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Abstract

This paper proposes a new approximation method for pricing barrier options with discrete monitoring under
stochastic volatility environment. In particular, the integration-by-parts formula in Malliavin calculus is effectively
applied in an asymptotic expansion approach. First, the paper derives an expansion formula for generalized Wiener
functionals. After it is applied to pricing path-dependent derivatives with discrete monitoring, the paper presents an
analytic (approximation) formula for valuation of discrete barrier options under stochastic volatility environment.
To our knowledge, this paper is the first one that shows an analytical formula for pricing discrete barrier options
with stochastic volatility models.

Keywords: discrete barrier option, barrier option, knock-out option, Malliavin calculus, stochastic volatility, asymp-
totic expansion, Malliavin weight

1 Introduction

This paper develops an asymptotic expansion method for generalized Wiener functionals by applying the integration-
by-parts formula providing divergence, that is so called Malliavin weight and push down(Malliavin(1997) and Malliavin-
Thalmaier(2006)), that is the conditional expectation in Malliavin calculus. It also shows the equivalence between an
asymptotic expansion developed by Watanabe(1987) and our expansion. Moreover, the paper applies the method to
pricing path-dependent derivatives with discrete monitoring under stochastic volatility environment.

Further, it derives a concrete approximation formula for valuation of barrier options with discrete monitoring under
stochastic volatility models. Fusai, Abrahams and Sgarra (2006) provided an analytical solution for pricing discrete
barrier options in the Black-Scholes framework. Shiraya, Takahashi and Toda (2009) provided an analytic approxi-
mation formula for valuation of barrier options with continuous monitoring under stochastic volatility environment;
however, their method cannot be applied to pricing discrete barrier options. Thus, to our knowledge, this paper is the
first one that derives an analytic (approximation) formula for pricing discrete barrier options with stochastic volatility
models. Also, our companion paper (Takahashi and Yamada[2009]) applies the method to deriving expansions of
implied volatilities under stochastic volatility models and jump-diffusion models with stochastic volatilities.

The organization of the paper is as follows: After a brief summary of Malliavin calculus necessary for the remaining
of the paper, the next section derives an asymptotic expansion formula for generalized Wiener functionals. Section
3 applies the general formula to pricing path-dependent derivatives with discrete monitoring. Section 4 provides an
approximation formula for valuation of barrier options with discrete monitoring. Section 5 concludes. Appendix
summarizes conditional expectation formulas used in the expansion.

2 Asymptotic Expansion

2.1 Preparation -Malliavin calculus-

This subsection summarizes basic facts on the Malliavin calculus which are necessary for the following discussion.
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Co., Ltd. or any other institutions. The authors are not responsible or liable in any manner for any losses and/or damages caused by the
use of any contents in this research.
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Let (W, i) be the d-dimensional Wiener space where
W=w=Cy(0,T] : R?) = {w: [0,T] — R; continuous, w(0) =0}

and p is the Wiener measure. Next, let H be a Hilbert space such that
d T
dh;(t
H= {h e W;h;(t)(i =1,---,d) is absolute continuous with respect to ¢ and Z/ |%|2dt < oo}
i=170

with an inner product (h,h')y = Zle OT dh(;t(t) %dt. Then, H is called the Cameron-Martin space.

Define L~ (W) as L=~ (W) = Np< 0o LP(W) and a distance on L~ (W) as dpeo— o) (F1, F2) = Z;’il 279 (min{|| F1 —
Fs||15,1}), where || - ||» denotes the LP-norm in (W, u). Let LP(W : H) denote the space of measurable maps from
W to H such that || f||g € LP(W). The same definition is made for L=~ (W : H).

Then, consider the space

1
DY(W) = {F € LP(W) : there exists DF € LP(W : H) such that for h € H, lim —[F(w + eh) — F(w)] = (DF, h)H} .

e—0 €

Here, DF is called the (Malliavin) derivative of F. Due to the identification between the Hirbert space LP(W : H)
and LP([0,T] x W), DF is a stochastic process {DF = (Dy1F,---,Dy4F) : t € [0,T]} such that (DF,h)y =
S fo (Do F) (Pt

A norm DYJ(W) is given by [Fllpr = [[FllLeow) + 1DF(|Loow:my-  Also, Di(W) is defined by D{*(W) :=
Np<+o0c DY (W), and a distance on D (W) is given by dpe (F1, Fp) = Zjoi1 279 (min{ || F} — F2||D]1-, 1}).

