end of this subsection, we state a brief summary. In the Black-Scholes-
type economy, we considered the risky a3t and evaluate some quantities, ex-
pressed as an expectation of the function of the price in the future, such as prices or
risk sensitivities of the securities on this asset. First we expanded them around the
limit to e = 0 so that we obtained the expansion (28) which contains some conditional
expectations. Then, we gave the explicit expressions of these conditional expectation.
Finally, substituting computation results into (28), the asymptotic expansion of those
quantities was obtained.

Even in applications under more complicated settings such as presented in Section
5. you can follow the procedure in this subsection in the same manner.

4. European Currency Options with a Market Model
of Interest Rates and Stochastic Volatility Models of Spot
Exchange Rates

This section describes the framework of the cross-currency market according to [78]
to which our asymptotic expansion approach will be applied in the next section.

Let (Q, 7, P, {Fi}o<t<T+<) be a complete probability space with filtration satisfy-
ing the usual conditions. First we briefly state the basics of European currency options.
The paydts of call and put options with maturify € (0, T*] and strike rate&K > 0
are expressed a$(T) — K)* and K — S(T))* respectively wheré&(t) denotes the
spot exchange rate at time> 0 andx™ denotes max(0). For a while we concen-
trate on the valuation of a call option since the value of a put option can be obtained
through the put-call parity or similar method. We also note that the spot exchange

12



rateS(T) can be expressed in terms of a foreign exchange forward(forex forward) rate
with the same maturityf. That is,S(T) = F+(T) whereF+(t), t € [0, T] denotes
the timet value of the forex forward rate with maturifly. It is well known that the
arbitrage-free relation between the forex spot rate and the forex forward rate are given
by F1(t) = S(1) f,;glg wherePy(t, T) andPs(t, T) denote the timé values of domestic
and foreign zero coupon bonds with matufltyespectively.

Hence, our objective is to obtain the present value of the fide(T) — K)*. In
particular, we need to evaluate:

V(O;K,T) = Pa(0.TE"[(Fr(T)-K)'] (37)

whereV(0; T, K) denotes the value of an European call option at time 0 with maturity
T and strike rat, andEP[-] denotes the expectation operator under EMM(Equivalent
Martingale Measurel ~ P whose associated numeraire is the domestic zero coupon
bond maturing at (we use a term ahe domestic terminal measurewhat follows).
Then, the dynamics governirg: (T) under the domestic terminal measure are neces-
sary for pricing the option. For this objective, a market model and stochastic volatility
models possibly with jumps are applied to modeling interest rates’ and the spot ex-
change rate’s dynamics respectively.

In the rest of this section, we describe briefly the model to which an asymptotic
expansion approach will be applied in the following sections, where some appropriate
regularity conditions are implicitly assumed without mentioned.

We first define domestic and foreign forward interest rates fgét) =

Pa(t.T)) 1 _ [ Pi(T)) 1 ; i
(#lel) - 1); and fgj(t) = (Wﬂjﬂ - 1)7,- respectively, wherg = n(t), n(t) +
L--- N, 7j = Tjpa —Tjandn(t) = min{i : t < T;}. We also define spot interest

rates to the nearest fixing date denoted flpyy-1(t) and fipnp-1(t) as fanp-1(t) =

1 1 _ 1 1 ; _
(Pd(t,Tn@)) - 1) g and frn-a(t) = (Pf(ﬂn(t)) 1) Ty Finally, we sefl = Ty,
and will abbreviatd=, , (t) to Fn.1(t) in what follows.

R, .-valued processes of domestic forward interest rates under the domestic termi-
nal measure can be specified as; fer n(t) — 1, n(t),n(t) + 1,---, N,

t N t
O = O+ [ 97O ), Ba(9ds+ [ fu(oF<ame @8)
i=j+1
wheregp(t) := “3120%0; X denotes the transpose xfandW is aD dimensional
standard Wiener process under the domestic terminal meaguftg;is a function of
time-parametet. Similarly, R, -valued processes of foreign ones under the foreign
terminal measure are specified as

t N t
~/ ~ ~/ f
O = 10+ [ (979 D) u(9ds+ [ fi(oF et @9)
i=j+1

wheregji(t) := %?f’(‘t)(t) W' is aD dimensional standard Wiener process under the
foreign terminal measure and;{t) is a function oft.

Finally, it is assumed that the spot exchange &(t¢ and its volatility o (t) follow
R,.-valued stochastic processes as below respectively under the domestic risk neutral
measure:

t t t
Sit) = S(0)+foS(s)(rd(s)—rf(s))ds+f0S(s)&(s)EdWs+f08(s)dAs
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) = &0)+ fo t/}(&(s),s)ds+ fo to”)'(&(s),s)d\fvs (40)

whereW is aD dimensional standard Wiener process under the domestic risk neutral
measure andy(t) andr¢(t) denote domestic and foreign instantaneous spot interest
rates respectively;- denotes eRP-valued constant vector satisfyinigr|| = 1, and

&(x, 1) is a function ofx andt. Ais some martingale possibly with jumps and indepen-
dent ofW(then independent &/ and\W as well), which will be restricted to a certain
class in Section 5.2.

In the model, the volatility of the forex spot rate process is allowed to be general
time-inhomogeneous Markovian while the interest rates’ volatilities are specified as
a log-normal structure. Note that the correlations’ structure among doyfiegtign
interest rates, the spot exchange rate and its volatility can be represented thyggh ~
¥£j(t), o andai(G(t), ). Itis also noted that our methodology can be applied not only in
a Markovian setting but also in a non-Markovian framework as long as the uncertainty
is generated by Wiener processes.

Moreover, we have the following well known relations among Wiener processes
under diferent probability measures;

t
W, = V\/t—f&dN+1(5)d5
0

t
W + fo (Fria(S) — Fanea(S) + F(9FIds

wheredyn;1(t) anddsn,1(t) are volatilities of the domestic and foreign zero coupon
bonds with the maturit{f .1, that is,

Fana® = Y G Fna® = > Grilt)

ieIn.1(t) ieInsa(t)

andJj1(t) = {n(t) — 1,n(t),n(t) + 1,-- -, j}. Becauseys;(t) = 0 andyq;(t) = O for all
j such thafT; < t, the set of indiced;,(t) can be replaced b§j+1 =1{0,1,---, ]},
which does not depend dn

Using above equations, we can unify expressions of those processes tirgalendi
measures into ones under the same measure, the domestic terminal rReasure

t
frj() = ffj(0)+£ ffj(S)f’}j(S){— PRICEDY @di(S)—5'(5)0_'}d5

iEjh.l ieJANH
t
+ [ @7 e, (41)
0

(1)

t t
o(0) + f u(s)ds+ f & (6(9), 9)dWs (42)
0 0
whereu(t) is defined as
p() = G (R), 1) + & (G (), DFanra(b)-
SinceFy,1(t) can be expressed as

Pt (t, Tnsa)

Fnea(t) = S(t)m,

(43)
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we easily notice that it is a martingale under the domestic terminal measure. Conse-
quently, we can obtain its process with application éflformula to (43):

t t
Fnea) = Frnya(0) + fo 5 (S)dWs + fo F(s)dAs (44)
where Ge(t) = FN+1(t>[&fN+1(t) e + 6—(t>5]
_ -7 fej @y () —7ifaiOyai ) | ..~
= Frna® [JEJZ { 1+ ffj(t) 1+ T fdj(t) } * U(t)o‘l‘lS)

It is obviously that the process of the forex forward is too complicated to derive the
closed-form formula of option prices. Thus, approximation schemes based on an
asymptotic expansion will be applied in the following sections.

