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Abstract

The linear mixed models (LMM) and the empirical best linear unbiased predictor
(EBLUP) induced from LMM have been well studied and extensively used for a long
time in many applications. Of these, EBLUP in small area estimation has been
recognized as a useful tool in various practical statistics. In this paper, we give a
review on LMM and EBLUP from a aspect of small area estimation. Especially, we
explain why EBLUP is likely to be reliable. The reason is that EBLUP possesses
the shrinkage function and the pooling effects as desirable properties, which arise
from the setup of random effects and common paramers in LMM. Such important
properties of EBLUP are clarified as well as some recent results of the mean squared
error estimation, the confidence interval and the variable selection procedures are
summarized.

Key words and phrases: Akaike information criterion, Bartlett correction, Baysian
information criterion, best linear unbiased predictor, confidence interval, empirical
Bayes procedure, Fay-Herriot model, linear mixed model, maximum likelihood es-
timator, mean squared error, nested error regression model, restricted maximum
likelihood estimator, small area estimation, Wald test.

1 Introduction

The linear mixed models (LMM) and the empirical best linear unbiased predictor (EBLUP)
or the empirical Bayes estimator (EB) induced from LMM have been studied for a long
time in the literature. One of important applications of LMM is the problem of small
area estimation. Small area refers to a small geographical area or a group for which lit-
tle information is obtained from the sample survey. When only a few observations are
available from a given small area, the direct estimator based only on the data from the
small area is likely to be unreliable, so that the relevant supplementary information such
as data from other related small areas is used via suitable linking models to increase
the precision of the estimate. The typical models used for the small area estimation are
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the Fay-Herriot model and the nested error regression model (NERM), which are special
models of LMM, and the model-based estimates including EBLUP or EB are found to
be very useful as illustrated by Fay and Herriot (1979) and Battese, Harter and Fuller
(1988). For a good review and account on this topic, see Ghosh and Rao (1994), Rao
(1999, 2003) and Pfeffermann (2002).

In this paper, we give a review on theory of the linear mixed model and applications
to small area estimation unnder the normality assumption. In Sections 2 and 3, we ex-
plain the derivation of the mixed model equation and BLUP, asymptotic properties of
the maximum likelihood (ML) and restricted maximum likelihood (REML) estimators
of variance components, and EBLUP’s features and their relation with the structure of
LMM. Especially, we explain why EBLUP is likely to be reliable. As discussed there,
desirabel properties of EBLUP are characterized as the shrinkage function and the pool-
ing effect, namely, EBLUP shrinks the sample mean of the small area towards a stable
quantity costructed by pooling all the data. These two feartures of EBLUP, shrinkage
and pooling effects, come from the structure of LMM described as (observation) = (com-
mon parameters) + (random effects) + (error terms), namely, the function of shrinkage
arises from the random effects of LMM, and the pooling effect is due to the setup of the
common parameters in LMM. As seen from that fact that EBLUP is interpreted as the
empirical Bayes estimator, this perspective was recognized by Efron and Morris (1975)
in the context of the empirical Bayes method. While BLUP or EBLUP was proposed by
Henderson (1950), EBLUP is related to the shrinkage estimator studied by Stein (1956),
who established analytically that EBLUP improves on the sample means when the num-
ber of small areas is larger than or equal to three. This fact shows not only that EBLUP
has a larger precision than the sample mean, but also that a similar concept came out
at the same time by Henderson (1950) for practical use and Stein (1956) for theoretical
interest.

When EBLUP is used to estimate a small area mean based on real data, it is important
to assess how much EBLUP is reliable. Two of typical methods for measuring uncertainty
of EBLUP is the estimation of the mean squared error (MSE) and the confidence interval
based on EBLUP. In Section 4, we explain the results of the second-order approximation
of an unbiased estimator of MSE of EBLUP and the confidence interval which satisfies
the nominal confidence level with the second-order accuracy.

In Section 5, we explain the testing problem of the regression coefficients and the
selection of explanatory variables.

Since the topics and results treated in this paper are limited due to shortage of page
length, see Searle, Casella and McCulloch (1992) and Demidenko (2004) for LMM; Rao
(2003) for small area estimation; Banerjee, Carlin and Gelfand (2004) for spatial models;
Hsiao (2003) for econometric models; McCulloch and Searle (2001), McCulloch (2003),
Fahrmeir and Tutz (2001) and Molenberghs and Verbeke (2006) for the generalized linear
mixed models; Lawson (2006), Lawson, Browne and Vidal Rodeiro (2003), Diggle, Lian
and Zeger (1994), Verbeke and Molenberghs (2000) and Fitzmaurice, Laird and Ware
(2004) for disease mapping and other applications.
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2 Linear mixed models and BLUP

2.1 Linear mixed models

Consider the general linear mixed model

(2.1) y = Xβ + Zv + ε,

where y is an N × 1 observation vector of the response variable, X and Z are N × p and
N ×M matrices, respectively, of the explanatory variables, β is a p× 1 unknown vector
of the regression coefficients, v is an M×1 vector of the random effects, and ε is an N×1
vector of the random errors. Here, v and ε are mutually independently distributed as
v ∼ NM(0,G(θ)) and ε ∼ NN(0,R(θ)), where θ = (θ1, . . . , θq)

′ is a q dimensional vector
of unknown parameters, and G = G(θ) and R = R(θ) are positive definite matrices.
Throughout the paper, for simplicity, it is assumed that X is of full rank. Then, y has a
marginal distribution

(2.2) N (Xβ,Σ(θ))

for

(2.3) Σ = Σ(θ) = R(θ) + ZG(θ)Z ′.

Three of specific models of LMM are the nested error regression model (NERM), the
Fay-Herriot model and a basic area model with time series structures.

Example 2.1 (NERM) This model is described by

(2.4) yij = x′ijβ + vi + εij, i = 1, . . . , k, j = 1, . . . , ni,

where k is the number of small areas, N =
∑k

i=1 ni, xij is a p × 1 vector of explanatory
variables, β is a p × 1 unknown common vector of regression coefficients, and vi’s and
εij’s are mutually independently distributed as vi ∼ N (0, σ2

v) and εij ∼ N (0, σ2). Here,
σ2

v and σ2 are referred to as, respectively, ‘between’ and ‘within’ components of variance,
and both are unknown, and (2.4) is also called the Variance Components Model. Let
X i = (xi1, . . . , xi,ni

)′, X = (X ′
1, . . . , X

′
k)
′, yi = (yi1, . . . , yi,ni

)′, y = (y′1, . . . , y
′
k)
′ and

let ε be similarly defined. Let v = (v1, . . . , vk)
′ and Z = block diag(j1, . . . , jk) for ji =

(1, . . . , 1)′ ∈ Rni . Then, the model is expressed in vector notations as y = Xβ + Zv + ε,
where the asymptotics for large k are considered.

Battese, et al . (1988) used the NERM in the framework of a finite population model
to predict areas under corn and soybeans for each of k = 12 counties in north-central
Iowa. In their analysis, each county is divided into about 250 hectares segments, and ni

segments are selected from the i-th county. For the j-th segment of the i-th county, yij is
the number of hectares of corn (or soybeans) in the (i, j) segment reported by interviewing
farm operators, and xij1 and xij2 are the number of pixels (0.45 hectar) classified as corn
and soybeans, respectively, by using LANDSAT satellite data. Since ni’s range from
1 to 5 with

∑k
i=1 ni = 37, the sample mean yi =

∑ni

j=1 yij/ni has large deviation for
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predicting the mean crop hectare per segment µi = x′iβ + vi for xi =
∑ni

j=1 xij/ni. The
NERM enables us to construct more reliable prediction procedures not only by using
the auxiliary information on the LANDSAT data, but also by combining the data of the
related areas. For a further account, see Section 3.2.

