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Abstract 

 

Most multivariate variance models suffer from a common problem, the “curse of 

dimensionality”. For this reason, most are fitted under strong parametric restrictions that 

reduce the interpretation and flexibility of the models. Recently, the literature has 

focused on multivariate models with milder restrictions, whose purpose was to combine 

the need for interpretability and efficiency faced by model users with the computational 

problems that may emerge when the number of assets is quite large. We contribute to 

this strand of the literature proposing a block-type parameterization for multivariate 

stochastic volatility models. 

 

Keywords: block structures; multivariate stochastic volatility; curse of dimensionality 

JEL classifications: C32, C51, C10. 
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1. Introduction 

 

Classical portfolio allocation and management strategies are based on the assumption 

that risky returns series are characterized by time invariant moments. However, the 

econometric literature of the last few decades demonstrated the existence of dynamic 

behaviour in the variances of financial returns series. The introduction of such empirical 

evidence may constitute an additional source of performance for portfolio managers, as 

evidenced by Fleming, Kirby and Ostdiek (2001), or may be relevant for improving the 

market risk measurement and monitoring activities (see, for example, Hull and White 

(1998) and Lehar et al. (2002)). Two families of models emerged in the literature, 

namely GARCH-type specifications (see Engle (2002)), and Stochastic Volatility 

models (see Taylor (1986) and Andersen (1994)). 

 

However, portfolio management strategies often involve a large number of assets 

requiring the use of multivariate specifications. Among the possible alternative models, 

we cite the contributions of Bollerslev (1990), Engle and Kroner (1995), Ling and 

McAleer (2003), Asai and McAleer (2006, 2009), and the surveys in McAleer (2005), 

Bauwens, Laurent and Rombouts (2006), and Asai, McAleer and Yu (2006). Most 

models, if not all, suffer from a common problem, the well-known “curse of 

dimensionality”, whereby models become empirically infeasible if fitted to a number of 

series of moderate size (in some cases, the models may become computationally 

intractable with even 5 or 6 assets). In order to match the need of introducing 

time-varying variances with practical computational problems, several restricted models 
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are generally used: the diagonal VECH specifications suggested by Bollerslev et al. 

(1988), the scalar VECH and BEKK models proposed by Ding and Engle (2001), the 

CCC model of Bollerslev (1990), and the dynamic conditional correlation models of 

Engle (2002) and Tse and Tsui (2002). However, the introduction of significant and 

strong restrictions reduces the interpretation and flexibility of the models, possibly 

affecting the purportedly improved performance they may provide and/or the 

appropriateness of the analysis based on their results. 

 

Recently, the literature has focused on multivariate models with milder restrictions, 

whose purpose was to combine the need for interpretability and efficiency faced by 

model users with the computational problems that may emerge when the number of 

assets is quite large. Among the contributions in this direction, we follow the approach 

of Billio, Caporin and Gobbo (2005). They proposed specifying the parameter matrices 

of a general multivariate correlation model in a block form, where the blocks are 

associated with assets sharing some common feature, such as the economic sector. Our 

purpose is to adopt this block-type parameterization and adapt it to multivariate 

stochastic volatility models.  

 

In general terms, Multivariate Stochastic Volatility (MSV) models have a parameter 

number of order O(n2), where n is the number of assets. With the introduction of block 

parameter matrices, we may control the number of parameters and obtain a model 

specification which is feasible, even for a very large number of assets. Furthermore, as 

in the contribution of Billio et al. (2005), the models we propose follow the spirit of 

sectoral-based asset allocation strategies since they will presume the existence of 
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common dynamic behaviour within assets or financial instruments belonging to the 

same economic sector. This assumption is not as strong as postulating the existence of a 

unique factor driving all the variances and covariances, since the financial theory may 

suggest the existence of sector-specific risk factors (sectoral asset allocation is often 

followed by portfolio managers and characterized by a number of managed financial 

instruments). 

 

As distinct from an extremely restricted model, we also recover part of the spillover 

effect between variances, which allows monitoring of the interdependence between 

groups of assets, an additional element which may be relevant. Within our modeling 

approach, the coefficients may be interpreted as sectoral specific, while the assets will 

be in any case characterized by a specific long term variance through the introduction of 

unrestricted constants in the variance equations. 

 

Clearly, the restrictions proposed may not necessarily be accepted by the data, as more 

‘complete’ models will, in general, provide better results. We will show that the 

introduction of such restrictions provides limited losses, while yielding a significant 

improvement over the more restricted specifications. We will evaluate and compare the 

alternative models following the Monte Carlo likelihood (MCL) estimation approach 

for both univariate and multivariate SV models, as in Sandmann and Koopman (1998) 

and Asai and McAleer (2006). 

 

The plan of the remainder of the paper is as follows. Section 2 presents the 

block-structure modelling approach within a general MSV framework, and also 
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compares the model to Factor SV specifications, and addresses some estimation issues. 

Section 3 presents an empirical example based on US stock market data for selected 

firms. Section 4 gives some concluding comments. 

 

2. MSV Models 

 

The block-structure model we present can be considered as a restricted specification of 

a general MSV model. In fact we will show how the modelling approach consists in 

defining a set of parametric restrictions that makes the model feasible, but without 

losing the interpretation of coefficients.  

 

Consider a general MSV model that will be used as reference model. Let tR  be the 

return series on an asset, and define ( )1t t t ty R E R −= − ℑ  as the mean-adjusted return. 