For r > 2(r € N), we introduce the spaces:

DW)={FeD?_ (W):DFeD?_,(W:H)}

v =|Flpr_ + ||D”’1F||D117(H®(n71>). We also define DE(W) as Df (W) = LP(W).

Some properties of these spaces are the following; D?, / W) c DE(W), v < r, and p’ < p. The dual space of
(DI(W)), (DLOV))* is given by (DIW))* =D¥, (W), with p~ + g~ = 1.

Furthermore, define the space Do (W) = N, ,D2(W). Then, Do (W) is a complete metric space under a metric,
dpoe oy (F1, F2) = Zp =1 Np,r(min{ || Fy — F3||pr, 1}) where 7, . > 0 such that Z . Mp,r < 00. Note that this topology
on Do (W) is independent of the choice of the sequence {n,,}. We call F' € D (W) the smooth functional in the
sense of Malliavin.

Given Z = (Z1(w), -+, Z4(w)) € DY(W : H), there exists D} (Z;) € LP(W), i =1,---,d such that
E[fOT D, F(w)Z;(w)dt] = E[F(w)D}(Z;(w))] for all F € D{*(W). Then, define D*Z := 2?21 Dy (Z;(w)). So, there
exists Cp, > 0 such that ||[D*Z||r» < Cp||Z]lprw.m). We call D*Z the divergence of Z.

Definition 2.1 Let F = (Fy,---,F,) € Doc(W : R"™) be the n-dimensional smooth functional, we call F a non-
degenerate in the sense of Malliavin if the Malliavin covariance matrix {UF}1<”<n

d T
— (DF, DEj)y =Y /0 (D1 Fy(w)) (Do Fy (w))dt

is tnvertible and
(detop)™ € L=~ (W).
Theorem 2.1 Let F' € Doo(W : R") be a n-dimensional non-degenerate in the sense of Malliavin and G € Do (WV).
Then, for ¢ € CH(R™),
E[dip(F)G] = Elp(F)D*(}_ Gyf;DF’)]
j=1
where (’yf;)lg,jgn is the inverse matriz of Malliavin covariance of F.

(Proof) See Lemma II.5.2. of Malliavin(1997). O



Theorem 2.2 Let F € D(W : R") be a non-degenerate functional. F has a smooth density p¥' € S(R™) where
S(R™) denotes the space of all infinitely differentiable functions f : R™ — R such that for any k > 1, and for any
multi-indez 3 € {1,---,n} one has sup,cgpn |2|*|0sf(z)] < 0o. (i.e. S(R™) is the Schwartz space and S'(R™) is its
dual.)

(Proof) See Theorem III.5.1. of Malliavin(1997). O

Definition 2.2 Consider the space D_o(W) = U, . D” (W), that is, the dual of Dss. We call F € D_o(W) a
distribution on the Wiener space. We define the duality form on D_o X Do, (F,G) — (F,G)p___xp., = E[FG] € R.
We call this duality form the generalized expectation.

2.2 Asymptotic Expansion for Generalized Wiener Functionals

First, let O C R™ and v be the measure on O. Then, S(O,v) and S§'(O,v) denote the Schwartz space of the rapidly
decreasing functions and the set of the Schwartz distributions on the measure space (O, v), respectively.

Watanabe (1983, 1984) introduced the distribution on Wiener space as composition of a non-degenerate map F
by a Schwartz distribution 7. The next theorem restates the result of Watanabe (1984) in terms of Malliavin(1997)
and Malliavin-Thalmaier(2006).

For multi-index a®) = (a1, ,ar), We define the iterated Malliavin weight. The Malliavin weight H ) is
recursively defined as follows:

H (k)(F, G) = H(ak)(F, H, -1 (F, G)),

where
Hgy(F,G) = D*(Y _Gv{iDF).
i=1

Here, v = {7} }1<ij<n denotes the inverse matrix of the Malliavin covariance matrix of F.

By Malliavin(1997) and Malliavin-Thalmaier(2006) the conditional expectation on the Wiener space EX" gives a
map:

EF :LP(W : p) — LP(O : v).
where O := {z : pf'(z) > 0} C R".

Theorem 2.3 Let F € Do(W : R") be a non-degenerate functional. Let v be the law of F and O := {x : pF'(x) >
0} ¢ R".

