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abstract

We investigate the finite sample and asymptotic properties of several estima-
tion methods (Within-Groups, GMM and LIML) for a panel autoregressive
structural equation model with random effects when both T and N are
large. When we use the forward filtering to a structural model as Alvarez
and Arellano (2003), both the WG and GMM estimators are significantly
biased when both T and N go to infinity while T/N is different from zero.
The LIML (limited information maximum likelihood) estimator has consis-
tency and the asymptotic normality when T/N converges to a constant as
both T and N go to infinity. Its asymptotic distribution has some bias and
covariance which depend on the limiting behavior of T/N .

Keywords : Dynamic Panel Model, Simultaneous Equation, Within-Groups
Estimator, GMM, LIML (limited information maximum likelihood), Many
Orthogonal Conditions.

1 Introduction

Recently there has been a growing interest on panel econometric models in

micro-econometrics and they are indispensable tools for econometric analysis. (See

Hsiao (2003), Arellano (2003) and Baltagi (2005), for instance.) However, there

are still non-trivial statistical problems of estimating dynamic panel econometric

models to be investigated. When we use the lagged explained variables as well as

other explanatory variables with individual effects in panel regression models, there

could be a natural question among econometricians on what would happen if one

of variables was actually endogenous in the economic system. When we have an

endogenous variable in the dynamic panel models with individual effects, it would

not be obvious how to estimate such a particular structural equation because some

complicated interactions would be occurred by the lagged endogenous variables

and the individual effects in the econometric model at the same time. Earlier

1AK10-1-25-2.
2Institute of Statistical Mathematics
3Graduate School of Economics, University of Tokyo
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investigations on some aspect of the dynamic panel models were Anderson and

Hsiao (1981, 1982).

In a pioneering work Alvarez and Allerano (2003) have investigated the asymp-

totic behaviors of alternative estimation methods, namely the WG (Within-Groups),

the GMM and the LIML (limited information maximum likelihood) estimators, for

a coefficient in a dynamic panel regression model when both N (the number of

individuals) and T (the number of observation periods) go to infinity. They have

investigated the asymptotic properties of estimators when both N and T go to

infinity and derived the asymptotic distributions of these estimators. Although

they have obtained interesting findings, however, one remaining major issue in

econometrics is to investigate the effects of the endogeneity of possible explana-

tory variables in the dynamic panel structural equations. One important aspect

in this problem is the fact that when there are many orthogonal conditions in

dynamic panel models except some cases when T is really small, the use of GMM

would be problematic due to incidental parameters in the recent light on the esti-

mation of structural equations in econometric studies as Anderson, Kunitomo and

Matsushita (2008a, b).

The main purpose of this paper is to investigate the finite sample and the asymp-

totic properties of three estimators (the WG, the GMM and the LIML estimators)

for a coefficient in a specific panel dynamic structural equation. The model we

shall consider is intentionally very simple because it is possible to obtain the precise

information of the finite sample as well as the asymptotic properties of alternative

estimators, which would be useful for practical problems eventually. In a compan-

ion paper (Akashi and Kunitomo (2010)), we shall develop the general formulation

of the estimation methods of dynamic panel structural equation with endogene-

ity, individual effects and many orthogonal conditions. They have tried to draw

rather general results including the asymptotic distributions of alternative estima-

tion methods and the asymptotic optimality of estimation, of which the results

would be rather complicated at the first glance. In order to make our expositions

of our general results useful in a meaningful and persuasive way, this paper utilizes

a particular dynamic panel structural equation with an endogenous variable and

individual effects as the typical case, which was originally used by Blundell and

Bond (2000).

In Section 2, we present the panel structural model and define its alternative

estimation methods. In Section 3 we shall establish the asymptotic properties

of three estimators considered and discuss their asymptotic behaviors. Then in

Section 4 we also discuss the finite sample properties of estimators based on their

empirical distribution functions in the Monte Carlo simulations. In Section 5,

some concluding remarks will be presented. All mathematical derivations of our
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theoretical results are in Section 6 and some figures on the distribution functions

of normalized alternative estimators are in Appendix.

2 The Panel Model and Estimation Methods

We consider a dynamic panel model with an endogenous variable (Blundell and

Bond (2000))

y
(1)
it = β2y

(2)
it + γ1y

(1)
it−1 + ηi + u

(1)
it , (2.1)

y
(2)
it = γ2y

(2)
it−1 + δηi + u

(2)
it , (2.2)

for i = 1, ..., N ; t = 1, ..., T, where (u
(1)
it , u

(2)
it ) are the disturbance terms. In the first

structural equation, there is an endogenous variable y
(2)
it with a lagged endogenous

regressor y
(1)
it−1 and individual effects ηi. Define the reduced form

yit = Πyit−1 + πi + vit , (2.3)

where yit = (y
(1)
it , y

(2)
it )′, vit = (v

(1)
it , v

(2)
it )′ and

Π = B−1

(
γ1 0

0 γ2

)
, B =

(
1 −β2

0 1

)
, πi = B−1

(
1

δ

)
ηi, vit = B−1

(
u

(1)
it

u
(2)
it

)
.

By using the forward-filters 4 to both sides of (2.3), we obtain the forward-filtered

reduced form

y
(f)
it = Πy

(f)
it−1 + v

(f)
it , (2.4)

where the superscript (f) denotes the forward-filtered variables, which are free

from the individual effects.

Although we call the equation (2.3) or (2.4) the reduced form, yit−1 is correlated

with unobserved πi in (2.3), and y
(f)
it−1 is also correlated with v

(f)
it in (2.4) by

the consequence of applying the forward filtering. It is an important difference

from the standard simultaneous equation problems. Alvarez and Arellano (2003)

considered the single equation (2.1) when β2 = 0 and investigate the estimator for

a coefficient γ1 without (2.2). They have shown that three estimators the WG,

the GMM and the LIML estimators are consistent and have the same asymptotic

4The forward-filters are defined by the set of transformations such that the elements z
(f)
it from

zis has the form

z
(f)
it = ct[zit − (

1
T − t

)(zit+1 + . . . + ziT )] (t = 1, ..., T − 1),

with c2
t = (T − t)/(T − t + 1).
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variance when bothN and T go to infinity while their ratio converges to a constant.

An interpretation of this aspect is the lack of the endogeneity in the reduced form

(2.4) with the particular equation as we shall discuss later. As for a dynamic

structural equation problem, the parameters of interests are both β2 and γ1, and

we shall forcus on three estimators for these parameters in this paper.

2.1 The Within-Groups Estimator

Define the forward-filtered variables y
(g,f)
t = (y

(g,f)
1t , ..., y

(g,f)
Nt )′ for the two endoge-

nous variables y
(g)
it (g = 1, 2), and set N × 2 vector Y

(f)
t·t−1 = (y

(2,f)
t ,y

(1,f)
t−1 ). Then

the WG (within-groups) estimator for θ = (β2, γ1)
′ is given by

θ̂WG = (
T−1∑
t=1

Y
(f)′

t·t−1Y
(f)
t·t−1)

−1(
T−1∑
t=1

Y
(f)′

t·t−1y
(1,f)
t ). (2.5)

where the forward-filtered variables are operated by the forward orthogonal de-

viations (T − 1) × T matrix Af , such that A′
fAf = QT ,AfAf = IT−1, QT =

IT − ιT ι′T/T (the WG operator) and ιT is a T × 1 vector whose elements are

ones. The form (2.5) is written as the OLS estimator in terms of the orthogonal

deviations and notice that since AfιT = 0, the individual effects are differenced

out in the orthogonal deviations for the associated variables from the original

observations.

2.2 A GMM estimator

A GMM (generalized method of moments) estimator is given by

θ̂GMM = (
T−1∑
t=1

Y
(f)′

t·t−1Mt Y
(f)
t·t−1)

−1(
T−1∑
t=1

Y
(f)′

t·t−1Mt y
(1,f)
t ), (2.6)

where Mt = Zt(Z
′
tZt)

−1Z′
t, and Zt = (y

(1)
0 ,y

(2)
0 , ...,y

(1)
t−1,y

(2)
t−1) are N × 2t instru-

mental variables matrix. The GMM estimator is identical to the one given by

Arellano and Bond (1991) 5, which have the form written in the orthogonal de-

viations. An interesting feature of this estimation method is to use all available

instrumental variables at each t, therefore the orthogonal conditions can be given

by

E [y
(g)
is u

(1,f)
it ] = 0 (0 ≤ s < t = 1, ..., T − 1; g = 1, 2),

5See Chapter 4 of Hsiao (2003), for instance.
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where u
(1,f)
it stands for the forward-filtered structural error term. In this formu-

lation the number of the total orthogonal conditions rn can be often substantial,

i.e., rn = 2×T (T − 1)/2. In this paper we use the notation that the total number

of observations n = NT and rn can be dependent on n.

2.3 The LIML estimator

The LIML (limited information maximum likelihood) estimator was originally de-

veloped by Anderson and Rubin (1949, 1950) for the classical simultaneous equa-

tion problem, and we shall apply this estimation method to the filtered variables

in a dynamic panel structural equation model.

Define two 3 × 3 matrices by

G(f) =
T−1∑
t=1

(
y

(1,f)′

t

Y
(f)′

t·t−1

)
Mt(y

(1,f)
t ,Y

(f)
t·t−1), (2.7)

and

H(f) =
T−1∑
t=1

(
y

(1,f)′

t

Y
(f)′

t·t−1

)
[IN − Mt](y

(1,f)
t ,Y

(f)
t·t−1). (2.8)

Then the LIML estimator (1,−θ̂
′
LI) = (1,−β̂2.LI ,−γ̂1.LI)

′ is defined by

(
1

n
G(f) − λn

1

qn
H(f))

(
1

−θ̂LI

)
= 0, (2.9)

where n = NT, qn = n− rn, and λn is the smallest root of

| 1
n
G(f) − λn

1

qn
H(f)| = 0. (2.10)

The solution to (2.10) gives the minimum of the variance ratio

Rn =
(1,−θ′)G(f)(1,−θ′)′

(1,−θ′)H(f)(1,−θ′)′
. (2.11)

We note that the LIML estimation in our formulation does not depend on the

particular distribution for disturbances although the original derivation by An-

derson and Rubin (1949, 1950) assumed the normal disturbances and it could be

interpreted as a semi-parametric estimation method.

