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Abstract 

 
The paper develops two Dynamic Conditional Correlation (DCC) models, namely the 
Wishart DCC (WDCC) model and the Matrix-Exponential Conditional Correlation 
(MECC) model. The paper applies the WDCC approach to the exponential GARCH 
(EGARCH) and GJR models to propose asymmetric DCC models. We use the 
standardized multivariate t-distribution to accommodate heavy-tailed errors. The paper 
presents an empirical example using the trivariate data of the Nikkei 225, Hang Seng 
and Straits Times Indices for estimating and forecasting the WDCC-EGARCH and 
WDCC-GJR models, and compares the performance with the asymmetric BEKK model. 
The empirical results show that AIC and BIC favour the WDCC-EGARCH model to the 
WDCC-GJR and asymmetric BEKK models. Moreover, the empirical results indicate 
that the WDCC-EGARCH-t model produces reasonable VaR threshold forecasts, which 
are very close to the nominal 1% to 3% values.  
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1  Introduction 
 
The class of multivariate Generalized Autoregressive Conditional Heteroskedasticity 
(GARCH) models has been used to model the co-movements of volatilities in financial 
assets. The various model specifications can be categorized as follows: (i) diagonal 
GARCH model of Bollerslev, Engle and Wooldridge (1998) and Ding and Engle (2001); 
(ii) BEKK (Baba, Engle, Kraft and Kroner) model of Engle and Kroner (1995), which 
models the conditional covariances directly; (iii) constant conditional correlation (CCC) 
model of Bollerslev (1990), VARMA-GARCH model of Ling and McAleer (2003), and 
VARMA-AGARCH model of McAleer, Hoti and Chan (2007); (iv) Engle’s (2002) 
dynamic conditional correlation (DCC) model, Tse and Tsui’s (2002) varying 
conditional correlation (VCC) model, and Bauwens, Laurent and Rombouts’s (2006) 
generalized DCC model, and McAleer et al.’s (2008) Generalized Autoregressive 
conditional correlation (GARCC) model, which relax the assumption of constant 
conditional correlations and model the dynamic conditional correlations and 
covariances; (v) generalized orthogonal GARCH model of van der Weide (2002); and 
(vi) the matrix-exponential GARCH model of Kawakatsu (2006). For further details of 
these models, see the review papers of McAleer (2005) and Bauwens, Laurent and 
Rombouts (2006).  
 
For multivariate GARCH models, the primary concerns are the positive-definiteness of 
the conditional covariance matrices and the large numbers of parameters. Regarding the 
latter issue, the number of parameters increases with the square of the dimension. One 
of the primary advantages of the DCC, VCC and GARCC models is that they reduce 
drastically the number of parameters in the time-varying structures of the conditional 
correlation and covariance matrices. 
 
In the framework of univariate models, the asymmetric GARCH approach is typically 
modelled by using either the exponential GARCH (EGARCH) model of Nelson (1991) 
or the GJR (alternatively, the threshold GARCH) model of Glosten, Jagannathan and 
Runkle (1992), whereby positive and negative shocks or equal magnitude have different 
effects on conditional volatility. The GJR model uses a threshold indicator function to 
describe the asymmetric effects. On the other hand, one of the appealing features of the 
EGARCH model is that it is a discrete time approximation to the continuous time 
asymmetric stochastic volatility model, as shown in Nelson (1990). Although Deb 
(1996) showed that the absolute value function in the EGARCH model is known to lead 
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to bias in finite samples, the problem can be avoided by either of the following two 
approaches: (i) approximate the absolute value function by the rectangular hyperbola 
rotated counterclockwise by 45 degrees; or (ii) employ two step estimation for the 
conditional mean and conditional variance components (see Hentschel (1995) for 
further details). 
 
For multivariate models, Kroner and Ng (1998) proposed the asymmetric BEKK model, 
while McAleer, Hoti and Chan (2009) suggested the asymmetric VARMA-GARCH (or 
VARMA-AGARCH) model as a multivariate extension of the GJR model. Both of these 
models are multivariate generalizations of the univariate GJR model as they are based 
on threshold effects. Although the former is very flexible due to the BEKK specification, 
it suffers from the traditional large number of parameters associated with the BEKK 
specification. The latter model is an extension of the VARMA-GARCH model, and 
hence assumes constant conditional correlations. Recently, Kawakatsu (2006) suggested 
the matrix-exponential GARCH model, which is a multivariate extension of the 
EGARCH model. 
 