1. There exists a map
(EF) .8 (0,v) 3T —ToFeD_ o :=U,N, DL, CD_ .
(ETY* is called the lifting up of T.
2. The conditional expectation defines a map
Ef :D. >G— EF[G] € S(O,v).
We call this map the push down of G.
3. The following duality formula is obtained:

(E")*'T,G)p_.owyxDwoww = (T EX[G)s/(0.0)x5(0.)-

(Proof)
In this proof, we apply the discussions of Watanabe(1984), Malliavin(1997), Malliavin-Thalmaier(2006) and Nu-

alart(2006).



1. Given T € §'(R"), there exists T;, € S(R") such that T,, — T in S'(R"), i.e,

1= A+ [2)™ T = (1= A+ |2) ™ Tfloc =0,  n— o0,

where || f|loc = Supern (@), A=130, 68,—;. By the Malliavin integration-by-parts formula, we can estimate

as follows; for p~ ' 4+ ¢~ =1,

|Tn(F) = T (F)|lpe, = sup |E[Tn(F)G] — E[Tw (F)G]|
GeDy,,.[Gllpy <1

= sup Bl(1 = A+ [2*) " T (F)0 gm)] — BI(L = A+ [a]*) ™" T (F)9 (3]

GeDy,,.[Glpy <1

< sup 1= A+ 27T = (1= At |2 ) ™" T oo |9 oy 120
GEngvl‘GHngél

< O = A+ |2) ™" — (1= A+ J2) " Twrfloe — 0,

as n,n’ — oo, where ﬂf;m) € Do and C':=8upgepz G|y <1 ||79€;m)||L1 < 00. Then (75 (F'))nen is a Cauchy
m? 2m

sequence in D_., and thus there exists (E¥)*T = T(F) € D_,: a composite functional T'(F) is uniquely
determined.

2. Given G € D,. For any multi-index s = (s1, -, k), For any ¢ € Cllsl(R"), by push-down and then the
integration by parts formula on R™ or the integration by parts formula on W and then push-down, we obtain

E[Flo(F)G) = (~1)* / (@) { EF==[GlpF () }da = / (@) EF=2[0F |pF (2)dz,

n

where 91" = H (F,G) € Dy It implies that
(—1)HOPHET=[GIp" (2)} = EF=" 0] ]p" (2),
where
EF=r[9E] e LP(O : v).
We define O, as O, = {x € R" : p¥(z) > ¢}. Therefore,
(—)Flor{EF=[Gp" ()} € LP(O., dx),
for all s, which implies EX=*[G]pf (z) € C*°(0). As pf'(z) € C>(0),
(p" (2))"HE = [GIp" (2)} = BF*[G] € C%(0).

Note that the conditional expectation has following expression:

EF="IGp" (2) = El{psayH,...n) (F, G)].
For all k € N and for all j =1,---,n,if z; >0,

sup a2F ol {EF=*GIp" ()}

reR4

= sup x?k|E[1F>1H5(F, Heq,..)(F, Q)|
reR4

< E[|FJ|2k‘HS(F7H(1,,n)(F7G))H

< 09,

if 2; < 0, we deduce a similar estimate. These facts imply EF=*[G] € S(O,v).

3. Therefore, for T, € S(R™), n € N, T € §'(R") such that T,, — T in S’'(R"™), we have

(T, E¥[G))s/(0.0)x5(0.) = E[TW(F)G] — (BX)*T, G)p_ oW jyxDe i) = (T B [G])5/(0.0)x5(0.0)»

as n — oQ.



O
The next theorem presents an asymptotic expansion formula for generalized Wiener functionals.

Theorem 2.4 Consider a family of smooth Wiener functionals F€ = (Ff, -+, Ff) € Doo(W : R™) such that F€ has
an asymptotic expansion in Do, and satisfies the uniformly non-degenerate condition:

limsup ||(det <) " !|r < 00, p < 0. (1)
el0

Then, for a Schwartz distribution T € S'(R™), we have an asymptotic expansion in R:

E[T(F°)] — / T(x)p dﬂc—l—zj' / H o (F° HFOm )FO = z)p Fo(m)dx =0(N T, (2)

=1

or
. N o () k .
BIE(F)) -3 [ T @de+ 3 S0 [ 7@k B RHF = alp™ ) pda | = 0[N,
n =17 % R" =1
(3)
where FZ-O’k = %Fﬂe:o, keN,i=1,---,n, a® denotes a multi-indez, a¥) = (g, ,a) and

¥) i
> = Z > )
k k=1 B14+Br=4,8:>1 o) e{1,---,n}*

Also, Malliavin weight H &) is recursively defined as follows:

H (’“)(Fa G) = H(ozk)(Fa Ha(’“—l)(Fv G)),

(e}
where

H)(F,G) ZG% DF;).

i=1
Here, v = {75}1§i7j§n denotes the inverse matriz of the Malliavin covariance matriz of F'.