Despite this diiculty, we here emphasize the generality and importance of our
framework investigated in this work: For the stochastic volatility, a general time-
inhomogeneous Markovian process is assumed, which is not necessarily classified in
the dfine model such as in [27]; Any correlation structure can be considered; In ad-
dition, we can incorporate a jump process in our model. These settings are flexible
enough to capture the complexity of movements of the underlying asset and to cali-
brate our model to the market with ease even in the severely skewed environment as in
a recent JPY-USD market, as shown in Section 6.3.

5. Applications of the Asymptotic Expansion Ap-
proach to Currency Options

This section applies an asymptotic expansion approach in Section 3.1. to evaluation
of currency option prices in the environment described so far. Particularly, first we
present a natural application of the method according to [78], which is henceforth
called ‘a standard scheme,’ and then show another application in a sometkéyardi

way, which is called ‘a hybrid scheme,’ proposed by [80]. The latter is applicable even
when the dynamics of the spot forex contains a certain class of jumps.

5.1. A Standard Scheme

This subsection presents a standard way of application of an asymptotic expansion to
option pricing problem under the setting described in Section 4. Details are sometimes
omitted due to limitation of space and found in [78].

First the processes 6f)(t), f{7(t), ‘) (t) andF (), (t) under the domestic terminal
measureP are redefined in the framework of the asymptotic expansion method as
follows;

for j=n(t) —1,n(t),n(t) +1,---,N,

t N t
90 = f4;0)+ € fo £ Wy (9 Z g(9)ds+ e fo F(974;(9dWs  (46)
i=j+1
t
90 = £90)+¢ fo ff(?(u)yfj(u){— PI-HEESY ggﬁ>(s)—a<f>(s)5}ds
iejj+l iEjN+1
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t
+e fo £y (9dWs (47)

O = o(0)+ fo t,u(f)(s)ds+e fo tw’(a@(s),s)dws (48)
FO @O = Frna(0)+e fo [cr(;)’(s)dws (49)
where
a2 = FQL000 - L0 +9ma]
_ F(E)l(t)[ Z {_ijf(?(t)(z;fj(t) ~ —Tlf(e)(tgd,(t)} . o-(f)(t)E]
s 1+ f5(1) 1+ 7 f57(1)
and

O gf)(t)ydi(t) O " i @ynict)

d +nf90 " TN 14

Here,yq;(t), ¥¢;(t), 6(t) andi(©(t), ) in the previous section are replacedeyy;(t),

eyt(t), eo(t), andew(a©(t), t) respectively. Moreover, in this subsection itis assumed
that there is no uncertainty such as jumps except for Wiener processes we have de-
fined(i.e. A = 0). Under certain appropriate conditions @f (t) andw(c(©(t), 1), the
system of SDEs (46), (47), (48) and (49) have their unique solutiéfj?(sz), ff(?(t),

o9(t) and Ff\f)ﬂ(t). Note that the limiting processes of these processes are determinis-
tic:

f(O)(t) lim f(E)(t) = f¢;(0), f(o)(t) = lim f(e)(t) = f4;(0)

and oO(t)

lim c9(t) = o(0 +f|im ©(s)ds
imo (t) =o(0) | (s

In what follows, substitutione = 0’ into each variable will be frequently used instead
of taking its limit ase | 0. Moreover, the maturity of the optioFy,1 will be abbrevi-
ated asT.

Next, substitutingx(©® = (X@1,..., x@2N+4) = (RO (fOIN (N o),
g(X(E)) (6)1 = Fﬁfll(T) andM = 2 into the setting of Section 3.1., we have the
following expansion.

=0
Proposition 2 The asymptotic expansion 01(,33 M

given as follows:

up to e?-order is

2
€ € €
GO =AY 4+ zA<T2> + §A<T3> + 0(€?) (50)

where A'O k = 1,2,3 are obtained by formal Taylor's expansion ofE)F(t)

N+1
kg (€)
FFY +1(t)|e 0, OF substitution of %) = (Fg\lfll’{f(E)} {f(E)} 0_(5)) into (15). For de-
talls see [78].

j=0°
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Note that the first order tera{” = fOT o9(sy dWs follows normal distribution with
mean 0 and variance

]
= [ IePrds (51)

With the expansion oG(Ff) in Proposition 2, we now focus on pricing options. Here-
after, we will consider a call option with strike rake whereK. is defined for some
arbitraryy € R asK, := Fn;1(0) — ey. Then, the discounted value of the option is
given by

P01y = B UFRA(M — KT = ETe(GE +y)'] (52)

Thus, letting®d in Section 3.1. b&(x) = Py(0, T)e(x + y)*, we obtain the asymptotic
expansion of the option price with respecktas the following theorem through eval-
uation of conditional expectations.

Theorem 2 We define K:= Fy,1(0) — ey for some arbitrary y¢ R and suppose that
z>0.

Then an asymptotic expansion ofyT, K.), the value of the option with strike rate
K, up toe>-order is given as follows:

V(0;K, T)

P4(0.T) [ey f dox()dx + € f Xos(x)dlx
, )

y

2 00
5 [ ETARIAY = Xoos(0x
-y

63

0 3
g f , EPAPIAY = Xigos(9dx+ o (EPIADYIAD = Xlg0s(0)ery
+ o) (53)

whereg, s(X) is defined by

_(x= ’“‘)2) _ (54)

1
509 = ——exp|

. V27T s
The conditional expectations appearing in the above equation are eventually expressed
as linear combinations of Hermite polynomials;