The purpose of this paper is to develop alternative specifications within the DCC class. 
Two approaches will be developed, with one based on the Wishart distribution and the 
other on the matrix-exponential model of Chiu, Leonard and Tsui (1996). We employ 
the new DCC specification to propose two asymmetric DCC GARCH models, which 
are based on the EGARCH and GJR models, respectively. For the heavy-tails associated 
with financial returns, the standardized multivariate t-distribution is used. As a 
benchmark, we will use the asymmetric BEKK model, and also discuss the 
matrix-exponential GARCH model. 
 
In the remainder of the paper, Section 2 develops the two new DCC models. Section 3 
applies the theoretical results to suggest the asymmetric DCC class based on the GJR 
and EGARCH models. Section 4 presents an empirical example using the trivariate data 
of the Nikkei 225 Index, Hang Seng Index and Straits Times Index, and examines 
estimation of the parameters and forecasts of the VaR thresholds, based on the new class 
of models. 
 
2  Alternative DCC Models 
 
2.1  Background 



 5

 

Let the returns on ( )2m ≥  financial assets be given by 

 
 t t ty μ ε= + , (1) 
 

where ( )1 , ,t t mty y y ′= K , ( )1 , ,t t mtε ε ε ′= K ,  ( ) ( )1 1, , |t t mt t tE yμ μ μ −
′= = ℑK , and 

tℑ  is the past information available at time t . It is assumed that 
 

 

( )

,

| iid 0, ,

t t t

t t t

Dε η

η

=

Γ Γ

 (2) 

 

where tΓ  denotes the time-varying conditional correlation matrix, { } 1/ 2
diagt tD h= ⎡ ⎤⎣ ⎦ , 

( )1 , ,t t mth h h ′= K , { }diag x  for any vector x  denotes a diagonal matrix with x  along 

the diagonal, and ith  is the conditional variance for each asset.  
 
It then follows that the conditional covariance matrix is given by 
 

 ( ) ( )1 1| |t t t t t t t t tQ V y E D Dε ε− −′= ℑ = ℑ = Γ . (3) 

 
While some authors, including Bollerslev, Engle and Wooldridge (1988) and Engle and 
Kroner (1995), have developed multivariate GARCH specifications in order to model 

tQ , Engle (2002) concentrated on modelling tΓ , the matrix of dynamic conditional 
correlations. 
 
By using the Hadamard product, Ding and Engle (2001) provided a new representation 
of the diagonal GARCH model that was developed by Bollerslev, Engle and Wooldridge 
(1988). The simplest diagonal GARCH model is given as follows: 
 
 1 1 1 2 1t t t tQ Qε ε− − −′= Ω+Ψ +Ψo o , (4) 
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where Ω , 1Ψ  and 2Ψ  are assumed to be positive semi-definite matrices, and ‘ o ’ 
denotes the Hadamard product of two identically-sized matrices or vectors, which is 
computed simply by element-by-element multiplication. Ding and Engle (2001) argued 
that, if any one of Ω , 1Ψ  and 2Ψ  is positive definite, then tQ  will also be positive 
definite.  
 
On the other hand, the CCC and DCC models assume that the conditional variance of 
each asset follows the GARCH process, that is: 
 
 1 1 1t t t th hω α ε ε β− − −= + +o o o , (5) 
 

where ( )1, , mω ω ω ′= K , ( )1, , mα α α ′= K , and ( )1, , mβ β β ′= K . If we specify tΓ = Γ  

for all t , then we have the CCC model, as proposed by Bollerslev (1990). Engle (2002) 
proposed the specification of  tΓ  as follows: 
 

 1 1
t t t tC PC− −Γ = , (6) 

 

 ( ){ } 1/ 2
diag vecdt tC P⎡ ⎤= ⎣ ⎦  (7) 

 

 ( )1 2 1 1 1 2 1t m m t t tP P Pι ι η η− − −′ ′= −Θ −Θ +Θ +Θo o o , (8) 

 
where  mι  is the 1m×  unit vector, P  is a positive definite matrix, and ‘vecd’ 
creates a vector by stacking the diagonal elements of a matrix. As in the diagonal 

GARCH model, one of 1Θ , 2Θ  and ( )1 2m mι ι′ −Θ −Θ  is assumed to be positive 

definite, and the remaining two can be positive definite or semi-definite.  
 