Remark 2.1 The asymptotic expansion formula (3) is the formula developed by Watanabe (1987) and thus, this theo-
rem shows the expansion (2) based on push down(conditional expectation) of Malliavin weight(divergence) is equivalent
to the Watanabe’s formula.

(Proof)

We use « as an abbreviation of a®) in the proof. Under the uniformly non-degenerate condition of F¢ € Do (W :
R™), the lifting up of T € S’(R"), (EF")*T, has the asymptotic expansion in distributions on the Wiener space D _,
i.e, for N € N, there exists s € N s.t.

N () k
N 6‘7
[(BF)*T —{T o F° + E T E (05T) o F° I |F22'Bl}||D"_S =O0(N*), €€ (0,1],g < o0
=7

=1

Then, there exists an asymptotic expansion of ((E¥ )*T,1)p__«p... Let v be the law of F°. The push-down of the
divergence are computed as follows:

k
k 0 0,
<aaT(F )’ HFOzlﬁl>
=1 D_.xDs

k
<T(F0),HQ(FO, HFgl’ﬁl)>
D_.xD4

=1

k
<T, EF° [HQ(FO,HFSZ@)]>
1=1

S’ (v(dz))xS(v(dzx))

k
/ T(x)E[Ha(FO, [ F9:")|F° = 2]v(d).
Rn

=1



On the other hands,

k
k ,
<aaT<F0>,HF3,@>
D_.xD4y

=1

k
0
<5§T(x), EF] FS;"Z]>
S’ (v(dz))xS(v(dx))

=1

k
= <T(x),(8*)’;EF°[HFBzﬁ’]>
=1 S’ (v(dx))xS(v(dz))
k
— (—1)* / T(z)0 {E[H FOO | FO = a]pP” (w)} da,
" =1

where (0%)F = 9% - - 0% (k times) and 07 denotes the divergence(creation) operator on the space (R"™,v(dx)).
O

Corollary 2.1 The density p™ (y) is expressed as following asymptotic expansion with the push-down of Malliavin
weights:

m ; €] k
c 0 e’ 0
P =" )+ ﬁE[Z Heyo (FO T ESP)IFY = ylp™ (y) + O(e™),
=17 Tk =1

where pFO (y) is the density of F°. Alternative expression is given by:

m i () k
e 0 e’ 0 m
#0035 0k (AT 0 | o
j= :

=1

(Proof)
Take a delta function ¢, € &’ in the theorem above. O

3 Pricing Path-dependent Derivatives with Discrete Monitoring

This section presents an approximation formula for pricing a path-dependent derivative whose payoff is determined by
the underlying asset’s value at finite number of time points during the contract period, as an application of Theorem
2.4 in the previous section.
Let (Q,F, (Ft)tepo,r), P) be a filtered probability space and (Wi, Wa¢)icjo, ) be a two dimensional Brownian
motion with respect to (F)icjo, 7). We consider the following stochastic volatility model;
ds;? = V(o}”, 0)s;7dwn,, (4)
o\ = Ag(ol) t)dt + €Ay (07, 1) (pdWy 1 + /1 = p2dWa,),
5S¢ =80 =,

where p € [—1,1] and € € [0,1]. V, A, A; : R x [0,T] — R are continuous and C*° for each ¢ € [0,T] with bounded
derivatives of any orders in the first argument.

Under this stochastic volatility model, we consider a derivative whose payoff depends on the underlying asset price

S at monitoring time points, 0 = tq < t; < --- <ty = T. More specifically, let ¢ : RY + R be the payoff function of
a path-dependent derivative with discrete monitoring. First, we impose the following assumption.

Assumption 3.1 For allt € (0,7,
t
/ V(e t)2dt > 0.
0
Denote Xt(:) by the logarithmic process of St(f);

X\ i=logs?, i=1,---,N.

Then, regarding the valuation of the path-dependent derivative with discrete monitoring, the following theorem is
obtained.



