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Abstract. In this paper we document that realized variation measures constructed from high-

frequency returns reveal a large degree of volatility risk in stock and index returns, where we

characterize volatility risk by the extent to which forecasting errors in realized volatility are

substantive. Even though returns standardized by ex post quadratic variation measures are

nearly gaussian, this unpredictability brings considerably more uncertainty to the empirically

relevant ex ante distribution of returns. Carefully modeling this volatility risk is fundamental.

We propose a dually asymmetric realized volatility (DARV) model, which incorporates the

important fact that realized volatility series are systematically more volatile in high volatility

periods. Returns in this framework display time varying volatility, skewness and kurtosis. We

provide a detailed account of the empirical advantages of the model using data on the S&P 500

index and eight other indexes and stocks.

Keywords: Realized volatility, volatility of volatility, volatility risk, value-at-risk, forecasting,

conditional heteroskedasticity.

1. Introduction

The availability of high frequency stock market data and the subsequent introduction of realized
volatility measures represented a substantial step forward in the accuracy with which economet-
ric models of volatility could be evaluated (Andersen and Bollerslev, 1998) and allowed for the
development of new and more precise parametric models of time varying volatility. Several re-
searchers have looked into the properties of ex post volatility measures derived from high frequency
data and developed time series models that invariably outperform latent variable models of the
GARCH (Generalized Autoregressive Conditional Heteroskedasticity) or stochastic volatility fam-
ily of models in forecasting volatility (Andersen et al., 2003), to the point that the comparison has
been dropped altogether in recent papers.

Despite the successes of predictive models of realized volatility we depart from the recent
literature in that turn our focus to the unpredictable component of realized volatility. In this
work we set out to argue that a large and time varying realized volatility risk (understood as
the time series volatility of realized volatility) is an essential stylized fact of index and stock
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2 REALIZED VOLATILITY RISK

returns that should be thoughtfully incorporated into econometric models of volatility.1 Our main
contribution is twofold. First, we provide extensive empirical and theoretical motivation showing
how the stochastic structure of the innovations in volatility have fundamental implications for
applications of realized volatility models. Second, we go beyond extensions of standard realized
volatility models to account for conditional heteroskedasticity (e.g., Corsi et al., 2008) and bring
to the forefront of our modeling approach the fact that realized volatility series exhibit a very
substantial degree of (time-varying) volatility themselves. As we shall see this emphasis brings
an important modeling insight for our analysis: realized volatility series are systematically more
volatile in high volatility periods.

The presence of high and time-varying volatility risk brings substantially more uncertainty to
the tails of the distribution of asset returns. In a standard stochastic volatility setting where return
innovations (conditional on the volatility) follow a gaussian distribution the degree of volatility risk
is the main determinant of the tail heaviness of the ex ante distribution of returns. Even though
asset returns standardized by ex post quadratic variation measures are nearly gaussian, returns
standardized by fitted or predicted values of time series volatility models are far from normal.
Given the uncertainty in volatility this is expected and should not be seen as evidence against
those models; explicitly modeling the higher moment is necessary. If future realized volatility
is relatively unpredictable then a focus on predictive models will be insufficient for meaningfully
modeling the tails of the return distribution, which in many cases (e.g., in risk management
applications) is the main objective of the econometrician.

The assumptions we make about this volatility risk are accordingly consequential. Our paper is
a first step in trying to fully exploit the fact that the realized volatility framework allows not only
for significant advances in modeling the conditional volatility of asset returns, but also the higher
moments. When realized volatility is available we do not have to rely only on rare realizations
on return data to identify the extremes of the return distribution: naturally, days of very high
volatility are far more frequent than days of very high volatility and large return shocks. Likewise,
a model with time-varying return kurtosis (an implication of time varying volatility risk, for which
there is conclusive evidence in our data set) which would be very hard to identify from return data
only can be easily estimated in a realized volatility framework.

A related point that we will make in arguing for a stronger focus on volatility risk is that
forecasting improvements brought by more sophisticated predictive realized volatility models can
be swamped by the size of the volatility of realized volatility. In a representative example, we
calculate that even an exponentially weighted moving average (EWMA) of realized volatility de-
livers predictions which are very close to more sophisticated specifications; it is crucial to account
for the fact that volatility series are highly persistent, but the way this is done may have little
economic relevance. We thus take the view that even though point forecasts are a very useful tool
for evaluating and ranking volatility models (extensive comparisons of forecasting performance
like the one performed by Hansen and Lunde (2005) are common in the literature) these statistics
do not necessarily convey much information about the relative economic importance of different
specifications (see Fleming et al., 2001, 2003, Chan et al., 2006, for an empirical analysis of the
economic value of volatility models).

1In this paper we privilege the term “volatility risk” used commonly in the asset pricing literature over the more
awkward “volatility of volatility” denomination, which is sometimes confused with the volatility of the realized
volatility estimator used for the nonparametric measurement of volatility.
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In the second part of the paper we propose a new model for returns, realized volatility and
volatility risk. In the first paper to consider the volatility of realized volatility, Corsi et al. (2008)
extend the typical framework for modeling realized volatility by specifying a GARCH process to
allow for clustering in the squared residuals of their realized volatility model. The same approach
is followed by Bollerslev et al. (2009). We suggest however that this approach ignores an im-
portant empirical regularity observed from realized volatility series: the degree of volatility risk
is strongly and positively related to the current level of volatility. While this finding has been
suggested before in the option pricing literature (see for example Heston, 1993, Jones, 2000), this
important relation has not received attention in the volatility literature. In this paper we consider
a parsimonious specification where the variance of the realized volatility innovations is a linear
function of the square of the volatility level, which we take to be the conditional mean of realized
volatility. Another salient aspect of our model is the emphasis on extended leverage effects (fol-
lowing Scharth and Medeiros, 2009) which introduce realistic persistence patterns for volatility.
Because of the returns/volatility, volatility/volatility risk asymmetries, we call this framework the
dually asymmetric realized volatility (DARV) model.

Our empirical analysis uses high frequency data for the S&P 500 index and eight more series
(between major stocks and indexes) from 1996 to 2009 to document the importance of volatility
risk and analyze the performance of the dually realized volatility model when compared to other
standard alternatives. We show that our volatility risk specification consistently improves forecast-
ing performance across our series and substantially enhances the ability of the realized volatility
model to account for large movements in volatility. Our results for the volatility of realized volatil-
ity are stronger than the ones obtained by Corsi et al. (2008) in that we can conclude that ignoring
volatility risk has a severe adverse impact on point and density forecasting forecasting for realized
volatility and the calculation of value-at-risk intervals for returns.

Other contributions to the realized volatility modeling and forecasting literature are exempli-
fied by Andersen et al. (2003), the HAR (heterogeneous autoregressive) model of Corsi (2004), the
MIDAS (mixed data sample) approach of (Ghysels et al., 2007) and the unobserved ARMA com-
ponent model of Koopman et al. (2005), and Shephard and Sheppard (2009). Martens et al. (2004)
develop a nonlinear (ARFIMA) model to accommodate level shifts, day-of-the-week, leverage and
volatility level effects. Andersen et al. (2007) and Tauchen and Zhou (2005) argue that the inclu-
sion of jump components significantly improves forecasting performance. McAleer and Medeiros
(2008a) extend the HAR model to account for nonlinearities. Hillebrand and Medeiros (2007)
also consider nonlinear models and evaluate the benefits of bootstrap aggregation (bagging) for
volatility forecasting. Ghysels et al. (2007) argue that realized absolute values outperform square
return-based volatility measures in predicting future increments in quadratic variation. Scharth
and Medeiros (2009) introduce multiple regime models linked to asymmetric effects. Liu and
Maheu (2007) derive a bayesian averaging approach for forecasting realized volatility. Bollerslev
et al. (2009) propose a full system for returns, jumps and continuous time for components of price
movements using realized variation measures.

This paper is structured as follows. The next section presents our empirical setup, describing
our data, the realized volatility measurement method, and the stylized facts. We then proceed
to discuss the properties of the ex ante distribution of the S&P500 returns when high-frequency
data information is available and the relation between the stochastic structure of realized volatility
shocks and the conditional distribution of returns. Section three introduces our model for realized
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volatility and describes how Monte Carlo techniques can be used for translating the features of our
conditional volatility, skewness and kurtosis framework into refined density forecasts for returns.
In section four we consider the empirical performance of our model. Section five concludes.

2. Data and Stylized Facts

2.1. Realized volatility and Data. Suppose that at day t the logarithmic prices of a given asset
follow a continuous time diffusion:

dp(t + τ) = µ(t + τ) + σ(t + τ)dW (t + τ), 0 ≤ τ ≤ 1, t = 1, 2, 3...

where p(t + τ) is the logarithmic price at time t + τ , is the drift component, σ(t + τ) is the
instantaneous volatility (or standard deviation), and dW (t + τ) is a standard Brownian motion.
Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2002) showed that the daily compound
returns, defined as rt = p(t) − p(t + 1), are Gaussian conditionally on Ft = σ(p(s), s ≤ t), the
σ-algebra (information set) generated by the sample paths of p, such that

rt|Ft ∼ N

(∫ 1

0

µ(t− 1 + τ)dτ,

∫ 1

0

σ2(t− 1 + τ)dτ

)

The term IVt =
∫ 1

0
σ2(t − 1 + τ)dτ is known as the integrated variance, which is a measure

of the day t ex post volatility. In this sense the integrated variance is the object of interest. In
practical applications prices are observed at discrete and irregularly spaced intervals and the most
widely used sampling scheme is calendar time sampling (CTS), where the intervals are equidistant
in calendar time. If we set pi,t, i = 1, .., n to be the ith price observation during day t, realized
variance is defined as

∑n
i=1 r2

i,t. The realized volatility is the square-root of the realized variance
and we shall denote it by RVt. Ignoring the remaining measurement error, this ex post volatility
measure can modeled as an “observable” variable, in contrast to latent variable models.

In real data high frequency measures are contaminated by microstructure noise. The search for
unbiased, consistent and efficient methods for measuring realized volatility has been one of the
most active research topics in financial econometrics over the last years. While early references
such as Andersen et al. (2001) suggest the simple selection of an arbitrary frequency to balance
accuracy and dissipation of microstructure bias, a procedure known as sparse sampling, a number
of recent articles developed estimators that dominate this procedure. In this paper we we turn
to the theory developed by Barndorff-Nielsen et al. (2008, 2009) and implement the consistent
realized kernel estimator based on the modified Tukey-Hanning kernel. Some alternatives are
the two time scales estimator of Zhang et al., 2005 and Aı̈t-Sahalia et al., 2005, the multiscale
estimator of Zhang (2006) and the preaveraging estimator of Jacod et al. (2009). See McAleer
and Medeiros (2008b) and Gatheral and Oomen (2007) for a review and comparison of methods.