Engle (2002) suggested a simpler model than in equation (8) that is based on scalar 
parameters, as follows:  
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 ( )1 2 1 1 1 2 11t t t tP P Pθ θ θη η θ− − −′= − − + + , (9) 

 
where 1 0θ > , 2 0θ >  and 1 2 1θ θ+ < .  
 
2.2  Wishart Approach 
 
In order to present the basic idea of the approach to be adopted in this paper, we will 

begin with a Wishart variate, ( ),mW k PΞ , where P may be the constant part of the 

time-varying correlation matrix, as given in equation (8). Now consider the following 
process: 
 

 / 2 1 / 2
1 1

1 d d d
t t t tP P P

k
−

− −= Ξ , (10) 

 

where 1k >  and 1d < . The last condition is required for stationarity. Taking the 

log-determinant of both sides of equation (10) gives 
 

 ( )1log log log 1 logt t tP k d P d−= − + + − Ξ , 

 

so that log tP  follows an AR(1) process. Clearly, log tP  is the weighted average of 

1log tP−  and 1log tk − Ξ . As the mean of tΞ  is kP , this representation provides the 

motivation for the approach to be adopted in the paper.  
 
It should be noted that the model in equation (10) is different from the Wishart Inverse 
Covariance (WIC) model of Asai and McAleer (2009) in the sense that 1 d−  is the 
exponent of tΞ , so that tP  in equation (10) does not have the Wishart distribution, 

unlike the WIC model. However, the weighted average of log tP  arises from the 

presence of 1 d− . 
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Based on the above structure, we now propose a new DCC model. If tη  has a normal 

distribution, then ( )~ 1,t t t m tP W Pηη′ . However, as t tηη′  is positive semi-definite, it 

cannot be a proxy for 1t+Ξ . Instead, ( )1t t k Pηη′ + −  is used in order to derive 

 

 ( ) 1/ 2 / 2
1 1 1 1

1 1
dd d

t t t t tP P k P P
k

η η
−

− − − −′= + −⎡ ⎤⎣ ⎦ , (11) 

 

where 1k >  and 1d < . The number of parameters for the correlation structure is 

given by ( )0.5 1 2m m − + , which is the same as for the scalar DCC model. In order to 

distinguish this model from Engle’s DCC, we will refer to it as the Wishart DCC 
(WDCC) model. 
 
2.3  Matrix Exponential Approach 
 
By using the matrix exponential operator, we can also consider alternative specifications. 
For any m m×  matrix A , the matrix exponential transformation is defined by the 
following power series expansion: 
 

0
Exp( ) (1/ !) ,S

s
A s A

∞

=

=∑  

 
where 0A  reduces to the m m×  identity matrix and sA  denotes the standard matrix 
multiplication of A  s  times. Thus, in general, the elements of Exp( )A  do not 
typically exponentiate the elements of A . Note that the matrix exponential is not 
element-by-element exponentiation of each of its element, even for a diagonal matrix.  
 
For convenience, we use log(.) and exp(.) as the element-by-element logarithmic and 
exponential operators, respectively. For any symmetric matrix A, Exp(A) is always 
positive definite. This property is attractive for modelling covariance and correlation 
structures (for further details, see Chiu, Leonard and Tsui (1996), Kawakatsu (2006), 
and Asai, McAleer and Yu (2006)). 
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Instead of the DCC process in equation (8), we suggest a new specification, as follows: 
 

 
( )

1 1 1

Exp ,

,

t t

t t t t

P S

S S A B Sη η− − −

=

′= + +o o

 (12) 

 
where S, A and B are m m×  symmetric matrices of parameters. If 0S  is symmetric, 
then the tS  are symmetric for all t, so that the tP  are positive definite, by definition. 
As in the case of the DCC model of Engle (2002), we suggest a scalar DCC model, 
which is based on the following specification: 
 
 1 1 1,t t t tS S a bSη η− − −′= + +  (13) 
 
where S  is an m m×  symmetric matrix of parameters, and a and b are scalar 
parameters. For convenience, we will refer to this model as the Matrix-Exponential 
Conditional Correlation (MECC) model. 
 