EPIAZIAD =% = C, 1Z +Cy 2(X—2 - E) (55)
> DYDY
2 3
Pr A Al _ B X X 1 X 3x
E[AYIAY =X = C3,1§ + C3,2(§ - f) + Cs,s(g - g) (56)
Prr A2 AL X X 1
ETl(AT) AT =X = Cao+ C4,1§ + C4,2(§ - E)
x2  3x Xt 6x¢ 3
+C4,3(§ - g) + C4,4(§ “st g) (57)

where G 1, Cz2,C31,C32,C33,Cs0,Cs1,Ca2, Casz, and G4 are some constants. Cal-
culation procedures of these quantities are found in Appendix of [78] and those under
a more general framework are in [81].
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Remark 1 In practice, we are often interested in the accuracy of our formulas for the
prices of options whose underlying variables follow the SDEs (38), (41) and (42) with
a particular set of parameters such &g;(t), ¥+j(t), 5(0) , u(t) and (5 (t),t). From

this point of view, given some particular value ofyq;(t), y¢;(t), o(0), £9(t) and
w(E(t),1) in (46), (47) and (48) should be scaled so tlalj(t) = Ya;(t), eysj(t) =

¥1i(t), €c(0) = &(0), euD(t) = u(t) and ew(o(t),t) = &(F(t),t) for an arbitrary

t € [0, T]. For instancey(t) is defined ag(t) := @ wheree is fixed at a pre-specified
constant through our procedure of expansions. Moreover, it can be shown that the
approximated prices are unchanged whatewer(0, 1] is taken in evaluation, as long

as above conditions are met.

5.2. A Hybrid Scheme

This subsection introduces another ‘hybrid’ scheme developed by [80]. In this scheme,
the option price will be derived via Fourier inversion of the characteristic func-
tion(henceforth sometimes called ch.f.) of the log-forward forex. Since the under-
lying framework of a standard cross-currency model with libor market models we are
discussing is too complicated to obtain the closed-form solution of the ch.f., we ap-
proximate it with the asymptotic expansion. Moreover, in order to increase accuracy
of our method, a certain change of the probability measure and a transformation of
variable will be also applied, those are reasons why the method is called ‘hybrid’.
Finally, the asymptotic expansion will be used as a control variable in Monte Carlo
simulations to accelerate their convergence.

5.2.1. A Pricing Problem Revisited

In this subsection, we allow existence of the martingalpossibly with jumps and
independent of Wiener processes we have defined, which will be somewhat restricted
later.

Our objective is to evaluate the following quantity;

V(O;K,T) = P40, T)xE”[(Fr(T) - K)"]. (58)

With a log-price of the forex forwardr (t) := In(£X5)), (58) can be rewritten as:

V(O;K,T) = P4(0,T)x Fr(0)EP[(e"™ - &)7|

wherek := In(£;) denotes a log-strike rate. Here we note #iaf) = Fr(T) is a
martingale under the domestic terminal measure.

Carr and Madan [10] proposed another expression of option prices as some Fourier
inversion of the characteristic function of the logarithm of the underlying asset.

Proposition 3 Let d).Fr’(u) denote a characteristic function of (fT) under P. Then,
V(0; K, T) is given by:

V(0; K, T) = ¥(OF; F1(0),K,T) (59)
where
1 (™ i
Y(@;F, K T) = Py4(0,T)x Fﬂf e""y(u; ®)du+ (F - K)*[, (60)
y(u; @) = (Dliu(l_—l)“:)l and i:= V-1. (61)
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Then, we need to know the characteristic functionfgfT) under the domestic
terminal measur® for pricing the option. In particular, in our setting the log-forex

forward fy.1(t) = In(£22%) follows

Fr+a(t)
Fn+1(0)

whereZ(t) is an exponential-martingale continuous process given by

fnea(®) = In(

) = Z(t) + A(t) (62)

t t
20 = - [ W@ [ Faw (63

where

az(t) = Z (ij(t) - de(t))+&(t)5
jednn
D (—Tiffi(t)iffj(t) ~ —7ifai®7q;®
1+7if(t) 1+ 7ifg(t)

) + 5t

jednaa

andA(t) denotes a continuous or jump process that is an exponential-martingale inde-
pendent fron¥ (t) which is directly derived by application ofd fornula. Further, we
assume that the characteristic functionAdf) is known in closed-form. e.gA(t) is a
compound Poisson process, a variance gamma process, an inverse Gaussian process,
a CGMY model or a Evy process appearing in the Stochastic Skew Model(Carr and

Wu [11]).

5.2.2. A Transformation of the Underlying Stochastic Dfferential Equa-
tions

Let @ . (t, u) denote the characteristic function ff.1(t) underP. Then,®f ,(t,u)
can be decomposed as;

O, (t, U) = DF (L, UOR(L u) (64)

wherecbg(t, u) and(Df\(t, u) denote the characteristic functions&t) and A(t) under
P, respectively.

For evaluation of European currency options, an explicit expressid}ﬁ of(T, u)
is necessary. However, the proceXs) is too complicated to obtain the analytical
expression ofP(T, u) (see Section 6.3.2 in Brigo and Mercurio [8] or Section 25.5 in
Bjork [9] ) while that ofd),ﬁ(T, u) is assumed to be known. Then, later we will suggest
to utilize the asymptotic expansion for the approximationi)@(T, u).

In (63), Z(t), the key process for evaluation of options, has a nonzero drift. Thus,
unless we provide the approximation which has not any error in the drift term, even the
first moment(i.e. the expectation value) of that approximation will not match the tar-
get’s. Contrarily, if we can eliminate its drift term by some means, that is the objective
process will be a martingale, its first moment can be much easily kept by using a mar-
tingale process as an approximation. In this light, here we consider a certain change
of measures so that the main objective process of our expansion will be martingale.
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For a fixedu(an argument o@E(T, u)) we define a new probability measu@g on
(Q, F7) with the Radon-Nikodym derivative of

d T T
d—% :exp(—% fo lu(s)I>ds— fo ﬁu(S)dWs) (65)

where
Au() o= ((—iu) + i V2 + iu) 52(t) = h(u)a2(t)
andh(u) := (=iu) + i VU2 + iu.

Then ®5(T, u), the characteristic function &(T) under the measur, is ex-
pressed as that of another random variat(€) underQ, with a transformation of
variableh(-):

®E(T, u)

EP [exp(iuZ(T))]
.
= E [exp(ih(u) f &'Z(s)dV\IS“)}
0
= q>§u(T, h(u)) (66)

whereEQ[-] is an expectation operator undéx; W := W, + fot/l’u(s)dsis now
a Wiener process under that measubg*,‘(t, V) denotes the characteristic function of
2(t) := fot&'z(s)d\l\/g“ underQ, andh(u) := VU2 + iu.

Now, we have the martingale objective process for the approximation. Then, in the

following, we will apply the asymptotic expansion method to the underlying system
of stochastic dterential equations unde€y,.