Our empirical analysis will focus on the realized volatility of the S&P 500 (SPX), Dow Jones
(DJIA), FTSE 100, CAC 40 and Nikkei 225 indexes and the IBM, GE, Wal-Mart (WMT) and
AT&T stocks. For conciseness the S&P 500 index will be at the center of our analysis, with the
other series being used when appropriate to show that our results hold more generally. The raw
intraday data was obtained from the Reuters Datascope Tick History database and consists of tick
by tick open to close quotes filtered for possible errors. For the S&P 500 index we use the informa-
tion originated in the E-Mini S&P500 futures market of the Chicago Mercantile Exchange, while
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for the remaining indexes we use the actual index price series from different sources.2 Following
the results of Hansen and Lunde (2006), we adopt the previous tick method for determining prices
at time marks where a quote is missing.

The period of analysis starts in January 2, 1996, and ends in June 30, 2009, providing a total
of 3343 trading days in the United States. We clarify that our in-sample period used for revising
the stylized facts, presenting the volatility risk findings and discussing the estimation diagnostics
covers the whole sample, while the out-of-sample period used in section four runs from 2001 to the
end of the sample. We need our out-of-sample period to be unusually long since the behavior of
realized volatility markedly favors different kinds of models in particular years (for example, crisis
periods strongly favor models with leverage effects) and a reasonable number of tail realizations
are necessary to compare different alternatives for modeling volatility risk.

2.2. Stylized Facts. We begin by recalling the most important and generally accepted features
of returns and realized volatility that have been identified in the literature and will inform the
rest of our analysis:

(1) the unconditional distribution of daily returns exhibits excess kurtosis;
(2) the time variation in the conditional volatility of daily returns does not fully account for

this excess kurtosis;
(3) daily returns are not autocorrelated (except for the first order, in some cases);
(4) daily returns standardized by realized volatility measures are almost Gaussian;
(5) the unconditional and conditional distributions of realized variance and volatility are dis-

tinctly non-normal and extremely right-skewed;
(6) there is strong evidence of long memory in volatility;
(7) negative returns are associated with higher subsequent volatility (asymmetric effects).

Andersen et al. (2001) and Andersen et al. (2003) are the prime references for the stylized facts
of realized volatility. We look at the S&P 500 index data for a brief empirical review of these
stylized facts and the main features of the data. Figure 1 displays the time series of returns,
realized volatility and log realized volatility. Table 1 presents descriptive statistics for returns,
standardized returns, realized volatility and changes in realized volatility, illustrating (1), (4) and
(5). Even though we do not report the descriptives for the other series we remark that one common
feature for the indexes (but not the stocks) is the apparent thin tails of the scaled returns. This
is not peculiar to our data set; see for example Bollerslev et al. (2009). This is probably due to
jumps, which we will leave out of our core analysis but will discuss later in the paper. One striking
feature of Table 1 is the extreme leptokurtosis in the realized volatility changes (∆RVt). In fact,
only 10% of observations account for close to 80% of the variation in realized volatility across the
sample. One of main objectives of this paper is to better account for these large movements.

Turning to the dynamic behavior of the volatility, the quintessential time series property ob-
served in realized volatility has been the very high persistence in those series, which consistently
exhibit empirical autocorrelation functions with hyperbolic decaying patterns; this empirical fea-
ture can be seen on Figure 2 and is referred to in a broad sense as long memory or long range
dependence. Motivated by early empirical work in macroeconomics and later in the GARCH
and Stochastic Volatility literature (for instance Baillie et al., 1996, Comte and Renault, 1996,

2The fully electronic E-Mini S&P500 futures contracts feature among the most liquid derivatives contracts in the
world, therefore closely tracking price movements of the S&P 500 index. The index prices used for the other series
are unfortunately less frequently quoted. The volatility measurements for DJIA, FTSE 100, CAC 40 and Nikkei
225 indexes are therefore of somewhat inferior quality compared to the S&P 500 index and the stocks.
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and Breidt et al., 1998), the first prominent references in the realized volatility literature (e.g.,
Andersen et al., 2003) turned to the econometrics of fractional integration to establish a frame-
work for modeling and forecasting realized volatility. Although no theoretical foundation has been
developed to substantiate the long memory specification or elucidate the high persistence from
past shocks, I(d) processes emerged as a consonant description of the data generating process of
volatility series, becoming a standard paradigm.

The presence of asymmetric effects has long been documented and is first illustrated by Figure
3. The first part of Figure 3 is the standard news impact curve due to Engle and Ng (1993),
showing the correlation between daily returns and the next day realized volatility. In the bottom
part of the figure we replace the lagged returns by the lagged monthly returns, revealing an even
higher correlation for this case. This extended leverage effect has been pointed out by Scharth
and Medeiros (2009) and is more starkly shown in Figure 4, which plots the time series of realized
volatility and monthly returns (rescaled). The sample correlation between the two series is −0.52.
It seems that virtually all episodes of (persistently) high volatility are associated with streams of
negative returns; once the index price recovers the realized volatility tends to quickly fall back to
average levels.

2.3. Volatility Risk. One of the two main objectives of this paper is to extend the list of stylized
facts in the econometrics of volatility with a new item: time series of realized volatility are very
volatile and this volatility risk is strongly positively related to the level of volatility. Even though
the noisy appearance of the time series of realized volatility (as seen for example in Figure 1) has
been noted since the early days of this literature, this feature of the data has neither received much
attention so far Corsi et al. (with the exception of 2008) or been considered very important. We
start our analysis by asking more rigorously: how large is the volatility risk for stocks and indexes?
Or equivalently, how predictable is volatility? To answer this question we start by considering the
magnitude of the prediction errors that we can expect to find in a standard forecasting model for
realized volatility.

The HAR (Heterogeneous Autoregressive) model proposed by Corsi (2004) is an unfolding of
the Heterogeneous ARCH (HARCH) model developed by Müller et al. (1997). It is specified as a
multi-component volatility model with an additive hierarchical structure, leading to an additive
time series model of the realized volatility which specifies the volatility as a sum of volatility
components over different horizons. Observing that we shall be working with time series models
directly for the realized volatility (RVt), consider the notation (standard for this model) RVj,t =∑t

i=t−j+1 RVt,j/j. We can then write the HAR model with daily, weekly and monthly components
as:

RVt = φ0 + φ1RVt−1 + φ2RV5,t−1 + φ3RV22,t−1 + βXt−1 + ηt,(1)

where Xt is a vector of additional explanatory variables. We can see that the HAR specification is
an AR(22) model rendered parsimonious by several parameter restrictions. Simulations reported
in Corsi (2004) show that the generous number of autoregressive lags renders the HAR model
capable of reproducing the observed hyperbolic decay of the sample autocorrelations of realized
volatility series over not long too long horizons. For its estimation simplicity the HAR model has
been commonly favored in the high frequency econometrics literature (e.g, Andersen et al., 2007).

To get a first idea of the bearing of volatility risk in our data we examine the in-sample forecast-
ing (fitting) performance of the HAR model and some simple alternatives for the S&P 500 series
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(thus considering a setting where the errors of the model are minimized in the sample; stronger
patterns would naturally hold in an out of sample analysis). We consider three versions of the
HAR specification: one in which there are no additional explanatory variables, one in which we
include the leverage effect term I(rt−1 < 0)rt−1 and the equivalent variables for 5 and 22 days
cumulated returns (in line with our previous discussion of asymmetric effects) and a third model in
which we extend this last specification by adding the lagged realized absolute variation (RAVt−1)
as an explanatory variable. Ghysels et al. (2007) argues that this variable improves forecasting
performance in a similar way to considering jump components in the analysis. To articulate some
of the issues we also consider some ad hoc or clearly misspecified models: the lagged realized
volatility as a predictor, an exponentially weighted moving average (EWMA) of realized volatility,
and an ARMA(2,1) model.

Table 2 shows some statistics for one, five and twenty two days ahead forecasts. The first
indication of high volatility risk comes from the fact that even for the best model (the third HAR
specification, denoted HAR+AE+RAV in the table) the root mean squared error for the one
day forecasts is unambiguously large (0.285) when compared for example to the median realized
volatility (0.844). The results imply an average conditional coefficient of variation for realized
volatility of nearly 0.3. The high forecasting R2s are a consequence of the high persistence in
volatility and do not help us in identifying the importance of volatility risk. To keep this in
perspective we adopt in this paper the practice of also reporting the forecasting R2 for the changes
in volatility (∆RVt). Of course, this does not alter the ranking of the models considered, but helps
us to underline the relative advantages of different specifications.

This metric makes it clear that substantial fitting improvements over the ad hoc models come
essentially from leverage effects, highlighting the difficulty in developing better predictive models
of realized volatility: it seems that the HAR model by itself introduces little or no improvement
over the EWMA and ARMA models. The benefit of the realized absolute variation predictor is also
marginal in our sample. Despite the favorable results reported in Ghysels et al. (2007), Andersen
et al. (2007) and other papers, we hypothesize that once more efficient non-parametric methods for
measuring volatility are implemented the benefits of considering the RAV and currently available
jump measures are small. More troublesome, however, is the observation that the reduction in the
mean absolute error of going from a simple moving average to the best model is of only 0.016, which
seems of very small economic substance compared with either the average daily volatility(0.983)
or the magnitude of the forecasting errors. An analysis of longer horizon forecasts yields the same
conclusions. Our exercise illustrates how forecasting improvements brought by more sophisticated
realized volatility models can often by swamped by the size of the volatility of realized volatility.

The presence of high volatility risk in our data can also be seen from the percentage errors.
Table 2 shows that all models are subject to large average percentage errors even for one step
predictions (an average of 17.5% at the best specification). More evidence comes from Figure
5, which plots the ratio between the realized volatility observations and the forecasts over time.
The plot shows that even 50% forecasting errors are not uncommon for realized volatility. This
is shown more systematically by Table 3, which displays the sample statistics of this ratio for all
series. The ratio is extremely skewed to the right. For the S&P 500 index, at 10% of time the
actual volatility exceeds the forecast by approximately 30% and at 1% of time the actual volatility
exceeded the prediction by 80%. In our view these large deviations represent a major source of
risk that should be more carefully modeled in the realized volatility framework, specially for risk
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management applications. In setting of out of sample uncertainty we can expect these values to
be even higher.