We also propose an intermediate model as follows: 
 

1 1 1t t t tS S A bSη η− − −′= + +o , 
 
as the simple DCC model of Engle (2002) has been criticized because of the overly 
strong assumption that all the conditional correlations follow the same process. 
 
Regarding the stationarity conditions, we need to check each element of tS . For the 
(i,j)-element of tS , we have 
 

 
, , 1 , 1 , 1

, 1 , 1

ij t ij ij i t j t ij ij t

ij ij ij t ij t

s s a b s

s b s v

η η− − −

∗
− −

= + +

= + +
 

 

where ( ){ }, 1 , 1 , 1 , 1 , 1ij t ij i t j t i t j tv a Eη η η η− − − − −= −  and ( ), 1 , 1ij ij ij i t j ts s a E η η∗
− −= + . Hence, ,ij tv  

has mean zero and finite variance if the fourth moment of tη  exists. In this case, ,ij ts  
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follows an AR(1) process, so that the stationarity condition is given by 1ijb < , which 

must be satisfied for any i and j. For the scalar and intermediate DCC-EGARCH models, 

the stationarity condition is 1b < . 

 
The merit of this approach is that positive-definiteness is automatically obtained by the 
matrix-exponential transformation. On the other hand, a drawback of the 
matrix-exponential operator is that it is not easy to interpret the connection between the 
(i,j)-element of Exp(A) and the (i,j)-element of A itself (see also the discussion in the 
following section). For this reason, we will emphasize the DCC specifications based on 
the Wishart distribution in the reminder of the paper. 
 
3  WDCC-EGARCH and WDCC-GJR Models 
 
Using the DCC structure and the Wishart approach, we propose two new families of 
DCC models, namely the WDCC-EGARCH and WDCC-GJR models, that are based on 
equations (6), (7) and (11).  
 
For the WDCC-EGARCH model, we assume that the conditional variance of each asset 
follows the EGARCH process, namely: 
 

 1 1 1log logt t t th hκ φ γ η δ η− − −= + + +o o o , (14) 

 

where ( )1, , mκ κ κ ′= K , ( )1, , mφ φ φ ′= K , ( )1, , mγ γ γ ′= K , and ( )1, , mδ δ δ ′= K . 

Depending on the values of the parameters, the EGARCH model can capture 
asymmetry and leverage, whereby negative shocks increase volatility and positive 
shocks decrease volatility.  
 
In the WDCC-GJR model, the conditional variance of each asset follows the GJR 
process, namely: 
 

 { }( )1 1 1 1 1t m t t t t th d d hω α ι α ε ε β+ − − −
− − − − −= + − + +o o o o o , (15) 
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where ( )1 , , mα α α+ + + ′= K  and ( )1 , , mα α α− − − ′= K . The vector ( )1 , ,t t mtd d d− − − ′= K  

denotes a set of indicator variables, and itd −  takes the value of one if 0itε < , and zero 

otherwise.  
 
We now consider estimation of the WDCC-EGARCH and WDCC-GJR models. 
Assuming normality of the conditional distribution of the standardized residuals, we can 
estimate the parameters by the maximum likelihood (ML) method for the DCC class of 
models. The conditional log-likelihood function is given by 

 

 

( )

1

1 1 1

,

1 1log 2 log log .
2 2 2

T

t
i

t t t t t t t t

L l

ml D D Dπ ε ε

=

− − −

=

′= − − − Γ − Γ

∑
 

 
If the assumption of normality does not hold for the standardized residuals, the 
procedure is defined as the quasi-maximum likelihood estimator (QMLE). For more 
efficient estimators using adaptive methods, see Ling and McAleer (2003).  