Theorem 3.1 Let ¢ : RY — R be the payoff function of a path-dependent derivative with discrete monitoring. Then,
an asymptotic expansion formula for valuation of the derivative under the stochastic volatility model (4);

Elp(S, -, 8]

x T ©
= /RN<,0(61,"',6N)pXO(iEl,"',IN)dxl"'dzN (5)

m (4)
€’ o O)
JrE F/ p(e™, - e™) E E[H (X HXO NIXO = (@1, an)p™ (21, an)day, - day
j=1 . RN &

+O0(e™h),
0, ._ d* x(e) =1 X0 ; ; ; 0 —(x© ... x©
where X, = L2 X, g, k€ N, i=1,--- N andp™ (x1,---,xnN) is the density function of X\°) = (X7 - X; /).
k de t; t1 tN
(Proof)
The Malliavin covariance matrix {0y }4; is given by
(DX, DX“”> - (DXL, DX<°>>
oxo = T .
<ngapxw» ~.<ngxwa»
fO V(O't(o), t)21t§t1dt e fO 1t<t1 1t<tth
Sy Ve 0 e e dt o [T V(0 )21y dt
i f(fl V(Ut(0)> t)2dt T fotl V(Ut(0)7 t)zdt
Ve 02dt - [N V(e 1)2dt
Forn=1,---,N, define
Ve 02dt - [D V(e )2t
Yo = . .
V(e ndt - [V 0) )2t

By Assumption 3.1, each principal minor’s determinant of the Malliavin covariance matrix is positive;
det¥, >0, n=1,---,N,

then the Malliavin covariance matrix is positive definite. Thus, the uniformly non-degenerate condition is satisfied by
the similar argument to Takahashi and Yoshida (2004). For the payoff function ¢ € &', Theorem 2.4 can be applied
and hence the following asymptotic expansion formula is obtained:

Blp(81), -+, 5]
= / 90(6117'"76IN)pXO(x1,"‘7xN)d$1"'de
RN
() k

/ e ST EHL(XO, [ X5)IX° = (@1, an)lp™ (21, 2w)day, - day
RN =1

+O( m+1

4 Pricing Barrier Options with Discrete Monitoring

This section provides an approximation formula for valuation of barrier options with discrete monitoring as a concrete
example of the previous section. Let B C R be the barrier. For example, B = [L,00), B = (—o0, H] and [L, H] for



some constants, —oo < L < H < co. Also the same stochastic volatility model (4) as in the previous section is applied:

ds{? = V(o\9,)Saw,,
dof? = Ao(of” t)dt + eAi (of”, ) (pdWr 1 + /1= p2d W)

Hereafter, the following notations are used:

t;
Vo= [ Vel oaw,

0

t;
& = | Ve ey

0

1
X, = logSo+Yti*§§z',
oV (x,t

v = V(0 o, 8,V (o)1) = %'mw
o) 90, t
= Ty lemo = / 02t AL (pdW s + /1= pPd W),

no o= eXp{/aAo O, u)d }

v, = / ondWay — / V(o® tyordt,
0
ti ti
\I]i—l,i = / vltdWM 7/ V( ©) t)vlfdt
ti—1
Z(iflﬂ‘) = / V 0) t dt
ti—1

Barrierf,v denotes the price at time 0 of a discrete barrier option with strike K and maturity 7' under the stochastic
volatility (4). Also, Barrierﬁs denotes the price of this discrete barrier option under the Black-Scholes model;

Barrierﬁs=/Nw(yl,-~-,yN)p(y1,---,yN)dy1---dym
R

where
_1
YY1, -, yn) = 1{Sey1*%51 eB} 1{SeyN*%§N eB}(SeyN - K™,
1 -3 Wizwi))?
p(y17"'ayN): 1/2 1/2 € =1 i1 ) (ZUOZO)
( )N/zz(o 1) E(N—1,N)

Then, the following result is obtained.