We are now ready to state the problem at the center of our analysis, which as we will clarify in
the next subsection is directly related to the presence of volatility risk (and occasionally extremely
high forecasting errors in realized volatility). Even though it has been long recognized that the
distributions of the stock returns scaled by realized volatility measures are approximately gaussian
(e.g., Andersen et al., 2001), Table 4 and Figure 6 reveal that this is far from the case when we
scale returns by the in-sample fitted values of the HAR+AE model. Table 4 shows that for all
series there is substantial excess kurtosis in these scaled returns. For the indexes (but not the
stocks) the distribution is pronouncedly negatively skewed due to the volatility feedback effect. In
this paper, we seek to better understand and model this non-gaussianity.

Despite the sizable forecasting gains made possible by volatility models based on high frequency
data, our descriptive results can be directly related to the failure of GARCH volatility models to
completely account for the excess kurtosis of returns (see for example Malmsten and Teräsvirta,
2004, Carnero et al., 2004). The researcher or practitioner interested in evaluating the density
of returns from the perspective of a time series model still lives in a fat tailed world and purely
predictive models of volatility may have little to say about it. In this paper, we do not interpret
those facts as evidence against those models, but as a consequence of two factors: volatility risk
(which causes excess kurtosis in the ex ante distribution of returns) and volatility feedback (or
intraday leverage) effects (causing negative skewness). In the following section, we will argue that
an adequate volatility model for return density forecasting and risk management in this setting
should illuminate the dynamics of the higher moments. To pursue this objective we will turn to
the idea of studying the time series volatility of realized volatility following Corsi et al. (2008).

What can we say about the volatility of realized volatility? Figure 7 shows the residuals of the
HAR model with leverage effects and Figure 8 display the sample autocorrelations for the squared
and absolute residuals. The figures provides unambiguous evidence for the presence of conditional
heteroskedasticity in realized volatility, in line with Corsi et al. (2008), Bollerslev et al. (2009) and
other previous studies. The plots are also weakly suggestive of long memory, even though testing
for this hypothesis more rigorously is infeasible. Figure 9 shows an interesting pattern common
to all our series: when we extend the model with a GARCH(1,1) specification for the residuals,
as would be natural to account for this conditional heteroskedasticity in this case, there is always
a striking relation between the estimated conditional volatility of realized volatility and the fitted
values of the model (the correlation between the two series in the figure is 0.42). Thus, there
seems to be a close positive relation between volatility risk and the level of volatility. This is a
new finding in the volatility literature, even though this relation has been explored many times
before in the options pricing literature (see for example Heston, 1993, Jones, 2000).

2.4. Volatility shocks and the distribution of returns. To further motivate our model and
qualify some of the assertions of the last section we now elucidate the relation between the sto-
chastic structure of the innovations in the realized volatility and higher moments of the (ex ante)
conditional distribution of asset returns. Our objective is to gain some insight into the daily con-
ditional distribution of asset returns given the information set provided by past data. To simplify
our discussion we shall focus on the skewness and kurtosis of this distribution. Different literatures
such as preference theory (Dittmar, 2002), option pricing, and risk management indicate that the
first four moments of the return distribution should be the relevant ones for our analysis.
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We know that conditionally on the (ex post) realized volatility returns are nearly gaussian, so
that a natural approach to follow is the standard stochastic volatility framework: we postulate a
model for the (conditional) distribution of volatility and think in terms of a hierarchical structure
where the distribution of returns conditional on volatility is gaussian. The interpretation of the
model will vary depending on the quantity that is being modeled: the realized variance, the
realized volatility or the log of the realized variance. We start with the simplest case. Consider
the following model of returns:

rt = σtεt

σ2
t = ψt + htηt

(2)

Where εt ∼ N(0, 1), E(ηt) = 0, E(η2
t ) = 1. Assume for now that εt and ηt are independent.

ψt is interpreted as the conditional mean of the variance of returns, ηt is a random shock to the
variance, and h2

t is the variance of variance. The conditional variance and kurtosis of returns are
given below, showing that the excess kurtosis of returns is strictly positive in the presence of a
positive variance of variance. In this case the conditional kurtosis of returns a particularly simple
function of the coefficient of variation of the variance of returns.

(3) E(r2
t ) = E(σ2

t )E(ε2
t ) = ψt

(4)
E(r4

t )
E(r2

t )2
=

E(σ4
t )E(ε4

t )
ψ2

t

=
3E(ψ2

t + 2ψthtηt + h2
t η

2
t )

ψ2
t

= 3
(

1 +
h2

t

ψ2
t

)

In the case where we postulate a linear model for realized volatility,

rt = σtεt

σt = ψt + htηt,
(5)

a little algebra shows that conditional variance and kurtosis for the return are given by:

(6) E(r2
t ) = E(σ2

t )E(ε2
t ) = E(ψ2

t + 2ψthtηt + h2
t η

2
t ) = ψ2

t + h2
t

E(r4
t )

E(r2
t )2

=
E(σ4

t )E(ε4
t )

(ψ2
t + h2

t )2
= 3

(
1 +

4ψ2
t h2

t + 4ψth
3
t E(η3

t ) + h4
t (E(η4

t )− 1)
ψ4

t + 2ψ2
t h2

t + h4
t

)
(7)

Not surprisingly, the first equation imply that ignoring time variation in the volatility of volatil-
ity will render forecasts of the conditional variance of returns biased even if the conditional mean of
the realized volatility is consistently forecasted. In this case the expression for the return kurtosis
is more complicated than in the last case, but contains the same essence: the kurtosis is growing
on the volatility of volatility and decreasing on the level of volatility. The main difference is that
now it also depends on the distribution of the standardized innovations to realized volatility, being
positively related to the skewness and kurtosis of this distribution.

In Figures 10, 11 we illustrate the impact of volatility risk the distribution of returns in this
setting. For low values of the volatility of volatility (or more generally, for a low conditional
coefficient of variation in volatility) the distribution of returns is still very close to the gaussian
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case. This is consistent with the evidence that returns standardized by the realized volatility are
nearly normally distributed: since the impact of the volatility of volatility is non-linear and grows
slowly with the variable, the effect of errors in the Barndorff-Nielsen et al. (2008) realized volatility
estimator are not enough to generate excess kurtosis on the scaled returns. Figure 10 illustrates
the consequences of the non-gaussianity on the distribution of realized volatility shocks, where we
assume a positively skewed and leptokurtic distribution with parameters calibrated with the S&P
500 data. The excess kurtosis on the volatility amplify the excess kurtosis on returns for a given
volatility risk level.

Finally, if we choose to model the log of the realized variance (log(σ2
t ) = ψt + htηt) we obtain:

(8) E(r2
t ) = E(σ2

t )E(ε2
t ) = exp(ψt)E(exp(htηt))

E(r4
t )

E(r2
t )2

= 3
E(exp 2htηt)
[E(exp htηt)]2

(9)

In this case both the conditional variance and the conditional kurtosis depend on the distribution
of ηt. For example, if ηt is assumed normal the standard formula for the moment generating
function of the normal distribution gives a conditional variance of exp(ψt + h2

t /2) and a kurtosis
3 exp(2h2

t ).
What about the skewness? Returning to the linear model for realized volatility, if the εt and ηt

are independent then trivially E(r3
t ) = E(σ3)E(ε3

t ) = 0, so that in this type of model the observed
negative skewness on the ex ante distribution of returns must come from the negative dependence
between εt and ηt. Writing the expression for the third moment,

(10) E(r3
t ) = E(3ψ2

t htηtε
3
t + 3ψth

2
t η

2
t ε3

t + h3
t η

3
t ε3

t ),

which is not particularly illuminating, but does highlight the fact that given the dependence
structure between the two shocks a higher volatility risk will also increase the conditional skewness
in returns.

What we take from this analysis are the ingredients for adequately modeling the empirically
relevant ex ante distribution of returns in the realized volatility framework: the conditional mean
of realized volatility, the volatility risk, the distribution of the shocks to volatility and the de-
pendence structure between the shocks to returns and the shocks to volatility. The volatility risk
is extremely important because is the main determinant of the excess kurtosis in the conditional
distribution of returns and amplifies the negative skewness in this distribution. For risk manage-
ment, option pricing and other applications, understanding and modeling these features of the
conditional distribution of returns is fundamental.

The realized volatility literature so far has been mostly concerned only the first of these elements,
and this is the gap the we intend to fill with the model of the next section. An exception is
Bollerslev et al. (2009), which do not consider the implications of the different assumptions of
the realized volatility model to the conditional distribution of returns. The main novelty of the
model will be to put forward a more realistic and accurate model for the volatility risk instead of
extending the standard specification of the model to allow for GARCH effects as in Corsi et al.
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(2008) and Bollerslev et al. (2009) (even though our model departs from the ones considered in
these papers in other fundamental aspects).

2.4.1. Comparison with GARCH models and an important remark. The GARCH family of models
specifies the conditional variance of returns as deterministic conditional on past information, in
contrast to the presence of volatility innovations in the stochastic volatility setting discussed above.
In a sense our documentation of substantial volatility risk seems to reject the GARCH framework,
despite the empirical successes of even the simplest GARCH models (Andersen and Bollerslev,
1998, Hansen and Lunde, 2005). Moreover, the stochastic volatility model also allows for the
possibility that the shocks ηn and εt are correlated, giving rise to the volatility feedback effect
that implies skewness in the conditional distribution of returns. However, this interpretation would
not get to the heart of the volatility modeling problem.

In fact, as long as we are ultimately interested in the conditional distribution of the returns some
of the features of the stochastic volatility framework can be reproduced in a GARCH setting. For
example, in the stochastic volatility model the effect of increasing the volatility of volatility ση is
to fatten the tails of the conditional (on past information) distribution of the returns. It has been
long recognized that the gaussian GARCH model (where εt follows the normal distribution) fits
financial data poorly, leading many researchers to assume a fat tail distribution for εt (typically a
t-distribution). From the practical point of view the two approaches achieve the same end, though
inflating the tails of εt in the GARCH model may look more like an extemporaneous fix to some
authors. Similarly, the presence of volatility feedback effects skew the conditional distribution of
the returns but assuming an asymmetrical distribution for εt imitates this effect in the GARCH
model.

The important message is that the availability of realized volatility allows not only for significant
advances in modeling the conditional volatility of returns but also the higher moments of this
distribution. The reason is straightforward: since realized volatility is “observable” it is much
easier to model and estimate the volatility of realized volatility than the tail heaviness parameter
from return data in a GARCH model. With realized volatility we do not have to rely only on rare
realizations in returns to identify the tails of the conditional return distribution. This becomes even
more relevant in the presence of conditional heteroskedasticity in realized volatility documented
previously, since identifying conditional kurtosis in a GARCH setting is extremely hard (Brooks
et al., 2005, Creal et al., 2008).