 
As an alternative to the Gaussian assumption, we consider the standardized multivariate 
t-distribution for the conditional distribution. In this case, the contribution to the 
log-likelihood function from observation t is 
 

 ( )
1 1 11, log log log 1

2 2 2
t t t t t

t t t
D Dml c m D ε ενν
ν

− − −′⎛ ⎞Γ+
= − − Γ − +⎜ ⎟−⎝ ⎠

, 

 
where 
 

 ( ) ( ), log log log log 2
2 2 2 2

m m mc m ν νν π ν+⎛ ⎞ ⎛ ⎞= Γ − Γ − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 
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( )xΓ  is the complete gamma function, and ν  is the degrees of freedom parameter. 

For the specification, tε  has the multivariate t-distribution with mean zero and 

variance tQ . If we consider a portfolio ,p t twε ε′=  with weight vector w, ,p tε  has the 

t-distribution with mean zero and variance tw Q w′ . 
 
For convenience we denote WDCC-EGARCH-n and WDCC-EGARCH-t corresponding 
to the normal distribution and t-distributions, respectively. 
 
Recently, Kawakatsu (2006) developed the matrix exponential GARCH model, while 
Asai, McAleer and Yu (2006) proposed the matrix exponential SV model. Compared 
with the DCC-EGARCH model that is proposed here, the other two approaches have 
certain drawbacks. First, these two models are based on the unconditional (or 
unstandardized) shocks, tε , instead of the standardized shocks, tη , in order to describe 
the leverage and size effects. In this sense, the matrix exponential GARCH model is not 
a direct extension of the EGARCH model. Second, the matrix exponential GARCH and 
matrix exponential SV models suffer from having a large number of parameters, as in 
the case of the BEKK model. Although the respective authors considered alternative 
ways of reducing the numbers of parameters, they still exceed those of the scalar 
DCC-EGARCH model. Third, the interpretation of the parameters is not straightforward 
as matrix exponentiation is not element-by-element exponentiation. As explained in 
Kawakatsu (2006), it requires additional computations in order to derive the relations 
between the (i,j) element of the covariance matrix and the (k,l) element of the 
matrix-logarithmic process.  
 
It should also be noted that the matrix exponential SV model of Asai, McAleer and Yu 
(2006) should perhaps be reconsidered since it is a multivariate SV model. In this regard, 
the superiority of univariate SV models over the GARCH and EGARCH models have 
frequently been shown in the volatility literature (see, for example, the review by 
McAleer (2005)).  
 
Alternative asymmetric GARCH models are multivariate extensions of the GJR model. 
Kroner and Ng (1998) developed the asymmetric BEKK model, while McAleer, Hoti 
and Chan (2009) proposed the asymmetric VARMA-GARCH (or VARMA-AGARCH) 
model. The latter model assumes that the conditional correlations are constant. The 
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asymmetric BEKK model is given by  
 

 1 1 1 1 1t t t t t tQ KK A A BQ B C Cε ε ε ε∗ ∗
− − − − −

′′ ′ ′ ′ ′= + + + , (16) 

 
where K is the lower triangular matrix, A, B and C are square matrices, and 

( ) ( ){ }min ,0 1 2t t t tε ε ε ε∗ = = − .  

 
In addition to these models, we suggest the asymmetric diagonal GARCH model, which 
is given by 
 

 ( ) 1 1 1t t t t t tQ A C d d B Qε ε− −
− − −

′ ′= Ω+ + +o o o , (17) 

 

where the vector ( )1 , ,t t mtd d d− − − ′= K  denotes a set of indicator variables, and itd −  takes 

the value one if itε  is negative, and zero otherwise. This model is a multivariate 
extension of the GJR model Like the relation between the BEKK and diagonal GARCH 

models, diagonal specifications such that { }diagA a= , { }diagB b=  and { }diagC c=  

in (16) yield  
 

 ( ) ( ) ( )1 1 1 1 1t t t t t tQ KK aa bb Q ccε ε ε ε∗ ∗
− − − − −

′′ ′ ′ ′ ′= + + +o o o , (18) 

 
which is also a vector diagonal specification. 
 
4  Empirical Results 
 
In this section, we examine the MLE of the DCC-GARCH, DCC-EGARCH and 
DCC-GJR models for three sets of empirical data, namely the Nikkei 225 Index 
(Nikkei), Hang Seng Index (Hang Seng), and Straits Times Index (Straits Times) 
returns. The sample period for the three data series is 1/4/1988 to 7/17/2002, giving T = 

3773 observations. Returns, ity , are defined as { }, 1100 log logit i tP P −× − , where itP  is 
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the closing price on day t for stock i. We use the filtered data, it it ityε μ= − , based on 
the threshold AR(1) model. 
 