Proposition 4.1 An asymptotic expansion of Barrierﬁ,v, the price at time 0 of a discrete barrier option with strike
K and maturity T under the stochastic volatility (4) is given by:

Barrier}s\}v = BGTT’L.GT]%S + 6/ N w(yla' t ayN)ﬁ(ylf : '7yN)p(y17' T 7yN)dyl o dyN + 0(62)7
R

where
—ye-1)® Bk —yr—1)  (Yk — Ye—1)? 1
9 Y1, YN = Ck k - - +
( 1 ) Z L szl,k Ek—l,k Eifl,k EIc—l,k
N k—1 2
By c-1) (yz — yz1> (e —ye—1)® 1 oy =Yk
k=2 =1 o Y-, Sk Yk—1,k Spork )]
with

tr t
Ceo1e = p / oV (v (ol 1) / 0 A (00, )V (0D, s)dsdt,

tp—1 th—1



and

(1-1.0)
k—1,k

(Proof)
[IBP on D_,, x Dy, — Push down |
lezNeB(exN — K)+

Let w:(xla"'axN) Hle””lGB"'

SV
Barriery,

Elp(X)] + €

Elp(X)] + €

= 11

N
Il
—

<
Il

1]= i

1

b (© 0)
= o[ v,
te—1

/ Yy, yn)p(yn, - yn)dys - -

t
t)dt/ N7 AL (0, 5)V (0, s)ds.
ti—1

5P X)W +0(€)

Elo(X)D; (WX Dix )] + O(e?)

dyn

" (0)
+€ZZ/ (Y1, yn) BV YD (Vi) DlXj(‘O))]p(ylv"'uyN)dyl"'dyN+O(62)‘
=1 j=1
The Malliavin covariance matrix is given by
0 V(e 2t [ V(e t)2dt V(o t)2dt fO“ V(e t)2dt
V(e 02dt [PV (o, 1)t V(e n2dt [PV § ) 4)2dt
Ox(0) = : : : )

s V(at(O),t)Zdt w2V (o 1)2dt SNtV (ol )2at fOtN‘lV(at(O),tth
S V(e 02dt [PV ( (0),t)2dt N1V (o t(o)7t)2dt [ V(e t)2dt

and its determinant is given by

det(ox©) =

t;
Y1) = /t Vv

0,20

where

The inverse matrix is given by

2y

Y(N-1,N)s

0\ 1)2dt.

x©
"Y prg
-1 1 1 0
% 0,1 2 1,2 P 1,2
©v 7 Fa) 12 .
(1,2) Y2 (23 2(2,3)
O o 1
2(2,3) E2,3) (3,9
0 0 0 .
0 0
0 0

0 0 0
0
0 0 0
1 1 _ 1 0
3,N—2) Y(N—2,N-1) S(N—2,N—1)
R 1 _ 1
Y(N—2,N—1) Y(N—2,N—1) 3(N=1,N) E(1\171‘1\1)
0 T ENoLm E(N-1,N)

123 t tg t
\I/k = / At/ Bs(deI,s + v/ 1— p2dW27S)dW1t — / Ct/ Bs(deLS + vV 1-— p2dW2,s)dt
0 0 0 0

where A; = 0,V (o, (0) ,t) - ne, Bs —n;lAl(as ,8) and Cy =

Up =W 1+ Vg,

V(o 2,)- 0,V (o” 1) - = V(o 1) Ay




where ¥y = 0, \I/(()?io) =0 and

tr t
\I/k—l,k = / At (/ B de1 s TV 1-—- dW2 s > dWlt — / Ct (/ Bs(deLs + vV 1-— deW2)3)> dt,
th—1 t—1

tr— tr—1
(0.k—1) tp—1 tg tp—1 23
\Ilkil,k = / Bs(deLs ++4/1— p2dW2,5> / A dWr | — / Bs(deLs + 1 - p2dW2’S> / Cydt |,
0 te—1 0 th—1
-1, b th t th
v = By(pdWi , + /1 — p2dWs.,) AdWyy | — / Bs(pdWi 4 + /1 — p2dWs.,) / Cydt | |
ti—1 th—1 ti—1 th—1
1<l<k-—1.

Using the integration by parts formula, we have

D; <xlej”D/ V(o )t)dWU)

X(O)

Ti,j

/ V(o® ) Lyer, dW , — / Do Uil V(o u)1,z,, du]

Then the Malliavin weight is given by

N

i,j=1

N 1 tr tr

_ Z(z ) \pk_l_,k/ V(00a)dWiu— | DutWh 14V (00u)du

b1 k—1,k te—1 te—1
NELlrog -1 [ " (1-1,0)

SIS () et [ e [ ).
b2 =1 k—1,k te—1 th—1

For ti_l <u S ti7
Du,l\I]i = DullIlz 11+Du1\:[/'50;zl)

t; t

= Dy, : At/t By(pdWi s + /1 — p2dWy,)dW1 4 — Dy 1 t C, t By (pdW1 s + /1 — p2dWs ,)dt
i1 Jti it
Dy ( /0 B+ ﬂdwg ) (
ti—1
—Dya </0t S(pd Wy, + \/1—7sz5 < Ctdt>
ti—1
/ Cudt + A, </OtilBs(de17s+MdW27s)).