Then, the basic SV model is defined as 

 

 
( ) ( )

( )2
1

exp 0.5 , 0,1 ,

, 0, ,

t t t t

t t t t

y h N

h h N η

σε ε

φ η η σ+

=

= +

 (1) 

 

where ( ) 0t sE ε η =  for all t and s. By setting t tg h μ= − , where 2 lnμ σ= , we have 

an alternative representation, namely ( )exp 0.5t t ty gε=  and ( )1t t tg gμ φ μ η+ = + − + . 

 

For the M-dimensional stochastic vector, the MSV model of Harvey, Ruiz and Shephard 
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(1994) is defined by 
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where P is the correlation matrix, σ  is the M-vector of standard deviation parameters, 

and th  is M-vector of the stochastic components, which follows a VAR(1) process 

given as 

 

 

( )

1 ,

0, ,

t t t

t

h h

N η

φ η

η

+ = +

Σ

o

 (3) 

 

where the operator o  denotes the Hadamard (or element-by-element) product, φ  is an 

M-dimensional coefficient vector and ηΣ  is the covariance matrix. For convenience, we 

call this type of MSV model the ‘basic MSV’ model. 

 

In the following, we present a closely related specification, the Factor MSV model, and 

then we introduce the Block-Structure MSV model. 
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2.1. Factor MSV model 

 

An alternative class of MSV models was first introduced by Harvey et al. (1994), and 

then extended by Jacquier et al. (1995, 1999), and Chib et al. (2006), among others. The 

basic model has the following structure: 
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 (4) 

 

where D is the m k×  matrix of factor loadings, tf  is the k-dimensional vector of 

factors, which follow univariate SV models, and all the innovation terms are mutually 

uncorrelated. This model has a limited number of parameters, but also has some 

drawbacks. In fact, as shown in Asai et al. (2008), the conditions imposed on the mean 

innovations, tε , that is, homoscedasticity and diagonality of the covariance matrix, are 

too restrictive and not consistent with the empirical evidence. This is particularly 

evident when the number of factors, k, is much smaller than the number of assets, M. In 

this case, if the assets are used to create a portfolio, there must exist at least one vector 
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of weights providing a homoskedastic portfolio. 

 

2.2. Block Structure Model 

 

We now assume that the M assets are divided into B groups, with the i-th group 

containing im  assets ( 1 2 BM m m m= + + +L ). We define a block structure for the 

volatility by assuming that each group of assets is characterized by a common 

parametric behaviour in the volatility equation. Consider the variance dynamics of the 

Harvey et al. (1994) model in equations (1)-(3): 
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η

η
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 (5) 

 

where the matrix of parameters of persistence, Φ , and the covariance matrix of 

log-volatility, ηΣ , will have constraints given by block structures. We define 
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where ,m nL  is an m n×  matrix with diagonal elements of ones and off-diagonal elements of zeros. 

If the number of assets in each block is the same, namely im M B= , we have 

{ }1diag , , B MIφ φΦ = ⊗K  and u MIηΣ = Σ ⊗ , where { },u u ijσΣ = , and ⊗  is the Kronecker 

product. By construction, the vector of volatilities has a block-structure given that the 

factors affecting the overall volatilities are sector or block specific. Hereafter, we refer 

to the model in equations (2), (5) and (6) as the Volatility Block Structure (VBS) MSV 

model. 

 

For convenience, we will show the structure of each block in detail. Denote the vector 

of filtered returns of the i-th group as ( ) ( ) ( )( )1 2, , ,
i

i i i
it t t m ty y y y ′= K , where ( )i

jty  is the filtered 

return of the j-th asset in the i-th group. Similarly, denote ( ) ( ) ( )( )1 2, , ,
i

i i i
it t t m th h h h ′= K . For 

the mean-adjusted returns of the i-group, we have the following structure:  
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i i
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i t i it it it u ii m

y D D N P

D

D h

h h u u N I

ε ε

σ

φ σ+

=

=

=
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 (7) 

 

where iP  is the correlation matrix, ( ) ( )( )1 , ,
i

i i
i mσ σ σ ′= K , and ( )i

jσ , iφ  and ,u iiσ  are 

scalar parameters. We refer to this as the ‘one-block SV’ model. 

 

Now we turn to the vector of volatilities of the i-th block, which is defined as 
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 ( ){ }diag exp 0.5it i itv hσ= . (8) 

 

Thus, the vector of volatilities for all assets is given by ( )1 , ,t t Btv v v ′′ ′= K . We specify 

the mean equation of ( )1 , ,t t Bty y y ′′ ′= K  as 

 

 ( ), 0,t t t ty V N Pε ε= , (9) 

 

where ( )diagt tV v= , and P  is the correlation matrix.  

 

The numbers of parameters in ( )1, , Bσ σ σ ′′ ′= K  and P are M and ( )1 2M M − , 

respectively. For the equation of the main components, the numbers of parameters in φ  

and uΣ  are B and ( )1 2B B + , respectively. When 12M =  and 4B =  ( 50M =  

and 5B = ), the number of parameters in the BS-MSV model is 92 (1295). For the 

MSV model of Harvey, Ruiz and Shephard (1994), the number of parameters for the 

case 12M =  ( 50M = ) is 168 (2600). Thus, the BS-MSV model is parsimonious in 

terms of the number of parameters. 