Table 1 shows the MLE for two kinds of bivariate DCC-GARCH-n models; namely the 
DCC model of Engle (2002) and the WDCC-GARCH-n model. The data sets are from 
(Nikkei, Hang Seng). The estimates for the GARCH parameters are close to each other, 
whereas the estimates of 21P  are significant and different from each other. With respect 

to the persistence of the correlation structure, 1 2
ˆ ˆθ θ+  for the original DCC model is 

0.999, while d̂  for the new DCC is lower at 0.975. The AIC and BIC criteria favour 
the new WDCC to Engle’s (2002) DCC model, implying that the WDCC model is 
competitive with the standard DCC version. The important point to be made is that the 
DCC specification of Engle (2002) is not the only approach for describing dynamic 
conditional correlations, and is certainly not the best approach empirically. 
 
Table 2 presents the ML estimates for the trivariate WDCC-GARCH-n model. 
Compared with the results in Table 1, the estimate of d becomes smaller, while the 
estimate of k becomes larger. This is quite reasonable as the common components of 
trivariate variables are smaller than those of their bivariate counterparts.  
 
Table 3 presents the ML results for the trivariate WDCC-GARCH-t model. The estimate 
of ν  is 6.59, showing that the conditional distribution is far from a normal distribution. 
The likelihood ratio test rejects the null hypothesis of normality. Hence, we will employ 
the multivariate standardized t-distribution in the remainder of the paper. The estimates 
of correlations in P for Table 3 are smaller than those in Table2. 
 

Table 4 gives the results for the trivariate WDCC-GJR-t model. The estimates of iα
+  

are significantly different from those of iα
− , indicating that there are asymmetric effects 

in the conditional volatilities. The AIC and BIC criteria also favour the WDCC-GJR-t 
model relative to the WDCC-GARCH-t model. The estimates of P, d and k are close to 
those of the WDCC-GARCH model, implying that the inclusion of asymmetric effects 
alters slightly the dynamic conditional correlations.  
 
Table 5 gives the ML estimates of the trivariate WDCC-EGARCH-t model. The 
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estimates of iδ  are positive and significant, while those of iγ  are negative and 
significant, which are typical for EGARCH specifications. The AIC and BIC criteria for 
the WDCC-EGARCH-t model are smaller than those of the WDCC-GARCH-t model, 
while the estimates of P, d and k are close to those of the WDCC-GARCH-t and 
WDCC-GJR-t models. For the asymmetric models, the AIC and BIC criteria both 
favour the WDCC-EGARCH-t specification.  
 
In order to compare the new asymmetric WDCC models, we also estimate the 
asymmetric BEKK model. We use the standardized multivariate t-distribution for the 
distribution of tη . In order to reduce the number of parameters, we use diagonal 
specifications for A, B and C, and refer to the asymmetric diagonal BEKK-t model as 
AD-BEKK-t. It should be noted that the scalar BEKK models are not analyzed, as 
Engle (2002) showed the superiority of the DCC-GARCH model over the scalar BEKK 
model on the basis of Monte Carlo simulations. 
 
The numbers of parameters for the DCC-GJR-t, DCC-EGARCH-t and AD-BEKK-t are 

( )2.5 7 3m m+ + , ( )2.5 7 3m m+ +  and ( )2.5 7 1m m+ + , respectively. For the number 

of parameters, the difference among the three models is 2. 
 
Table 6 shows the ML estimates for the AD-BEKK-t model. The estimate of ν  is 6.79, 
showing the rejection of the normality assumption. The estimates of iic  are significant, 
indicating that the negative shock has a larger effect than a positive shock of similar 
magnitude. The AIC and BIC criteria for the AD-BEKK-t model are close to those of 
the WDCC-GJR-t model. Among the WDCC-GJR-t, WDCC-EGARCH-t and 
AD-BEKK-t models, the AIC and BIC criteria select the WDCC-EGARCH-t as the best 
empirically.  
 