3 Asymptotic Properties of Estimators

In this section we shall state our main results on the asymptotic properties of

estimators when both N and T go to infinity. For this purpose we first state a set

of assumptions.
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Assumptions :

(A1) {vit} (i = 1, ..., N ; t = 1, ..., T ) are i.i.d. across time and individuals and

independent of ηi and yi0, with E [vit] = 0, E [vitv
′
it] = Ω, and E [∥vit∥8] exsits.

(A2) The initial observations satisfy

yi0 = (I2 − Π)−1πi + wi0 (i = 1, ..., N),

where wi0 is independent of ηi and i.i.d. with the steady state distribution of the

homogenous process, so that we can write wi0 =
∑∞

j=0 Πjvi(0−j).

(A3) ηi are i.i.d. across individuals with E [ηi] = 0, V ar[ηi] = σ2
η, and finite

fourth order moment.

(A4) The true parameters satisfy that |γ1| < 1, |γ2| < 1, γ2 ̸= 0, and γ1 ̸= γ2.

The conditions from (A1) to (A3) and the stationarity condition of (A4) are

analogue to the assumptions used in Alvarez and Alrellano (2003). They can be

certainly relaxed, but with some complications of our derivations. The condition

γ2 ̸= 0 is the rank condition for the identification of β2. It is mathematically

convenient to assume γ1 ̸= γ2 for analyzing the dynamic process of yit. We also

assume that the limit of T/N is equal to 1/2 or less. This condition is necessary to

define the GMM and LIML estimators appropriately, or insure the nonsingularity

of a matrix Z′
T−1ZT−1.

Let

π = (I2 − Π)−1B−1

(
1

δ

)
(3.1)

and the underlying stationary process be

wit = yit − πηi . (3.2)

Then we write the auto-covariance matrices of {wit} as Γh = E [witw
′
it+h] for h ≥ 0

under the stationary assumption, which are given by

Γh =
∞∑
i=0

ΠiΩΠ
′i+h (3.3)

and Ω = (ωgh) (g, h = 1, 2).

For the WG and the GMM estimators, we have the next result. The proof will

be given in Section 6 (Sections 6.1, 6.2 and 6.4).
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Theorem 1 : Let Assumptions (A1)-(A-4) hold.

(i) As T → ∞, regardless of whether N is fixed or tends to infinity,

θ̂WG −

(
β2

γ1

)
p→

[
Φ∗ + E [v

(2)2
it ]

(
1

0

)
(1, 0)

]−1 [
E [v

(2)
it u

(1)
it ]

0

]
. (3.4)

(ii) Assume T/N → c and 0 ≤ c ≤ 1/2 as N and T → ∞. Then

θ̂GMM −

(
β2

γ1

)
p→

[
Φ∗ + cE [v

(2)2
it ]

(
1

0

)
(1, 0)

]−1 [
cE [v

(2)
it u

(1)
it ]

0

]
. (3.5)

where Φ∗ = D′Γ0D and

D =

[
0 1

γ2 0

]
.

(iii) When c = 0, we additionally assume that 0 ≤ limN,T→∞(T 3/N) = da < ∞.

Then
√
NT

[
θ̂GMM −

(
β2

γ1

)]
d−→ N (b

(a)
0 , σ2Φ∗−1) , (3.6)

where

b
(a)
0 = d1/2

a Φ∗−1

[
(0, 1)Ωβ

0

]
. (3.7)

When E [v
(2)
it u

(1)
it ] ̸= 0 and we have an endogenous variable, the WG estimator

is generally inconsistent, even though T tends to infinity, and also the GMM

estimator becomes inconsistent if c ̸= 0.

For the LIML estimator we shall give lengthy arguments for deriving its asymp-

totic behaviors when both N and T go to infinity while T/N tends to a positive

constant. We summarize our results whose proof will be given in Section 6.3.

Theorem 2 : Let Assumptions (A1)-(A4) hold. Assume N and T → ∞ and

T/N → c (0 ≤ c ≤ 1/2). Then θ̂LI
p→ θ and

√
NT

[
θ̂LI −

(
β2

γ1

)]
d→ N (b,Ψ∗), (3.8)
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where

b = (
−
√
c

1 − c
)Φ∗−1D′(I2 − Π)−1Ωβ, (3.9)

Ψ∗ = Φ∗−1

[
σ2Φ∗ + (c∗|Ω| + Ξ4)

(
1

0

)
(1, 0) + Ξ3 + Ξ′

3

]
Φ∗−1, (3.10)

Ξ3 = (
E [u

(1)2
it u⊥it ]

1 − c
lim

n→∞

1

n
D′

T−1∑
t=1

E [w
′

t−1dt],0), (3.11)

Ξ4 =
E [(u

(1)2
it − σ2)u⊥2

it ]

(1 − c)2
( lim
n→∞

1

n

T−1∑
t=1

E [d′
tdt] − c2), (3.12)

and β = (1,−β2)
′, σ2 = E [u

(1)2
it ], c∗ = c/(1 − c), dt denotes the N × 1 vector

containing the diagonal elements of Mt = Zt(Z
′
tZt)

−1Z
′
t and u⊥

it is defined by

u⊥it = (0, 1)[I2 −
Ωββ′

β′Ωβ
]vit , (3.13)

provided that Ξ3 and Ξ4 are well-defined.

The asymptotic covariance (3.10) of the LIML estimator has the same struc-

ture as the recent result by Anderson et al. (2008b). However, we have an extra

asymptotic bias term, which depends on the limiting behavior of T/N . This is due

to the effects of the forward-filtering in our formulation of dynamic panel struc-

tural equations. When the disturbances are normally distributed, the asymptotic

covariance becomes

Ψ∗ = Φ∗−1
[
σ2Φ∗ + c∗|Ω|

]
Φ∗−1, (3.14)

which is much simpler than the general case of (3.10). We expect that the addi-

tional two terms in (3.10) are often small in comparison with leading two terms.

Because we have many orthogonal conditions, we have the second term of (3.10)

when c ̸= 0.

4 On Finite Sample Properties

It is important to investigate the finite sample properties of estimators partly

because they are not necessarily similar to their asymptotic properties. One sim-

ple example would be the fact that the exact moments of some estimators do not

necessarily exist. (In that case it may be meaningless to compare the exact MSEs

of alternative estimators and their Monte Carlo analogues.) Hence we have in-

vestigated the distribution functions of several estimators in the normalized form
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given by √
NT

σ

[
1/
√
ϕ11 0

0 1/
√
ϕ22

][
β̂2 − β2

γ̂1 − γ1

]
, (4.15)

where ϕ11 and ϕ22 are the (1,1)-th element and (2.2)-th element of Φ∗−1, respec-

tively. We have chosen this standardization because the limiting distribution of

the LIML estimator in the form of (3.8) is N2(0, I2) when c = 0.

We have conducted our numerical investigations in a systematic way. We first set

the unknown parameters such as (β2, γ1) = (.5, .5), γ2 = .3. δ = V ar[ηi]/σ
2 = 1,

V ar[v
(g)
it ] = 1 (g = 1, 2) and Cov[v

(1)
it v

(2)
it ] = .3. Then we generate large num-

ber of normal random variables by simulations and calculate the empirical dis-

tribution function in the form of (4.15). We repeat 5,000 replications for each

case and the smoothing technique to estimate the empirical distribution func-

tions. The details of simulations are similar to those explained by Anderson,

Kunitomo and Matsushita (2005, 2008a). We shall report only the results for

(N, T ) = (75, 25), (150, 50) and (150, 50) as the typical cases among a large num-

ber of experiments.

When N and T are large, the WG estimator is badly biased. The GMM esti-

mator is badly biased unless T is much smaller than N and T 3/N converges to

a constant as the minimum requirement. We have confirmed these asymptotic

behaviors in Figures 2,4,6 and 8. Figures 1,3,5 and 7 show the distribution func-

tion of the LIML estimator in a particular normalization. We have found that the

distributions are significantly biased and also the normalization by the limiting co-

variance matrix is not appropriate because the circles in figures are the standard

normal distribution function N(0,1) in these figures. Then we have drawn their

distribution functions by first removing bias term and then using the normalized

factor given by Theorem 2, that is,

√
NT

[
ψ

−1/2
11 0

0 ψ
−1/2
22

][(
β̂2 − β2

γ̂1 − γ1

)
− 1√

NT
b

]
, (4.16)

where ψ11 and ψ22 are the (1,1)-th element and the (2,2)-th element of Ψ∗, respec-

tively.

The resulting curves are called the LIML distributin with large-K asymptotics.

From these figures, we have confirmed that the limiting normal distributions ap-

proximate the finite sample distribution functions of the LIML estimator quite

well as Theorem 1 and Theorem 2 stated.

There are immediate implications. First, the GMM estimator is badly biased

when T is large and it should not be used unless T is very small. (The WG

estimator is badly biased even when T is small.) Second, in order to use the

limiting normal distribution of the LIML estimator for statistical inferences, it is
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important to adjust the asymptotic bias and the asymptotic variance formulas in

Theorem 2. Since we have the explicit formulas for the bias and the covariance, it

is straightforward to use them in practical applications.

In order to make comparison with the results reported by Alvarez and Arellano

(2003) and Anderson et al. (2008a), we have conducted the similar calculations

without endogeneity by setting β2 = 0 and without dynamic effect by setting

γ1 = 0, respectively. We give the distribution function of the standardized WG,

the GMM and the LIML estimators as Figures 11, 12,15, 16 for the first case.