Example 2.2 (Fay-Herriot model) While NERM is an individual level model, the
following basic area model is useful in the small area estimation:

(2.5) yi = x′iβ + vi + εi, i = 1, . . . , k,

where k is the number of small areas, xi is a p × 1 vector of explanatory variables,
β is a p × 1 unknown common vector of regression coefficients, and vi’s and εi’s are
mutually distributed random errors such that vi ∼ N (0, θ) and εi ∼ N (0, di). Let X =
(x1, . . . , xk)

′, y = (y1, . . . , yk)
′, and let v and ε be similarly defined. Then, the model is

expressed in vector notations as

y = Xβ + v + ε,

and y ∼ N (Xβ,Σ) where Σ = Σ(θ) = θIk + D for D = diag (d1, . . . , dk) and N = k.

Example 2.3 (A basic area model with time series structures) The Fay-Herriot
type model with time series or longitudinal structures is described by

(2.6) yit = x′itβ + vit + εit, i = 1, . . . , k, t = 1, . . . , T,

where k is the number of small areas, t is a time index, N = kT , xit is a p × 1 vector
of explanatory variables, β is a p× 1 unknown common vector of regression coefficients,
and vit’s and εit’s are random errors. Let X i = (xi1, . . . , xi,ni

)′, yi = (yi1, . . . , yi,ni
)′, and

let vi and εi be similarly defined. Then, the model is expressed in vector notations as

yi = X iβ + vi + εi, i = 1, . . . , k.

Here, it is assumed that εi and vi are mutually distributed as εi ∼ N (0,Di) for a T × T
known diagonal matrix Di = diag (di1, . . . , diT ) and vi ∼ N (0, σ2

vΨ(ρ)) for unknown
scalar σ2

v and a T ×T unknown matrix Ψ(ρ) with a parameter ρ, |ρ| < 1. As typical cases
of Ψ(ρ), we have

Ψ(ρ) = (1− ρ)IT + ρjT j ′T and Ψ(ρ) = mati,j(ρ
|i−j|).

Letting X = (X ′
1, . . . , X

′
k)
′, y = (y′1, . . . , y

′
k)
′ and letting v and ε be defined similarly,

we can express the model as y = Xβ + v + ε.

2.2 Mixed model equation and BLUP

[1] BLUP. We now consider the estimation of the regression coefficients β and the
prediction of the random effects v in (2.1). When the convariance matrices G and R
are known, there exists the best unbiased predictor of v among the linear functions of y.
This is called the Best Linear Unbiased Predictor (BLUP) and denoted by v̂. Also, there
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exists the best linear unbiased estimator of β, denoted by β̂. Henderson (1950) showed

that (β̂, v̂) can be derived by the solution of the equation given by

(2.7)

(
X ′R−1X X ′R−1Z
Z ′R−1X Z ′R−1Z + G−1

)(
β̂
v̂

)
=

(
X ′R−1y
Z ′R−1y

)
,

which is called the Mixed Model Equation, and the solution is given by

(2.8) β̂ = (X ′Σ−1X)−1X ′Σ−1y, v̂ = GZ ′Σ−1(y −Xβ̂),

where β̂ is the generalized least squares (GLS) estimator of β. When we want to estimate
µ = a′β + b′v for known vectors a ∈ Rp and b ∈ Rq, the BLUP of µ is given by

(2.9) µ̂EB = a′β̂ + b′GZ ′Σ−1(y −Xβ̂),

where we used the notation µ̂EB since it can be interpreted as an empirical Bayes procedure
as discussed below.

We here confirm that (β̂, v̂) is the solution of the mixed model equation (2.7). The

second equation in (2.7) is written as Z ′R−1Xβ̂ + (Z ′R−1Z + G−1)v̂ = Z ′R−1y, which
implies that

(2.10) v̂ = (Z ′R−1Z + G−1)−1Z ′R−1(y −Xβ).

It is noted that

(Z ′R−1Z + G−1)−1Z ′R−1

=GZ ′R−1 −G
{
(Z ′R−1Z + G−1)−G−1

}
(Z ′R−1Z + G−1)−1Z ′R−1

=GZ ′R−1 −GZ ′R−1Z(Z ′R−1Z + G−1)−1Z ′R−1

=GZ ′ {R−1 −R−1Z(G−1 + Z ′R−1Z)−1Z ′R−1
}

=GZ ′Σ−1,

where at the last equality, we used the useful equality

(2.11) Σ−1 = (ZGZ ′ + R)−1 = R−1 −R−1Z(G−1 + Z ′R−1Z)−1Z ′R−1.

Thus, v̂ given in (2.10) is expressed as the form given in (2.8).

We next substitute v̂ = GZ ′Σ−1(y − Xβ̂) into the first equation of (2.7) given by

X ′R−1Xβ̂ + X ′R−1Zv̂ = X ′R−1y. Then,

X ′R−1Xβ̂ + X ′R−1ZGZ ′Σ−1(y −Xβ̂) = X ′R−1y,

which yields

X ′R−1(Σ−ZGZ ′)Σ−1Xβ̂ = X ′R−1(Σ−ZGZ ′)Σ−1y.

It is noted that Σ = ZGZ ′+R, namely, R−1(Σ−ZGZ ′) = I. Thus, we get the equation

X ′Σ−1Xβ̂ = X ′Σ−1y, which means that the solution β̂ is described as the form in (2.8).
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Example 2.4 (BLUP in NERM) As explained in Example 2.1, the mean crop hectare
per segment in NERM (2.4) is described by µi = x′iβ + vi for i = 1, . . . , k. Let θ1 = σ2,
θ2 = σ2

v , and let θ = (θ1, θ2)
′. In this mode, G(θ) = θ2Ik, Σi(θ) = θ1Ini

+ θ2jij
′
i and

Σ(θ) = block diag(Σ1(θ), . . . ,Σk(θ)). Noting that

Σ−1
i =

1

θ1

(
Ini

− θ2

θ1 + niθ2

jij
′
i

)
,

from (2.9), it follows that the BLUP of µi is given by

(2.12) µ̂EB
i (θ) = x′iβ̂(θ) +

niθ2

θ1 + niθ2

{
yi − x′iβ̂(θ)

}

where yi =
∑ni

j=1 yij, and the GLS of β is

β̂(θ) =
{ k∑

i=1

(
xix

′
i −

n2
i θ2

θ1 + niθ2

xix
′
i

)}−1
k∑

i=1

(
xiy

′
i −

niθ2

θ1 + niθ2

xiyi

)
.

[2] Derivation of the mixed model equation. We explain how the mixed model
equation (2.7) can be derived. Two of typical approaches to the derivation are the maxi-
mum likelihood (ML) method and the empirical Bayes method.

To derive (2.7) based on the ML method, it is noted that the joint probability density
functon of (y,v) is written as (2π)−N/2|G|−1/2|R|−1/2 ·exp{−h(β,v)/2}, where h(β,v) =
v′G−1v + (y − Xβ − Zv)′R−1(y − Xβ − Zv). To minimize h(β, v) with respect to
(β, v), we need to differentiate it with respect to β and v, which yields that

∂h(β,v)

∂β
=− 2X ′R−1(y −Xβ −Zv),

∂h(β,v)

∂v
=2G−1v − 2Z ′R−1(y −Xβ −Zv).