Next, we compare the out-of-sample forecasts for the Value-at-Risk (VaR) for the 
WDCC-EGARCH-t and AD-BEKK-t models. Fixing the sample size in estimation to be 
500, we re-estimate the model and forecast one-step-ahead VaR thresholds for the last 
500 observations, where the 1 percent VaR threshold is given by 

( )| 1 0.01 , | 1
ˆˆ s

t t p t tt hμ ν− −+ × , where | 1ˆt tμ −  and | 1t̂ th −  are the one-step-ahead predictions of 

the mean and variance, respectively, and ( )0.01
st ν  is the 1 percentile of the standardized 
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t-distribution with degrees-of-freedom given by ν . Note that | 1ˆt tμ −  is the same for the 

two models, and that this setting makes the effects of each volatility forecast more clear. 
Table 7 gives the failure percentages for the VaR forecasts based on the 
WDCC-EGARCH-t and AD-BEKK-t models with respect to the true values for 1%-3%. 
The tail behaviour of the two models is quite similar, although the WDCC-EGARCH-t 
produces slightly more conservative results. 
 
5  Concluding Remarks 
 
In this paper, we proposed alternative Dynamic Conditional Correlation (DCC) models 
based on two approaches, namely the Wishart distribution and the matrix-exponential 
approaches. For a clear interpretation of the models, we chose the Wishart DCC 
approach in order to develop the new WDCC-EGARCH and WDCC-GJR models.  
 
The standardized multivariate t-distribution was used to capture the well known 
heavy-tails associated with financial assets. An empirical example for the trivariate data 
of the Nikkei 225, Hang Seng and Straits Times Index returns showed that AIC and BIC 
favoured the WDCC-EGARCH-t model to the WDCC-GJR-t and asymmetric BEKK-t 
models. Moreover, the empirical results indicated that the WDCC-EGARCH-t model 
produced reasonable VaR threshold forecasts, which are very close to the nominal 1% to 
3% values.
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Table 1: Estimates of Two DCC-GARCH-n Models 

 
Engle’s (2002) DCC Model New DCC Model  

Parameters Nikkei Hang Seng Parameters Nikkei Hang Seng 

iω  0.0199 
(0.0039) 

0.0662 
(0.0093) 

iω  0.0197 
(0.0038) 

0.0632 
(0.0090) 

iα  0.0832 
(0.0078) 

0.1119 
(0.0096) 

iα  0.0845 
(0.0079) 

0.1116 
(0.0096) 

iβ  0.9111 
(0.0080) 

0.8684 
(0.0100) 

iβ  0.9094 
(0.0081) 

0.8694 
(0.0099) 

21P  0.5561 
(0.1276) 

 21P  0.2741 
(0.0495) 

 

1θ  0.0095 
(0.0022) 

 k  1.1421 
(0.0773) 

 

2θ  0.9898 
(0.0026) 

 d  0.9753 
(0.0151) 

 

LogLike -12704.6  LogLike -12703.7  
AIC 25427.2  AIC 25425.4  
BIC 25483.3  BIC 25481.5  

 
Notes: Standard errors are in parentheses.  
The structure of the DCC model of Engle (2002) is given in equation (9),  
and the DCC model of this paper is given in equation (11). 
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Table 2: Estimates of Trivariate DCC-GARCH-n Model 

 
Parameters Nikkei Hang Seng Straits Times 

iω  0.0209 
(0.0039) 

0.0656 
(0.0089) 

0.0785 
(0.0082) 

iα  0.0844 
(0.0078) 

0.0971 
(0.0083) 

0.1443 
(0.0114) 

iβ  0.9091 
(0.0080) 

0.8782 
(0.0094) 

0.81288 

2iP  0.3247 
(0.0212) 

1  

3iP  0.3010 
(0.0212) 

0.4644 
(0.0188) 

1 

k  1.6682 
(0.1839) 

  

d  0.9036 
(0.0210) 

  

LogLike -17855.0   
AIC 35738.1   
BIC 35825.3   

 
Notes: Standard errors are in parentheses.  
The structure of the DCC model in this paper is given in 
equation (11). 
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Table 3: Estimates of Trivariate DCC-GARCH-t Model 