 

The BS-MSV model still suffers from the number of parameters, which increases with 

the speed of 2M . Thus, we propose the Complete BS (CBS) model, which consists of 

equations (2), (5) and (6), subject to the restriction: 
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where ( ){ }ii jkP p= and { }lmQ q=  are the i im m×  and B B×  correlation matrices, 

respectively, and ijJ  is an i jm m×  matrix of ones. In this model, Q captures the 

correlations between the blocks. As the number of parameters in P is given by  

( ) ( )
1

1 2 1 2
B

i i
i

B B m m
=

− + −∑ , the CBS-MSV model has ( )2

1
1 2

B

i i
i

M B B m m
=

+ + + −∑  

parameters. In the limiting case of blocks characterized by the same number of assets, 

when 12M =  and 4B =  ( 50M =  and 5B = ), the number of parameters in the 

CBS-MSV model is 56 (305). Therefore, the CBS model drastically reduces the number 

of parameters. With the further restriction that ( ) ( )i i
jkp p= , the CBS-MSV model has 

22M B B+ +  parameters. In this case, assuming again that each block includes M/B 

series, 12M =  and 4B =  ( 50M =  and 5B = ) yields 36 (85) parameters. 

 

Note that similar block structures could be used for the specification of the factor 

loading matrix, D, of the model in (4). In this alternative representation, the latent 

factors could be associated with the specific blocks created with the assets. Alternatively, 

making the D matrix unrestricted, block specifications could be used to generalize the 

model in (4) by introducing spillovers across the factor variances and by removing the 

diagonality assumption over the innovation covariance matrices. 
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2.3 Model estimation 

 

For the estimation of the MSV models, we use the Monte Carlo likelihood (MCL) 

approach proposed by Durbin and Koopman (1997). Sandmann and Koopman (1998) 

applied the MCL method to the univariate SV model, while Asai and McAleer (2006) 

adapted it for the MSV model. These two papers rely on the logarithmic transformation 

of squared returns, as in Harvey, Ruiz and Shephard (1994), allowing a state-space form 

with non-Gaussian measurement errors. In the MCL method, the likelihood function can 

be approximated arbitrarily by decomposing it into a Gaussian part, which is 

constructed by the Kalman filter, and a remainder function, for which the expectation is 

evaluated through simulation. 

 

3. Empirical analysis 

 

Three groups of three assets from three different sectors (B=3 and M=9) are used, 

namely Chemical, General Financials, and Oil and Gas Producers. Table 1 reports the 

selected stocks and a descriptive analysis of their returns. These assets have been 

selected from among a small list of the largest companies between each sector on the 

basis of the correlations between the squared returns. All the selected stocks belong to 

the large cap segment of the NYSE, and enter the S&P 500 index. Given the approach 

followed in the asset selection, intuitively there possibly exist common patterns in the 

variances. We chose such a selection approach in order to provide an example where the 

proposed modelling approach may be useful. We believe that the block structur MSV 

model may be of little interest if the assets under study all belong to different sectors or 
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if they are characterized by low correlations. 

 

The series considered are total return indices, collected in the sample period 2 January 

2002 to 10 April 2007, giving T=1375 observations. Note that the period covered 

excludes the effects of the technology market drawdown, while it may be influenced by 

the wars in Afghanistan and Iraq and by the increasing trend in oil prices. Furthermore, 

we exclude the global financial crisis period. 

 

Table 1 reports a preliminary descriptive analysis of the 9 stocks, showing that in the 

period considered the average returns are positive (the stock market was characterized 

by an upward trend in prices), and very close between assets of the same sector, while 

there is a slight difference between sectors: the chemical sector has lower returns than 

the general financial sector which is, in turn, dominated by the oil and gas producer 

sector. This is a somewhat expected result, given the relevant increase in the oil prices 

in the later years of the sample. The standard deviations of the oil sectors are the 

smallest, while the General Financial sector has the highest risk. The Chemical sector 

has the most leptokurtic densities; the Oil and Gas Produces stocks are negatively 

skewed, while the others are all positively skewed, a fact that is also reflected in the 

median returns.  

 

The correlations within each sector are quite high, around 0.65 for the Chemical sector, 

about 0.8 for the General Financial stocks, and close to 0.75 for the Oil and Gas 

Producers firms. Between sectors, the correlations are lower and vary between 0.32 and 

0.54. Notably, the correlations between assets of different sectors have a block-like 
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structure: the correlations between a chemical firm and a general financial stock are 

close to 0.5, higher than the correlations between a chemical and an oil producer firm, at 

around 0.4. Finally, the correlations between a general financial firm and an oil producer 

firm are again close to 0.4. 

 

In order to develop the conditional mean for each return, we used the following data 

sets; a set of interest rates (US Treasury bond 3 months, 6 months, 9 months, 1-3 years, 

3-5 years, 5-7 years), oil prices, and two dummies (January and Monday). Interest rates 

are in the form of bond indices. Following Ait-Sahalia and Brandt (2001) and Pesaran 

and Timmerman (1995, 2000), we fit the conditional mean returns with the constant 

term, the lagged return, the contemporaneous dummies, the lagged Oil returns, and the 

deviations between the returns of the rates (the following differences between bond 

indices returns: 6 months minus 3 months, 1-3 years minus 6 months, and so on), giving 

10 explanatory variables, as follows: 

 

( ) 1 2 1 3 4 5 6 1 10 5
Jan Mon Oil

t t t t t t tE R R D D R V Vβ β β β β β β−= + + + + + + +L . 

 

The deviations between the rates, itV , can be considered as a proxy for the curvature of 

the yield curve, and hence may be useful in predicting stock movements. 