We have confirmed the numerical results of Alvarez and Arellano (2003) in the

sense that it is important to adjust the bias terms in the limiting distributions

of the GMM and LIML estimators. We give the distribution function of the

standardized WG, the GMM and the LIML estimators as Figures 9, 10, 13, 14 for

the second case. The numerical results are similar to those reported by Anderson

et al. (2008a) on the TSLS, the GMM and the LIML estimators although there

are some differences due to the bias terms in the panel LIML estimation.

5 Some Concluding Remarks

In this paper we have investigated the finite sample and asymptotic properties

of the WG, the GMM and the LIML estimators for coefficients in a particular

dynamic panel structural equation, that is, the model used by Blundell and Bond

(2000) with one endogenous variable. We have investigated the conditions for the

consistency and the asymptotic normality of the WG, GMM, and LIML estimators

when both N and T go to infinity. We have derived the asymptotic distributions

and the asymptotic bias terms of the GMM and the LIML estimators explic-

itly. Although we have a finite number of observations in actual applications, we

have confirmed that our asymptotic results agree with their finite sample proper-

ties based on a large number of Monte Carlo experiments. When N and T are

reasonably large, our results show the asymptotic robustness of the panel LIML

estimation with many instruments, which agree with the recent results obtained

by Anderson et al. (2008a, b) for the standard structural equation estimation.

We have pointed out that it is possible to use the bias correction of the LIML

estimator for general dynamic panel structural equations if necessary.

Finally, as I have mentioned in Introduction, the results reported in this paper

can be generalized to more general dynamic panel structural equations with some

complications. Some results on the asymptotic properties of estimators and testing

procedures have been developed by Akashi and Kunitomo (2010), and Akashi

(2008) in a more general framework, respectively. They have suggested that the
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essential characteristics of good performance of the LIML estimation in dynamic

panel structural equations reported in this paper remain the same.

6 Mathematical Details

This section gathers the mathematical derivations of our results in Section 3.

The most parts of our derivations are rather straight-forward applications and

some extensions of Alvarez and Allerano (2003) and Anderson et al. (2008b). For

the sake of completeness, we give some details.

6.1 Within-Groups

First, we consider the dynamic process wit = yit − πηi . Under the condition

γ1 ̸= γ2, Πh can be decomposed as

Πh =

(
1 β2γ2

γ2−γ1

0 1

)(
γh

1 0

0 γh
2

)(
1 β2γ2

γ2−γ1

0 1

)−1

(6.1)

=

(
γh

1 ϕβ(γh
1 − γh

2 )

0 γh
2

)
,

where ϕβ = β2γ2/(γ1−γ2). Then the auto-covariance matrices Γh = E [witw
′
it+h] (h =

0, 1, ...) are given by Γh =
∑∞

i=0 ΠiΩΠ
′i+h and Ω = E [vitv

′
it]. By using the rela-

tion Γh − ΠΓhΠ
′ = ΩΠh′

, we find that vec[Γh] = (I4 − Π ⊗ Π)−1vec[ΩΠh′
] and

(I4 − Π ⊗ Π) is a block-diagonal matrix. By a direct calculation, the elements of

Γh are given by

γh(1,1) =
1

(1 − γ2
1)(1 − γ1γ2)

[(1 − γ1γ2)(ω11 + ω12ϕβ) + (γ1β2γ2)(ω21 + ω22ϕβ)]γh
1

+
1

(1 − γ2
1)(1 − γ1γ2)(1 − γ2

2)
[(ω12 − ω22ϕβ)(1 − γ2

2)(γ1β2γ2)

+(β2
2γ

2
2)(1 + γ1γ2) − (1 − γ1γ2)(1 − γ2

2)(ω12ϕβ)]γh
2 ,

γh(1,2) =
1

(1 − γ1γ2)(1 − γ2
2)

[(1 − γ2
2)ω12 + β2γ

2
2ω22]γ

h
2 ,

γh(2,1) =
1

(1 − γ1γ2)
([ω21 + ω22ϕβ]γh

1 + [
β2

2γ
2
2ω22

1 − γ2
2

− ϕβω22]γ
h
2 ),

γh(2,2) = (
ω22

1 − γ2
2

)γh
2 .

For the within-groups estimator, we write

E [
T−1∑
t=1

Yf ′

t·t−1u
(1,f)
t ] = E [

( ∑N
i=1 y

(2)′

i QT ui∑N
i=1 y

(1)′

i(−1)QT ui

)
], (6.2)

11



where y
(2)′

i = (y
(2)
i1 , ..., y

(2)
iT ), y

(1)′

i(−1) = (y
(1)
i0 , ..., y

(1)
i(T−1)) and u′

i = (u
(1)
i1 , ..., u

(1)
iT ).

Then

E [
1

N

N∑
i=1

y
(1)′

i(−1)QT ui] = E [y
(1)′

i(−1) ui] −
1

T
ι′TE [y

(1)
i(−1)u

′
i]ιT , (6.3)

where the (t, s) elements of E [y
(1)
i(−1)u

′
i] are γt

1E [v
(1)
it u

(1)
it ] + ϕβ(γt

1 − γt
2)E [v

(2)
it u

(1)
it ] if

t > s and 0 otherwise.

By evaluating each elements, we obtain

E [
N∑

i=1

y
(1)′

i(−1)QT ui] = −N
T

[(E [v
(1)
it u

(1)
it ] + ϕβE [v

(2)
it u

(1)
it ])(

1

1 − γ1

)(T − 1 − γT
1

1 − γ1

)

− ϕβE [v
(2)
it u

(1)
it ](

1

1 − γ2

)(T − 1 − γT
2

1 − γ2

)], (6.4)

E [
N∑

i=1

y
(2)′

i QT ui] = NE [v
(2)
it u

(1)
it ](T − 1

1 − γ2

[1 − (
γ2

T
)(

1 − γT
2

1 − γ2

)]). (6.5)

Next, we need to evaluate the variances and we write

V ar[
1√
NT

( ∑N
i=1 y

(2)′

i QT ui∑N
i=1 y

(1)′

i(−1)QT ui

)
]

= V ar[
1√
NT

N∑
i=1

T∑
t=1

(
w

(2)
it

w
(1)
it−1

)
u

(1)
it −

√
T

N

N∑
i=1

(
w̄

(2)
i

w̄
(1)
i(−1)

)
ūi] , (6.6)

where

w̄
(2)
i =

1

T

T∑
t=1

w
(2)
it , w̄

(1)
i(−1) =

1

T

T−1∑
t=0

w
(1)
it , ūi =

1

T

T∑
t=1

u
(1)
it . (6.7)

In order to evaluate the first element of the leading term in (6.6), we use the

relation that V ar[
∑

tw
(2)
it u

(1)
it ] = E [(

∑
tw

(2)
it u

(1)
it )2] − (TE [v

(2)
it u

(1)
it ])2. Then for the

first term of this relation

E [w
(2)2
it u

(1)2
it ] = E [u

(1)2
it v

(2)2
it ] + E [u

(1)2
it ]E [v

(2)2
it ]

γ2
2

(1 − γ2
2)
, (t = s) (6.8)

E [w
(2)
is u

(1)
is w

(2)
it u

(1)
it ] = E [w

(2)
i(s∧t)u

(1)
i(s∧t)]E [v

(2)
i(s∨t)u

(1)
i(s∨t)] (6.9)

= (E [v
(2)
it u

(1)
it ])2, (t ̸= s).

For the second element of the leading term of (6.6), we use E [u
(1)
it−jw

(1)
it−1−j] = 0 for

j ̸= 0 and

E [(
T∑

t=1

u
(1)
it w

(1)
it−1)

2] = TE [u
(1)2
it w

(1)2
it−1] = TE [u

(1)2
it ]E [w

(1)2
it−1]. (6.10)
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For the second term of (6.6), we have

V ar[

√
T

N

N∑
i=1

(
w̄

(2)
i

w̄
(1)
i(−1)

)
ūi] = TV ar[

(
w̄

(2)
i

w̄
(1)
i(−1)

)
ūi] = O(

1

T
), (6.11)

since V ar[(.)ū
(1)
i ] = O(1/T 2) (See Page 1139 of Alvaretz and Arellano (2003)).

Then

V ar[
1√
NT

( ∑N
i=1 y

(2)′

i QT ui∑N
i=1 y

(1)′

i(−1)QT ui

)
] (6.12)

=

(
E [u

(1)2
it v

(2)2
it ] + E [u

(1)2
it ]E [v

(2)2
it ](

γ2
2

1−γ2
2
) − (E [u

(1)
it v

(2)
it ])2

E [u
(1)2
it ]Γ0(1,1)

)
+O(

1

T
).

Third, we need to evaluate the expectation of quadratic forms

E [
1

NT

T−1∑
t=1

Yf ′

t·t−1Y
f
t·t−1]

=

(
γ0(2,2) γ1(1,2)

γ1(1,2) γ0(1,1)

)
+ E [

(
w̄

(2)2
i w̄

(2)
i w̄

(1)
i(−1)

w̄
(1)
i(−1)w̄

(2)
i w̄

(1)2
i(−1)

)
], (6.13)

where

E [w̄
(1)2
i(−1)] =

1

T 2
[
T−1∑
j=0

j∑
h=0

Γh +
T−1∑
j=1

j∑
h=1

Γ′
h](2,2). (6.14)

The first double sum S0T =
∑T−1

j=0

∑j
h=0 Γ0Π

′h can be represented as

S0T = Γ0ST (6.15)

= Γ0[Π
′(ΠT ′ − I2)(Π

′ − I2)
−1 − T I2](Π

′ − I2)
−1,

and the elements of ST are given by

ST (g,g) =
[πii(1 − πT

ii)(1 − πii) − T ](πii − 1)

(1 − π11)2(1 − π22)2
(g = 1, 2)

ST (2,1) = (
1

(1 − π11)2(1 − π22)2
)[([π22(π

T
11 − 1) + π12ϕβ(πT

11 − πT
22)](π11 − 1)

− π22π12(π
T
11 − 1))(π11 − 1) − (π22(1 − πT

22)(1 − π22) − T )π12],

ST (1,2) = 0,

where Π = {πgh} (g, h = 1, 2). Also define S1T = Γ1ST , then we use the relation

E [w̄
(1)2
i(−1)] = [(S0T + S′

1(T−1))/T
2](2,2), E [w̄

(2)2
i ] = [(S0T + S′

1(T−1))/T
2](1,1). (6.16)
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Similarly, we can show that E [w̄
(2)
i w̄

(1)
i(−1)] = [(S1T + S′

0(T−1))/T
2](1,2). Hence we

find that

E [
1

NT

T−1∑
t=1

Yf ′

t·t−1Y
f
t·t−1] =

(
γ0(2,2) γ1(1,2)

γ1(1,2) γ0(1,1)

)
+O(

1

T
) . (6.17)

Moreover, we shall evaluate the covariance matrix

V ar[
1

NT

T−1∑
t=1

Yf ′

t·t−1Y
f
t·t−1] =

1

N
V ar[

1

T

∑
t

(
w

(2)2
it w

(2)
i w

(1)
i(t−1)

w
(1)
i(t−1)w

(2)
i w

(1)2
i(t−1)

)

−

(
w̄

(2)2
i w̄

(2)
i w̄

(1)
i(−1)

w̄
(1)
i(−1)w̄

(2)
i w̄

(1)2
i(−1)

)
]

= o(1) ,

where the second terms are O(N−1T−2) by using the same arguments as for (6.11).