5.2.3. Approximating the Characteristic Function by an Asymptotic Ex-
pansion

Here, to fit the framework of the asymptotic expansion, the process(é? (o, f(E) (t)
and () in (38), (41) and (42) are again redefined under the mea@umﬂth a
parametek as follows;

for j=nt) -1, n(t),nt)+1,---,N,

(00 = fy0)+e f 9 > d9ds
i=j+1
—e2h(u) f (790 (ds+ e f F()7q; (AW (67)
0 = f00)+¢ f f@(s)yﬂ(s){ PIHCEDY g<f><s>—o—<f’(s)5}ds
|eJ,+1 IEJN+1
—e%h(u) fo )y (9o (9ds+ e f F()yr; (WS (68)
and

() = o-(0)+ f t 1©(s)ds-e2h(u) f t W (9(9), 9o (g)dste f t W (9(s), W
0 0 0 (69)

20



ThenZ©(t), the analogy of(t), is given by
t
201 = € f o (dw (70)
0
where

A0 = 3 (60 - 60)0 00
jednn
In a similar manner to the standard method in the previous subsection, we can derive

the following asymptotic expansion (for details and concrete expressions of expansion
codficients, see Appendix of [80]).

Proposition 4 The asymptotic expansion ogéz 17(T) up to€? is expressed as
follows:

2
GY =GP+ 2GR + 26D + o) (71)

whereG® := FZOM) o k=1,2,3.

Oek

Remark 2 G?“m for any k is expressed as a certain (iterated) Itd integral. Since
(iterated) Itd integrals always have zero means, the martingale propert)ﬁgﬁh@d

rlenceﬁ(f)(t)) is kept at any order of this expansion. Especially, the first-order term
G9Y follows a normal distribution with meaband variances:

T+
o O g)|l?
z ._fo o9 ds (72)

Here it is assumed that > 0.

Then, letting® in Section 3.1. bad(x) = €* for givenv, the desired character-
istic function can be approximated with the following theorem (for its proof and the
concrete expressions of deients, again refer to Appendix of [80]).

Theorem 3 An asymptotic expansion d)lgg’(f)(v), the characteristic function of g
under Q, is given by

02 Q) = [1+ D" O(iv)* + D (iv)* + D (iv)* + DO (iv)® + DZ(iv)°] @o5(v) + 0(?)
(73)

whered, 5 (v) := -3,
DY, DY, D9, D2+ and DR are constants for pre-specifiedand u.
Each subscript corresponds to the order(i®}) in the equation (73).

Remark 3 Rigorously speaking, the specificatidfx) = €% does not fit in the frame-
work in Section 3.1. Actually, however, the approximate characteristic function ob-
tained by formal expansion & [exp{ivG{}] is completely the same as that given by
the inversion of approximate probability density function in our framework with letting
® be sy, the delta function with a mass at x. For more details about this equivalence,
see Section 6 of [81].

21



Finally, we provide an approximation formula for valuation of European call options

written on F(Nfll(T) by direct application of Theorem 3 to Proposition 3.

Theorem 4 LetV(0; K, T) be an approximated value of®: K, T) which denotes the
exact value of the option with maturity ¥ Ty, and strike rate K. Theriy(0; K, T)
is given by:

VO;K,T) = Y(@9;Fn,(0),K,T) (74)

where the pricing functiona¥( - ; F, K, T) is given in (60)®©(u) := ég;’(f)(eh(u)) X
@R(u), and k:= In(5%7)- Here,ci)gg’(f)(v) is defined as;

02:9(v) = |1+ DF*(iv)* + DO (iv)® + D (iv)* + DZ(iv)® + DF(V)°] x @o5(v)

where B§*©, D9, D, DR+ and DR are the cogicients in Theorem 3.

Remark 4 Note that since (i) = 0 and A is assumed to be an exponential mar-
tingale, EP[efh(] = ®PO(U) is approximated byb© (i) = ég;i'(f)(eh(—i)) X
®%(~i) = 1, which means that in our approximation the exponential-martingale prop-
erty of f,f,?l is kept.

Especially, when A= 0 the first-order approximation of the option price coin-
cides B$Z%; Fn+1(0), K, T) which is the Black-Scholes price under the case where
the stochastic interest rates and the stochastic volatility would be replaced by (their
limiting-)deterministic processes:

BS(o; F, K, T) := Pg(0, T) [FN(d,) — KN(d.)] (75)
where

In(F/K) + 02T x
_ In(E/K) £ 30T , N(X) :=f e
oNT -0 \/ZT

Moreover, in this case(A= 0), the pricing functional can be modified so that the
numerical inversion is stabilized as follows;

d,:

V(0; K, Tns1) = P(DF; Fnea(0), K, Trst) (76)

where

Y@, F,KT) = Py0,T)x

F% f e““k(y(U; <I>)—7(U;<I>Bs))du +BSEHFKT),

00

and®gg(u) is the first-order-approximated characteristic function, or equivalently that
of the (hypothetical)Gaussian underlying log-forward forex;

Dps(U) := Pox(h(W) = D_15 5(u).

Remark 5 Using these approximation formulas, we can also provide analytical ap-
proximations of Greeks of the option, sensitivities of the option price to the factors.
Note that our approximation for the underlying characteristic function does not de-
pend upon the initial value of the spot forex. Thus in particudaandT’, the first and
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second derivatives of the option value with respect(@) &spectively, can be explic-
itly approximated with ease. For simplicity here we again assunse0A ThenA and
I', the approximations ok andI respectively, are given by

A:=Pi(0.T) x {% I ek (¥(u; @) - y(u; Dgs)) du

_% Im(—iu)e_i“k (y(u; 09) — y(u; CDBs)) du} + As,

. PiO,T)
"=""50)

1 ™~ Nz
X {Zim(—lu)e K (y(u; @) - y(u; Dgs)) du
1~ . r Nz

“on Im(—lu)ze luk (V(U; @) —V(U:fbas))du} +Igs,
where Ags and I'gs are the risk sensitivities of the Black-Scholes price
BS(=:; Fn.1(0), K, T) given by
P:(0,T) ,
LN (d,).
S(0) VT

For other risk parameters such @ or Vega, sensitivities of the option price with
respect to t andr-(0) respectively, their approximations are given in easy ways such
as the dfference quotient method, which needs few seconds for calculation with our
closed-form formula and has satisfactory accuracies.

Ags = P1(0, T)N'(d;) and I'es =

5.2.4. A Characteristic-function-based Monte Carlo Simulation with an
Asymptotic Expansion

Here we will introduce a Monte Carlo (henceforth sometimes called M.C.) simulation
scheme which incorporates the analytically obtained characteristic function. Further,
with the asymptotic expansion as a control variable, the variance of this characteristic-
function-based(ch.f.-based) M.C. is reduced.

In a usual M.C. procedure, we discretize the stochasfiergintial equations (38),
(41), (42) and (62), and generatd}, M samples off{), (T) (hereafteiFy,1(0) wil
be abbreviated b (0)). Then the approximation for the option value, the discounted
average of terminal payis, is obtained by;

M
e, MK, T) = R0, ) (e~ K)*. )
M &

On the other hand, via the pricing formula (59) in Proposition 3, the option price
can be expressed with the pricing functioWdl- ; F, K, T) substituted the characteristic
function of the underlying log-process into:

V(O;K,T) = Y@, F(0).K,T)

where ¥(®; F, K, T) Fz—lﬂf ey (u; )du + (F — K)*].