With some long standing criticisms of volatility modeling in mind, a intuitive example further
clarifies this point. Suppose we observe at a particular day a realized volatility of 10 and a return
of 0. The return provides zero information about the tails of the conditional return distribution
for a GARCH or other latent variable model. However if we accept that returns given volatility
are normally distributed and assume that return and volatility shocks are uncorrelated then we
have learned that on this particular day the “ex post 1% value at risk” was −2.326× 10, that is, a
event comparable with the October 19th, 1987, crash in the Dow Jones index could have happened
at the tail according to the model. Naturally, days of very high volatility are far more frequent
than days of very high volatility and tail return shocks.

3. The Dually Asymmetric Realized Volatility Model

The dually asymmetric realized volatility (DARV) model is a first step in analyzing and incor-
porating the modeling qualities of a more realistic setting for the volatility risk within a standard
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realized volatility model. The dual asymmetry in the model comes from leverage effects (as seen in
the last section) and the positive relation between the level of volatility and the degree of volatil-
ity risk. The fundamental issue that arises in specifying the model is how to specify the relation
between the volatility level and risk.

We directly model the time series of realized volatility (RVt), as we will justify soon. To be
consistent with the notation of the last section, let the conditional variance of the residuals be
denoted by h2

t . In this paper we choose the specification h2
t = θ0+θ1V L2

t , where V Lt (the volatility
level) is the conditional mean of volatility (E(RVt|Ft−1), where Ft−1 is the information set at end
of the previous day). Another option would be to directly allow for the asymmetry of positive
or negative shocks in volatility in a GARCH model, but we have found our simpler specification
to be superior. An advantage of our method is to be a straightforward way of accounting for
the possibility of long memory in the volatility of realized volatility, since the volatility level will
inherit this property from the RVt series. A possibility for extending our specification would be to
model the nonlinearities in the volatility level/risk relation, but more complicated specifications
of this type are out of the scope of this paper.

The general specification of our model in autoregressive fractionally integrated and heterogenous
autoregressive versions are:

DARV-FI Model:

rt = µt + RVtεt,

φ(L)(1− L)d(RVt − ψt) = λ1I(rt−1 < 0)rt−1 + λ2I(r5,t−1 < 0)r5,t−1

+ λ3I(r22,t−1 < 0)r22,t−1 + htηt,

h2
t = θ0 + θ1V L2

t ,

DARV-HAR Model:

rt = µt + RVtεt,

RVt = φ0 + φ1RVt−1 + φ2RV5,t−1 + φ3RV22,t−1

+ λ1I(rt−1 < 0)rt−1 + λ2I(r5,t−1 < 0)r5,t−1

+ λ3I(r22,t−1 < 0)r22,t−1 + htηt,

h2
t = θ0 + θ1V L2

t ,

(11)

where rt is the log return at day t, µt is the conditional mean for the returns, RVt is the realized
volatility, εt is i.d. N(0, 1), ψt shifts the unconditional mean of realized volatility, d denotes the
fractional differencing parameter, Φ(L) is a polynomial with roots outside the unit cirvle, L the
lag operator, I is the indicator function, rj,t−1 is a notation for the cumulated returns

∑t−1
i=t−j rt−i,

RVj,t−1 =
∑t−1

i=t−j RVt−i, ht is the volatility of the realized volatility, ηt is i.i.d. with E(ηt) = 0
and E(η2

t ) = 1, εt and ηt are allowed to be dependent and V Lt = E(RVt|Ft−1).
Following the evidence of fractional integration in realized volatility, ARFIMA models are the

standard in the literature. Fractionally integrated models have been estimated for example in
Andersen et al. (2003), Areal and Taylor (2002), Beltratti and Morana (2005),Deo et al. (2006),
Martens et al. (2004), Thomakos and Wang (2003), among others. Nevertheless, the estimation
of ARFIMA models in this context has encountered a few shortcomings. Although I(d) processes
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are a seemingly reasonable approximation for the data generating process of volatility series, there
is no underlying theory to formally support this specification. Instead, the results of Diebold and
Inoue (2001) and Granger and Hyung (2004) challenge fractional integration as the correct spec-
ification for realized volatility series by showing that long memory properties can be engendered
by structural breaks or regime switching.3 Statistical tests for distinguishing between those alter-
natives, such as the one proposed Ohanissian et al. (2004), have been hampered by low power.
Finally, Granger and Ding (1996) and Scharth and Medeiros (2009) discuss how estimates of the
fractional differencing parameter are subject to excessive variation over time.

Given the lack of stronger support for a strict interpretation of fractional integration evidence
and the higher computational burden in estimating and forecasting this class of models, some
researchers have chosen to apply simpler time series models which are consistent with high per-
sistence over the relevant horizons (like the HAR model of the last section), even though they
do not rigorously exhibit long memory (hence being labeled ’quasi-long memory’ models). Since
this debate bears little relevance for our analysis we have choseb to present the dually asymmetric
model in both a fractionally integrated version and a HAR version. After preliminary tests we
have selected an ARFIMA(1,d,0) model specification throughout this paper.

Bollerslev et al. (2006) and Scharth and Medeiros (2009) highlight the impact of leverage effects
for the dynamics of realized volatility. The latter argues for the existence of regime switching
behavior in volatility, with large falls (rises) in prices being associated with persistent regimes
of high (low) variance in stock returns. The authors show that the incorporation of cumulated
daily returns as a explanatory variable brings some modeling advantages by capturing this effect.
While Scharth and Medeiros (2009) consider multiple regimes in a nonlinear model, we focus on a
simpler linear relationship to account for the large correlation between past cumulated returns and
realized volatility. We expect the use of these explanatory variables to substantially improve the
ARFIMA estimation since we will be accounting for the high persistence in volatility associated
to extended leverage effects (recall Figure 4).

To account for the non–gaussianity in the error terms we follow Corsi et al. (2008) and assume
that the i.i.d. innovations ηt follow the standardized normal inverse Gaussian (which we denote
by NIG∗), which is flexible enough to allow for excessive kurtosis and skewness and reproduce
a number of symmetric and asymmetric distributions. A more complex approach would rely
on the generalized hyperbolic distribution, which encompasses the NIG distribution and requires
the estimation of an extra parameter. On the other hand typical distributions with support on
the interval (0,∞), which would be a desirable feature for our case, were strongly rejected by
preliminary diagnostic tests.

Some readers may be concerned that our model could in principle allow for a negative realized
volatility. The immediate alternative would be to write a model for the time series of the log
realized volatility. Regarding this potential problem we offer the following remarks. First, if the
realized volatility is the main quantity we are concerned with our experience tells us that models
for RVt perform unambiguously better in terms of forecasting. Second, the log transformation
obscures the volatility level/risk relation and makes the model for the conditional distribution of
returns more complex. And most importantly, the fact that the estimated error distribution is

3Nevertheless, empirical work has found evidence of long range dependence even after accounting for possible
regime changes and structural breaks in the volatility of asset returns (Lobato and Savin, 1998, Martens et al.,
2004, Beltratti and Morana, 2006, Morana and Beltratti, 2004, Hyung and Franses, 2002, Scharth and Medeiros,
2009).
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extremely right skewed and the conditional variance of RV shrinks with the level of the variable
eliminates this concern for all practical purposes in our data.

Finally, to model the asymmetry in the conditional return distribution we let ηt and εt be
dependent and model this dependence via a bivariate Clayton copula/. The copula approach
is a straightforward way to account for non-linearites in this dependence relation and has the
important advantage of not requiring the joint estimation of the return and volatility equations.
Let U = Φ(εt) and V = 1−Υ(νt), where Φ(.) and Υ(.) are the corresponding normal and NIG∗

cdfs for εt and ηt respectively. The joint CDF or copula of U and V is given by:

Cκ ≡ P (U ≤ u, V ≤ v) =
(
u−κ + v−κ − 1

)−1/κ(12)

In this simple copula specification, returns and volatility are negatively correlated and display
lower tail dependence (days of very low returns and very high volatility are linked, where the
strength of this association is given by the parameter κ).

Other Comments. To reduce bias on our estimators and avoid distortions of the error distribution,
we control the mean of the dependent variable for day of the week and holiday effects using
dummies. Martens et al. (2004) and Scharth and Medeiros (2009) show that volatility sometimes
tend to be lower on Mondays and Fridays, while substantially less volatility is observed around
certain holidays.

In contrast with Bollerslev et al. (2009), which also considers a full system for returns, real-
ized volatility and the volatility of volatility, our model does not consider jump components in
the realized volatility.4 As we have mentioned in Section 2 the use of jumps does not seem to
bring important forecasting advantages when the analysis is based on the efficient realized kernel
estimator for volatility. On the other hand, the inclusion of a jump equation would substantially
increase the complexity of the model, requiring us to model and estimate the joint distribution
of return, volatility and jump shocks. For predicting and simulating the model multiple periods
ahead this is a substantial burden. Since the ultimate interest lies in the conditional distribution
of returns a parsimonious alternative is to ignore the distinction between continuous and jump
components in realized volatility and carefully model the distribution of returns given realized
volatility (considering the possible impact of jumps on it). For the objectives of this paper the
assumption of normality of the return shocks seems reasonable (specially for the stocks).

3.1. Estimation and Density Forecasting. We estimate the two versions of the dually asym-
metric realized volatility model by maximum likelihood. The fact that the conditional volatility
of volatility ht depends on the conditional mean of the realized volatility brings no issues for the
estimation. However, a full maximum likelihood procedure for the ARFIMA model Sowell (e.g.,
1992) is unavailable under the assumptions of conditional heteroskedasticity and the NIG distri-
bution for the errors ηt. We then follow the standard approach in the literature and turn to a
consistent approximate maximum likelihood procedure where the fractional differencing operator
(1−L)d is replaced by a truncation of the respective binomial expansion.5 The use of this approx-
imate estimator does not impact in any away the main arguments of this paper. For reference the
log-likelihood function is given by:

4The literature on the non-parametric measurement of the jump components includes Andersen et al. (2007),
Tauchen and Zhou (2005) and Barndorff-Nielsen and Shephard (2006), among others.
5(1− L)d = 1− dL +

d(d−1)L2

2!
− d(d−1)(d−2)L3

3!
+ ...
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`(d̂, φ̂, ψ̂, λ̂, θ̂, α̂, β̂;RV1...T , X1...T ) = T log(α̂)− T log(π) +
T∑

t=1

log
[
K1(α̂δ̂(1 + ŷ2

t )1/2)
]

−0.5
T∑

t=1

log(1 + ŷ2
t ) + T δ̂(α̂2 − β̂2)1/2 + δ̂β̂

T∑
t=1

ŷt

−0.5
T∑

t=1

log(ĥt)

(13)

where X collects the additional explanatory variables, α and β are the tail heaviness and asymme-
try parameters of the standardized NIG distribution. γ = (α̂2 − β̂2)1/2 and ŷt = η̂t/ĥt−ω̂

δ̂
, where

ω and δ are the location and scale parameters associated with the standardized NIG distributed
with parameters α and β.