 

In the proposed equation, the curvature of the yield curve and the oil returns are 

contemporaneous. Clearly, the model may suffer from simultaneity problems, given that 

the explanatory variables may be predictable, and we are not including an appropriate 

equation for their behaviour. In order to validate the returns model, we run a set of 
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causality tests, specifically we consider both the Granger causality test and a test for 

bidirectional causality. In the first case, we run standard causality tests based on a 

lagged relation between variables for all pairs of stock returns and explanatory variables. 

In all cases we have limited evidence of causality (few tests have p-values below 0.2, 

and none is below 0.05).  

 

In order to implement the bidirectional causality test, we estimated two simultaneous 

systems, the restricted version without contemporaneous feedback from the explanatory 

variables to the stocks. In this case (we have 54 restrictions, 6 restrictions on each 

equation, the 5 variables related to the bonds and the oil price, for the 9 stocks), the 

restricted likelihood is 97571.22, the full likelihood is 97605.34, and the LR test statistic 

is 68.24. Assuming an asymptotic density following a chi-square distribution with 54 

degrees of freedom, we have a p-value of 0.092. We interpret this result as a rejection of 

the bidirectional causality (even if the decision was not extremely clear). Given the 

outcome of the tests, we can safely run the analysis on the equation with a 

contemporaneous relationship. 

 

Table 2 gives the results for the conditional mean equation. The number in the first 

column denotes the corresponding explanatory variable. For instance, #1 is the constant 

term, and # 2 is the AR(1) coefficient. The heteroskedasticity consistent standard errors 

are given in parentheses. Although most of the parameter estimates are insignificant, 

there are some exceptions, such as tR  and 2tV  for AIR PRDS. & CHEMS. 

 

For the volatility equation, we first estimated the univariate SV models defined in 
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equation (1). Table 3 shows the MCL estimates for the univariate models. Although the 

estimates of φ  for the financial sector are relatively low, the estimates are typical of 

those available in the literature for SV models. Furthermore, we note a similarity 

between the volatility constants, σ, associated with the stocks belonging to the same 

sector.  

 

We also estimated the basic trivariate SV models (2) and 

Error! Reference source not found. for the three sectors, and Table 4 presents the 

results. By introducing the off-diagonal elements of ηΣ  and P, the estimates of φ  are 

smaller than the corresponding estimates in Table 3 for all the sectors. The correlation 

coefficients based on ηΣ  are very high and replicate the ordering of Table 1, with the 

Chemical sector characterized by lower correlations between assets. As the estimate for 

ηΣ  is very close to a singular matrix for the chemical sector, the standard errors are 

unreliable, and hence are not reported. As the values of φ  are close to each other in 

each sector, and since the estimates of ηΣ  indicate the existence of common 

movements in tη , we need to consider common structures by using factor models 

and/or the BS models. 

 

Table 5 shows the log-likelihood, AIC and BIC for the trivariate SV model. Comparing 

these values with those in Table 3, we conduct an LR test for the off-diagonal elements 

of ηΣ  and P. The test statistic has a ( )2 6χ  asymptotic density, and we are able to 

reject the null hypothesis that all the off-diagonal elements of ηΣ  and P are equal to 
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zero for all three sectors. 

 

As the first step of our BS approach, we estimated the one-block trivariate SV model for 

the three sectors. Table 6 shows the MCL results for the one-block model. Due to the BS 

approach, the estimates of φ  are less than the smallest values of the corresponding 

sector in Table 3. Table 7 gives the log-likelihood, AIC and BIC for the one-block 

model. The one-block model for the chemical sector has smaller AIC and BIC values 

than the basic MSV model in (2) and Error! Reference source not found.. For the 

remaining two sectors, BIC favours the one-block model, while AIC chooses the basic 

MSV model. As a result, we find that the BS approach would be a good candidate for 

effectively reducing the number of parameters for high dimensional models. 

 

Next, we consider the 6-variate SV model with 2 blocks. Tables 8-10 show the MCL 

estimates for the combination of sectors {(General Financials, Oil and Gas Producers), 

(General Financials, Chemicals) and (Oil and Gas Producers, Chemicals)}. With respect 

to Tables 9 and 10, the estimates of φ  became relatively low by including the chemical 

sector. Finally, we report in Table 11 the estimates of the full 9-variate model with three 

blocks associated with the three economic sectors. The parameter estimates are in line 

with those reported in Tables 8-10. 

 

A direct comparison of the BS specifications with the full model estimate is not directly 

available due to the computation complexity of the 6-variate and 9-variate full models. 

Only three-variate specifications are available, both in their full and BS specifications, 

and standard likelihood ratio tests clearly favour the full models. However, when the 
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cross-sectional dimensions increase, the BS specifications remain feasible, while the 

full SV models are not. This is a particularly strong advantage of the model presented in 

the paper, which also maintains the parameter interpretation, and also allows for 

correlated innovations as the matrices P and ηΣ  are not restricted to be diagonal or 

block-diagonal. 

 

A more detailed comparison of the full and BS specifications for stochastic volatility 

models is left to future research. 

 

4. Conclusion 

 

In this paper we presented a class of multivariate stochastic volatility models which is 

nested in the model of Harvey et al. (1994). A distinctive feature of our model is that, 

contrary to fully parameterized MSV models, it remains feasible in moderate to large 

cross-sectional dimensions. This result is achieved by imposing a block structure on the 

model parameter matrices. The variables could be grouped by using some economic or 

financial criteria, or could follow data-driven classifications. In addition, by the 

introduction of blocks, if these have an economic interpretation, the model proposed 

preserves the interpretation of the coefficients, a feature which is generally lost in 

feasible MSV models. 