Hence, it is seen that (2.7) is a matricial expression of ∂h(β,v)/∂β = 0 and ∂h(β,v)/∂v =
0.

The other method is based on the conditional distribution of v given y. Since the
covariance matrix of (y,v) is given by

(2.13) Cov (y,v) =

(
Σ ZG

GZ ′ G

)
,

from the well known property of multivariate normal distribution, it follows that the
conditional distribution of v given y is written as

v|y ∼ Nq

(
GZ ′Σ−1(y −Xβ), G−GZ ′Σ−1ZG

)
.

It is noted that in the Bayesian context, this conditional distribution corresponds to the
posterior distribution. Using (2.11), we can see that the marginal distribution of y is given
by y ∼ NN(Xβ,Σ), whose density function is described as (2π)−N/2|Σ|−1/2 exp{−(y −
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Xβ)′Σ−1(y − Xβ)/2}. Thus, the ML estimator of β based on this marginal density

function is identical to the GLS estimator β̂. Since the Bayes estimator is the mean of
the posterior distribution, the expectation of the posterior distribution, givne by

(2.14) E[v|y] = GZ ′Σ−1(y −Xβ),

is the Bayes estimator of v. Substituting β̂ into the Bayes estimator, we get the empirical
Bayes estimator GZ ′Σ−1(y − Xβ̂), which is identical to v̂ given in (2.8). Hence, the
solution of the mixed model equation can be derived as the empirical Bayes estimator.

The distiction of the two methods described above is that the ML method estimates
v by the mode of the posterior distribution, while the empirical Bayes method estimate v
by the mean of the posterior distribution. Although both methods gives the same solution
in normal distributions, their solutions are different in general. In the context of Bayesian
statistics, the former method is called the Bayesian Maximum Likelihood method.

It is noted that the conditional expectation (2.14) means that we can predict the
unobserbable variable v if v has a correlation with y, namely, the structure of the covari-
ance matrix given in (2.13) is essential for the predictability. This consideration has been
widely used in various fields like finite population models and incomplete data problems.

3 Estimation of parameters and EBLUP

3.1 Estimation of the variance components

[1] ML and REML methods In the LMM given in (2.1), the covariance matrices G
and R are, in general, functions of unknown parameters like variance components. The
unknown parameters are here denoted by θ = (θ1, . . . , θq)

′, namely, the covariance matrix
of y is described as

Σ = Σ(θ) = R(θ) + ZG(θ)Z.

The typical methods for estimating θ are based on the Maximum Likelihood (ML)

and Restricted Maximum Likelihood (REML) methods. Substituting the GLS β̂(θ) into
the marginal density function whose distribution is NN(Xβ,Σ(θ)), we can see that the
ML estimator of θ is derived as a solution of minimizing the function log |Σ(θ)| + (y −
Xβ̂(θ))′Σ(θ)−1(y − Xβ̂(θ)). On the other hand, let K be an N × (N − p) matrix
satisfying K ′X = 0. Then K ′y ∼ NN−p(0,K ′Σ(θ)K), and the REML method is the
ML method based on this distribution, namely, the REML estimator is derived as a
solution of minimizing the function log |K ′Σ(θ)K|+ y′K(K ′Σ(θ)K)−1K ′y. Let

(3.1) Π = Π(θ) = Σ(θ)−1 −Σ(θ)−1X
{
X ′Σ(θ)−1X

}−
X ′Σ(θ)−1,

and note that

(y −Xβ̂(θ))′Σ(θ)−1(y −Xβ̂(θ)) = y′Π(θ)y, Π(θ) = K(K ′Σ(θ)K)−1K ′.
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Also note that ∂i log |Σ| = tr [Σ−1∂iΣ], ∂iΠ = −Π(∂iΣ)Π, ∂i log |K ′ΣK| = tr [Π∂iΣ]
where ∂i denotes the differential operator ∂i = ∂/∂θi. Thus, the ML and REML estimators
are sokutions of the following equations:

[ML] y′Π(θ){∂iΣ(θ)}Π(θ)y = tr
[
Σ(θ)−1{∂iΣ(θ)}] ,(3.2)

[REML] y′Π(θ){∂iΣ(θ)}Π(θ)y = tr [Π(θ){∂iΣ(θ)}] .(3.3)

Since the l.h.s. of the above equations can be expressed as y′Π(θ){∂iΣ(θ)}Π(θ)y = (y−
Xβ̂(θ))′Σ(θ)−1{∂iΣ(θ)}Σ(θ)−1(y−Xβ̂(θ)) = −(y−Xβ̂(θ))′{∂iΣ(θ)−1}(y−Xβ̂(θ)),
we can use a convenient expression among these. For discussions about which is better,
ML or REML, see Section 6.10 in McCulloch and Searle (2001). In estimation of variance
components, REML seems better in that REML is closer to an unbiased estimator than
ML, while both have the same covariance matrix as explained below.

[2] Asymptotic properties of the ML and REML estimators The consistency
and asymptotic normality of the ML and REML has been studied by Sweeting (1980),
Mardia and Marshall (1984) and Cressie and Lahiri (1993). We here explain the asymp-
totic properties using the results of Kubokawa (2009b). To this end, we use the notations

coli(ai) =




a1
...
aq


 , matij(bij) =




b11 · · · b1q
...

. . .
...

bq1 · · · bqq


 ,

and C(i) = ∂C/∂θi and C(ij) = ∂2C/∂θi∂θj for matrix C = C(θ). Let λ1 ≤ · · · ≤ λN

be the eigenvalues of Σ and let those of Σ(i) and Σ(ij) be λi
a and λij

a for a = 1, . . . , N

respectively, where |λi
1| ≤ · · · ≤ |λi

N |, |λij
1 | ≤ · · · ≤ |λij

N |. Then, we assume the following
conditions for large N and 0 ≤ i, j ≤ q:

(C1) The elements of X, Z, G(θ), R(θ), Σ(θ), Σ(i)(θ), Σ(ij)(θ), a, b, p and q
are bounded, and X ′X is positive definite and X ′X/N converges to a positive definite
matrix;

(C2) Σ(θ) is twice continuously differentiable in θ, and limN→∞ λN < ∞, limN→∞ |λi
N | <

∞ and limN→∞ |λij
N | < ∞.

(C3) The q × q matrix A2 = matij(tr [Σ(i)ΣΣ(j)Σ]) is positive definite and A2/N
converges to a positive definite matrix.

Since the conditions of Theorem 2 in Mardia and Marshall (1984) are satisfied by (C1),

(C2) and (C3), it can be seen that θ̂
M − θ = Op(N

−1/2).