The copula specification for the joint distribution of return and volatility innovations allows us
to estimate the copula by maximum likelihood in a separate stage once we have obtained estimates
for ηt and εt from the marginal models. For simplicity we estimate the mean of returns µt by the
sample mean (since the daily expected return is very small µt is immaterial for our analysis), so
that ε̂t = (rt − µ̂)/RVt.

Unfortunately, an analytical solution for the return density implied by our flexible normal
variance-mean mixture hypothesis (realized volatility is distributed normal inverse gaussian and
returns given volatility are normally distributed) is not available. Except for a few cases such
as one day ahead point forecasts for realized volatility, many quantities of interest based on our
model have to be obtained by simulation. We consider the following Monte Carlo method which
can be easily implemented and made accurate with realistic computational power. Conditional on
information up to day t we implement the following general procedure for simulating joint paths
for returns and volatility (where ∼ is used to denote a simulated quantity):

(1) In the first step the functional form of the model is used for the evaluation of forecasts
R̂V t+1 and ĥt+1 conditional on past realized volatility observations, returns, and other
variables.

(2) Using the estimated copula we randomly generate S pairs of return (ε̃t+1,j , j = 1, .., S) and
volatility (η̃t+1,j , j = 1, .., S) shocks with the according marginal distributions. Antithetic
variables are used to balance the return innovations for location and scale.

(3) We obtain S simulated volatilities through R̃V t+1,j = R̂V t+1 +htη̃t+1,j , j = 1, ..., S. Each
of these volatilities generate a returns r̃t+1,j = µ̂t + R̃V t+1,j ε̃t+1,j

(4) This procedure can be iterated in the natural way to generate multiple paths for returns
and realized volatility.

4. Empirical Analysis

The rest of this paper will be dedicated to studying the modeling qualities of the dually asym-
metric realized volatility model in our data. We consider five alternative specifications chosen to
illuminate the improvements introduced by different elements of the model: the homoskedastic
ARFIMA(1,d,0) model with and without (extended) leverage effects, the ARFIMA(1,d,0)-GARCH
model with and without leverage effects and the HAR-GARCH model with leverage effects. We
leave the simpler HAR specifications out of the analysis as they are essentially redundant to the
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fractionally integrated counterparts. We consider the dependence between the return and volatil-
ity innovations on all specifications. Recall from Section 2 that our out of sample period covers
eight and half years from January 2001 to June 2009 (2106 trading days for the US indexes and
stocks). All out of sample implementations re-estimate the models quarterly using the full past
data to calculate the desired statistics.

Important questions that we consider in this section are: what is the substance of time-varying
volatility risk for standard realized volatility models? Is the standard realized volatility model
significantly improved by our volatility risk specification when compared to the standard GARCH
approach? What is the importance of (extended) leverage effects? Does using an ARFIMA or
HAR model make a salient difference in this setting?

4.1. Full Sample Parameter Estimates and Diagnostics. Tables 5 and 6 show the parameter
estimates for all our specifications for the S&P 500 series. While most of the estimates are
unexceptional and in line with the previous literature, we draw attention to two noteworthy
results. First, in the ARFIMA setting considering either conditional heteroskedasticity or extended
leverage effects substantially change our estimates for the fractional differencing parameter and the
unconditional mean of realized volatility. Second, the leverage effect coefficients are significantly
larger in the dually asymmetric estimations in comparison to other models. This interaction is
likely to be consequential for our forecasting results.

Table 7 displays a variety of estimation diagnostics. Not surprisingly, the inclusion of leverage
effects and time varying volatility risk considerably improve the fit of the specifications according to
the Schwarz criterion and other standard statistics. The first piece of evidence in favor of the DARV
model also comes from this analysis: our specification for the volatility risk unambiguously improve
the fit of the model compared to the specifications with GARCH effects, though both alternatives
seem to appropriately account for the autocorrelation in the squared residuals. On the other hand,
an adverse result affecting all specifications come from the (small) sample autocorrelation in the
residuals. Reversing this result would require ad hoc modifications in our setting, leaving some
role for more complex models or structural breaks to capture these dynamics.

The ability to correctly model the conditional distribution of realized volatility is fundamental
for the cardinal issues of this paper. To investigate this problem we implement a Kolmogorov-
Smirnov test for the hypothesis that the standardized residuals are well described by the estimated
NIG distribution. The two versions of the DARV model are easily consistent with this hypothesis,
while the alternative models are either strongly rejected or susceptible to the choice of significance
level.

4.2. Point Forecasts. We now turn to out of sample forecasts. As we have argued in Section
2, the set of realistic assumptions for the behavior of realized volatility imply that if our main
objective is to model for the conditional distribution of returns then an excessive focus on the point
forecasting abilities of different volatility models may be inappropriate: the conditional mean of
volatility is far from enough to describe the tails of the return distribution. Without a model for
the realized volatility risk we do not have an expressive model for the returns. Moreover, the time
series volatility of realized volatility is so high that it is extremely hard to obtain economically
substantive improvements in predicting realized volatility.

However, this should not be confused with the argument that forecasting does not matter as
the conditional mean of volatility is approximately the conditional volatility of returns itself. Out
of sample predictions have been the main basis of comparison in the volatility literature and are
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the subject of extensive analysis (e.g., Hansen and Lunde, 2005). Forecasting is a very useful tool
for studying and ranking volatility models, even though it may not be very informative about the
relative modeling qualities of various alternatives: because volatility is so persistent even a simple
moving average will have a similar performance to more theoretically sound models.

The evaluation of forecasts is based on the mean absolute error (MAE), the root mean squared
error (RMSE) and the estimation of the Mincer-Zarnowitz regression:

RVt = α + βR̃V t|t−1,i + εt,i

where RVt is the observed realized volatility on day t and R̃V t|t−1,i is the one-step-ahead forecast
of model i for the volatility on day t. If the model i is correctly specified then α = 0 and β = 1.
We report the R2 of the regression as a measure of the ability of the model to track variance
over time and test of superior predictive ability (SPA) test developed by Hansen (2005). The null
hypothesis is that a given model is not inferior to any other competing models in terms of a given
loss function.

The point forecasting statistics for the S&P 500 series are displayed in Table 8, where we
consider one, five and and twenty two days ahead predictions. The results for the other series
are arranged in Table 9 and are limited to one period ahead predictions for conciseness. In 9
we report the R2 for changes in volatility (we have discussed the motivation for this in Section
2.3) and the respective SPA test for the RMSE (in parenthesis). The foremost message that the
results bring is again that asymmetric effects are essential for improving forecasting performance
in realized volatility: forecasts are significantly improved for all series when leverage effects are
included. The results for the S&P 500 series suggest however that this advantage is decreasing in
the forecasting horizon.

In line with the full sample results, the dually asymmetric model outperforms the standard
ARFIMA-GARCH and HAR-GARCH models in one day ahead forecasting for all series, even
though the difference is only significant at the 5% level in the SPA test for the FTSE and AT&T
series (the difference is also significant at the 5% level in a meta test across all series, which we do
not report in the table). This improvement in forecasting is also supported by the longer horizon
results for the S&P 500 series, which reveal statistically significant differences. Finally, the results
indicate no expressive divergence between the HAR and ARFIMA specifications.

4.3. Volatility Risk. While we emphasize the positive evidence from the forecasting exercise for
our volatility risk model we stress again that the difference in forecasting performance by itself is
unlikely to be economically substantial, though in line with improvements generally reported in the
volatility literature. Our main question is whether the dually symmetric specification introduce
a better model for volatility risk, and consequently to the tails of the conditional distribution of
returns. We consider this problem in this section.

To answer this question we need to define an informative metric for how well different models
are able to describe the relevant dimension of the conditional distribution of realized volatility.
Since the time series volatility of realized volatility is latent and dependent on the specification
for the conditional mean of the series, a meaningful direct analysis of volatility risk forecasting is
infeasible. For this reason we investigate conditional forecasts of realized volatility. Our approach
consists in calculating ex post empirical quantiles for the daily realized volatility changes (∆RVt)
in the 2001-2009 period and calculating (out of sample) forecasts for the change in volatility given
that it exceeds the relevant quantile.



18 REALIZED VOLATILITY RISK

We provide two motivations for this method. First, since the true conditional realized volatility
quantiles are unobservable the use of the ex post quantiles is a straightforward way of obtaining
an uniform conditioning case for comparing different models by their performance in the upper
tail of the distribution. And most importantly, analyzing whether the dually asymmetric model
is better capable of accounting for the largest movements in volatility observed in our data goes
at the heart of our problem of better describing volatility risk and the tails of the conditional
return distribution. Again, because the volatility innovations are unobservable the use of ∆RVt

is adequate for comparing the models. To complement this analysis we also consider conditional
forecasts based on ex post realized volatility quantiles themselves. We interpret the results of this
section as being the main empirical evidence for the DARV model, since they directly address the
issue of volatility risk.

The results for the S&P 500 index are organized in Tables 10 and 11, while the finding for the
remaining series are summarized in Table 12. For the S&P 500 we consider forecasts conditional on
the change in volatility and the volatility exceeding the 80th, 90th, 95th and 99th percentiles, while
for the other series we only consider the 90th percentile. As expected the models with constant
volatility risk perform extremely poorly compared to the heteroskedastic models, again highlighting
the importance of time varying realized volatility risk. More importantly, the results strongly
support the dually asymmetric model. With the only exception of the CAC index the DARV
model improves the conditional forecasts for the changes in volatility, in most cases substantially.
The same pattern holds for the forecasts conditional on the realized volatility quantile.

From the S&P 500 we can see that these results are even more striking at the 99th percentile,
where in contrast with the DARV models the GARCH specifications have almost no forecasting
power: the improvement in RMSE of going from the ARFIMA-GARCH model to the DARV model
is about the same as going from constant volatility risk to the ARFIMA-GARCH model.