Pq(0, T) x

Since®P©(u) is defined byeP ei”frﬂéh(T)] = EP[429(M] x EP [4AM)], the alternative
approximation with M.C. can be constructed,;

VRO, MK, T) = W(DFc(-; M);F(0), K, T) (78)
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M

&)EAC(U; M) = (i);,MC(U; M) X cI)/F;(U) = (% Z eiuzj]CD,'i(u) (79)
=1

where{ZJ} 1, are samples oZ(T). Here it is stressed that in this approximation
there does not exist any error caused by M.C. for the (jump or continuoush.part

Further, this ch.f.-based scheme can be much refined through the better estimation
for (I)E’(e)(u) by M.C., achieved with our asymptotic expansion of the first order. Since

®§(€)(u) is expressed a:Bg;’(e)(eh(u)), it is done by the approximation dfg;’(f)(eh(u))
with M.C.. In what follows in this section, we abbrevia@r sete = 1) for simplicity
and use the notatiogy = G2V, the first order coicient of the expansion (71).

Here, in order to avoid the influence appearing in this variance reduction procedure
caused by the variable transformatia(), we use the following relationship

EQ [N = exp(—%iuz) E®[eue], (80)

ie. DG (h(u)) = exp(-3iuZ) x dF(u). DG'(v) is the characteristic function af,
which is equivalent t@f)g;’(f)(v) in Theorem 3 if the expansion were made only up to
the first order. This equation can be easily checked with recad}ﬁﬁigv) = Qpx(V) =
exp-3VA).

Thus on the one hand, the closed-form characteristic functian efaluated at
v = h(u) is given by

o (h(u)) = exp(—%iuZ) g5 (U). (81)

But on the other hand, generating samplegofollowing N(O, X), {gj}}\":l, we can
further approximate the right hand side of (80) by

M
@Sl“Mc(u M) —exp(——luz) Z e'“g' (82)

=1

Note that because only the distributiongagfmatters here, we can simulate samples of
G = fOT o™ (9)dW following N(0, %) underP instead of those afis, not under the
measure&)), but underP as well as other random variables simulated for (79).

Using two functions in (81) and (82), which both are the first-order approximations
for d)Q“( (h(u)), define two following estimators for the option price.

VAROKT) = W(®R(h()) x ®f; F(0).K, T) (83)
A0, M; K, T) ¥ (D c (-5 M) x R F(0), K, T) (84)

Finally, usmchQ“(h(u)) as a control variable, we can construct the more sophisticated
esUmatorVCV(O M; K, T) for the option price/(0; K, T) as

VYO M K T) = VeRl(0. MK T) + (VAR(0; K. T) - VHE(0. M K. T)) (85)
= W({OZuc(- i M) +(0F(h0)) ~ Dyc( - M)} x DR FOLK.T)
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whereT = Tn,1 and

M
Y yc(U; M) = % Z g,
=1
Q 1
@g'(h(v)) = exp(—émz) X Dgx(U),
M

0 1 1 .
CDgiLch(U; M) = eXp(—EHJZ) X M - (elugl) )

j=1

Remark 6 Here we note the following fact.

V(O;K,T) - VEV(0, M; K, T)

(V(0; K. T) = Vgt (0. M K, T)) = (VA0 K. T) - VAE(0. M; K, T))

¥ ({(©F = 5 (1 M)) = (@R(h()) - D\ (h(): M)} x DR; F(0). K, T)

where @2 is the exact characteristic function of®%T). The former in the first
parentheses is the exact characteristic function 6§ and the latter is its approxi-
mation by Monte Carlo simulations. Similarly, the former in the second parentheses
is the exact one of;gthe first-order expansion for@(t), and the latter is its approx-
imation. Thus, in the case where the first and second term in the braces cancel each
other out, the error of our hybrid estimator is expected to be small.

Remark 7 We here also summarize the procedures introduced in this section.

1. Discretize the processes Qﬁ)(t), ff(?(t), o(9(t) and of Z9(t) under P and gen-

erate{Z}}!,, M samples of £/(T).

2. Also generate{gi}}\il, samples ofj; = fOT a-(zo)'(s)dWS instead of g, under P
with the same sequence of random numbers used in 1.

3. CaIcuIate(i)ZMc(u; M) with {Z1} for each u, which is the characteristic function
of Z)(T) approximated by M.C..

4. Similarly caIcuIatei)SlfMC(u; M) with {§!} for each u, the approximation for
@ (h(u))by M.C..

5. Using the estimators calculated in 3. and 4., approximb§&’ (u) by
OF (U M) + (09 (h(W) - Dy (U M))

Whered)glu(u) is the exact characteristic function of given in closed-form.

6. Inverting the estimated characteristic function in 5. via the pricing functional
Y(-;F(0),K,T) given in (60), we finally obtain the estimator for the option
price with the first-order asymptotic expansion as a control variable.

6. Numerical Examples

This section examines thdfectiveness of our methods through some numerical ex-
amples. First, the underlying framework is specified clearly. Then, the approximate
option prices by our methods are compared to their estimates by Monte Carlo simula-
tions. Moreover, our formula is applied to calibration of volatility surfaces observed in
the JPYUSD currency option market. Finally, the examples of the variance reduction
by the proposed ch.f.-based Monte Carlo simulations with the asymptotic expansion
as a control variable is shown.
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6.1. Model specification

First of all, the processes of domestic and foreign forward interest rates and of the
volatility of the spot exchange rate are specified. We supjse 4, that is the
dimension of the Wiener process is set to be four; it represents the uncertainty in
domestic and foreign interest rates, the spot exchange rate, and its volatility. Note that
in our framework correlations among all factors are allowed.

Next, we specify a volatility process, not a variance process aéinegype mod-
els, of the spot exchange rate under the domestic risk-neutral measure as follows;

aO(t) = o(0) + « f t(9 - 09(s))ds+ ew’ f t Vo (s)dWs (86)
0 0

whered and« represent the level and speed of its mean-reversion respectively and
denotes a volatility vector on the volatility. In this section the parameters are set as
follows; e = 1, 0(0) = 6 = 0.1, andk = 0.1; w = w*v wherew* = 0.1 andv denotes a

four dimensional constant vector given below.

We further suppose that initial term structures of domestic and foreign forward
interest rates are flat, and their volatilities also have flat structures and are constant
over time: that is, for allj, f4;(0) = f4, f£;(0) = fr, yaj(t) = ¥jvalier,(t) and
y1j() = ¥iyileer; (). Here,y; andy; are constant scalars, and andys denote
four dimensional constant vectors. Moreover, given a correlation mat@nong
all four factors, the constant vectoyg, vy;, o andv can be determined to satisfy
lyall = lly¢ll = lloll = IMl = L andV’V = C whereV = (yq,¥1, 0., V).