 

We also presented an empirical application where the proposed model was estimated for 

a set of US equities, showing its feasibility. A more advanced comparison between the 

BS specification and alternative MSV models is left for future research. 
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Table 1: Descriptive Statistics, and Covariance and Correlation Matrices  
 

Panel a: Descriptive Statistics 
 

 100xMean 100xMedian 10xSt.dev. Min. Max. Asymmetry Kurtosis
CHEMICALS 

Air Products & Chemicals 0.042 <0.001 0.145 -0.062 0.071 0.024 5.119 
Rohm & Haas 0.038 <0.001 0.159 -0.058 0.082 0.422 5.443 
Eastman Chemicals 0.051 <0.001 0.163 -0.093 0.127 0.254 9.957 

GENERAL FINANCIALS 
Goldman Sachs Group 0.062 <0.001 0.159 -0.069 0.070 0.097 4.811 
Lehman Brothers Holding 0.059 <0.001 0.177 -0.071 0.081 0.158 4.653 
Merrill Lynch & Co. 0.042 <0.001 0.172 -0.082 0.085 0.019 5.604 

OIL AND GAS PRODUCERS 
Chevron 0.052 0.039 0.132 -0.069 0.053 -0.395 4.891 
Exxon Mobil 0.058 0.085 0.137 -0.088 0.093 -0.295 7.208 
Conocophillips 0.070 0.059 0.154 -0.064 0.056 -0.283 3.951 

 
Panel b: Covariance and Correlation Matrices 

 1 2 3 4 5 6 7 8 9 

1 0.00021 0.73269 0.61095 0.53726 0.51572 0.52548 0.40045 0.46694 0.35719 

2 0.00017 0.00025 0.67517 0.53321 0.51677 0.52087 0.39271 0.46088 0.32575 

3 0.00014 0.00017 0.00026 0.46894 0.45004 0.46141 0.38057 0.42790 0.32588 

4 0.00012 0.00014 0.00012 0.00025 0.82244 0.80014 0.37420 0.42386 0.33972 

5 0.00013 0.00015 0.00013 0.00023 0.00031 0.79181 0.38655 0.42824 0.34614 

6 0.00013 0.00014 0.00013 0.00022 0.00024 0.00030 0.39852 0.44392 0.34378 

7 0.00008 0.00008 0.00008 0.00008 0.00009 0.00009 0.00017 0.81550 0.76500 

8 0.00009 0.00010 0.00010 0.00009 0.00010 0.00010 0.00015 0.00019 0.74794 

9 0.00008 0.00008 0.00008 0.00008 0.00009 0.00009 0.00015 0.00016 0.00024 

 

Note: The numbers in the first column and first row identify the assets following the asset order included 

in the first panel. The main diagonal contains the variances, the lower triangular portion of the matrix 

contains the covariances, and the upper part contains the correlations. Entries in bold identify correlations 

between assets belonging to the same group. 
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Table 2: OLS Estimates for AR(1)+X Filter 
 

 ( ) 1 2 1 3 4 5 6 1 10 5
Jan Mon Oil

t t t t t t tE R R D D R V Vβ β β β β β β−= + + + + + + +L  

 
 AIR 

PRDS.& 

CHEMS. 

ROHM & 
HAAS 

EASTMAN 
CHEMICALS 

GOLDMAN 
SACHS GP. 

LEHMAN 
BROS.HDG. 

MERRILL 
LYNCH & 

CO. 

1 0.052257 
(0.046047) 

0.084552 
(0.050201) 

0.067398 
(0.050442) 

0.054578 
(0.050055) 

0.039213 
(0.056137) 

0.080864 
(0.052324) 

2 -0.077430 
(0.037420) 

-0.069550 
(0.035631) 

-0.018482 
(0.038766) 

-0.024159 
(0.032569) 

-0.016149 
(0.031604) 

0.021568 
(0.032707) 

3 -0.074751 
(0.13259) 

-0.14643 
(0.14241) 

-0.31699 
(0.16288) 

0.010587 
(0.12788) 

0.090702 
(0.13867) 

-0.13165 
(0.14648) 

4 0.014976 
(0.090221) 

-0.11898 
(0.099846) 

0.084124 
(0.10393) 

0.088226 
(0.10812) 

0.065721 
(0.12071) 

-0.095373 
(0.11541) 

5 0.013533 
(0.024869) 

-0.028756 
(0.025734) 

-0.027399 
(0.028098) 

-0.033285 
(0.026247) 

-0.018488 
(0.029564) 

-0.046207 
(0.028043) 

6 3.1120 
(6.4079) 

2.8912 
(7.2347) 

8.4777 
(7.3226) 

-0.38731 
(7.0470) 

6.3135 
(7.8102) 

0.78673 
(7.5957) 

7 -3.2335 
(1.4022) 

-3.1210] 
(1.5698) 

-2.5573 
(1.5909) 

-3.9432 
(1.6209) 

-5.6362 
(1.7475) 

-4.2337 
(1.7772) 

8 0.38499 
(1.0361) 

-0.13320 
(1.1541) 

-0.14864 
(1.1445) 

1.1068 
(1.2072) 

1.9268 
(1.3164) 

0.33607 
(1.3198) 

9 -2.6849 
(1.4334) 