4.4. Value-at-Risk. To conclude our empirical analysis we implement a brief value-at-risk anal-
ysis for the S&P 500 index. Even though this exercise is not particularly informative about the
modeling qualities of the different specifications studied in this paper, we consider it important
to check whether our models yield plausible results for this standard risk management metric. In
addition, we also wish to use this section to further illustrate the possible pitfalls of excessively
relying on point forecasts and ignoring volatility risk. To do so we introduce as a reference a more
standard way of calculating value-at-risk measures, namely considering rt ∼ N(0, R̃V t) (where
R̃V t is the forecasted realized volatility). We label this approach (incorrect for our models) the
point forecast method, in contrast with the appropriate Monte Carlo method of section 3.1.

The evaluation of value-at-risk forecasts is based on the likelihood ratio tests for unconditional
coverage and independence of Christoffersen (1998), where conditional skewness is allowed for in
all models. Our analysis is similar to Beltratti and Morana (2005), who study the benefits of
value-at-risk with long memory. Let q̂i

t|t−1(α) be the (1 − α) interval forecast of model i for day
t conditional on information on day t − 1. In our application, we consider 1%, 2.5% and 5%
value-at-risk measures, i.e., α = 0.01, 0.025 and 0.05, respectively. We construct the sequence of
coverage failures for the lower α tail as:

Ft|t−1 =





1 if rt+1 < q̂i
t+1|t(α)

0 if rt+1 > q̂i
t+1|t(α)
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where rt is the return observed on day t. The unconditional coverage (UC) is a test of the null
E(Ft+1|t) = α against E(Ft+1|t) 6= α. The test of independence is constructed against a first-order
Markov alternative. Finally, let z be the predicted cumulative density function evaluated at the
observed returns that are below the value-at-risk. If the model is well specified then we should
expect that the sample average of z is close to α/2, so that we use this as a proxy for checking
whether the models generate adequate expected shortfall values.

The value-at-risk performance of the models are organized and presented in Table 13. The
results show that as expected from our analysis the method of calculating VaRs based only on the
point forecast of volatility is severely biased towards underestimating the value-at-risk, failing to
provide adequate coverage at all intervals. The Monte Carlo method in turn significantly reduces
or eliminates the problem of excess violations for all models (even though the exercise has no power
for ranking them). However, most models are rejected for the 5% Value-at-Risk. For reference,
Table 14 reports the predicted cumulative density function from all the models calculated at the
lowest returns observed in our sample. Despite the fact that the 2007-2009 financial crisis brought
realized volatility to unprecedent levels in the data we do not observe catastrophic failures of our
value-at-risk intervals (even for the misspecified models), supporting the robustness arguments of
Section 2.4.1.

5. Conclusion

In this paper we have documented that realized variation measures constructed from high-
frequency returns reveal a large degree of volatility risk in stock and index returns, where we
characterize volatility risk by the extent to which forecasting errors in realized volatility are sub-
stantive. Even though returns standardized by ex post quadratic variation measures are nearly
gaussian, this unpredictability brings considerably more uncertainty to the empirically relevant ex
ante distribution of returns. We have demonstrated how the study of volatility risk (or equiva-
lently, the volatility of realized volatility) is essential for developing better models of the conditional
distribution of returns, as this concept is inexorably related to the higher moments of the return
distribution under the standard stochastic volatility setting. We have argued that the availability
of realized volatility allows not only for significant advances in modeling the conditional volatility
of returns but also the higher moments.

Far from exhausting the analysis of the empirical properties of this volatility risk, we have
documented the close positive relation between the volatility of realized volatility and the level of
volatility. To account for this fact we propose the dually asymmetric realized volatility (DARV)
model and present extensive empirical evidence that by recognizing that realized volatility series
are systematically more volatile in high volatility periods we are able to improve the out of sam-
ple performance of realized volatility models. Particularly in predicting the possibility of large
movements and extremes in daily volatility (using conditional forecasts) we have found the differ-
ence to be substantial in many cases, with direct consequences to risk management and pricing
applications.

To keep our discussion concise we have left out some important issues that can be explored
in future work. We select two examples. First, in practice advances in realized volatility model-
ing may not be translated so neatly into improvements in modeling the conditional distribution
of returns. Two aspects of the link between realized volatility and returns should be studied
more carefully. The assumption that returns standardized by realized volatility are approximately
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normal and independent seems to be inadequate for some series. Is there a role for jumps in ad-
justing the distribution? Do the problems in measuring realized volatility make this relation less
straightforward? We have also only considered a simple model for the dependence between return
and volatility innovations. Second, we have mostly analyzed the performance of different models
in one day ahead applications. Because financial quantities are so persistent many incongruent
models are misleadingly competitive at very short horizons. More emphasis should be placed in
investigating whether different models are consistent with a realistic longer horizon dynamics. Our
analysis suggest that to do so we may need a more solid understanding of asymmetric effects.
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Table 1. Descriptive Statistics: S&P 500

Statistic rt RVt rt/RVt ∆RVt

Mean 0.012 0.984 0.042 0.000
Std. Deviation 1.343 0.605 1.013 0.359
Skewness -0.186 3.417 0.040 -0.913
Kurtosis 10.570 26.342 2.743 65.184
Min -9.470 0.212 -3.296 -6.840
Q0.1 -1.443 0.478 -1.282 -0.308
Q0.25 -0.610 0.606 -0.658 -0.135
Q0.75 0.654 1.153 0.711 0.127
Q0.9 1.368 1.584 1.382 0.301
Max 10.957 9.673 3.230 5.280

Table 2. In-Sample Forecasting for Simple Models: S&P 500.

The table reports the in sample forecasting results for the S&P 500

daily realized volatility for the period between 1996 and 2008. RMSE

is the root mean squared error, MAE the mean absolute error, MAPE

the mean absolute percentage error, R2 is the R-squared of a linear

regression of the actual realized volatility on the forecasts.

1 Day
Model R2 RMSE MAE MAPE R2(∆)

RVt−1 0.680 0.359 0.208 0.210 -
EWMA 0.728 0.319 0.190 0.192 0.217
ARMA(2,1) 0.730 0.315 0.188 0.194 0.229
HAR 0.730 0.315 0.187 0.193 0.230
HAR + AE 0.776 0.287 0.176 0.184 0.360
HAR+AE+RAV 0.779 0.285 0.175 0.183 0.370

5 Days (cumulated)
Model R2 RMSE MAE MAPE R2(∆)

RV5,t−1 0.758 1.406 0.869 0.165 -
EWMA 0.771 1.362 0.840 0.160 0.060
ARMA(2,1) 0.771 1.323 0.825 0.164 0.128
HAR 0.781 1.293 0.805 0.158 0.154
HAR + AE 0.805 1.219 0.763 0.151 0.254

22 Days (cumulated)
Model R2 RMSE MAE MAPE R2(∆)

RV22,t−1 0.611 7.019 4.443 0.201 -
EWMA 0.679 6.383 4.098 0.187 0.190
ARMA(2,1) 0.671 6.457 4.142 0.190 0.284
HAR 0.691 6.260 4.023 0.182 0.292
HAR + AE 0.695 6.214 4.052 0.187 0.295
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Table 3. Descriptive Statistics for RVt/R̂V t ratios

Mean Std. Dev. Skewness Kurtosis Q0.75 Q0.9 Q0.95 Q0.99

S&P 500 1.00 0.25 1.86 12.17 1.11 1.28 1.43 1.84
DJIA 1.01 0.30 1.94 15.52 1.15 1.35 1.53 1.95
FTSE 1.00 0.33 2.97 27.12 1.13 1.37 1.55 2.14
CAC 1.00 0.25 2.14 21.84 1.12 1.29 1.41 1.76
Nikkei 1.00 0.27 1.19 6.72 1.14 1.33 1.47 1.86
IBM 1.00 0.22 1.13 6.96 1.11 1.25 1.38 1.72
GE 1.00 0.20 0.85 5.30 1.11 1.25 1.37 1.63
WMT 1.00 0.24 1.25 7.82 1.12 1.29 1.41 1.74
AT&T 1.00 0.27 1.67 10.25 1.12 1.32 1.48 1.87

Table 4. Descriptive Statistics for Returns Standardized by In-
Sample Realized Volatility Fitted Values

Mean Std. Dev. Skewness Kurtosis Q0.01

S&P 500 -0.019 1.061 -0.392 4.305 -2.780
DJIA 0.019 1.090 -0.340 3.944 -2.867
FTSE -0.009 1.147 -0.177 3.694 -2.905
CAC -0.011 1.053 -0.182 3.346 -2.654
Nikkei -0.054 1.083 -0.152 3.715 -2.832
IBM 0.035 1.033 -0.076 4.505 -2.539
GE -0.025 1.012 0.026 3.897 -2.479
WMT -0.039 1.001 0.066 3.909 -2.432
AT&T -0.037 1.028 0.024 4.397 -2.523

Table 5. Estimated Parameters (S&P 500): ARFIMA Models

The table shows parameter estimates for different restrictions of the model: (1− φ1L)(1 − L)d(RVt − ψt) = λ1I(rt−1 <

0)rt−1 + λ2I(r5,t−1 < 0)r5,t−1 + λ3I(r22,t−1 < 0)r22,t−1 + htηt, h2
t = θ0 + θ1V L2

t + θ2h2
t−1 + θ3ν2

t−1,ηt ∼
NIG∗(α, β), (Φ(εt), 1−Υ(ηt)) ∼ Cκ

clayton

ARFIMA- ARFIMA+AE-
Parameter ARFIMA ARFIMA+AE GARCH GARCH DARV-FI
ψ 0.989 (0.029) 0.653 (0.028) 0.970 (0.053) 0.546 (0.028) 0.400 (0.025)
d 0.340 (0.011) 0.261 (0.008) 0.464 (0.012) 0.352 (0.013) 0.367 (0.015)
φ1 0.064 (0.017) 0.033 (0.019) -0.075 (0.017) -0.047 (0.020) -0.074 (0.019)
λ1 - - -0.055 (0.006) - - -0.049 (0.005) -0.072 (0.006)
λ2 - - -0.018 (0.003) - - -0.012 (0.003) -0.023 (0.004)
λ3 - - -0.014 (0.002) - - -0.011 (0.002) -0.013 (0.002)
θ0 0.105 (0.005) 0.089 (0.006) 0.002 (0.000) 0.001 (0.000) 0.013 (0.001)
θ1 - - - - - - - - 0.101 (0.007)
θ2 - - - - 0.845 (0.018) 0.852 (0.015) - -
θ3 - - - - 0.127 (0.017) 0.121 (0.015) - -
α 0.906 (0.046) 0.855 (0.052) 1.841 (0.125) 1.663 (0.117) 1.800 (0.168)
β 0.548 (0.046) 0.479 (0.049) 1.075 (0.106) 0.910 (0.095) 1.037 (0.140)
κ 0.169 (0.024) 0.157 (0.023) 0.207 (0.024) 0.228 (0.024) 0.254 (0.025)
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Table 6. Estimated Parameters (S&P 500): HAR Models