Under further appropriate assumptions, θ̂
M − θ can be asymptotically expanded as

(3.4) θ̂
M − θ = θ̂

M∗
+ θ̂

M∗∗
+ Op(N

−3/2),

where θ̂
M∗

= Op(N
−1/2) and θ̂

M∗∗
= Op(N

−1), and their terms are given by

θ̂
M∗

=A−1
2 a1 = A−1

2 coli(−tr [(Σ−1)(i)(yy′ −Σ)]),

θ̂
M∗∗

=−A−1
2

{
a0 − b0

2
+ A1A

−1
2 a1

}
,
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for a1 = coli(−tr [(Σ−1)(i)(yy′−Σ)]), a0 = coli(tr [Qiyy′]), A2 = matia(−tr [Σ(a)(Σ
−1)(i)]),

A1 = matia(tr [(Σ−1)(ia)(yy′−Σ)]), b0 = coli(
∑

a,b Biabθ̂
M∗
a θ̂M∗

b ). Here, Qi = Σ−1Σ(i)P+

PΣ(i)Σ
−1 − PΣ(i)P for P = Σ−1X(X ′Σ−1X)−1X ′Σ−1, and Biab = tr [Σ(ab)(Σ

−1)(i)] +
tr [Σ(a)(Σ

−1)(ib)] + tr [Σ(b)(Σ
−1)(ia)]. For the details, see Datta and Lahiri (2000), Das,

Jiang and Rao (2004) and Kubokawa (2009b). Das et al . (2004) succeeded in the deriva-
tion under the rigorous conditions, while Kubokawa (2009b) developed the third-order ex-

pansion like θ̂
M −θ = θ̂

M∗
+ θ̂

M∗∗
+ θ̂

M∗∗∗
+Op(N

−2). Using the equality E
[
tr [C1(yy′−

Σ)]tr [C2(yy′ − Σ)]
]

= 2tr [C1ΣC2Σ] under the distribution y ∼ N (0,Σ) for matrices
C1 and C2, we can observe that

E[θ̂
M∗

] =0, Cov (θ̂
M∗

) = 2A−1
2 ,

E[θ̂
M∗∗

] =A−1
2 coli(tr [(X ′Σ−1X)−1X ′(Σ−1)(i)X])

+ A−1
2 coli(tr [A−1

2 mata,b(tr [Σ(ab)(Σ
−1)(i)])]).

It is noted that E[θ̂
M∗∗

] = A−1
2 coli(tr [(X ′Σ−1X)−1X ′(Σ−1)(i)X]) when Σ or G and R

are matrices of linear functions of θ.

For the REML estimator, θ̂
R − θ can be asymptotically expanded as

θ̂
R − θ = θ̂

R∗
+ θ̂

R∗∗
+ Op(N

−2),

where θ̂
R∗

= θ̂
M∗

= A−1
2 a1 and

θ̂
R∗∗

= −A−1
2

{
a∗0 − b0/2 + A1A

−1
2 a1

}
,

where a∗0 = coli(tr [Qi(yy′ −Σ)]). Thus, E[θ̂
R∗

] = 0, Cov (θ̂
R∗

) = Cov (θ̂
M∗

) = 2A−1
2

and

(3.5) E[θ̂
R∗∗

] = A−1
2 coli(tr [A−1

2 mata,b(tr [Σ(ab)(Σ
−1)(i)])]),

where E[θ̂
R∗∗

] = 0 when Σ are matrices of linear functions of θ.

Example 3.1 (NERM) In the NERM, the parameters θ = (θ1, θ2)
′ and Σ correspond

to θ1 = σ2, θ2 = σ2
v and Σ = blockdiag(Σ1, . . . ,Σk) for Σi = θ1I i + θ2jij

′
i, I i being the

ni × ni identity matrix. The ML estimators θ̂
M

= (θ̂M
1 , θ̂M

2 )′ of (θ1, θ2)
′ are given as the

solutions of the equations L1(θ̂
M

) = 0 and L2(θ̂
M

) = 0 where

L1(θ) =
1

θ2
1

k∑
i=1

‖yi −X iβ̂(θ)− niθ2

θ1 + niθ2

(yi − x′iβ̂(θ))ji‖2 −
k∑

i=1

ni

θ1

(1− θ2

θ1 + niθ2

),

L2(θ) =
k∑

i=1

n2
i

(θ1 + niθ2)2
{yi − x′iβ̂(θ)}2 −

k∑
i=1

ni

θ1 + niθ2

,

9



since Σ(1) = I and Σ(2) = block diag(j1j
′
1, . . . , jkj

′
k). Note that A2 and a1 can be written

as

A2 =matij(tr [Σ(i)Σ
−1Σ(j)Σ

−1])

=

(
(N − k)θ−2

1 +
∑

i(θ1 + niθ2)
−2

∑
i ni(θ1 + niθ2)

−2∑
i ni(θ1 + niθ2)

−2
∑

i n
2
i (θ1 + niθ2)

−2

)
,

a1 =

( ∑
i tr [Σ−2

i (yiy
′
i −Σi)]∑

i j
′
iΣ

−1
i (yiy

′
i −Σi)Σ

−1
i ji

)
.

Since θ̂
M∗

= A−1
2 a1, it is observed that E[θ̂

M∗
] = 0 and

Cov (θ̂
M∗

) =
2θ2

1

d(ψ)

( ∑k
i=1 n2

i γ
2
i −∑k

i=1 niγ
2
i

−∑k
i=1 niγ

2
i (N − k +

∑k
i=1 γ2

i )

)
,

where d(ψ) = (N − k +
∑k

i=1 γ2
i )

∑k
i=1 n2

i γ
2
i − (

∑k
i=1 niγ

2
i )

2 and γi = (1 + niψ)−1 for
ψ = θ2/θ1. Also,

E[θ̂
M∗∗

] =
θ1

d(ψ)

( −p
∑k

i=1 n2
i γ

2
i + (

∑k
i=1 niγi)c(ψ)

p
∑k

i=1 niγ
2
i − (N − k +

∑k
i=1 γi)c(ψ)

)
,

where c(ψ) = tr [(X ′Σ−1X)−1
∑k

i=1 n2
i γ

2
i xix

′
i]. These were obtained by Datta and Lahiri

(2000).

The REML estimators θ̂
R

= (θ̂R
1 , θ̂R

2 )′ of (θ1, θ2)
′ are given as the solutions of the

equations given by

0 =L1(θ) + tr [(X ′Σ−1X)−1X ′Σ−2X],

0 =L2(θ) + tr [(X ′Σ−1X)−1X ′Σ−1block diag(j1j
′
1, . . . , jkj

′
k)Σ

−1X].

Noting that θ̂
R∗

= A−1
2 a1 = θ̂

M∗
, we can see that E[θ̂

R∗
] = 0, Cov (θ̂

R∗
) = Cov (θ̂

M∗
)

and E[θ̂
R∗∗

] = O(N−2) as shown in Datta and Lahiri (2000).

As estimation methods other than ML and REML, Henderson’s methods and Rao’s
MINQUE methods are well known procedures in estimation of variance components. Es-
pecially, Henderson’s methods provide explicit expressions of unbiased estimators. Prasad
and Rao (1990) derived estimators with explicit forms using the Henderson method
(III), which is given as follows: Let S = y′(IN − X(X ′X)−1X ′)y and S1 = y′(E −
EX(X ′EX)−1X ′E)y where E = block diag(E1, . . . , Ek) for Ei = I i − n−1

i jij
′
i. Then,

unbiased estimators of θ1 and θ2 are given by

θ̂U
1 = S1/(N − k − p) and θ̂U

2 = {S − (N − p)θ̂U
1 }/N∗,

where N∗ = N − tr {(X ′X)−1
∑k

i=1 n2
i xix

′
i} as suggested by Prasad and Rao (1990) . In

this case, θ̂U
i − θi = θ̂U∗

i for i = 1, 2, and it is easy to see that E[θ̂U∗
1 ] = 0, E[θ̂U∗

2 ] = 0 and

Cov (θ̂
U∗

) =
2θ2

1

N − k

(
1 −k/N

−k/N {k2 + (N − k)
∑k

i=1(1 + niθ2/θ1)
2}/N2

)
+ O(N−2).