In order to show that the first terms are O(N−1T−1), we decopmose w
(1)
it as the

sum of the two AR(1) processes, or w
(11)
it + w

(12)
it , those coefficients are γ1 and γ2,

respectively. Then

V ar[
1√
T

T∑
t=1

w
(2)2
i(t−1)] → (

1 + γ2
1

1 − γ2
1

)V ar[w
(2)2
it ], (6.18)

V ar[
1√
T

T∑
t=1

w
(1)2
it ] → (

1 + γ2
1

1 − γ2
1

)Cov[w
(1)2
it , w

(11)2
it ] + 2(

1 + γ2
1γ

2
2

1 − γ2
1γ

2
2

) (6.19)

× Cov[w
(1)2
it , w

(11)
it w

(12)
it ] + (

1 + γ2
2

1 − γ2
2

)Cov[w
(1)2
it , w

(12)2
it ],

and V ar[(1/
√
T )
∑T

t=1w
(2)
it w

(1)
i(t−1)] → O(1). Also we have

V ar[
1

T

T∑
t=1

w
(2)
i(t−1)w

(1)
i(t−1)] → 0, (6.20)

which will be used later. It is because V ar[(1/
√
T )
∑T

t=1w
(2)
it w

(1)
it ] = V ar[(1/

√
T )∑T

t=1w
(2)
it (β2w

(2)
it + γ1w

(1)
i(t−1) + u

(1)
it )] and that the right-hand side’s variance terms

are O(1) as T → ∞.

Proof of (3.4) : We have shown the suffcient condition fors mean-square conver-

gence to the limit of (6.2) and (6.13), and therefore the convergence in probability

follows. Q.E.D.

6.2 GMM (Derivation of (3.4))

We prepare two lemmas for our derivation. The first one is a direct application

of Lemma C1 of Alvaretz and Arellano (2003).
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Lemma 1 : Let dt and ds be N × 1 vectors containing the diagonal elements

of Mt and Ms, respectively, such that tr(Mt) = d′
tιN = 2t, tr(Ms) = d′

sιN = 2s

and d′
tds ≤ 2 max(t, s). Then, under (A1) and (A3), for l ≥ r ≥ t, p ≥ q ≥ s,

t ≥ s,

Cov[ϵ
(a)′

l Mtϵ
(b)
r , ϵ(a)′

p Msϵ
(b)
q ] (6.21)

=


(m(3) +m(2))(2s) +m(0)E [d′

tds] if l = r = p = q,

E [ϵ
(a)2
it ϵ

(b)
it ]E [d′

tMsϵ
(b)
q ] if l = r = p ̸= q < t,

m(3)(2s) if l = p ̸= r = q,

0 otherwise,

where |E [d′
tMsϵ

(b)
q ]| ≤ 2(stE [ϵ

(b)2
it ])1/2,

m(1) = m(1)(ϵ
(a)
t , ϵ

(b)
t ) = E [ϵ

(a)2
it ϵ

(b)2
it ], (6.22)

m(2) = m(2)(ϵ
(a)
t , ϵ

(b)
t ) = (E [ϵ

(a)
it ϵ

(b)
it ])2,

m(3) = m(3)(ϵ
(a)
t , ϵ

(b)
t ) = E [ϵ

(a)2
it ]E [ϵ

(b)2
it ],

m(0) = m(0)(ϵ
(a)
t , ϵ

(b)
t ) = m(1) − 2m(2) −m(3),

and (ϵ
(a)
t , ϵ

(b)
t ) takes any pair ofN×1 vectors from random variables (v

(g)
it ) (g = 1, 2)

such as (v
(2)
t ,ut).

Proof: We shall show that

Covt[ϵ
(a)′

l Mtϵ
(b)
r , ϵ(a)′

p Msϵ
(b)
q ] (6.23)

=


(m(3) +m(2))(2s) +m(0)d′

tds if l = r = p = q,

Et[ϵ
(a)2
it ϵ

(b)
it ]d′

tMsϵ
(b)
q if l = r = p ̸= q < t,

m(3)(2s) if l = p ̸= r = q,

0 otherwise,

where Et[.] denotes an expectation conditional on ηi and {ϵ(a)
i(t−j), ϵ

(b)
i(t−j)}∞j=1. We

shall use

Covt[ϵ
(a)′

l Mtϵ
(b)
r , ϵ(a)′

p Msϵ
(b)
q ]

= Et[ϵ
(a)′

l Mtϵ
(b)
r ϵ(a)′

p Msϵ
(b)
q ] − Et[ϵ

(a)′

l Mtϵ
(b)
r ]Et[ϵ

(a)′

p Msϵ
(b)
q ] . (6.24)

If p < t, then ϵ
(a)′
p Msϵ

(b)
q is constant and the covariance vanishes. The conditional

means are given by

Et[ϵ
(a)′

l Mtϵ
(b)
r ] = tr(MtEt[ϵ

(b)
l ϵ(a)′

r ])

{
E [ϵ

(a)
it ϵ

(b)
it ]tr(Mt) if l = r,

0 if l ̸= r,
(6.25)
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Et[ϵ
(a)′

q Msϵ
(b)
p ] = tr(MsEt[ϵ

(b)
q ϵ(a)′

p ])

{
E [ϵ

(a)
it ϵ

(b)
it ]tr(Ms) if q = p,

0 if q ̸= p.
(6.26)

As for the leading term we have

Et[ϵ
(a)′

l Mtϵ
(b)
r ϵ(a)′

p Msϵ
(b)
q ] (6.27)

=


Et[ϵ

(a)′

l Mtϵ
(b)
r ϵ

(a)′
p Msϵ

(b)
q ] if l = r = p = q,

Et[ϵ
(a)′

l Mtϵ
(b)
l ϵ

(a)′

l ]Msϵ
(b)
q if l = r = p ̸= q < t,

tr(MtEt[ϵ
(b)
r ϵ

(b)′
r ]MsEt[ϵ

(a)
l ϵ

(a)′

l ]) if l = p ̸= r = q,

0 otherwise.

Thus there is only a nonzero mean-product subtraction in covariances with l =

r = p = q. For the first type of nonzero terms

Et[ϵ
(a)′

l Mtϵ
(b)
l ϵ

(a)′

l Msϵ
(b)
l ] (6.28)

=
∑

i

∑
j

∑
k

∑
ℓ

m
(t)
ij m

(s)
kℓ Et[ϵ

(a)
il ϵ

(b)
jl ϵ

(a)
kl ϵ

(b)
ℓl ]

= E [ϵ
(a)2
it ϵ

(b)2
it ]d′

tds +
∑

i

∑
k ̸=i

m
(t)
ii m

(s)
kk (E [ϵ

(a)
it ϵ

(b)
it ])2

+
∑

i

∑
j ̸=i

m
(t)
ij m

(s)
ij E [ϵ

(a)2
it ]E [ϵ

(b)2
it ] +

∑
i

∑
j ̸=i

m
(t)
ij m

(s)
ji (E [ϵ

(a)
it ϵ

(b)
it ])2

= m(0)d′
tds +m(2)tr(Mt)tr(Ms) + (m(3) +m(2))tr(MtMs),

where m
(t)
ij and m

(s)
kℓ denote the elements of Mt and Ms, respectively. Then by

using (6.25), the result follows.

For the second type, we have

Et[ϵ
(a)′

l Mtϵ
(b)
l ϵ

(a)′

l ]Msϵ
(b)
q = E [ϵ

(a)2
it ϵ

(b)
it ]d′

tMsϵ
(b)
q , (6.29)

and

tr(MtEt[ϵ
(b)
r ϵ(b)′

r ]MsEt[ϵ
(a)
l ϵ

(a)′

l ]) = E [ϵ
(a)2
it ]E [ϵ

(b)2
it ]tr(MtMs). (6.30)

Given (6.23), we find the unconditional covariance given by

Cov[ϵ
(a)′

l Mtϵ
(b)
r , ϵ(a)′

p Msϵ
(b)
q ] (6.31)

= E [Covt[ϵ
(a)′

l Mtϵ
(b)
r , ϵ(a)′

p Msϵ
(b)
q ]] + Cov[Et[ϵ

(a)′

l Mtϵ
(b)
r ], Et[ϵ

(a)′

p Msϵ
(b)
q ]],

but the second term vanishes. To prove (E [d′
tMsϵ

(b)
q ])2 ≤ 4tsE [ϵ

(b)2
it ], we use the

inequalities

(d′
tMsϵ

(b)
q )2 ≤ (d′

tMsdt)(ϵ
(b)′

q Msϵ
(b)
q ) ≤ d′

tdt(ϵ
(b)′

q Msϵ
(b)
q ) ≤ 2t(ϵ(b)′

q Msϵ
(b)
q ),
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and hence

E [(d′
tMsϵ

(b)
q )2] ≤ 2tE [ϵ(b)′

q Msϵ
(b)
q ] = 4tsE [ϵ

(b)2
it ]. (6.32)

Since E [(d′
tMsϵ

(b)
q )2] = V ar[d′

tMsϵ
(b)
q ] + (E [d′

tMsϵ
(b)
q ])2, we have (E [d′

tMsϵ
(b)
q ])2 ≤

4tsE [ϵ
(b)2
it ] . Q.E.D.