The table shows parameter estimates for different restric-

tions of the model: RVt = φ0 + φ1RVt−1 + φ2RV5,t−1 +

φ3RV22,t−1 +λ1I(rt−1 < 0)rt−1 + λ2I(r5,t−1 < 0)r5,t−1 +

λ3I(r22,t−1 < 0)r22,t−1 +htηt, h2
t = θ0 +θ1V L2

t +θ2h2
t−1 +

θ3ν2
t−1, ηt ∼ NIG∗(α, β), (Φ(εt), 1−Υ(ηt)) ∼ Cκ

clayton

Parameter HAR/AE-GARCH DARV (HAR)
φ0 0.090 (0.008) 0.087 (0.009)
φ1 0.231 (0.016) 0.250 (0.016)
φ2 0.357 (0.017) 0.362 (0.022)
φ3 0.273 (0.016) 0.244 (0.018)
λ1 -0.052 (0.005) -0.072 (0.006)
λ2 -0.016 (0.003) -0.024 (0.004)
λ3 -0.007 (0.002) -0.009 (0.002)
θ0 0.001 (0.000) 0.001 (0.001)
θ1 - - 0.054 (0.003)
θ2 0.853 (0.014) - -
θ3 0.122 (0.014) - -
α 1.752 (0.136) 1.669 (0.149)
β 1.014 (0.116) 0.931 (0.121)
κ 0.242 (0.024) 0.272 (0.025)

Table 7. Estimation Diagnostics (S&P 500)

The table show a variety of diagnostics for the estimations presented in Tables 5 and 6. In the table ν̂t denote the

estimated residuals and η̂ = ν̂t/ĥt = the standardized residuals. For the statistical tests in the table the p-values
are reported. K-S denotes the Kolmogorov-Smirnov Test. z is the probability integral transform of the standardized
residuals using the estimated NIG distribution

ARFIMA ARFIMA ARFIMA+AE HAR+AE
ARFIMA +AE GARCH GARCH DARV(FI) GARCH DARV(HAR)

Log-Likelihood 292.34 455.29 757.00 882.31 955.65 870.12 915.38
R2 0.688 0.723 0.739 0.778 0.789 0.778 0.787
BIC -455.59 -749.20 -1360.69 -1579.05 -1717.64 -1546.58 -1629.04
Std. Dev. (ν̂t) 0.323 0.295 0.312 0.288 0.281 0.288 0.283
Ljung-Box (1) (ν̂t) 0.000 0.000 0.000 0.021 0.009 0.325 0.000
Ljung-Box (5) (ν̂t) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ljung-Box (10) (ν̂t) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Skewness (η̂t) 4.58 3.86 1.63 1.68 2.02 1.64 1.95
Kurtosis (η̂t) 65.02 52.03 9.82 10.47 14.24 9.88 13.74
ARCH (1) (η̂t) 0.000 0.000 0.306 0.397 0.693 0.422 0.692
ARCH (5) (η̂t) 0.000 0.000 0.910 0.876 0.315 0.843 0.340
ARCH (10) (η̂t) 0.000 0.000 0.293 0.510 0.158 0.636 0.194
K-S Test (η̂t) 0.000 0.000 0.051 0.076 0.716 0.015 0.913
Ljung-Box (1) (z − z̄) 0.073 0.362 0.000 0.039 0.927 0.251 0.181
Ljung-Box (1) (z − z̄)2 0.000 0.000 0.199 0.250 0.994 0.283 0.716
Ljung-Box (1) (z − z̄)3 0.003 0.011 0.002 0.115 0.998 0.619 0.357
Ljung-Box (1) (z − z̄)4 0.000 0.000 0.274 0.208 0.965 0.479 0.857
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Table 8. Forecasting Results: S&P 500.

The table reports the out-of-sample forecasting results for the S&P 500 daily realized volatility for the

period between Jan/2001 and Jun/2009, where each model is re-estimated quarterly and used for one

day ahead predictions. The specification for the conditional mean and conditional heteroskedasticity are

separated by dashes. AE means that the model is estimated with asymmetric effects. DARV denotes

the dually asymmetric realized volatility model. RMSE is the root mean squared error, MAE the mean

absolute error. R2 is the R-squared of a linear regression of the actual realized volatility on the forecasts.

R2(∆) is the R-squared of a linear regression of the observed realized volatility change (RVt − RVt−1) on

the forecasts. SPA is the p-value of the Superior Predictive Ability test developed by Hansen (2005). The

null hypothesis is that a given model is not inferior to any other competing models in terms of a given loss

function.

1 Day
Model R2 RMSE MAE MAPE R2(∆) SPA in MSE SPA in R2

ARFIMA 0.767 0.342 0.189 0.205 0.178 0.001 0.002
ARFIMA+AE 0.817 0.301 0.174 0.191 0.317 0.001 0.000
ARFIMA-GARCH 0.790 0.316 0.167 0.166 0.244 0.034 0.033
ARFIMA+AE-GARCH 0.829 0.283 0.157 0.160 0.380 0.573 0.585
DARV (FI) 0.834 0.277 0.156 0.161 0.407 0.719 0.727
HAR+AE-GARCH 0.827 0.285 0.159 0.166 0.374 0.405 0.416
DARV (HAR) 0.831 0.280 0.158 0.165 0.395 0.400 0.382

5 Days (cumulated)
Model R2 RMSE MAE MAPE R2(∆) SPA in MSE SPA in R2

ARFIMA 0.790 1.593 0.936 0.195 0.089 0.008 0.003
ARFIMA+AE 0.819 1.494 0.875 0.183 0.132 0.009 0.001
ARFIMA-GARCH 0.820 1.348 0.789 0.148 0.123 0.005 0.007
ARFIMA+AE-GARCH 0.834 1.296 0.749 0.141 0.165 0.009 0.012
DARV (FI) 0.841 1.269 0.733 0.139 0.201 0.538 0.536
HAR+AE-GARCH 0.842 1.265 0.740 0.143 0.173 0.014 0.015
DARV (HAR) 0.847 1.244 0.728 0.141 0.213 0.787 0.761

22 Days (cumulated)
Model R2 RMSE MAE MAPE R2(∆) SPA in MSE SPA in R2

ARFIMA 0.651 8.246 5.062 0.235 0.137 0.008 0.002
ARFIMA+AE 0.683 7.862 5.528 0.283 0.202 0.000 0.000
ARFIMA-GARCH 0.701 7.183 4.238 0.178 0.220 0.043 0.043
ARFIMA+AE-GARCH 0.714 7.031 4.066 0.170 0.272 0.010 0.011
DARV (FI) 0.720 6.953 3.994 0.167 0.283 0.252 0.290
HAR+AE-GARCH 0.732 6.806 4.059 0.178 0.309 0.010 0.007
DARV (HAR) 0.736 6.752 4.020 0.176 0.332 0.576 0.573
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Table 9. Forecasting Results: Other Series

The table reports the out-of-sample forecasting results the realized volatility of the others series in the period

between Jan/2001 and Jun/2009, where each model is re-estimated quarterly and used for one day ahead pre-

dictions. The specification for the conditional mean and conditional heteroskedasticity are separated by dashes.

AE means that the model is estimated with asymmetric effects. DARV denotes the dually asymmetric realized

volatility model. The table reports the R-squared of a linear regression of the actual realized volatility change

on the forecasts (R2(∆)). The parenthesis gives the p-value of the Superior Predictive Ability test developed by

Hansen (2005) for null hypothesis that a given model is not inferior to any other competing alternatives in MSE.

ARFIMA ARFIMA ARFIMA+AE HAR+AE
ARFIMA +AE GARCH GARCH DARV(FI) GARCH DARV(HAR)

DJIA 0.207 0.269 0.262 0.345 0.381 0.346 0.377
(0.000) (0.004) (0.018) (0.142) (0.802) (0.128) (0.659)

FTSE 0.236 0.314 0.259 0.347 0.368 0.334 0.346
(0.001) (0.001) (0.001) (0.023) (0.819) (0.002) (0.004)

CAC 0.199 0.265 0.232 0.278 0.301 0.269 0.283
(0.001) (0.005) (0.008) (0.167) (0.862) (0.013) (0.026)

Nikkei 0.213 0.256 0.223 0.266 0.270 0.258 0.259
(0.037) (0.096) (0.040) (0.510) (0.834) (0.120) (0.091)

IBM 0.193 0.232 0.254 0.290 0.296 0.294 0.301
(0.000) (0.000) (0.000) (0.423) (0.604) (0.354) (0.809)

GE 0.161 0.199 0.206 0.259 0.281 0.251 0.275
(0.004) (0.007) (0.007) (0.111) (0.851) (0.051) (0.576)

WMT 0.269 0.287 0.296 0.321 0.334 0.316 0.325
(0.002) (0.001) (0.078) (0.051) (0.789) (0.130) (0.340)

AT&T 0.211 0.221 0.237 0.252 0.259 0.251 0.259
(0.000) (0.000) (0.002) (0.019) (0.896) (0.005) (0.720)

Table 10. Conditional Forecasts (S&P 500): Large Realized Volatil-
ity Changes.

The table reports out of sample conditional forecasting results for the S&P 500 daily realized volatility for the period

between Jan/2001 and Jun/2009, where each model is re-estimated quarterly and used for one day ahead predictions. The

forecasts are conditional on the change in volatility ∆RVt exceeding the defined ex post empirical percentile (calculated

within the out of sample years). The specification for the conditional mean and conditional heteroskedasticity are separated

by dashes. AE means that the model is estimated with asymmetric effects. DARV denotes the dually asymmetric realized

volatility model. RMSE is the root mean squared error. R2 is the R-squared of a linear regression of the realized volatility

change on the forecasts.