Since θ̂U
2 takes a nagative value with a positive probability, it is reasonable to use the

truncated estimator θ̂TR
2 = max{θ̂U

2 , 0}.
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3.2 EBLUP’s features and their relation with the structure of
LMM

The Estimated (or Empirical) Best Linear Unbiased Predictor (EBLUP) is derived by

substituting estimator θ̂ into BLUP given in (2.9), namely, EBLUP of µ = a′β + b′v is
given by

(3.6) µ̂EB(θ̂) = a′β̂(θ̂) + b′G(θ̂)Z ′{Σ(θ̂)}−1{y −Xβ̂(θ̂)}.

From Example 2.4, the EBLUP of µi = x′iβ + vi is written as

(3.7) µ̂EB
i (θ̂) = x′iβ̂(θ̂) +

niθ̂2

θ̂1 + niθ̂2

{
yi − x′iβ̂(θ̂)

}
,

where θ̂ is a consistent estimator of θ given in Example 3.1. It is note that V ar(yi) =
θ1/ni +θ2. When ni is small or θ̂2/θ̂1 is large, the sample mean yi is not reliable because of

an unaccetpable error variance, while the EBLUP µ̂EB
i (θ̂) approaches to x′iβ̂(θ̂), which is

stable because the GLS β̂(θ̂) is constructed based on all the observations. When ni is large

or θ̂2/θ̂1 is small, on the other hand, yi is likely to be reliable, and µ̂EB
i (θ̂) approaches to yi.

The feature depending on each small area tends to appear in yi rather than µ̂EB
i (θ̂). This

shows that µ̂EB
i (θ̂) gives stable and reliable predicted values by appropriately adjusting

the weight of yi and x′iβ̂(θ̂).

Such desirabel properties of EBLUP are characterized as the shrinkage function and
the pooling effect, namely, µ̂EB

i (θ̂) shrinks yi towards x′iβ̂(θ̂), which is costructed by
pooling all the data. The two feartures of EBLUP, shrinkage and pooling effects, come
from the structure of the linear mixed model described as (observation) = (common mean)
+ (random effect) + (error term).

[1] Shrinkage via random effects. In the case that vi is a fixed parameter and
β = 0, the best estimator of µi is yi. When vi is a random effect, however, the covariance
matrix of (yi, vi) is

Cov (yi, vi) =

(
θ2 + θ1/ni θ2

θ2 θ2

)
,

namely, the correlation yilds between yi and vi. From this correlation, it follows that
the conditional expectation is written as E[vi|yi] = θ2ni(θ1 + θ2ni)

−1(yi − x′iβ), which
means that the conditional expectation shrinks yi towards x′iβ. Thus, the random effect
vi produces the function of shrinkage in EBLUP.

[2] Pooling data via common parameters. The regression coefficients β is embe-
ded as a common parameter in all the small ares. To estimate the common parameter, all
the data are used, and this results in the pooling effect. Thus, the setup via the common
parameters leads to the pooling effect, and we get the stable estimator x′iβ̂(θ̂) based on

the weighted least squares estimator β(θ̂).

As stated above, we can obtain stable estimates via pooling data through restricting
parameters to some constraints like equality or inequality, and we can shrink yi toward
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the stable estimates through incorporating random effects. This enables us to boost up
the precision of the prediction. As seen from that fact that EBLUP is interpreted as the
empirical Bayes estimator, this perspective was recognized by Efron and Morris (1975) in
the context of the empirical Bayes method, and the usefulness of the Bayesian methods
may be based on such perspective.

[3] Henderson’s EBLUP and Stein’s shrinkage. Consider the case that β = 0,
p = 0, n1 = · · · = nk = n and N = nk, and treat the unbiased estimator θ̂U

1 and the
truncated estimator θ̂TR

2 in Example 3.1. Then 1 + nθ2/θ1 is estimated by max{1, 1 +
n[(N − k)S/S1 − N ]/N}, which is equal to max{1, (n/k)

∑k
j=1 y2

j/(S1/(N − k)} since

S =
∑

i,j y2
ij = S1 +n

∑
i y

2
i for S1 =

∑
i,j(yij − yi)

2. Then, the EBLUP given in (3.7) can

be expressed as for σ̂2 = S1/(N − k),

µ̂EB
i (θ̂) = max

{
0, 1− kσ̂2

n
∑k

j=1 y2
j

}
yi,

which is related to the positive-part Stein estimator. The Stein problem has been de-
veloped as one of interesting topics in theoretical statistics since Stein (1956) established
that the shrinkage estimator can improve on the sample means in the context of the si-
multaneous estimation for k ≥ 3. This fact shows not only that EBLUP has a larger
precision than the sample mean, but also that a similar concept came out at the same
time by Henderson (1950) for practical use and Stein (1956) for theoretical interest.

4 Mesurements for uncertainty of EBLUP

When EBLUP is used to estimate a small area mean based on real data, it is important
to assess how much EBLUP is reliable. Two methods for the purpose are to provide the
estimate of the mean squared error (MSE) of EBLUP and to construct the confidence
interval based on EBBLUP, and the results with second-order accuracy are explained
here.

4.1 MSE estimation for EBLUP

Concerning the MLS estimation of EBLUP, asymptotically unbiased estimators of the
MSE with the second-order accuracy have been derived based on the Taylor series expan-
sion by Kackar and Harville (1984), Prasad and Rao (1990), Harville and Jeske (1992),
Datta and Lahiri (2000), Datta, Rao and Smith (2005) and Das, Jiang and Rao (2004).
For some recent results including jackknife and bootstrap methods, see Lahiri and Rao
(1995), Hall and Maiti (2006a) and Chen and Lahiri (2008). We first approximate the
MSE of EBLUP with second-order accuracy.

Let a and b be p× 1 and M × 1 vectors of fixed constants, and suppose that we want
to estimate the scalar quantity µ = a′β + b′v. Since the conditional distribution of v
given y is given by

(4.1) v|y ∼ NM(G(θ)Z ′Σ(θ)−1(y −Xβ), (G(θ)−1 + Z ′R(θ)−1Z)−1),
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the conditional expectation E[µ|y] is written as

µ̂B(β, θ) =E[µ|y] = a′β + b′G(θ)Z ′Σ(θ)−1(y −Xβ)

=a′β + s(θ)′(y −Xβ),(4.2)

where s(θ) = Σ(θ)−1ZG(θ)b. This can be interpreted as the Bayes estimator of µ in

the Bayesian context. Substituting the GLS β̂(θ) = (X ′Σ(θ)−1X)−1X ′Σ(θ)−1y into
µ̂B(β,θ) yields the BLUP

(4.3) µ̂EB(θ) = µ̂B(β̂(θ),θ) = a′β̂(θ) + s(θ)′(y −Xβ̂(θ)),

which is also called an empirical Bayes estimator in the Bayesian context.

We first provide an accurate approximation of the mean squared error (MSE) of µ̂EB(θ̂)
when N is large, where the MSE is given by

MSE(θ, µ̂EB(θ̂)) = E[{µ̂EB(θ̂)− µ}2].

For the purpose, we assume (C1), (C2) and the following conditions for large N and
1 ≤ i, j ≤ q:

(C4) a −X ′s(θ) = O(1), (y −Xβ)′F (θ)Σ(θ)s(i)(θ) = Op(1), (y −Xβ)′s(ij)(θ) =
Op(1), s(i)(θ)′Σ(θ)s(j)(θ) = O(1) and s(ij)(θ)′Σ(θ)s(k)(θ) = O(1) for F (θ) = Σ(θ)−1,
∂i{Σ(θ)−1} and ∂i∂j{Σ(θ)−1}, 1 ≤ i, j ≤ q;

(C5) θ̂ = θ̂(y) = (θ̂1, . . . , θ̂q)
′ is an estimator of θ which satisfies that θ̂(−y) = θ̂(y)

and θ̂(y + Xα) = θ̂(y) for any p-dimensional vector α.