AtdWl,t>

= pA / B dW1 ,8 + pB / AthVl t — pB

Then,
23 w ty ti tr t;
/ Dy 1 Vg1,V (oow)du = p/ Au/ BdeLsdu—&—p/ Bu/ AtdWLtdu—p/ Bu/ Cidtdu
th—1 ti—1 th—1 u tr—1 u
ti—1 123
/ D, 1\1120 7; kl)v( wdu = (/ B (pdW1,s ++/1— p2dW27s)> (/ Audu> .
te— 0 tk—1
Note that
tr — 2 —
E[\Ijk—l,k/ V(O'Ou)dW1,u|Y = y] - Ck—l,k (yk22 yk_l) - (ykz yk_l) (yk - yk—1)7
te—1 k—1,k k—1,k
ty 2 — Yk
Bl  Dua¥iiV(oo)dulY =y = Georp ((ygy“) - 1) 7
te—1 k—1,k
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E[w{" f,?/ V(ooa)dWiulY =y = ¢ (“” _y“)> ((y’“_y’“) 1) (Uk — Ye—1),

et Y1y Yh—1,k
ty
-1, =1 (W — 1)
E[/t Do UV (o) duly =y = ¢ (&11) Yk — Yr—1)-

Therefore, we have

N
(e —yk—1)®  3lye—wr—1) (g —yp—1)* 1
Iy, yn) = ElrlY =y] = B . . n
(11 YN) (| Y] ;Ck 1,k< 51 2, 7 S
= (1—1,0) v\ [ (e —yr—1)? 1 Yk — Yk—1
+ — — - - — .
kZ2LZ1Ck b ( Y- ) Ei—l,k Y1k Y1,k

Remark 4.1 Proposition 4.1 can be proved in the following way, too.
[ Push down — IBP on &’ x §]

N
0 _
Oy, - yn)p(yr, - yn) = Z<_8yk {EYOy[‘I’k}P(ylwwyN)}>
k=1
N0
= _Z o EYO:y[\I/k—l,k]p(yh"'ayN) )
Pt (3yk { }
AN o
0,k—1
72 (3 {EY [‘I’i(g Lk )]p(yl,"'ayN)}>
k=2 Yk
N a 0 0 a
- _; (8yk {EY =y[\1/k71,k]}p(y1, L yn) + EY =y[qjk1)k}mp(yh...7y1v))
S 9 0= ( ) ( ) 0
_ . Y = 0,k—1 YO:y 0,k—1 .
kZZQ (3yk {E YIw,” 1,k ]}P(yh yN) + FE [P, 1,k ]ay p(y1,-- 7yN)>.
Note that
o_ 1
EY J[‘Ifk—l,k] = ST Ch—1 k{ (yk — Yr— 1) —Yk—16(Yk — Yp—1) — Ekq,k}m
k—1,k

Y%= (07k_1)
E y[\IJk: 1,k ]

-

|
N
—
i =
Q
IS
S
N—————
—N

Yk — Yk-1) k’z_l

k k—1

RLAEENL ST,

Sk } <i_1 5

(6> {Eyozy[\l/k—lvk]} — Stk (—2(yx — Yr—1) + Zp—1,1)s

Oy
tk k—1 P t o
Cydt / BV (s,05”)ds P — i )
/tkl ' ) (Z Yio1,i ( ti s ( ) )(y Yy 1))

t;
p1 - </ BSV(s,ago))dS> (yi — yi—l)) )
—1 tio1

—0 YO—y g (0,k—1) _ -1
(8%){15 ) >

Then, we have

" " S PR (T 7t IS R 7 51 L N I )
Y, YNIPAYL o UN) = k=1, - - (1, YN
k=1 E%—l,k Ei_Lk E%—l,k ST
NS i (u-v (Y — Yo_1)? 1 ey
=10 (Y= Y1 e — Uk 1 e
i - - p s YN -
kZ:lel e < X1, > ( DI Yk-1k Yh-1k ) o w)

5 Conclusion

This paper developed an asymptotic expansion method for generalized Wiener functionals by applying the integration-
by-parts formula providing so called Malliavin weight and push down(Malliavin(1997) and Malliavin-Thalmaier(2006))
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in Malliavin calculus. Tt also showed the equivalence between an asymptotic expansion developed by Watanabe(1987)
and our expansion. Moreover, the paper applied the method to pricing path-dependent derivatives with discrete
monitoring under stochastic volatility environment. Further, it derived a concrete approximation formula for valuation
of barrier options with discrete monitoring with stochastic volatility models. To our knowledge, this paper is the
first one that shows an analytical approximation formula for pricing barrier options with discrete monitoring under
stochastic volatility environment. Numerical experiments and higher order expansions are our next research topic.