Lemma 2 : Under Assumptions (A1)-(A4), assume both N and T → ∞ while

T/N → c (0 ≤ c ≤ 1/2). Then

1

NT

T−1∑
t=1

(
w

(2)′

t

w
(1)′

t−1

)
Mt(w

(2)
t ,w

(1)
t−1)

m.s.→ Φ∗ + cE [v
(2)2
it ]

(
1

0

)
(1, 0), (6.33)

where

Φ∗ = D′Γ0D, D =

(
0 1

γ2 0

)
. (6.34)

Proof : Let M′
µ = (µ1, ...,µN), µi = ηiπ and we construct the N × 2 error

matrix of the linear projection of Mµ on Z∗
t ,

(µ
∗(1)
t ,µ

∗(2)
t ) = Mµ − Z∗

t (γ
(1)
t ,γ

(2)
t ), (6.35)

where γ
(g)
t = (E [z∗itz

∗′
it ])

−1E [z∗itµi(g,1)] (g = 1, 2) are (2t)×1 vectors and Z∗
t = ZtΓ0t.

We take Γ0t as the 2t× 2t block-diagonal matrix whose 2 × 2 diagonal blocks are

lower triangular matrix L−1′ such that Γ0 = LL′. Let also Vt be the 2t × 2t

partitioned symmetric matrix as

Vt =


I2

Φ I2

...
...

. . .

Φt−2 Φt−3 . . . I2

Φt−1 Φt−2 . . . Φ I2

 , (6.36)

where Φ = L−1ΠL and (2t) × 1 vector lt = (π′L−1′ , ...,π′L−1′)′.

Then we have

γ
(g)
t = (σ2

ηltl
′
t + Vt)

−1(π(g,1)σ
2
ηlt) (6.37)

=
π(g,1)σ

2
η

1 + σ2
ηl

′
tV

−1
t lt

V−1
t lt (g = 1, 2),
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and the inverse matrix of Vt is a block-tridiagonal symmetric matrix such that

V−1
t =


P−1

−ΦP−1 P−1 + ΦP−1Φ′

...
...

. . .

O2 O2 . . . P−1 + ΦP−1Φ′

O2 O2 . . . −ΦP−1 I2 + ΦP−1Φ′

 ,(6.38)

where P = I2 − Φ′Φ. Hence, for g = 1, 2, we find that

µ
∗(g)
it = µ

(g)
i − z∗

′

itγ
(g)
t (6.39)

= µ
(g)
i − ηil

′
tγt −

[
(L−1wi0)

′, ..., (L−1wit−1)
′]γt

=

[
π(g,1)

1 + σ2
ηl

′
tV

−1
t lt

] [
ηi − σ2

ηw
∗′
itV

−1
t lt

]
= π(g,1)µ

∗
it (, say),

E [µ
∗(g)2
it ] =

(π(g,1))
2σ2

η

1 + σ2
ηl

′
tV

−1
t lt

, (6.40)

where w∗′
t = (w

′
0, · · · ,w

′
t−1).

Since π′L−1′(I2 − Φ)P−1/2 ̸= 0′ and

lim
t→∞

l′tV
−1
t lt
t

= π′L−1′
[
P−1 + ΦP−1Φ′ − P−1Φ′ − ΦP−1

]
L−1π (6.41)

=
[
P−1/2′(I2 − Φ′)L−1π

]′ [
P−1/2′(I2 − Φ′)L−1π

]
= O(1) ,

we have established that l′tV
−1
t lt = O(t) and E [µ

∗(g)2
it ] = O(t−1).

Furthermore, we evaluate the fourth-order moments of µ
∗(g)
it (g = 1, 2). Because

of the form (6.39), we have E [µ
∗(g)4
it ] = O(t−4) ×O(t2) = O(t−2) (g = 1, 2).

Next, we shall consider the decomposition

w
(g)′

t−1Mtw
(h)
t−1 = w

(g)′

t−1w
(h)
t−1 − w

(g)′

t−1(IN − Mt)w
(h)
t−1 (6.42)

= w
(g)′

t−1w
(h)
t−1 − µ

∗(g)′

t (IN − Mt)µ
∗(h)
t (g, h = 1, 2),

where the second equality follows from wt−1 = yt−1−Z∗
t (γ

(1)
t ,γ

(2)
t )−(µ

∗(1)
t ,µ

∗(2)
t ),Mt =

Z∗
t (Z

∗′
t Z∗

t )
−1Z∗′

t and (IN −Mt)[yt−1−Z∗
t (γ

(1)
t ,γ

(2)
t )] = 0. Therefore, for g, h = 1, 2,

1

NT

T−1∑
t=1

E [w
(g)′

t−1Mtw
(h)
t−1] = E [w

(g)
it−1w

(h)
it−1] +

1

NT

T−1∑
t=1

E [µ
∗(g)′

t (IN − Mt)µ
∗(h)
t ].(6.43)

Moreover,

|µ∗(g)′

t (IN − Mt)µ
∗(h)
t | ≤ |π(g,1)π(h,1)|(µ∗′

t µ∗
t ), (g, h = 1, 2) (6.44)
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since (IN − Mt) is idempotent. Then

1

NT
|

T−1∑
t=1

E [µ
∗(g)′

t (IN − Mt)µ
∗(h)′

t ]| ≤
|π(g,1)π(h,1)|

NT

T−1∑
t=1

E [µ∗′
t µ∗

t ] (6.45)

=
|π(g,1)π(h,1)|

T

T−1∑
t=1

E [µ∗2
it ]

=
1

T
O(log T ) .

Hence

1

NT

T−1∑
t=1

E [w′
t−1Mtwt−1] − E [wi(t−1)w

′
i(t−1)] → 0 . (6.46)

To establish the mean-square convergence, by using the relations from (6.18) to

(6.20), we have

V ar[
1

NT

T−1∑
t=1

w′
t−1wt−1] =

1

N
V ar[

1

T

T−1∑
t=1

wit−1w
′
it−1] =

1

N
O(

1

T
) , (6.47)

and

V ar[
|π(g,1)π(h,1)|

NT

T−1∑
t=1

µ∗′
t µ∗

t ]

=
(π(g,1)π(h,1))

2

N
V ar[

1

T

T−1∑
t=1

µ∗2
it ] (6.48)

=
(π(g,1)π(h,1))

2

N

[
1

T 2

∑
t

V ar[µ∗2
it ] +

2

T 2

∑
s

∑
t>s

Cov[µ∗2
it , µ

∗2
is ]

]

≤
(π(g,1)π(h,1))

2

N

[
1

T 2

∑
t

O(
1

t2
) +

2

T 2

∑
s

∑
t>s

O(
1

t
)O(

1

s
)

]
= o(1) .

We have E [(1/NT )
∑T−1

t=1 w
(g)′

t−1Mtv
(2)
t ] = 0 for g = 1, 2 and then

E [
1

NT

T−1∑
t=1

v
(2)′

t Mtv
(2)
t ] =

1

NT

T−1∑
t=1

(2t)E [v
(2)2
it ]→cE [v

(2)2
it ]. (6.49)
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Also by using w
(2)
t = γ2w

(2)
t−1 + v

(2)
t , it is sufficient to show that

V ar[
1

NT

T−1∑
t=1

w
(g)′

t−1Mtv
(2)
t ] =

E [v
(2)2
it ]

N2T 2

T−1∑
t=1

E [w
(g)′

t−1Mtw
(g)
t−1]

= o(1) (g = 1, 2), (6.50)

V ar[
1

NT

T−1∑
t=1

v
(2)′

t Mtv
(2)
t ] ≤ 1

N2T 2

T−1∑
t=1

[
(E [v

(2)2
it ])2 + (E [v

(2)4
it ] − 3E [v

(2)2
it ])

]
(2t)

= o(1) . (6.51)

Since Cov[w
(g)′

t−1Mtv
(2)
t ,w

(g)
s−1Msv

(2)
s ] = 0 and Cov[v

(2)′

t Mtv
(2)
t ,v

(2)
s Msv

(2)
s ] = 0

hold for t > s (g = 1, 2), the inequality holds due to Lemma 1. Q.E.D.