-2.7242 
(1.6277) 

-3.0337 
(1.5659) 

-4.7312 
(1.6841) 

-3.6699 
(1.9407) 

-4.3171 
(1.8594) 

10 -0.22876 
(0.30836) 

0.047840 
(0.31261) 

0.21566 
(0.27479) 

0.35943 
(0.51958) 

0.019772 
(0.56653) 

0.18090 
(0.42547) 

 
Note: The explanatory variables are explained in the text. The heteroskedasticity 
consistent standard errors are given in parentheses. 
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Table 2 (Cont.): OLS Estimates for AR(1)+X Filter 

 

 ( ) 1 2 1 3 4 5 6 1 10 5
Jan Mon Oil

t t t t t t tE R R D D R V Vβ β β β β β β−= + + + + + + +L  

 
 CHEVRON EXXON 

MOBIL 
CONOCOPHILLIPS 

1 0.059555 
(0.040970) 

0.070209 
(0.043159) 

0.063182 
(0.048373) 

2 -0.048486 
(0.037402) 

-0.068125 
(0.038850) 

0.011006 
(0.033751) 

3 -0.093713 
(0.12285) 

-0.041243 
(0.12445) 

-0.030855 
(0.15012) 

4 0.042643 
(0.092067) 

-0.011393 
(0.087914) 

0.058970 
(0.10621) 

5 -0.00074654
(0.022122) 

0.012146 
(0.022738) 

-0.019895 
(0.027144) 

6 -4.6020 
(6.5236) 

-2.7178 
(6.4400) 

1.4510 
(7.5031) 

7 -1.2256 
(1.2764) 

-2.9594 
(1.3506) 

-2.1886 
(1.3993) 

8 0.42700 
(0.94531) 

1.3214 
(1.0640) 

1.1725 
(0.97668) 

9 -2.3026 
(1.3921) 

-2.5810 
(1.4706) 

-2.5616 
(1.4800) 

10 -0.13796 
(0.43368) 

-0.47793 
(0.36712) 

-0.13105 
(0.37475) 

 
Note: The explanatory variables are explained in the text. The heteroskedasticity 
consistent standard errors are given in parentheses. 
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Table 3: MCL Estimates for Univariate SV Models 

 

 
( ) ( )

( )2
1

exp 0.5 , 0,1 ,

, 0,
t t t t

t t t t

y h N

h h N η

σε ε

φ η η σ+

=

= +
 

 

 φ  ησ  σ  LogLik AIC BIC 

AIR PRDS.& 
CHEMS. 

0.9221 
(0.0346) 

0.2418 
(0.0670) 

1.2607 
(0.0598) 

-3002.03 6010.06 6025.72 

ROHM & HAAS 
0.7944 

(0.0732) 
0.4132 

(0.0854) 
1.3517 

(0.0486) 
-3054.91 6115.82 6131.48 

EASTMAN 
CHEMICALS 

0.8234 
(0.0477) 

0.4563 
(0.0628) 

1.2933 
(0.0546) 

-3029.88 6065.76 6081.41 

GOLDMAN SACHS 
GP. 

0.9626 
(0.0199) 

0.1494 
(0.0450) 

1.4251 
(0.0819) 

-3015.25 6036.51 6052.17 

LEHMAN 
BROS.HDG. 

0.9806 
(0.0095) 

0.1197 
(0.0299) 

1.5830 
(0.1335) 

-2968.64 5943.27 5958.93 

MERRILL LYNCH & 
CO. 

0.9929 
(0.0046) 

0.0740 
(0.0193) 

1.5414 
(0.2060) 

-2964.94 5935.88 5951.54 

CHEVRON 
0.9575 

(0.0158) 
0.1543 

(0.0308) 
1.1952 

(0.0629) 
-2903.96 5813.92 5829.58 

EXXON MOBIL 
0.9717 

(0.0125) 
0.1365 

(0.0309) 
1.1995 

(0.0803) 
-2925.08 5856.16 5871.82 

CONOCOPHILLIPS 
0.9858 

(0.0074) 
0.0935 

(0.0226) 
1.3946 

(0.1231) 
-2926.95 5859.90 5875.56 
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Table 4: MCL Estimates for Basic Trivariate SV Models 
 

 

( )
{ } ( ){ }

( )1

, 0, ,

diag , diag exp 0.5 ,

, 0,

t t t t

t t

t t t t

y DD N P

D D h

h h N η

ε ε

σ

φ η η+

=

= =

= + Σo

 

  

 φ  ηΣ  σ  P  

AIR PRDS.& 
CHEMS. 

0.4346 
(NA) 

0.6335 
(NA) 

  1.1261 
(NA) 

1  

ROHM & HAAS 
0.4334 
(NA) 

0.6381 
(NA) 

0.6433 
(NA) 

 1.2429 
(NA) 

0.6344 
(NA) 

1 

EASTMAN 
CHEMICALS 

0.4726 
(NA) 

0.6081 
(NA) 

0.6057 
(NA) 

0.6488 
(NA) 

1.2360 
(NA)   

0.5175 
(NA) 

0.5957 
(NA) 

GOLDMAN 
SACHS GP. 

0.9251 
(0.0265) 

0.0539 
(0.0229)

  1.2873 
(0.0616) 

1  

LEHMAN 
BROS.HDG. 

0.9643 
(0.0128) 

0.0351 
(0.0137)

0.0253 
(0.0112) 

 1.4920 
(0.0963) 

0.70279 
(0.0167) 

1 

MERRILL 
LYNCH & CO. 