A Formulas for the conditional expectations of the Wiener-It6 integrals

This appendix summarizes conditional expectation formulas useful for explicit computation of the asymptotic expan-
sion in pricing barrier options with discrete monitoring.

1.
T T T
: ! ’ Hy(x; X2
E / q2tth‘/ qlvde = SC] = (/ Qthltdt> %
0 0 0
2.
T ot / T
E / / QQuquCI3tth|/ q1,dW5 :x‘| =
o Jo 0
T
g ’ Hy(z; 2
(/ / QQuqludUQ3tQ1tdt> %
o Jo
3.
T ’ T , T ,
E / g dW / g dW, | | / AW, = | =
0 0 0
T T
' ’ Hy(z; 2
(/ (I2uQ1udU> (/ q3sq15ds> %
0 0
T ’
+/ q2¢q3tdt
0
4.
T t s , , T )
E / // q2udWUQBdeSQ4tth|/ qh,dWU:x =
o Jo Jo 0
T t s
' ’ ’ Hj(x; 2
</ Q4tQ1t/ q3SQ1s/ qguqlududsdt> 3(23 )
0 0 0
5.
T t t ) T
E / </ QQuqu> (/ Q3stVs> Q4tth|/ ql’ude =x| =
0 0 0 0
T t t
! ’ ’ Hs(z; %
([ (L) ([ inins} 52
0 0 0
T ot
’ ’ Hy(x; ¥
+ / /q2uQ3udUQ4tQ1tdt y
o Jo b
6.

E

T t , , T . T /
/ / 425AW sq3, AWy / q14, AWy, ‘/ ¢, AW, = x| =
0 0 0 0
T t T
’ ! ’ Hs(x; 2
(/ Q3tQ1t/ q25q15dsdt> (/ C]4uQ1udu> ?)(T)
0 0 0
T t T t
’ ’ , , H xyz
+ (/ q3tq“/ q23q45d8dt—|—/ Q3tQ4t/ Q2s(11sd8dt> %
0 0 0 0
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T t , , T r ) T /
</ / qQSdquStth> (/ / Q4uquQ5rdWr> | / qlvde — $‘| —
o Jo o Jo o
T t T -
7’ ’ / , H x;z
</ Q3tQ1t/ Qqulsdsdt> </ q5rq1r/ q4uq1ududr> %
0 0 0 0
{/ Q3tQ1t/ QSTQM’/ Q2uQ4ududrdt+/ QStQM/ q3f,qlr/ qgutJ4ududrdt
+/ QStQIt/ Q2TCI5T/ q4uq1ududrdt+/ q&tq5t (/ Qqulsds) </ q4uq1udu) di
0 0 )

T - u

. ! ! Hy(z; 2

+/ q57'Q17'/ q3uq4u/ Qqulstdud’r} %
0 0 0

T t , )
+ / / q2uq4udU(I3t(J5t dt
0 0

8.
T, T oo ) T,
E / q2tth / G5, AW / / Qg W0 @5, AWy | | / 1, AW, =z| =
0 0 o Jo 0
T T T
’ ’ ’ H X, by
< qthudt) ( / q35qlsds> < / I5rq1r / q4u<hudud7“> %
0 0 0
T ’ r ’ T ’ T ! r ’
+ qgs(Ilst / o, G5r / Qg Grududr | + / Qo g3t / G5rq1r / QauGrududr
0 0 0 0 0
T ’ r ’ T ’ T ’ r ’
qthudt / T5rq1r / I3sqasdsdr | + / q3qredt / I5rq1r / 2y Gaududr
0 0 0 0 0
T T
’ ’ H Z; E
< qthudt> ( / q3-q5r / q4uq1ududr>}2(22)
0 0
’ t ’ T ’ r ’
+ / G219t / G35qasdsdt +- / 37957 / oy qaududr
0 0 0 0
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