In the following, we consider threeftierent cases fofy, v, fr andy; asin Table
1. For correlations, four sets of parameters are considered: In the case “Corr.1", all the
factors are independent: In “Corr.2”, there exists only the correlation of -0.5 between
the spot exchange rate and its volatility (i€v = —0.5) while there are no correla-
tions among the others: In “Corr.3", the correlation between interest rates and the spot
exchange rate are allowed while there are no correlations among the others; the corre-
lation between domestic ones and the spot forex iSyQC_5(=_0.5) and the correlation
between foreign ones and the spot forex is ‘ﬁfE(_z —0.5). In these three cases,
A(t) = 0 for simplicity, that is there is assumed no component such as a jump whose
characteristic function is available in closed form.

Finally in “Corr.4”, correlations among most factors are consideyga; =03
between the domestic and foreign interest rapt'g&;z_O.S,)?}o_- = —0.5 between inter-

est rates and the spot forex; and@ = —0.5 between the spot forex and its volatility. In
this case alsé\(t), a jump component, will be taken into accoukft) is assumed to be
a compensated compound Poisson process with its intehaitg with random jumps
following N(m, %); 1 = 1, m = —0.05 ands = 0.05. In this case, the characteristic
function of A(t) is given by

Oh(t,u) = exp(/lt (e‘”‘“‘%Szuz - 1) —iuAt (em’r%Sz - 1))

It is well known that (both of exact and approximate)evaluation of the long-term
options is a hard task in the case with a complex structure of correlatioysr avith
a jump component, such as “Corr.3” or “Corr.4”. In “Corr.4” only the estimates by the
hybrid method will be shown.

Lastly, we make another assumption thaky-1(t) andysnw-1(t), volatilities of
the domestic and foreign interest rates applied to the period frimnthe next fixing
dateTyy), are equal to be zero for arbitrairg [t, Tn)].
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Table 1. Initial domestjforeign forward interest rates and their volatilities

fa | yg | fe | v:

case (i) | 0.05]| 0.2| 0.05| 0.2
case (i) | 0.02] 0.5]| 0.05| 0.2
case (i) | 0.05| 0.2| 0.02| 0.5

6.2. Examinations of our closed-form approximation formulas

In this subsection the accuracy of each pricing formula is examined. We show nu-
merical examples for evaluation of call options calculated by Monte Carlo (henceforth
called M.C.) simulations and by our approximation formulas of the third-order stan-
dard or hybrid method with maturities of five or ten years and witfedént parame-

ters for interest rates and correlations set in the previous subsection. Each estimator
based on the M.C. simulations is obtained by 1,000,000 trialsamitithetic variables
method

Figures 1.-4. show the results in our numerical investigations. Figure 1. reports
the diferences of estimators by formulas in a five-year maturity and Figure 3. does
in a ten-year maturity. In Figure 2. and Figure 4., they are shown in terms of implied
volatilities. Differences shown in those figures between the approximations by our
formulas and those by M.C. simulations are defined as (the approximate value by
asymptotic expansions)-(the estimate by M.C. simulations).

Generally speaking, the third-order hybrid scheme performs better than the stan-
dard scheme of the same order: The absolute levelsfigrdinces of the hybrid es-
timators are on average 0.0R296% in pricegn implied volatilities for a five-year
maturity and 0.10@.18% for a ten-year maturity; on the other hand, those of the stan-
dard estimators are on average 0/03P0% for a five-year maturity and 0.3/0738%
for a ten-year maturity. Most of fferences of the hybrid ones are less thar002%6
for five years and 0.28.4% for ten years.

Moreover, in “Corr.4” in which most of existing methods for analytical evaluation
including our standard method ardfitiult to be applied, the formula by the hybrid
method still works well.

The stability of performances of our methods, even in the complicated settings with
many correlated processes grdvith a jump process in addition, can be advantageous
in practice.

6.3. Calibration to the market

In this subsection, the third order asymptotic expansion formula by the hybrid method
which performed better in the previous experiments is applied to calibration of our
model parameters to observed volatilities with maturities of five and ten years in the
JPY/USD currency option market. Market makers in OTC currency option markets
usually provide quotes on Black-Scholes implied volatilities and the moneyness of an
option is expressed in terms of Black-Scholes delta, rather than its strike price. We use
the data of volatility surfaces on Sep 27, Oct 30 and Dec 07, 2007, after the beginning
of the subprime-loarcrash, which consist of 25 delta put, 10 delta put, at-the-money,
10 delta call, and 25 delta call with their maturities of seven and ten years (these data
are provided by Forex Division of Mizuho Corporate Bank, Ltd.). We also construct
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Table 2. Comparisons of variances of our estimators, given in terms of ratios to that of a
crude M.C.

Variance ratio

Moneyness Sy CIR-type vol. | SSM
1 ChfiCrude 1.013| 0.045
CV/Crude 0.161| 0.007

13 Chf/Crude 0.980 | 0.060

’ CV/Crude 0.112| 0.011

Variance ratio

Moneyness| 10y CIR-type vol.| SSM

1 Chf/Crude 1.014| 0.191
CV/Crude 0.207| 0.035

14 Chf/Crude 1.009| 0.171
' CV/Crude 0.158| 0.029

domesti¢gforeign forward interest rates’ term structures and volatilities using the data
downloaded from Bloomberg on swap rates and cap volatilities in each market.

Tables 3.-4. and Figures 5.-10. show the data on volatility surfaces and our cali-
brated parameters. In Table 3. and Figures 5.-7., the calibration results to the observed
volatility smile for five or ten year, separately. Additionally, Table 4. and Figures 8.-10
shows the result in the joint calibration to the volatilities for five and ten years.

Most of the absolute errors in separate calibration are less than 0.01%, in joint
calibration less than 0.3%., which seems small enough for a practical purpose.
Consequently, we conclude that our formula is flexible enough for the calibration of
observed surfaces, which is a hard task with other time-consuming methods such as
numerical ones. We may use the calibrated parameters for valuation of illiquid options
and more complicated currency derivatives.

6.4. Variance Reduction with the Asymptotic Expansion

Here the convergence of the ch.f.-based Monte Carlo estimator with the asymptotic
expansion as a control variable is compared to that of a "crude M.C.”(only with the
antithetic variables method). In this subsection, the following three estimators are
examinedVP¥°(0, M; T, K) in (77) is the standard M.C. estimator which averages

the discounted terminal paffs; Vini(0, M; T, K) in (78) is obtained via the Fourier
inversion of the characteristic function approximated by M.C.;R¥%0, M; T, K) in
(85) is the estimator with a use of the first-order asymptotic expansion as a control

variable. We apply the antithetic variables method to all estimators.