 
Parameters Nikkei Hang Seng Straits Times

iω  0.0171 
(0.0040) 

0.0495 
(0.0093) 

0.0614 
(0.0098) 

iα  0.0783 
(0.0084) 

0.0706 
(0.0085) 

0.1323 
(0.0141) 

iβ  0.9157 
(0.0085) 

0.9033 
(0.0110) 

0.8189 
(0.0177) 

2iP  0.2659 
(0.0255) 

1  

3iP  0.2207 
(0.0261) 

0.3671 
(0.0251) 

1 

k  1.6035 
(0.1735) 

  

d  0.8951 
(0.0212) 

  

ν  6.5881 
(0.3557) 

  

LogLike -17352.1   
AIC 34734.3   
BIC 34827.8   

 
Notes: Standard errors are in parentheses.  
The structure of the DCC model in this paper is given 
in equation (11). 
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Table 4: Estimates of Trivariate DCC-GJR-t Model 

 
Parameters Nikkei Hang Seng Straits Times

iω  0.0215 
(0.0043) 

0.0633 
(0.0105) 

0.0650 
(0.0099) 

iα
+  

0.0400 
(0.0099) 

0.0401 
(0.0082) 

0.0958 
(0.0144) 

iα
−  

0.1359 
(0.0142) 

0.1023 
(0.0128) 

0.1749 
(0.0195) 

iβ  0.9057 
(0.0103) 

0.8956 
(0.0111) 

0.8131 
(0.0178) 

2iP  0.2700 
(0.0250) 

1  

3iP  0.2246 
(0.0256) 

0.3686 
(0.0248) 

1 

k  1.6251 
(0.1739) 

  

d  0.8860 
(0.0222) 

  

ν  6.9074 
(0.3863) 

  

LogLike -17296.5   
AIC 34629.0   
BIC 34741.2   

 
Notes: Standard errors are in parentheses.  
The structure of the DCC model in this paper is given 
in equation (11).  
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Table 5: Estimates of Trivariate DCC-EGARCH-t Model 

 
Parameters Nikkei Hang Seng Straits Times

iκ  -0.0828 
(0.0102) 

-0.0854 
(0.0093) 

-0.1641 
(0.0147) 

iφ  0.9839 
(0.0026) 

0.9771 
(0.0040) 

0.9594 
(0.0068) 

iγ  -0.0820 
(0.0086) 

-0.0415 
(0.0085) 

-0.0413 
(0.0098) 

iδ  0.1234 
(0.0144) 

0.1342 
(0.0137) 

0.2226 
(0.0202) 

2iP  0.2662 
(0.0264) 

1  

3iP  0.2191 
(0.0269) 

0.3614 
(0.0261) 

1 

k  1.5404 
(0.1624) 

  

d  0.90125 
(0.0211) 

  

ν  6.8287 
(0.3915) 

  

LogLike -17281.0   
AIC 34598.0   
BIC 34710.2   

 
Notes: Standard errors are in parentheses.  
The structure of the DCC model in this paper is given 
in equation (11).  
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Table 6: Estimates of Trivariate AD-BEKK-t Model 

 
Parameters Nikkei Hang Seng Straits Times

1ik  0.1305 
(0.0128) 

0 0 

2ik  0.0380 
(0.0173) 

0.0536 
(0.0193) 

0 

3ik  0.2180 
(0.0198) 

0.0594 
(0.0136) 

0.2200 
(0.0150) 

iia  0.0701 
(0.0219) 

0.1986 
(0.0163) 

0.2980 
(0.0186) 

iib  0.9655 
(0.0034) 

0.9549 
(0.0046) 

0.9135 
(0.0076) 

iic  0.3468 
(0.0189) 

0.2236 
(0.0270) 

0.2734 
(0.0294) 

ν  6.7878 
(0.3901) 

  

LogLike -17303.2   
AIC 34638.4   
BIC 34738.1   

 
Note: Standard errors are in parentheses. 
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Table 7: VaR Forecasting Performance 

 
Model 1% 2% 3% 
WDCC-EGARCH-t 0.008 0.018 0.030
AD- BEKK-t 0.012 0.022 0.030

 
Note: The entries show the % violations of the  
VaR thresholds. 

 