(C6) θ̂ − θ is expanded as

(4.4) θ̂ − θ = θ̂
∗
+ θ̂

∗∗
+ θ̂

∗∗∗
+ Op(N

−2),

where θ̂
∗

= Op(N
−1/2), θ̂

∗∗
= Op(N

−1) and θ̂
∗∗∗

= Op(N
−3/2). Let θ̂

∗
= (θ̂∗1, . . . , θ̂

∗
q)
′,

θ̂
∗∗

= (θ̂∗∗1 , . . . , θ̂∗∗q )′. These satisfy that E[θ̂∗i ] = O(N−1) and s(i)(θ)′Σ(θ)∇yθ̂
∗
j =

Op(N
−1).

Defined g1(θ), g2(θ) and g∗3(θ) by

g1(θ) =b′(G(θ)−1 + Z ′R(θ)−1Z)−1b,

g2(θ) =(a−X ′s(θ))′(X ′Σ(θ)−1X)−1(a−X ′s(θ)),

g∗3(θ) =tr
[(∂s(θ)′

∂θ

)
Σ(θ)

(∂s(θ)′

∂θ

)′
Cov (θ̂

∗
)
]
,

(4.5)

for Cov (θ̂
∗
) = E[(θ̂

∗ − E[θ̂
∗
])(θ̂

∗ − E[θ̂
∗
])′].

Theorem 4.1 Under the conditions (C1), (C2) and (C4)-(C6), the MSE of µ̂EB(θ̂) is
approximated as

(4.6) MSE(θ, µ̂EB(θ̂)) = g1(θ) + g2(θ) + g∗3(θ) + O(N−3/2).
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We next provide an asymptotically unbiased estimator of MSE(θ, µ̂EB(θ̂)) with the
second-order accuracy. Define g11(θ) and g12(θ) by

g11(θ) =
(∂g1(θ)

∂θ

)′
E[θ̂

∗
+ θ̂

∗∗
],

g12(θ) =
1

2
tr

[
B(θ)Cov (θ̂

∗
)
]
,

(4.7)

where the (i, j) element of B(θ) is given by

(4.8) (B(θ))i,j = (b−Z ′s(θ))′(∂ijG(θ))(b−Z ′s(θ)) + s(θ)′(∂ijR(θ))s(θ).

It is noted that g12(θ) = 0 when G and R are matrices of linear functions of θ. Define

mse(θ̂, µ̂EB(θ̂)) by

(4.9) mse(θ̂, µ̂EB(θ̂)) = g1(θ̂) + g#(θ̂),

where

(4.10) g#(θ) = g2(θ) + 2g∗3(θ)− g11(θ)− g12(θ).

It is noted that g#(θ) = O(N−1).

Theorem 4.2 Under the same conditions as in Theorem 4.1, mse(θ̂, µ̂EB(θ̂)) is a second-
order unbiased estimator of MSE, namely, Then,

(4.11) E[mse(θ̂, µ̂EB(θ̂))] = MSE(θ, µ̂EB(θ̂)) + O(N−3/2).

4.2 Corrected confidence intervals and an example in NERM

Another method for measuring uncertainty of EBLUP is to provide a confidence inter-
val based on EBLUP, and the confidence intervals which satisfy the nominal confidence
level with the second-order accuracy have been derived based on the Taylor expansion by
Datta, Ghosh, Smith and Lahiri (2002), Basu, Ghosh and Mukerjee (2003) and Kubokawa
(2009a,b). Recently, Hall and Maiti (2006b) and Chatterjee, Lahiri and Li (2008) devel-
oped the method based on parametric bootstrap. We here provide a confidence interval of
µ = a′β + b′v which satisfies the nominal confidece level with the second-order accuracy.

Let mse(θ̂) = mse(θ̂, µ̂EB(θ̂)) = g1(θ̂) + g#(θ̂) for g# given in (4.10). Since mse(θ̂)
is an asymptotically unbiased estimator of the MSE of the empirical Bayes estimator
µ̂EB(θ̂), it is reasonable to consider the confidence interval of the form

(4.12) IEB(θ̂) : µ̂EB(θ̂)± zα/2

√
mse(θ̂).

However, the coverage probability P [µ ∈ IEB(θ̂)] cannot be guaranteed to be greater than
or equal to the nominal confidence coefficient 1 − α. To fix this shortcoming, we adjust
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the significance point zα/2 as zα/2{1 + h(θ̂)} by using an appropriate correction function

h(θ̂). That is, the corrected confidence interval is described as

ICEB(θ̂) : µ̂EB(θ̂)± zα/2

[
1 + h(θ̂)

]√
mse(θ̂).

Here, we define the function h(θ) by

(4.13) h(θ) =
z2

α + 1

8g1(θ)2
tr [

(∂g1(θ)

∂θ

)(∂g1(θ)

∂θ

)′
Cov (θ̂

∗
)].

Theorem 4.3 Under the same conditions as in Theorem 4.1, the corrected confidence
interval ICEB(θ̂) satisfies the nominal confidence coefficient up to the third-order, namely,

(4.14) P [µ ∈ ICEB(θ̂)] = 1− α + O(N−3/2).

Finally, we conclude this section with stating a remark and an example in NERM. Al-
though Theorems 4.1, 4.2 and 4.3 provide the results of the second-order approximatoins,
Kuobokawa (2009b) showed that all the results still hold with the third-order accuracy
under additional appropriate conditions where the validity of the approximations are ne-
glected in the paper and the above theorems. Das, et al . (2004) succeeded in the derivation
of the conditions for the rigorous proofs of Theorems 4.1 and 4.2.

Example 4.1 (NERM) It is easy to see that the conditions (C1)-(C4) are satisfied in

the prediction of µi = x′iβ + vi in NERM. The EBLUP of µi is µ̂EB
i (θ̂) = x′iβ̂(θ̂) +

{niθ̂2/(θ̂1 + niθ̂2)}
{

yi − x′iβ̂(θ̂)
}

from (3.7). The MSE approximation of µ̂EB
i (θ̂), its

unbiased estimator and the confidence interval based on µ̂EB
i (θ̂) with the second-order

accuracy are provided from Theorems 4.1, 4.2 and 4.3, where the functions g1(θ), g2(θ),
g∗3(θ), g11(θ) and h(θ) are expressed as g1(θ) = θ1θ2(θ1 + niθ2)

−1, g2(θ) = θ2
1(θ1 +

niθ2)
−2x′s(X

′Σ−1X)−1xs,

g∗3(θ) =ni(θ1 + niθ2)
−3(−θ2, θ1)Cov (θ̂

∗
)(−θ2, θ1)

′,

g11(θ) =(θ1 + niθ2)
−2(niθ

2
2, θ

2
1)E[θ̂

∗
+ θ̂

∗∗
],

h(θ) =
z2

α + 1

8(θ1θ2)2(θ1 + niθ2)2
(niθ

2
2, θ

2
1)Cov (θ̂

∗
)(niθ

2
2, θ

2
1)
′,

and g12(θ) = 0. For estimator θ̂ satisfying the conditions (C4) and (C5), we need to

obtain Cov (θ̂
∗
) and E[θ̂

∗
+ θ̂

∗∗
]. The ML, REML and Prasad-Rao estimators satisfy

given in Example 3.1 satisfy (C4) and (C5) and their covariances and biases are given
there.