First, in Table 2., comparisons of their convergences in the same model(indicated
by “CIR-type vol.”) and the same parameters of “Corr.2” assumed in examples in the
previous subsection are shown. It lists up the ratios of variance’%hé){o, M; T,K)

and VEV(0, M; T, K) to that of VP2°'(0, M; T, K) with the same 1,000,000 trials:
Strictly speaking, we show the variances of a series of these estimators calculated
with each 1,000 paths.

The ch.f.-based M.C. seems to have almost the same variance with a crude M.C. in
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this setting. Contrarily to this, usage of our asymptotic expansion as a control variable
for the ch.f.-based M.C. reduces its variances; reducing more for OTM than for ATM
in these investigations. They are reduced around to 15% in five years and to 20% in
ten years of a crude M.C.’s.

Second, we investigate the convergence of our estimators in the case where the
analytically-obtained compone{(t) exists. In such cases, their convergences are
expected to be faster than those in the previous settings are, since we need not ap-
proximate the whole part of the characteristic function of the underlying asset but do
by M.C. only the parts without known analytical expressions of their characteristic
functions.

In particular, forA(t) we assume the following Stochastic Skew Model(SSM) in
[11], which well captures the time-varying behavior of the smiles or skews observed
in currency option markets:

Alt) = &L(t) +&r()
t t t t
= (—% fo Vi(9)ds+ fo \/VL(s)g,_dVAVS)+(—% fo Vr(9)ds+ fo \/VR(S)ngWS)

t t
Vi) = Vi(0) + &« f (6 — Vi(9)) ds+ wy f VVk(9V dWs, fork=L,R
0 0

under the domestic risk-neutral measure, whgrandér are assumed to be inde-
pendent (hencg ér = 0). Further, for the correlations among those components we
assumes, Vi < 0, £V > 0; ¢ Vr = &V = V, Vg = 0. These conditions mean that
V| (VR) correlates to the spot forex negatively(positively) and is independent of the
other processes.

This can be regarded as a double Heston-type model which consists of two inde-
pendent stochastic variance processes correlating to the spot forex in opposite direc-
tions. For simplicity, the jump components appearing in the original paper of SSM are
omitted here with little loss of generality.

Then the characteristic function 8ft) is given by

Dp(tiu) = @F (t.u) x OF (t.u),
. _ 2
mt ke —ipkexU . mt) e
o° (t,u) = [cosh— + =" sinh—=
fk( ) ( 2 Tk 2 )
x eXp kB (kk — TpkwiU)t (U2 + iu)Vk(0)
wﬁ Mk CO'[h”Tkt + Kk — lpkwgU ’

whereny = \/wﬁ(uz +1iU) + (ke — ipkwiU)? andpy = & Vi (See Ddie, Pan and Sin-
gleton [14] or Carr and Wu [11] for details).

In the investigations made here, the parameters are set as follows. For interest
rates, the parameters of case (ii) in Table 1. are used excep};iforz_o.S; for the
stochastic volatility irZ(t), o-(0) = § = w* = 0 are assumed so as to ensuf@(t) = 0,
that is the objectivé(t) of our asymptotic expansion consists only of the domestic
and foreign interest rates. Finally, for SSM(0) = 6x = 0.0075,«¢ = 0.5, wyx = 0.1
for k = L, R; the correlationo, (or) betweenV, (Vg) and the spot forex is assumed
to -0.5(0.5). Other correlation parameters among factors are all assumed to be zero.
These settings can be interpreted as SSM under a market model of interest rates.

29



In Table 2., as well as in the examination with the CIR-type volatility model, com-
parisons of the variances in this setting(indicated by “SSM”) are made. Contrary to
results in the previous case, in this case the ch.f-based M.C. estimator has the variances
of around 5% in five years and 20% in ten years of a crude M.C'’s, reduced by usage of
the analytically solved characteristic function as we expected. The scheme proposed
in Section 5.2.4. further cuts down those variances to around 1% in five years and
3% in ten years of the originals. Thus it can be said that, in such cases where the
closed characteristic function of a part of the underlying is available, incorporation of
this knowledge and our analytical approximation for another part's via the ch.f-based
M.C. scheme dramatically accelerates the convergence of M.C. simulations.

In Figures 11-12.,we present these variance-reducfieets. It is stressed that at
most 5,000 paths for five years and 50,000 paths for ten years are enough to obtain the
accuracy within 0.01.

30



Figure 1. A comparison of the accuracy of each estimator in prices for a five-year maturity.
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Figure 2. A comparison of the accuracy of each estimator in implied volatilities for a five-

year maturity.
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Figure 3. A comparison of the accuracy of each estimator in prices for a ten-year maturity.
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Figure 4. A comparison of the accuracy of each estimator in implied volatilities for a ten-

year maturity.

(1) @882 ‘Ppado] 'AQ |

(1) @seo ‘g0 ‘Ag|

(1) @se2 ‘gD ‘AQ |

(1) @se0 ‘| "4100 ‘AQ |

ssauAsuopy ssauAsuO ssauAsuoly ssauAaUOpy
Gl l S0 Sl 1 G0 ¥l } 90 vl I 90
pig - T %009} T T %009} T T %00} T T %00°€t
‘plepuels o ¥ » 1) & .
¥ %001 %001 % %00l x ch g
pig : . ® . = %00'% 1
UK %0081 %0081 %0071
PUYGAH @ %081
%0061 % %006 %0061 |
%00°G |
open ¥ o S ) % . ]
QWO x %00°02 %0002 %0091 %0G°G1
<&
%0012 %00°12 %00°L) %0091
(1) oS0 ‘P40 AQ| (1) eseo ‘gai0g *Ag| ose0 ‘7100 'AQ| () eseO ‘4100 *AQ|
ssauAauo SSaUAQUO ssaukauo|y ssauAauopy
gl I S0 Sl 3 G0 vl I 90 A I 90
T T %00'G} T T %0S°G) T T %0GC) T T %0G°CH
pig
‘piepuels o %0091 %009} ¥ ﬁ — %00°€1
. m %0591 x %05°€l
pig ¥ i1 %00°L) [} <t
PUGAH m X %00°L} %0GY1 (92 X %007}
%0081 x X
% m ] %0G°L} ) ] = %08V |
ouep %0061 o . ] %0861 )
QoW x L ° %008} 5 o %00°G |
%0002 %068} %069} %0G°GH
(11) @SB ‘Papadog *AQ | (1) @seo ‘g io) ‘AQ | (1) @se9 ‘g U0 *AQ | (1) ese9 ‘| U100 *AQ |
ssauAauop ssouAauo ssauAauoy ssouAsuoly
gl } S0 Sl 1 G0 vl I 90 vl I 90
pag T T %00'G} T T %0G°G 1 T T %00C) T T %0G°CH
‘piepuels o ) . " .
. %009} %009} ¥ %00°€! %00°€ L
pig [} %00°L | ¥ %0591 ¥ %05°€l
PUAAH @ 1 %0071 ]
%0081 %00°L) le %007 |
oled X X .
QO  x 8 %0061 n %08°L) [ 00'5H %08V}
<& <&
%0002 © %008} %0091 %00°G |