We use the decomposition

T−1∑
t=1

y
(1,f)′

t−1 Mtu
(f)
t =

T−1∑
t=1

ct(w
(1)
t−1 −

1

T − t
w̃

(1)
t−1)

′Mtu
(f)
t −

T−1∑
t=1

ctṽ
(1)′

tT Mtu
(f)
t , (6.52)

where

w
(1)
t−1 = (w

(1)
1t−1, ..., w

(1)
Nt−1)

′, (6.53)

u
(f)
t = (u

(1,f)
1t , ..., u

(1,f)
Nt )′, (6.54)

ṽ
(1)
tT =

1

T − t
[ϕ

(γ1)
T−tv

(1)
t +…+ ϕ

(γ1)
1 v

(1)
T−1] (6.55)

+
ϕβ

T − t
[(ϕ

(γ1)
T−t − ϕ

(γ2)
T−t)v

(2)
t +…+ (ϕ

(γ1)
1 − ϕ

(γ2)
1 )v

(2)
T−1]

= ṽ
(11)
tT + ṽ

(12)
tT (, say),

ϕ
(x)
j =

1 − xj

1 − x
, (x = γ1, γ2), (6.56)

w̃
(1)
t−1 =

∞∑
j=0

[(v
(1)
t−1−j,v

(2)
t−1−j)(

T−t∑
h=1

Πj+h
(1) )′], (6.57)

and Πj+h
(1) denotes the first row of Πj+h. Since only the second term in the right-

hand side of (6.52) has nonzero mean (the same calculation of (A46) and (A47) of

Alvaretz and Arellano (2003)), we obtain

E [
T−1∑
t=1

y
(1,f)′

t−1 Mtu
(f)
t ] = 2T (

E [ϕβu
(1)
it v

(2)
it ]

1 − γ2

[1 − 1

T (1 − γ2)

T∑
t=1

(1 − γt
2)

t
] (6.58)

− E [u
(1)
it v

(1)
it + ϕβu

(1)
it v

(2)
it ]

1 − γ1

[1 − 1

T (1 − γ1)

T∑
t=1

(1 − γt
1)

t
]).
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Similarly, we decompose y
(2,f)
t as

T−1∑
t=1

y
(2,f)′

t Mtu
(f)
t =

T−1∑
t=1

ct(γ2 −
γ2

2ϕ
(γ2)
T−t

T − t
)w

(2)′

t−1Mtu
(f)
t (6.59)

+
T−1∑
t=1

ct[(1 −
γ2ϕ

(γ2)
T−t

T − t
)v

(2)
t − (

1

T − t
)(ϕ

(γ2)
T−tv

(2)
t+1 +…+ ϕ

(γ2)
1 v

(2)
T )]′Mtu

(f)
t .

Again we use the facts that (i) only the second term has non-zero mean, (ii)

E [v
(2)′

t+jMtu
(1)
t+k] = (2t)E [u

(1)
it v

(2)
it ] for j = k and zero otherwise, and (iii) ϕ

(γ2)
1 +…+

ϕ
(γ2)
T−t−1 = (T − t− ϕ

(γ2)
T−t)/(1 − γ2). Then for each t, we have

E [y
(2,f)′

t Mtu
(f)
t ] (6.60)

= c2t (2t)E [u
(1)
it v

(2)
it ](1 −

γ2ϕ
(γ2)
T−t

T − t
+
ϕ

(γ2)
T−t +…+ ϕ

(γ2)
1

(T − t)2
)

=
(2t)E [u

(1)
it v

(2)
it ]

T − t+ 1
((T − t) +

1

1 − γ2

− γ2ϕ
(γ2)
T−t − (

γ2

1 − γ2

)(
ϕ

(γ2)
T−t

T − t
)) .

Furthermore, by taking the sum of (6.59), we have

E [
T−1∑
t=1

y
(2,f)′

t Mtu
(f)
t ] (6.61)

= 2E [u
(1)
it v

(2)
it ]

(
(T + 2)(T − 1)

2
+ (

γ2

1 − γ2

)(T + 1)
T∑

s=2

1

s

− (
γ2

1 − γ2

)(T − 2) − (
γ2

1 − γ2

)[(T + 1)
T∑

s=2

ϕ
(γ2)
s−1

s(s− 1)
−

T∑
s=2

ϕ
(γ2)
s−1

(s− 1)
]

− γ2[(T + 1)
T∑

s=2

ϕ
(γ2)
s−1

s
−

T∑
s=2

ϕ
(γ2)
s−1]

)
= O(T 2) .

Proof of (3.5) : The convergence in probability to the limit of (6.58), (6.61)

and the first factor of (3.5) are established by using (6.83) and (6.62) in the next

subsection, respectively. Q.E.D.

6.3 The LIML Estimator

Proof of Theorem 2 : First, we need the convergence result on (1/n)G(f)

and (1/qn)H(f). We use the similar arguments as Akashi and Kunitomo (2010)
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with Lemmas 1 and 2. Then we have

1

n
G(f) p→ G0 =

(
θ′

I2

)
Φ∗(θ, I2) + c

(
Ω 0

0′ 0

)
= Φθ + c

(
Ω 0

0′ 0

)
(, say),(6.62)

where Φ∗ = D′Γ0D.

Similarly,

1

qn
H(f) p→ H0 =

(
Ω 0

0′ 0

)
. (6.63)

Then we have

|Φθ + (c− plimn→∞λn)

(
Ω 0

0′ 0

)
| = 0. (6.64)

By the singularity of Φθ, we first notice that c is a solution. If c > plimn→∞λn,

then | . | > 0. Hence λn
p→ c. For the consistency, we use the representation

θ̂LI − θ = (
1

n

T−1∑
t=1

Y
(f)′

t·t−1MtY
(f)′

t·t−1 − λn[
1

qn

T−1∑
t=1

Y
(f)′

t·t−1(IN − Mt)Y
(f)′

t·t−1])
−1

× (
1

n

T−1∑
t=1

Y
(f)′

t·t−1Mtu
(f)
t − λn[

1

qn

T−1∑
t=1

Y
(f)′

t·t−1(IN − Mt)u
(f)
t ]). (6.65)

By (6.4) and (6.61), we find

(
1

n

T−1∑
t=1

Y
(f)′

t·t−1Mtu
(f)
t − λn[

1

qn

T−1∑
t=1

Y
(f)′

t·t−1(IN − Mt)u
(f)
t ]) (6.66)

p→

(
cE [v

(2)
it u

(1)
it ] − c[

E[v
(2)
it u

(1)
it ]−cE[v

(2)
it u

(1)
it ]

1−c
]

0 − c0

)
=

(
0

0

)
.

In order to prove the asymptotic normality of the LIML estimator, we shall utilize

the next expression in several steps.

Φ∗√n

(
β̂2.LI − β2

γ̂1.LI − γ1

)
(6.67)

=
1√
n
D′

T−1∑
t=1

Y
(f)′

t−1Ntu
(f)
t +

1√
n

T−1∑
t=1

(
u

(⊥,f)′

t

0′

)
Ntu

(f)
t + op(1)

=
1√
n
D′

T−1∑
t=1

(
w

(1)′

t−1

w
(2)′

t−1

)
ut +

1√
n

T−1∑
t=1

(
u⊥′

t

0′

)
Ntut +O(1) + op(1)

= A1n + A2n +O(1) + op(1) (, say),
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where

(u
(⊥,f)′

t ,u⊥′

t ) = (0, 1)[I2 −
Ωββ′

β′Ωβ
](v

(f)′

t ,v
′

t). (6.68)

[ Step 1] : Define G
(f)
1 , H

(f)
1 , λ

(f)
1n and b1 by G

(f)
1 =

√
n[(1/n)G(f)−G0], H

(f)
1 =

√
qn[(1/qn)H(f) − H0], λ

(f)
1n =

√
n(λn − c) and

b1 =
√
n

(
0

θ̂ − θ

)
. (6.69)

By substituting these variables into (2.9), we have

[G0 − cH0]

(
1

−θ

)
+

1√
n

[G
(f)
1 − λ

(f)
1n H0]

(
1

−θ

)
+

1√
n

[G0 − cH0]b1

− 1
√
qn

[cH
(f)
1 ]

(
1

−θ

)
= op(

1√
n

). (6.70)

By multiplying (1,−θ) to (6.70) from the left, we have

λ
(f)
1n =

(1,−θ′)[G
(f)
1 −√

cc∗H
(f)
1 ](1,−θ′)′

(1,−θ′)H0(1,−θ′)′
+ op(1), (6.71)

where c∗ = c/(1− c). Then by using the rank relation of Φθ(1,−θ′)′ = 0, we have

Φθb1 = [G
(f)
1 − λ

(f)
1n H0 −

√
cc∗H

(f)
1 ]

(
1

−θ

)
+ op(1). (6.72)

Also by multiplying (0, I2) to (6.72) from the left and substituting λ
(f)
1n for (6.72),

we find

Φ∗√n

(
β̂2LI − β2

γ̂1LI − γ1

)
(6.73)

= (0, I2)[G
(f)
1 − λ

(f)
1n H0 −

√
cc∗H

(f)
1 ]

(
1

−θ

)
+ op(1)

= (0, I2)[I3 −
1

β′Ωβ

(
Ωβ

0

)
(1,−θ′)][G

(f)
1 −

√
cc∗H

(f)
1 ]

(
1

−θ

)
+ op(1),

where β = (1,−β2)
′.

In order to evaluate [G
(f)
1 −√

cc∗H
(f)
1 ](1,−θ′)′, we decompose G(f) as

G(f) = G(f,1) + G(f,2) + G(f,2)′ + G(f,3), (6.74)
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where

G(f,1) = D∗′
T−1∑
t=1

Y
(f)′

t−1MtY
(f)
t−1D

∗,

G(f,2) = D∗′
T−1∑
t=1

Y
(f)′

t−1Mt(v
(f)
t ,0),

G(f,3) =
T−1∑
t=1

(
v

(f)′

t

0′

)
Mt(v

(f)
t ,0),

D∗ =
[
(π11, π12)

′
,D
]

and Y
(f)
t−1 = (y

(1,f)
t−1 ,y

(2,f)
t−1 ). Then by using the relation

D∗(1,−θ′)′ = 0, we write

[G
(f)
1 −

√
cc∗H

(f)
1 ]

(
1

−θ

)
(6.75)

=
1√
n
D∗′

T−1∑
t=1

Y
(f)′

t−1Mtu
(f)
t +

1√
n

[
T−1∑
t=1

(
v

(f)′

t

0′

)
Mtu

(f)
t − rn

(
Ωβ

0′

)
]

−
√
cc∗√
qn

D∗′
T−1∑
t=1

Y
(f)′

t−1 [IN − Mt]u
(f)
t

−
√
cc∗√
qn

[
T−1∑
t=1

(
v

(f)′

t

0′

)
[IN − Mt]u

(f)
t − qn

(
Ωβ

0′

)
].

Also we use the relation
√
cc∗/

√
qn − c∗/

√
n = o(1) and set

Nt = Mt − c∗(IN − Mt) =
1

1 − c
[Mt − cIN ] . (6.76)

Then,

Φ∗√n

(
β̂2LI − β2

γ̂1LI − γ1

)
=

1√
n
D′

T−1∑
t=1

Y
(f)′

t−1Ntu
(f)
t +

1√
n

T−1∑
t=1

(
u

(⊥,f)′

t

0′

)
Ntu

(f)
t + op(1).

and then Step 1 is established.