It should be remarked that the corrected confidence interval ICEB(θ̂) tends to be insta-
ble near θ2 = 0, because the corrected function h(θ) given in (4.13) includes g1(θ) in the
denominator. In NERM, g1(θ) is g1(θ) = θ1θ2/(θ1+niθ2) and takes values near zero when
θ2 is close to zero. This causes the instability of the confidence interval. One method for
fixing this problem is to use the truncation of the estimator θ̂2 as θ̂TR

2 = max{θ̂2, N
−2/3},

which was suggested in Kubokawa (2009a), For the practical use of ICEB(θ̂), we need

such a modification of the estimator θ̂.
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5 Testing and variable selection

In this final section, we want to address the problem of selecting significant explanatory
variables. To this end, we explain the two approaches: testing hypothesis and information
criteria like model selection.

5.1 Testing procedures for a linear hypothesis on regression co-
efficients

Consider the general linear regression model described in (2.2) without assuming the
structure (2.3), namely, y ∼ N (Xβ,Σ(θ)) for θ = (θ1, . . . , θq)

′. The hypothesis ot be
tested is the linear restriction given by

H0 : Rβ = r,

where R is an r× p known matrix with rank r, r ≤ p, and r is an r× 1 vector. For given
θ, the unrestricted and restricted estimators of β are given by

β̂ =β̂(θ) = (X ′Σ(θ)−1X)−1X ′Σ(θ)−1y,

β̃ =β̃(θ) = β̂(θ)− (X ′Σ(θ)−1X)−1R′W (θ)(Rβ̂(θ)− r),

for W (θ) = [R(X ′Σ(θ)−1X)−1R′]−1. Using these notations, we describe the unrestriced

and restricted estimators of (β,θ) as (β̂u, θ̂) and (β̃R, θ̃), where β̂u = β̂(θ̂) and β̃R =

β̃(θ̃). We also use the notations β̂R = β̂(θ̃) and β̃u = β̃(θ̂).

[1] The Wald, likelihood ratio and Lagrange multiplier test statistics. As
the general methods for testing hypotheses, the three procedures are known which are
based on the Wald, likelihood ratio and Lagrange multiplier test statistics. Consider the
general framework of testing H0 : a(ξ) = 0 against H1 : a(ξ) 6= 0, where a random
variable X has a likelihood function L(ξ|X), ξ is a p-dimensional unknown vector and
a(ξ) is a function from Rp to Rq for q ≤ p. Then, the Wald, likelihood ratio and Lagrange
multiplier test statistics are given by

FW =a(ξ̂)′[A(ξ̂)I(ξ̂)A(ξ̂)′]−1a(ξ̂),

FLR =− 2{log L(ξ̃|X)− log L(ξ̂|X)},
FLM =s(ξ̃)′I(ξ̃)−1s(ξ̃),

where A(ξ) = ∂a(ξ)/∂ξ′, I(ξ) = E[s(ξ)s(ξ)′] is the Fisher information matrix, s(ξ) =

∂ log L(ξ|X)/∂ξ is the score function, and ξ̂ and ξ̃ are unrestricted and restricted esti-
mator of ξ. The Lagrange multiplier statistic is also called the score test statistic or the
Rao statistic. These test statistics converge to the chi-square distribution with q degrees
of freedom under H0.

For testing the hypothesis H0 : Rβ = r in the general linear regression model (2.2),
these test statistics are written as

FW =(Rβ̂u − r)′W (θ̂)(Rβ̂u − r),

FLR =− 2[`(β̃R, θ̃)− `(β̂u, θ̂)],

FLM =(Rβ̃R − r)′W (θ̃)(Rβ̃R − r),

(5.1)
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where W (θ) = [R(X ′Σ−1X)−1R′]−1 and −2`(β,θ) = log |Σ(θ)|+(y−Xβ)′Σ(θ)−1(y−
Xβ). It is known that between these test statistics, there exist the inequalities FW ≥
FLR ≥ FLM .

[2] Bartlett-type corrections in LMM. The Bartlett-type corrections of the
test statistcs given in (5.1) were derived by Rothenberg (1984) under the null and local
alternative hypotheses. Let

Ci =(Σ−1)(i)H(θ),

Dij =H(θ)
{
(Σ−1)(ij) − (Σ−1)(i)X(X ′Σ−1X)−1X ′(Σ−1)(j)

− (Σ−1)(j)X(X ′Σ−1X)−1X ′(Σ−1)(i)

}
,

for H(θ) = X(X ′Σ−1X)−1R′W (θ)R(X ′Σ−1X)−1X ′. Then, we define functions b(θ),
c(θ) and d(θ) by

b(θ) =
1

2
tr

[
Cov (θ̂

∗
)matij

(
tr [H(θ)Σ−1Σ(i)Π(θ)Σ(j)Σ

−1]
)]

,

c(θ) =
1

2
tr

[
Cov (θ̂

∗
)matij

(
tr [CiCj] +

1

2
tr [Ci]tr [Cj]

)]
,

d(θ) =E[(θ̂
∗
+ θ̂

∗∗
)′coli(tr [Ci])] + tr

[
Cov (θ̂

∗
)matij

(
tr [Ci]tr [Cj]

)]

+
1

2
tr

[
Cov (θ̂

∗
)matij

(
tr [Dij]

)]
,

for Π(θ) defined in (3.1). Under appropriate conditions like (C1)-(C6), the Bartlett-type
correction of the Wald test statistic FW is given by

F ∗
W = FW /

[
1 + (d̂− ĉ + b̂)/q + ĉzα/{q(q + 2)}],

where b̂ = b(θ̂), ĉ = c(θ̂), d̂ = d(θ̂), and zα is the 100α% upper point of the χ2
q-distribution.

Rothenberg (1984) showed that F ∗
W satisfies the nominal significance level up to o(N−1),

namely, P [F ∗
W ≥ zα] = α + o(N−1) under H0. When θ̂ and θ̃ are the unrestricted and

restricted ML estimators of θ, FLR and FLM are approximated as

FLR =FW − 1

2
(θ̂ − θ̃)′A2(θ̂ − θ̃) + op(N

−1),

FLM =FW − (θ̂ − θ̃)′A2(θ̂ − θ̃) + op(N
−1),

for A2 = matij(tr [Σ(i)ΣΣ(j)Σ]). The Bartlett-type corrections for FLR and FLM are
given by

F ∗
LR =FLR/

[
1 + (d̂− ĉ)/q

]
,

F ∗
LM =FLM/

[
1 + (d̂− ĉ− b̂)/q − ĉzα/{q(q + 2)}],

which can be derived by evaluating the term (θ̂ − θ̃)′A2(θ̂ − θ̃). For the details of the
derivations, see Rothenberg (1984).
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5.2 Information criteria for variable or model selection

Related to testing the hypothesis on the regression coefficients, the variable selection
procedures are useful for choosing significant explanatory variables affecting the response
variables. Of these, we here treat the Akaike Information Criterion (AIC), the conditional
Akaike Information Criterion (cAIC), the Bayesian Information Criterion (BIC) and the
Empirical Bayes Information Criterion (EBIC). For a good account of AIC, BIC and
other criteria, see Konishi and Kitagawa (2007),

For stating the concepts of these criteria, let f(y|v,β,θ) and f(v|θ) be the condi-
tional density of y given v and the marginal density of v, respectively, where y|v ∼
N (Xβ + Zv, R(θ)) and v ∼ N (0,G(θ)). Then, the marginal density of y is written by
fm(y|β,θ) =

∫
f(y|v,β,θ)f(v|θ)dv, which has marginal distribution N (Xβ,Σ(θ)).