Table 3. A separate calibration to the observed implied volatilities for a five-year and ten-
year maturity.
| Date [07/0927] Type | Separatd

Sy 10put 25put ATM 25call | 1O0call
Market I.V. | 16.66%| 10.92%| 7.90%| 6.07%| 6.96%
Model I.V. | 16.66%| 10.92%| 7.90% | 6.07%| 6.95%
differences| 0.00%| -0.01%| 0.00% | 0.00% | -0.01%

10y 10put 25put ATM 25call | 10call
Market I.V. | 20.00%| 13.59%/| 10.50%| 8.34%| 9.50%
Model I.V. | 20.01%| 13.59% | 10.50%| 8.35% | 9.49%

differences| 0.01%| -0.00%| 0.00% | 0.01%/| -0.02%
| Date [071030| Type | Separatd
Sy 10put 25put ATM 25call | 10call

Market I.V. | 15.58%| 11.20%| 8.10%| 6.60%| 6.38%
Model I.V. | 15.59%| 11.20%| 8.10%| 6.60% | 6.38%
differences| 0.01%| 0.00%| 0.00% | -0.00% | 0.00%

10y 10put 25put ATM 25call | 10call
Market I.V. | 19.29%| 13.49%| 10.35%| 8.19%| 8.69%
Model I.V. | 19.29%| 13.48% | 10.34%| 8.19%| 8.69%
differences| -0.00%| -0.01%| -0.01% | 0.00% | 0.00%

| Date | 071207 | Type | Separate

5y 10put 25put ATM 25call | 10call
Market I.V. | 17.20%| 11.72%| 8.45%| 6.62%| 7.00%
Model I.V. | 17.19%| 11.71%| 8.45% | 6.62% | 7.00%
differences| -0.01%| -0.01%| 0.00% | 0.00% | 0.00%

10y 10put 25put ATM 25call | 10call
Market I.V. | 20.46%| 13.98%/| 10.65%| 8.38% | 9.26%
Model I.V. | 20.46%| 13.98%| 10.65%| 8.38%| 9.26%
differences| -0.00%| 0.00%| 0.00% | -0.00% | 0.00%
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Table 4. A joint calibration to the observed implied volatilities for a five-year and ten-year
maturity.
| Date [070927]| Type | Joint |

Sy 10put 25put | ATM 25call | 1O0call
Market I.V. | 16.66%| 10.92%| 7.90% | 6.07%| 6.96%
Model I.V. | 16.88%| 11.14%/| 7.88% | 6.07%| 6.87%
differences| 0.22%| 0.22%| -0.02% | 0.00% | -0.09%

10y 10put 25put | ATM 25call | 1O0call
Market I.V. | 20.00%| 13.59%| 10.50%| 8.34% | 9.50%
Model I.V. | 19.76%| 13.63%| 10.51%| 8.37%| 9.13%
differences| -0.24%| 0.04%| 0.01%| 0.03% | -0.37%

| Date |[071030| Type | Joint |

Sy 10put 25put | ATM 25call | 1Ocall
Market I.V. | 15.58%| 11.20%| 8.10%| 6.60% | 6.38%
Model I.V. | 15.90%| 11.11%/| 8.09% | 6.58% | 6.50%
differences| 0.32%| -0.09% | -0.01% | -0.01%| 0.12%

10y 10put 25put | ATM 25call | 1O0call
Market I.V. | 19.29%| 13.49%| 10.35%| 8.19% | 8.69%
Model I.V. | 18.99%| 13.57%| 10.35%| 8.19% | 8.69%
differences| -0.30%| 0.08% | 0.00% | 0.01%| -0.11%

| Date |071207] Type | Joint |

Sy 10put 25put | ATM 25call | 1Ocall
Market I.V. | 17.20%| 11.72%| 8.45% | 6.62% | 7.00%
Model I.V. | 17.40%| 11.77%| 8.45% | 6.68% | 6.94%
differences| 0.20%| 0.05% | -0.03% | 0.06% | -0.05%

10y 10put 25put | ATM 25call | 1O0call
Market I.V. | 20.46%| 13.98%/| 10.65%| 8.38% | 8.87%
Model I.V. | 20.25%| 13.87%| 10.68% | 8.38% | 8.87%
differences| -0.21%| -0.11%| 0.03% | 0.00% | -0.39%

36



Figure 5. A separate calibration to the observed implied volatilities for a five-year or ten-
year maturity on Sep 27, 2007.
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Figure 6. A separate calibration to the observed implied volatilities for a five-year or ten-
year maturity on Oct 30, 2007.
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Figure 7. A separate calibration to the observed implied volatilities for a five-year or ten-
year maturity on Dec 07, 2007.
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Figure 8. A joint calibration to the observed implied volatilities for a five-year and ten-year
maturity on Sep 27, 2007.
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Figure 9. A joint calibration to the observed implied volatilities for a five-year and ten-year
maturity on Oct 30, 2007.

Calibration to the observed market: 5y(joint)
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Figure 10. Ajoint calibration to the observed implied volatilities for a five-year and ten-year
maturity on Dec 07, 2007.

Calibration to the observed market: 5y(joint)
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Figure 11. Convergences of the estimators for a five-year maturity in SSM.
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Figure 12. Convergences of the estimators for a ten-year maturity in SSM.
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7. Conclusion

In this chapter, we proposed approximation formulas based on the asymptotic expan-
sion to evaluate currency options with a libor market model of domestic and foreign
interest rates and stochastic volatilities aAmgumping components of spot exchange
rates. In particular, the two filerent approaches were presented; one is the standard
approach and the other is the hybrid. Moreover, the variance reduction technique with
using the asymptotic expansion as a control variable in the ch.f.-based Mote Carlo
simulation was proposed.

We also provided several numerical examples to investigate the accuradyeand e
tiveness of our methods in approximation of option prices, calibration to the market,
and acceleration of simulations: In general, satisfactory accuracy was confirmed in
approximating option prices with maturities up to ten years; our formula successfully
reconstructed volatility surfaces observed in the recenfUBD currency option mar-
ket; variances in Monte Carlo simulations were reduced maximumly to 1% in a certain
setting by the proposed control variable and ch.f.-based simulations.

Finally, our research plans are stated as follows: Similar methods will be applied
to valuation and calibration of options with longer maturities; higher order asymptotic
expansions gand diferent types of expansions may be used; asymptotic expansion
formulas will be utilized for extended models where stochastic volatility structures of
interest rates are allowed/and a jump component is added to the volatility process
of the spot exchange rate.
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