[ Step 2] : Let ūtT = (ut +…+ uT )/(T − t+ 1). To evaluate the sampling error
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of γ̂1.LI , we further decompose the two terms of (6.52) as 6

1√
n

T−1∑
t=1

y
(1,f)′

t−1 Ntu
(f)
t

=
1

1 − c
[(

1√
n

T−1∑
t=1

w
(1)′

t−1Mtut − Υ
(1)
11n − Υ

(1)
12n) − (Υ

(1)
21n − Υ

(1)
22n)]

−c∗(
1√
n

T−1∑
t=1

w
(1)′

t−1ut − Υ
(1)
3n ), (6.77)

where

Υ
(1)
11n =

1√
n

T−1∑
t=1

w
(1)′

t−1MtūtT , (6.78)

Υ
(1)
12n =

1√
n

T−1∑
t=1

ct
T − t

w̃
(1)′

t−1Mtu
(f)
t , (6.79)

Υ
(1)
21n =

1√
n

T−1∑
t=1

ṽ
(1)′

tT Mtut, (6.80)

Υ
(1)
22n =

1√
n

T−1∑
t=1

ṽ
(1)′

tT MtūtT , (6.81)

Υ
(1)
3n =

√
T

N

N∑
i=1

w̄
(1)
i(−1)ūi. (6.82)

By using Lemma 2, the leading term of (6.77) and (1/
√
n)
∑

t w
(2)
t−1Mtut satisfy

V ar[
1√
n

T−1∑
t=1

w
(g)′

t−1Mtut] =
E [u

(1)2
it ]

NT

T−1∑
t=1

E [w
(g)′

t−1Mtw
(g)
t−1] = O(1) . (6.83)

Next, we shall show that the variances of Υ
(1)
11n, Υ

(1)
12n, Υ

(1)
21n and Υ

(1)
22n tend to zero.

First, we notice that V ar[Υ
(1)
3n ] → 0 from (6.11). Second,

V ar[Υ
(1)
11n] =

1

NT

T−1∑
t=1

T−1∑
s=1

E [w
(1)′

t−1MtūtT ū′
sTMsw

(1)
s−1]. (6.84)

6Note that u(f)
t = (ut − ūtT )/ct
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For t ≥ s,

E [w
(1)′

t−1MtūtT ū′
sTMsw

(1)
s−1] (6.85)

= E [w
(1)′

t−1MtEt[ūtT ū′
sT ]Msw

(1)
s−1]

=
E [u

(1)2
it ]E [w

(1)′

t−1Msw
(1)
s−1]

(T − s+ 1)

=
E [u

(1)2
it ]

(T − s+ 1)
E [Es[w

(1)′

t−1]Msw
(1)
s−1]

=
E [u

(1)2
it ]

(T − s+ 1)
E [([Πt−s](1,1)w

(1)′

s−1 + [Πt−s](1,2)w
(2)′

s−1)Msw
(1)
s−1] ,

where [A](i,j) is the (i,j)-th element of A.

From the covariance-stationarity, we have |E [w
(1)′

s−1Msw
(2)
s−1]| ≤ (E [(w

(1)′

0 w
(1)
0 )(w

(2)′

0 w
(2)
0 )])1/2.

By using the relation (E [(w
(1)′

0 w
(1)
0 )(w

(2)′

0 w
(2)
0 )])1/2 = O(N),

V ar[Υ
(1)
11n] ≤ E [u

(1)2
it ](E [(w

(1)′

0 w
(1)
0 )(w

(2)′

0 w
(2)
0 )])1/2

NT
(6.86)

× [(
1

T
+…+

1

2
) + (1 + |ϕβ|)ST1(|γ1|) + |ϕβ|ST1(|γ2|)]

=
(E [(w

(1)′

0 w
(1)
0 )(w

(2)′

0 w
(2)
0 )])1/2

N

E [u
(1)2
it ]

T

× [(
1 + |γ1|
1 − |γ1|

+ |ϕβ| − 2)ST2(1) − 2

1 − |γ1|
ST2(|γ1|) + |ϕβ|ST2(|γ2|)]

=
O(log T )

T
→ 0,

where

ST1(x) =
2

T
(x+…+ xT−2) +

2

T − 1
(x+…+ xT−3) +…+

2

3
x,

ST2(x) =
x

2
+…+

xT−1

T
.

Then,

V ar[Υ
(1)
12n] =

1

NT
V ar[

T−1∑
t=1

ct
T − t

w̃
(1)′

t−1Mtu
(f)
t ] (6.87)

=
1

NT

T−1∑
t=1

c2t
(T − t)2

V ar[w̃
(1)′

t−1Mtu
(f)
t ]

=
E [u

(1)2
it ]

NT

T−1∑
t=1

c2t
(T − t)2

E [w̃
(1)′

t−1Mtw̃
(1)
t−1]
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because

V ar[w̃
(1)′

t−1Mtu
(f)
t ] = E [w̃

(1)′

t−1Mtu
(f)
t u

(f)′

t Mtw̃
(1)
t−1] (6.88)

= E [w̃
(1)′

t−1MtEt[u
(f)
t u

(f)′

t ]Mtw̃
(1)
t−1]

= E [u
(1)2
it ]E [w̃

(1)′

t−1Mtw̃
(1)
t−1],

and the covariance terms are zero. In effect, for t > s, we have

Cov[w̃
(1)′

t−1Mtu
(f)
t , w̃

(1)′

s−1Msu
(f)
s ] = E [w̃

(1)′

t−1MtEt[u
(f)
t u(f)′

s ]Msw̃
(1)
s−1] = 0, (6.89)

since Et[u
(f)
t u

(f)′
s ] = ON . Moreover,

V ar[Υ
(1)
12n] ≤ E [u

(1)2
it ]

NT

T−1∑
t=1

c2t
(T − t)2

E [w̃
(1)′

t−1w̃
(1)
t−1] (6.90)

=
E [u

(1)2
it ]

NT

T−1∑
t=1

c2tN

(T − t)2
[
∞∑

j=0

(
T−t∑
h=1

Πj+h
(1) )Ω(

T−t∑
h=1

Πj+h
(1) )′]

= o(1) ,

since the term |[
∑∞

j=0 · ]| in the left-hand side is bounded by c(1)|ϕ(γ1)
T−t|2+c(1,2)|ϕ(γ1)

T−t||ϕ
(γ2)
T−t|

+c(2)|ϕ(γ2)
T−t|2 for some positive constants c(1), c(1,2) and c(2).

We turn to evaluate the variance of Υ
(1)
21n. By using Lemma 1, the only non zero

terms to be considered are a
(11)
0n , a

(11)
1n , a

(12)
0n and a

(12)
1n , we have

V ar[Υ
(1)
21n] =

1

NT
(V ar[

T−1∑
t=1

u′
tMtṽ

(11)
tT ] + 2Cov[

T−1∑
t=1

u′
tMtṽ

(11)
tT ,

T−1∑
t=1

u′
tMtṽ

(12)
tT ]

+ V ar[
T−1∑
t=1

u′
tMtṽ

(12)
tT ])

= (a
(11)
0n + a

(11)
1n ) +

2

NT
Cov[

T−1∑
t=1

u′
tMtṽ

(11)
tT ,

T−1∑
t=1

u′
tMtṽ

(12)
tT ]

+ (a
(12)
0n + a

(12)
1n ), (6.91)
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where

a
(11)
0n =

1

NT

T−1∑
t=1

1

(T − t)2
(ϕ

(γ1)2
T−t V ar[u

′
tMtv

(1)
t ] +…+ ϕ

(γ1)2
1 V ar[u′

tMtv
(1)
T−1]),

a
(12)
0n =

ϕ2
β

NT

T−1∑
t=1

1

(T − t)2
((ϕ

(γ1)
T−t − ϕ

(γ2)
T−t)

2V ar[u′
tMtv

(2)
t ]

+…+ (ϕ
(γ1)
1 − ϕ

(γ2)
1 )2V ar[u′

tMtv
(2)
T−1]),

a
(11)
1n =

2

NT

T−2∑
t=1

(
ϕ

(γ1)2
T−t−1Cov[u

′
tMtv

(1)
t+1,u

′
t+1Mt+1v

(1)
t+1]

(T − t)(T − t− 1)

+…+
ϕ

(γ1)2
1 Cov[u′

tMtv
(1)
T−1,u

′
T−1MT−1v

(1)
T−1]

(T − t)
),

a
(12)
1n =

2ϕ2
β

NT

T−2∑
t=1

(
(ϕ

(γ1)
T−t−1 − ϕ

(γ2)
T−t−1)

2Cov[u′
tMtv

(2)
t+1,u

′
t+1Mt+1v

(2)
t+1]

(T − t)(T − t− 1)

+…+
(ϕ

(γ1)
1 − ϕ(γ2))2Cov[u′

tMtv
(2)
T−1,u

′
T−1MT−1v

(2)
T−1]

(T − t)
).