0.9729 
(0.0102) 

0.0292 
(0.0115)

0.0208 
(0.0087) 

0.0198 
(0.0089) 

1.4754 
(0.1087) 

0.69111 
(0.0204) 

0.76335 
(0.0128)  

CHEVRON 
0.8712 

(0.0518) 
0.1130 

(0.0539)
  1.0705 

(0.0428) 
1  

EXXON MOBIL 
0.8974 

(0.0389) 
0.0946 

(0.0415)
0.0824 

(0.0365) 
 1.1358 

(0.0478) 
0.7010 

(0.0179) 
1 

CONOCOPHILL
IPS 

0.9479 
(0.0213) 

0.0525 
(0.0233)

0.0429 
(0.0187) 

0.0328 
(0.0155) 

1.3907 
(0.0695) 

0.6800 
(0.0218) 

0.6767 
(0.0196) 

Note: Standard errors are given in parentheses. Given that  ηΣ  is close to singular, the 

standard errors are unreliable and hence are not reported. 
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Table 5: AIC and BIC for Basic Trivariate SV Models 
 

 Chemicals General Financials Oil and Gas Producers 
LogLike -8777.7 -8508.6 -8406.5 

AIC 17585.4 17047.2 16842.9 
BIC 17663.7 17125.5 16921.2 
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Table 6: MCL Estimates for One-Block Trivariate SV Models 

 

 

( )
{ } ( ){ }

( ), 1 ,

, 0, ,

diag , diag exp 0.5

, 0, ,
i

it i it t t i

i i it it

i t i it it it u ii m

y D D N P

D D h

h h u u N I

ε ε

σ

φ σ+

=

= =

= +

 

 

 iφ  ,u iiσ  iσ  iP  

AIR PRDS.& 
CHEMS. 

1.2154 
(0.0411) 

1  

ROHM & HAAS 
1.3524 

(0.0448) 
-0.7204 
(0.0180) 

1 

EASTMAN 
CHEMICALS 

0.8109 
(0.0409) 

0.1337 
(0.0316)

1.3245 
(0.0464)  

-0.6400 
(0.0251) 

-0.6894 
(0.0204) 

GOLDMAN 
SACHS GP. 

1.3472 
(0.1462) 

1  

LEHMAN 

BROS.HDG. 
1.5592 

(0.1702) 
0.7080 

(0.0135) 
1 

MERRILL 
LYNCH & CO. 

0.9935 
(0.0276) 

0.0031 
(0.0012)

1.5482 
(0.1694) 

0.6869 
(0.0160) 

0.7706 
(0.0119)  

CHEVRON 
1.1061 

(0.0681) 
1  

EXXON MOBIL 
1.1644 

(0.0717) 
0.7173 

(0.0153) 
1 

CONOCOPHILLI
PS 

0.9739 
(0.0073) 

0.0128 
(0.0037)

1.4059 
(0.0864) 

0.6730 
(0.0186) 

0.6804 
(0.0171) 

Note: Standard errors are given in parentheses. 
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Table 7: AIC and BIC for One-Component Trivariate SV Models 

 
 Chemicals General Financials Oil and Gas Producers 

LogLike -8875.86 -8545.33 -8454.49 
AIC 17767.7 17106.7 16925.0 
BIC 17809.5 17148.4 16966.7 
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Table 8: MCL Estimates for BS-MSV Models  
(General Financials, Oil and Gas Producers) 

 

 

( )
{ } ( ){ }

( )
{ }

1

1

, 0, ,

diag , diag exp 0.5 ,

, 0, ,

diag , , , .

t t t t

t t

t t t t

B M u M

y DD N P

D D h

h h N

I I
η

η

ε ε

σ

η η

φ φ
+

=

= =

= Φ + Σ

Φ = ⊗ Σ = Σ ⊗K

 

 
 φ  uΣ  

GOLDMAN SACHS GP. 

LEHMAN BROS.HDG. 

MERRILL LYNCH & CO. 

0.9961 
(0.0021) 

0.0020 
(0.0009)

 

CHEVRON 

EXXON MOBIL 
CONOCOPHILLIPS 

0.9760 
(0.0067) 

0.0019 
(0.0009)

0.0115 
(0.0033) 

 
 σ  P  

GOLDMAN 
SACHS GP. 

1.3506 
(0.1971) 

1      

LEHMAN 
BROS.HDG. 

1.5623  
(0.2286) 

0.7081 
(0.0135)

1     

MERRILL 
LYNCH & CO. 

1.5797 
(0.2338) 

0.6796 
(0.0163)

0.7690 
(0.0120) 

1    

CHEVRON 
1.1179 

(0.0708) 
-0.4462 
(0.0412)

-0.4553 
(0.0399)

-0.4012 
(0.0471)

1   

EXXON MOBIL 
1.1799 

(0.0748) 
-0.4161 
(0.0429)

-0.4280 
(0.0419)

-0.4194 
(0.0371)

0.7163 
(0.0152) 

1  

CONOCOPHILL
IPS 

1.4300 
(0.0921) 

-0.4271 
(0.0428)

-0.4476 
(0.0400)

-0.4282 
(0.0424)

0.6697 
(0.0185) 

0.6778 
(0.0170) 

1 

 
LogLike AIC BIC 
-16939.6 33931.2 34066.9

Note: Standard errors are given in parentheses.  
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Table 9: MCL Estimates for BS-MSV Models  

(General Financials, Chemicals) 
 

 

( )
{ } ( ){ }

( )
{ }

1

1

, 0, ,

diag , diag exp 0.5 ,

, 0, ,

diag , , , .

t t t t

t t

t t t t

B M u M

y DD N P

D D h

h h N

I I
η

η

ε ε

σ

η η

φ φ
+

=

= =

= Φ + Σ

Φ = ⊗ Σ = Σ ⊗K

 

 
 φ  uΣ  

GOLDMAN SACHS GP. 