∆RVt > 80th Percentile > 90th Percentile > 95th Percentile > 99th Percentile
Model R2 MSE R2 RMSE R2 RMSE R2 RMSE

ARFIMA 0.092 0.399 0.080 0.504 0.070 0.637 0.000 1.068
ARFIMA+AE 0.035 0.402 0.013 0.513 0.000 0.658 0.034 1.114
ARFIMA-GARCH 0.254 0.353 0.255 0.446 0.231 0.569 0.059 1.002
ARFIMA+AE-GARCH 0.246 0.354 0.248 0.448 0.214 0.577 0.039 1.015
DARV (FI) 0.300 0.343 0.317 0.428 0.285 0.549 0.198 0.900
HAR+AE-GARCH 0.242 0.355 0.244 0.449 0.209 0.578 0.037 1.016
DARV (HAR) 0.309 0.343 0.324 0.426 0.286 0.549 0.166 0.909
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Table 11. Conditional Forecasts (S&P 500): High Realized Volatility.

The table reports out of sample conditional forecasting results for the S&P 500 daily realized volatility for the period

between Jan/2001 and Jun/2009, where each model is re-estimated quarterly and used for one day ahead predictions. The

forecasts are conditional on the realized volatility exceeding the defined ex post empirical percentile (calculated within the

out of sample years). The specification for the conditional mean and conditional heteroskedasticity are separated by dashes.

AE means that the model is estimated with asymmetric effects. DARV denotes the dually asymmetric realized volatility

model. RMSE is the root mean squared error. R2 is the R-squared of a linear regression of the actual realized volatility on

the forecasts.

RVt > 80th Percentile > 90th Percentile > 95th Percentile > 99th Percentile
Model R2 MSE R2 RMSE R2 RMSE R2 RMSE

ARFIMA 0.542 0.633 0.397 0.818 0.198 1.044 0.000 1.452
ARFIMA+AE 0.663 0.544 0.563 0.700 0.473 0.874 0.134 1.403
ARFIMA-GARCH 0.584 0.582 0.455 0.744 0.299 0.919 0.004 1.305
ARFIMA+AE-GARCH 0.672 0.515 0.574 0.658 0.493 0.789 0.069 1.227
DARV (FI) 0.685 0.499 0.592 0.639 0.520 0.754 0.360 1.055
HAR+AE-GARCH 0.669 0.515 0.568 0.658 0.486 0.784 0.067 1.223
DARV (HAR) 0.682 0.502 0.589 0.646 0.517 0.758 0.347 1.049

Table 12. Conditional Forecasting Results: Other Series

The table reports out of sample conditional forecasting results for the other realized volatility series for the period

between Jan/2001 and Jun/2009, where each model is re-estimated quarterly and used for one day ahead predic-

tions. The forecasts are conditional on the change in realized volatility and the realized volatility exceeding the

defined ex post empirical percentile (calculated within the out of sample years). The specification for the condi-

tional mean and conditional heteroskedasticity are separated by dashes. AE means that the model is estimated

with asymmetric effects. DARV denotes the dually asymmetric realized volatility model. The Table reports the

R2 of a linear regression of the actual values on the forecasts.

ARFIMA ARFIMA ARFIMA ARFIMA+AE DARV(FI) HAR+AE DARV(HAR)
+AE GARCH GARCH GARCH

R2 of E(∆RVt|∆RVt > Q0.9) :

DJIA 0.100 0.074 0.147 0.136 0.224 0.141 0.210
FTSE 0.084 0.106 0.138 0.135 0.211 0.124 0.191
CAC 0.036 0.073 0.245 0.219 0.169 0.206 0.192
Nikkei 0.038 0.029 0.123 0.108 0.153 0.105 0.158
IBM 0.008 0.014 0.219 0.226 0.287 0.229 0.291
GE 0.170 0.120 0.270 0.264 0.285 0.253 0.294
WMT 0.059 0.082 0.105 0.109 0.170 0.116 0.165
AT&T 0.016 0.020 0.021 0.019 0.026 0.023 0.033

R2 of E(RVt|RVt > Q0.9) :

DJIA 0.333 0.463 0.389 0.506 0.542 0.494 0.540
FTSE 0.114 0.234 0.210 0.278 0.311 0.266 0.300
CAC 0.078 0.162 0.213 0.202 0.220 0.188 0.218
Nikkei 0.466 0.490 0.506 0.526 0.526 0.503 0.512
IBM 0.431 0.466 0.462 0.485 0.498 0.486 0.497
GE 0.435 0.478 0.463 0.499 0.520 0.480 0.511
WMT 0.135 0.186 0.186 0.216 0.241 0.206 0.228
AT&T 0.288 0.307 0.310 0.317 0.337 0.339 0.357
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Table 13. Value at Risk Analysis.

The table reports the out of sample value-at-risk results for the S&P 500 daily realized volatility

for the period between Jan/2001 and Jun/2009, where each model is re-estimated quarterly

and used for calculating 1%, 2.5% and 5% value-at-risk thresholds by the Monte Carlo Method

described in section 3.1 and the ad hoc point forecasting method where rt ∼ N(0, R̃V ). The

specification for the conditional mean and conditional heteroskedasticity are separated by dashes.

AE means that the model is estimated with asymmetric effects. DARV denotes the dually

asymmetric realized volatility model. The column failures indicates the proportion of days when

returns over the next day in the α lower tail of the predicted distribution. UC and IND are the

p-values of the likelihood ratio tests for unconditional coverage and independence (against a first

order Markov alternative) developed by Christoffersen (1998) (the joint test is omitted to save

space). ES is the average of the empirical cumulative density function of returns at the VaR

failures.

1% VaR
Monte Carlo Forecast VaR

Failures UC IND ES Failures UC IND
ARFIMA 0.007 0.162 0.643 0.006 0.021 0.000 0.951
ARFIMA+AE 0.008 0.358 0.599 0.006 0.023 0.000 0.943
ARFIMA-GARCH 0.009 0.815 0.536 0.005 0.025 0.000 0.806
ARFIMA+AE-GARCH 0.009 0.646 0.556 0.005 0.025 0.000 0.773
DARV (FI) 0.009 0.815 0.536 0.005 0.025 0.000 0.806
HAR+AE-GARCH 0.010 0.990 0.515 0.006 0.025 0.000 0.773
DARV (HAR) 0.009 0.646 0.556 0.004 0.026 0.000 0.740

2.5% VaR
Monte Carlo Forecast VaR

Failures UC IND ES Failures UC IND
ARFIMA 0.023 0.510 0.943 0.015 0.044 0.000 0.238
ARFIMA+AE 0.024 0.817 0.839 0.014 0.042 0.000 0.310
ARFIMA-GARCH 0.030 0.161 0.480 0.014 0.047 0.000 0.143
ARFIMA+AE-GARCH 0.030 0.125 0.950 0.014 0.046 0.000 0.193
DARV (FI) 0.030 0.161 0.932 0.013 0.046 0.000 0.193
HAR+AE-GARCH 0.029 0.204 0.506 0.013 0.047 0.000 0.155
DARV (HAR) 0.030 0.125 0.455 0.013 0.045 0.000 0.207

5% VaR
Monte Carlo Forecast VaR

Failures UC IND ES Failures UC IND
ARFIMA 0.054 0.447 0.654 0.027 0.071 0.000 0.837
ARFIMA+AE 0.056 0.250 0.032 0.027 0.072 0.000 0.011
ARFIMA-GARCH 0.060 0.035 0.130 0.026 0.076 0.000 0.941
ARFIMA+AE-GARCH 0.062 0.013 0.007 0.026 0.073 0.000 0.027
DARV (FI) 0.061 0.022 0.009 0.025 0.072 0.000 0.034
HAR+AE-GARCH 0.060 0.044 0.013 0.025 0.076 0.000 0.004
DARV (HAR) 0.059 0.055 0.014 0.025 0.075 0.000 0.001
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Table 14. Robustness: Forecasted Return CDF at the Lowest Observed Returns
(S&P 500)

The table reports the forecasted cumulative density functions (using the Monte Carlo Method) evaluated at the ten
lowest observed returns in the period between Jan/2001 and Jun/2009. The specification for the conditional mean and
conditional heteroskedasticity are separated by dashes. AE means that the model is estimated with asymmetric effects.
DARV denotes the dually asymmetric realized volatility model.

ARFIMA ARFIMA ARFIMA+AE HAR+AE
Date Return RVt ARFIMA +AE GARCH GARCH DARV(FI) GARCH DARV(HAR)
29-Sep-08 -9.219 4.845 0.002 0.001 0.003 0.002 0.002 0.003 0.002
07-Oct-08 -5.911 4.017 0.007 0.009 0.019 0.024 0.026 0.023 0.027
09-Oct-08 -7.922 4.393 0.008 0.009 0.021 0.022 0.025 0.022 0.027
15-Oct-08 -9.470 3.665 0.018 0.013 0.044 0.039 0.031 0.047 0.043
22-Oct-08 -6.295 3.678 0.113 0.145 0.129 0.149 0.164 0.161 0.174
05-Nov-08 -5.412 2.499 0.057 0.053 0.066 0.067 0.065 0.086 0.084
19-Nov-08 -6.311 3.532 0.033 0.027 0.043 0.038 0.042 0.042 0.048
20-Nov-08 -6.948 5.858 0.035 0.068 0.045 0.077 0.100 0.083 0.106
01-Dec-08 -9.354 2.562 0.005 0.004 0.014 0.011 0.010 0.015 0.013
20-Jan-09 -5.426 2.505 0.019 0.016 0.023 0.019 0.025 0.014 0.019
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Figure 1. Time Series of returns (top), realized volatility (middle) and log real-
ized volatility (bottom) for the S&P 500 index.
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Figure 2. Sample autocorrelations and partial autocorrelations of returns (top)
and realized volatility (bottom). The dashed lines give the standard Bartlett 95%
confidence interval.
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Figure 3. Scatter plots of lagged returns (top) and lagged monthly returns
against realized volatility. The solid lines are regression lines, similar to news
impact curves
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Figure 4. Realized Volatility (top) and Monthly Returns (bottom) for the S&P
500 index.
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Figure 5. In-Sample Percentage Errors for the HAR model with leverage effects.
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Figure 6. Empirical Density for Returns Standardized by Realized Volatility Predictions.
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Figure 7. Residuals series of the HAR model with leverage effects.
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Figure 8. Sample autocorrelations for the squared (left) and absolute (right)
residuals of the HAR model with leverage effects.
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Figure 9. GARCH standard deviation series (top) and realized volatility fitted
values (bottom) for the HAR model with leverage effects.
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Figure 10. Kurtosis of the simulated distribution under the assumption that
shocks to realized have the NIG (upper line) and normal distributions.
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Figure 11. Densities for the simulated distributions (no volatility feedback).
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Figure 12. Densities for the simulated distributions (with volatility feedback).
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Figure 13. S&P500 Estimated Volatility of Realized Volatility.