[1] AIC and cAIC. The AIC proposed by Akaike (1973, 1974) is based on the
thought of choosing a model which minimizes an unbiased estimator of the expected
Kullback-Leibler information. The expected Kullback-Leibler information is defined by

R(β,θ; β̂, θ̂) = Ey

[∫ (
log

fm(y∗|β,θ)

fm(y∗|β̂(y), θ̂(y))

)
fm(y∗|β,θ)dy∗

]
,

which can be interpeted as a risk function for estimating (β,θ) by (β̂, θ̂) relative to the
Kullback-Leibler distance. This quantity measures the prediction error in predicting fu-
ture variable y∗ based on the model fm(y∗|β̂(y), θ̂(y)). In this sense, AIC is a criterion of
finding a model which can provide a good prediction in light of minimizing the prediction
error. R(β,θ; β̂, θ̂) is rewritten as

∫ ∫
{log fm(y∗|β,θ)}fm(y∗|β,θ)dy∗fm(y|β,θ)dy

−
∫ ∫

{log fm(y∗|β̂(y), θ̂(y))}fm(y∗|β,θ)dy∗fm(y|β,θ)dy,

Since the first term is irrelevant to the model fm(y∗|β̂(y), θ̂(y)), it is sufficient to estimate
the second term. Thus, the Akaike Information (AI) is defined by

AI = −2

∫ ∫
{log fm(y∗|β̂(y), θ̂(y))}fm(y∗|β,θ)fm(y|β, θ)dy∗dy,

and AIC is derived as an asymptotically unbiased estimator of AI, namely, E[AIC] =
AI + o(1). When AIC is an exact unbiased estimator of AI, it is called the exact AIC,
which was suggested by Sugiura (1978), but in general, it is difficult to get the exact AIC

in LMM. When β is estimated by the GLS β̂(θ̂) for a consistent estimator of θ, AIC is
given as

(5.2) AICc = −2 log fm(y|β̂(θ̂), θ̂) + 2(p + q),

where −2 log fm(y|β̂(θ̂), θ̂) = N log(2π)+ log |Σ(θ̂)|+y′Π(θ̂)y for Π(θ) defined in (3.1),
and p and q are dimensions of β and θ, respectively.

18



It is noted that the AIC stated above is based on the marginal distribution of y,
namely, it measures the prediction error of the predictor based on the marginal distribution
N (Xβ,Σ). This means that the marginal AIC is not appropriate for the focus on the
prediciton of spcific areas or random effects as explained in the context of the small
area estimation. Taking this point into account, Vaida and Blanchard (2005) proposed
the conditional AIC as an asymptotically unbiased estimator of AI, where AI is the
conditional Akaike information defined by
(5.3)

cAI = −2

∫ ∫ ∫
log{f(y∗|v̂(y), β̂(y), θ̂(y))}f(y∗|v,β,θ)f(y|v,β, θ)f(v|θ)dy∗dydv,

where v̂(y) = v̂ is the empirical Bayes estimator of v given in (2.8). When θ is known,
Vaida and Blanchard (2005) derived an exact unbiased estimator of cAI, and it gives the
same value as DIC, the deviance information criterion proposed by Spiegelhalter, Best,
Carlin and van der Linde (2002) for Bayesian inference. Although an exact unbiased esti-
mator of cAI is hard to get in LMM, we can derive an asymptotically unbiased estimator
of cAI, given by

(5.4) cAICc = −2 log f(y|v̂(θ̂), β̂(θ̂), θ̂)−∆c,

where −2 log f(y|v̂(θ̂), β̂(θ̂), θ̂) = N log(2π)+log |R̂|+(y−Xβ̂)′(I−Σ̂−1ZĜZ ′)R̂
−1

(I−
ZĜZ ′Σ̂−1)(y −Xβ̂) for R̂ = R(θ̂), Ĝ = G(θ̂) and Σ̂ = Σ(θ̂).

[2] BIC and EBIC. The Bayesian information criterion (BIC) proposed by Schwarz
(1978) assumes a proper prior distribution π(β,θ) formally and evaluate asymptotically
the marginal distribution

fπ(y) =

∫ ∫
fm(y|β,θ)π(β,θ)dβdθ.

The Laplace approximation can be used to get the approximation as −2 log{fπ(y)} =
BIC + op(log(N)), where

(5.5) BIC = −2 log{fm(y|β̂(θ̂), θ̂)}+ (p + q) log(N),

where −2 log{fm(y|β̂(θ̂), θ̂)} is given below (5.2). The distinction between AIC and BIC
appears in the penalty terms as seen from (5.2) and (5.5).

The Bayesian criteria like Bayes factors use all the prior information on (β, θ), while
all the prior information is neglected in BIC, because the prior information comes into
neglected terms asymptotically. Thus, we can consider the intermediate case, that is, the
parameter are decomposed into two parts of interest and nuisance, and we want to use
only the prior information on the interest parameters. For example, we consider the case
that β is the parameters of interest and θ is the nuisance parameters in LMM. Assume
that (β,θ) has the prior distirbution

(β,θ) ∼ π1(β|θ, λ)π2(θ),
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where given θ, β conditionally has π1(β|θ,λ) with hyperparameter λ. Let fπ,1(y|θ,λ)
be the conditional marginal density given by

fπ,1(y|θ,λ) =

∫
fm(y|β,θ)π1(β|θ,λ)dβ,

and λ̂ is the ML estimator of λ based on this distribution, namely,

λ̂ = arg max–{fπ,1(y|θ̂,λ)}.
Then, Kubokawa and Srivastava (2009) proposed the empirical Bayes information crite-
rion (EBIC) as

(5.6) EBIC = −2 log{fπ,1(y|θ̂, λ̂)}+ q log(N).

Concerning the prior distribution of β, the common prior used in the ordinary linear
regression model is

π1(β|λ) = Np(0, λ−1W )

for an unknown scalar λ and a p×p known matrix W . The prior with W = N(X ′X)−1 is
called Zellner’s g-prior, and other choices of W are W = diag (N/x′(1)x(1), . . . , N/x′(p)x(p))

where X = (x(1), . . . , x(p)) and W = Ip. Then, the marginal density fπ,1(y|θ, λ) is
expressed as

fπ,1(y|θ, λ) =
1

(2π)N/2

1

|Σ(θ) + XWX ′/λ|1/2
exp

{
−1

2
y′Π∗(θ, λ)y

}
,

where

Π∗(ψ, λ) = Σ(θ)−1 −Σ(θ)−1X{X ′Σ(θ)−1X + λW−1}−1X ′Σ(θ)−1.

The hyper-parameter λ is estimated by λ̂ through the maximization of fπ,1(y|θ̂, λ) with

respect to λ, namely, it is given by λ̂ = max(λ0, 0) where λ0 is the solution of the equation

y′Σ̂−1X(X ′Σ̂−1X + λ0W
−1)−1W−1(X ′Σ̂−1X + λ0W

−1)−1X ′Σ̂−1y

=tr [(X ′Σ̂−1X + λ0W
−1)−1X ′Σ̂−1X]/λ0.

Then the EBIC is given by

(5.7) EBIC = N log(2π) + log(|Σ(θ̂) + λ̂−1XWX ′|) + y′Π∗(θ̂, λ̂)y + q log(N).

Finally, we should note that AIC and BIC are derived through different thoughts,
which results in a different asymptotic properties, namely, BIC has consistency for se-
lecting the true model, while AIC is not consistent. In general, BIC, EBIC and Bayesian
procedures based on proper priors are consistent. However, AIC and cAIC choose models
which give smaller prediction errors, while those Bayesian procedures do not guarantee
such a property.
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