LEHMAN BROS.HDG. 

MERRILL LYNCH & CO. 

0.9743 
(0.0068) 

0.0107 
(0.0037)

 

AIR PRDS.& CHEMS. 

ROHM & HAAS 
EASTMAN CHEMICALS 

0.8817 
(0.0334) 

0.0204 
(0.0056)

0.0867 
(0.0258) 

 
 σ  P  

GOLDMAN 
SACHS GP. 

1.3086 
(0.1789) 

1      

LEHMAN 
BROS.HDG. 

1.5036  
(0.0954) 

0.7076 
(0.0158)

1     

MERRILL 
LYNCH & CO. 

1.4683 
(0.2354) 

0.6871 
(0.0182)

0.7639 
(0.0162) 

1    

AIR PRDS.& 
CHEMS. 

1.2232 
(0.1017) 

-0.5114 
(0.0343)

-0.5390 
(0.0361)

-0.5463 
(0.0335)

1   

ROHM & HAAS 
1.3680 

(0.0519) 
-0.4351 
(0.0433)

-0.4602 
(0.0632)

-0.5118 
(0.0492)

-0.7109 
(0.0172) 

1  

EASTMAN 
CHEMICALS 

1.3464 
(0.0512) 

-0.4236 
(0.0495)

-0.4675 
(0.0770)

-0.3970 
(0.0551)

-0.6219 
(0.0243) 

-0.6810 
(0.0208) 

1 

 

LogLike AIC BIC 
-17311.2 34674.5 34810.2

Note: Standard errors are given in parentheses.  
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Table 10: MCL Estimates for BS-MSV Models  

(Oil and Gas Producers, Chemicals) 
 

 

( )
{ } ( ){ }

( )
{ }

1

1

, 0, ,

diag , diag exp 0.5 ,

, 0, ,

diag , , , .

t t t t

t t

t t t t

B M u M

y DD N P

D D h

h h N

I I
η

η

ε ε

σ

η η

φ φ
+

=

= =

= Φ + Σ

Φ = ⊗ Σ = Σ ⊗K

 

 
 φ  uΣ  

CHEVRON 

EXXON MOBIL 

CONOCOPHILLIPS 

0.9597 
(0.0101) 

0.0178 
(0.0051)

 

AIR PRDS.& CHEMS. 

ROHM & HAAS 
EASTMAN CHEMICALS 

0.8413 
(0.0353) 

0.0150 
(0.0054)

0.1080 
(0.0261) 

 
 σ  P  

CHEVRON 
1.1108 

(0.0555) 
1      

EXXON MOBIL 
1.1688  

(0.0595) 
0.7245 

(0.0154)
1     

CONOCOPHILL
IPS 

1.4075 
(0.0734) 

0.6777 
(0.0191)

0.6883 
(0.0174) 

1    

AIR PRDS.& 
CHEMS. 

1.2169 
(0.0436) 

-0.3623 
(0.0687)

-0.4741 
(0.0409)

-0.4139 
(0.0478)

1   

ROHM & HAAS 
1.3572 

(0.0190) 
-0.5088 
(0.0365)

-0.4591 
(0.0386)

-0.4648 
(0.0375)

-0.7127 
(0.0177) 

1  

EASTMAN 
CHEMICALS 

1.3285 
(0.0477) 

-0.3989 
(0.0520)

-0.4789 
(0.0396)

-0.3859 
(0.0551)

-0.6237 
(0.0252) 

-0.6810 
(0.0207) 

1 

 
LogLike AIC BIC 
-17260.4 34572.7 34708.4

Note: Standard errors are given in parentheses.  
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Table 11: MCL Estimates for BS-MSV Models  
(General Financials, Oil and Gas Producers, Chemicals) 

 

 

( )
{ } ( ){ }

( )
{ }

1

1

, 0, ,

diag , diag exp 0.5 ,

, 0, ,

diag , , , .

t t t t

t t

t t t t

B M u M

y DD N P

D D h

h h N

I I
η

η

ε ε

σ

η η

φ φ
+

=

= =

= Φ + Σ

Φ = ⊗ Σ = Σ ⊗K

 

 
 φ  uΣ  

GOLDMAN SACHS GP. 

LEHMAN BROS.HDG. 
MERRILL LYNCH & CO. 

0.9873 
(0.0058) 

0.0043 
(0.0012) 

  

CHEVRON 
EXXON MOBIL 

CONOCOPHILLIPS 

0.9618 
(0.0094) 

0.0019 
(0.0012) 

0.0171 
(0.0049) 

 

AIR PRDS.& CHEMS. 

ROHM & HAAS 
EASTMAN CHEMICALS 

0.8598 
(0.0489) 

0.0096 
(0.0040) 

0.0143 
(0.0052) 

0.0902 
(0.0326) 

 

LogLike AIC BIC 
-25660.0 51428.0 51709.8

 
Note: Standard errors are given in parentheses. Estimates for σ  and P  are omitted. 

 
 
 
 
 
 
 
 
 
 
 