By using Lemma 1 and the fact that ϕ
(γ1)2
j < 4/(1 − γ1)

2 for all j, we have

a
(11)
0n =

1

NT

T−1∑
t=1

1

(T − t)2
(ϕ

(γ1)2
T−t [(m(3)(u

(1)
t ,v

(1)
t ) +m(2)(u

(1)
t ,v

(1)
t ))(2t) (6.92)

+ m(0)(u
(1)
t ,v

(1)
t )E [d′

tdt]] + (ϕ
(γ1)2
T−t−1 +…+ ϕ

(γ1)2
1 )[m(3)(u

(1)
t ,v

(1)
t )(2t)])

≤ 1

NT

T−1∑
t=1

2t

(T − t)2
(ϕ

(γ1)2
T−t [m(3)(u

(1)
t ,v

(1)
t ) +m(2)(u

(1)
t ,v

(1)
t )

+ |m(0)(u
(1)
t ,v

(1)
t )|] + (ϕ

(γ1)2
T−t−1 +…+ ϕ

(γ1)2
1 )m(3)(u

(1)
t ,v

(1)
t ))

≤ 4 · 2
(1 − γ1)2

1

NT

T−1∑
t=1

t

(T − t)2
([m(3)(u

(1)
t ,v

(1)
t ) +m(2)(u

(1)
t ,v

(1)
t )

+ |m(0)(u
(1)
t ,v

(1)
t )|] + (T − t− 1)m(3)(u

(1)
t ,v

(1)
t )) (6.93)

= O(
log T

N
) ,

where m(k)(u
(1)
t ,v

(1)
t ) (k = 0, 2, 3) are defined as the same way as (6.22). The last

equality follows from

T−1∑
t=1

t(T − t− 1)

(T − t)2
=

T−1∑
s=1

(T − s)(s− 1)

s2
= T ×O(log T ). (6.94)
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Moreover, from the fact that |E [d′
t+hMtu

(1)
t ]| ≤ 2(t+ h)(E [u

(1)2
it ])1/2, we have

|a(11)
1n | =

2

NT
|

T−2∑
t=1

(
ϕ

(γ1)2
T−t−1E [v

(1)2
it u

(1)
it ]E [d′

t+1Mtu
(1)
t ]

(T − t)(T − t− 1)
(6.95)

+…+
ϕ

(γ1)2
1 E [v

(1)2
it u

(1)
it ]E [d′

T−1Mtu
(1)
t ]

(T − t)
)|

≤ 4|E [v
(1)2
it u

(1)
it ]|(22E [u

(1)2
it ])1/2

(1 − γ1)2

2

NT

T−2∑
t=1

1

(T − t)
(

t+ 1

T − t− 1
+…+

T − 1

1
)

≤ 4|E [v
(1)2
it u

(1)
it ]|(22E [u

(1)2
it ])1/2

(1 − γ1)2

2

NT
(
1

2
+…+

1

T − 1
)

× [T (
1

2
+…+

1

T − 1
) + 1]

= O(
(log T )2

N
).

Also a
(12)
0n = O(log T/N) and a

(12)
1n = O((log T )2/N) are analogous to a

(11)
0n and

a
(11)
1n , respectively.

Finally, we consider the variance of Υ
(1)
22n. By the same arguments as used for

Lemma 1,

V ar[ṽ
(1)′

tT MtūtT ] = [m(3)(ṽ
(1)
tT , ūtT ) +m(2)(ṽ

(1)
tT , ūtT )](2t) +m(0)(ṽ

(1)
tT , ūtT )E [d′

tdt]

≤ (2t)[m(1)(ṽ
(1)
tT , ūtT ) +m(3)(ṽ

(1)
tT , ūtT )] (6.96)

since E [d′
tdt] ≤ 2t, m(1)(ṽ

(1)
tT , ūtT ) −m(2)(ṽ

(1)
tT , ūtT ) ≥ 0 and m(k) (k = 1, 2, 3) are

non-negative.

Moreover,

m(3)(ṽ
(1)
tT , ūtT ) = V ar[([ϕ

(γ1)
T−tv

(1)
it + ϕβ(ϕ

(γ1)
T−t − ϕ

(γ2)
T−t)v

(2)
it ] (6.97)

+…+ [ϕ
(γ1)
1 v

(1)
iT−1 + ϕβ(ϕ

(γ1)
1 − ϕ

(γ2)
1 )v

(2)
iT−1])/(T − t)]

× V ar[(u
(1)
it +…+ u

(1)
iT )/(T − t+ 1)]

= O((
1

T − t
)2).

It is because the terms ϕ′
T−tvit and ϕ′

T−svis are independent for t ̸= s, where

ϕ′
T−t = (ϕ

(γ1)
T−t, ϕβ(ϕ

(γ1)
T−t − ϕ

(γ2)
T−t)), and each ∥ϕT−t∥ is bounded. As for the second

term we have

m(1)(ṽ
(1)
tT , ūtT ) =

1

(T − t)2(T − t+ 1)2
E [(ϕ′

T−tvit +…+ ϕ′
1viT−1)

2 (6.98)

× (u
(1)
it +…+ u

(1)
iT )2]

= O(
1

(T − t)2
) ,
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since each terms of E [(ϕ′
T−tvit)

2u
(1)2
it ] and E [(ϕ′

T−tvit)
2]E [u

(1)2
is ] (t ̸= s) appeared are

O((T − t+ 1)(T − t)) in the numerator. Thus

V ar[ṽ
(1)′

tT MtūtT ] = O(
t

(T − t)2
). (6.99)

The variance of Υ
(1)
22n is given by

V ar[Υ
(1)
22n] =

1

NT
V ar[

T−1∑
t=1

ṽ
(1)′

tT MtūtT ] = b
(1)
0n + b

(1)
1n , (6.100)

where

b
(1)
0n =

1

NT

T−1∑
t=1

V ar[ṽ
(1)′

tT MtūtT ]

=
1

NT
O(

T−1∑
t=1

t

(T − t)2
) = O(

1

N
), (6.101)

b
(1)
1n =

2

NT

∑
s

∑
t>s

Cov[ṽ
(1)′

tT MtūtT , ṽ
(1)′

sT MsūsT ]. (6.102)

Since Cov[ṽ
(1)′

tT MtūtT , ṽ
(1)′

sT MsūsT ] ≤ (V ar[ṽ
(1)′

tT MtūtT ])1/2(V ar[ṽ
(1)′

sT MsūsT ])1/2, we

can evaluate

|b(1)
1n | ≤ 2

NT

∑
s

∑
t>s

|Cov[ṽ(1)′

tT MtūtT , ṽ
(1)′

sT MsūsT ]| (6.103)

≤ 2

NT

∑
s

∑
t>s

O(

√
t

T − t
)O(

√
s

T − s
)

≤ 2

NT

∑
t

O(
t

T − t
)
∑

s

O(
1

T − s
)

= O(
(log T )2

N
).

We turn to consider the sampling error of β̂2 LI . First,

1√
n

T−1∑
t=1

y
(2,f)′

t−1 Ntu
(f)
t

p→ 1√
n

T−1∑
t=1

y
(2)′

t−1Ntut +O(1) + op(1) (6.104)

by using a result of Alvarez and Arellano (2003).

For the term (1/
√
n)
∑

t u
(⊥,f)′

t Ntu
(f)
t , by using v

(g,f)
t = (v

(g)
t − v̄tT )/ct and
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u
(f)
t = (ut − ūtT )/ct, (g = 1, 2),

1√
n

T−1∑
t=1

v
(g,f)′

t Ntu
(f)
t (6.105)

=
1

1 − c
[(

1√
n

T−1∑
t=1

v
(g)′

t Mtut +
1√
n

T−1∑
t=1

(
1

T − t
)v

(g)′

t Mtut) − c−2
t v

(g)′

t MtūtT

−c−2
t v̄

(g)′

tT Mtut + c−2
t v̄

(g)′

tT MtūtT ] − c∗(
1√
n

T−1∑
t=1

v
(g)′

t ut −
√
T

N

N∑
i=1

v̄
(g)
i ūi).

By using Lemma 1, V ar[v
(g)′

t Mtut] ≤ O(t) and Cov[v
(g)′

t Mtut,v
(g)′
s Msus] = 0, we

have

V ar[
1√
n

T−1∑
t=1

(
1

T − t
)v

(g)′

t Mtut] ≤
1

NT

T−1∑
t=1

(
1

T − t
)2O(t) = o(1) . (6.106)

The third, fourth and fifth terms of (6.105) are analogous to Υ
(1)
21n, Υ

(1)
22n, respec-

tively, and their variances tend to zero. The last term also tends to zero by the

similar arguments as for (6.11).

Also we have the relation that

1

1 − c

1√
n

T−1∑
t=1

w′
t−1Mtut −

c∗√
n

T−1∑
t=1

w′
t−1ut =

1√
n

T−1∑
t=1

w′
t−1ut + op(1). (6.107)

Since

1√
n

T−1∑
t=1

w′
t−1Mtut =

1√
n

T−1∑
t=1

w′
t−1ut −

1√
n

T−1∑
t=1

w′
t−1(IN − Mt)ut (6.108)

and Lemma 2, for g = 1, 2,

V ar[
1√
n

T−1∑
t=1

w
(g)′

t−1(IN − Mt)ut] =
1

NT

T−1∑
t=1

V ar[w
(g)′

t−1(IN − Mt)ut] (6.109)

=
E [u

(1)2
it ]

NT

T−1∑
t=1

E [w
(g)′

t−1(IN − Mt)w
(g)
t−1]

=
E [u

(1)2
it ]

NT

T−1∑
t=1

E [µ
∗(g)′

t (IN − Mt)µ
∗(g)
t ]

=
1

T
O(log T ) .

For the above arguments, the leading order which has to tend to zero is (log T )2/N .

Provided T/N → c ≥ 0, we have (log T )2/N ∼ c(log T )2/T → 0 . It is because
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limT→∞ c(log T )2/T = limT→∞ 2c(log T/T ) = 0, then Step 2 has been established.

[ Step 3] : We shall evaluate the asymptotic variance-covariance terms of (6.68).

First, by using the stationarity and direct calculations, we have

E [A1nA
′
1n] =

σ2

n
D′

T−1∑
t=1

E [w
′

t−1wt−1]D → σ2Φ∗ , (6.110)

where σ2 = E [u
(1)2
it ].

Under Assumptions (A1)-(A4) stated, we have

1

n

T−1∑
t=1

w
′

t−1dt
p→ lim

n→∞

1

n

T−1∑
t=1

E [w
′

t−1dt] , (6.111)

and
1

n

T−1∑
t=1

d′
tdt

p→ lim
n→∞

1

n

T−1∑
t=1

E [d′
tdt] , (6.112)

where w′
t−1 = (w1(t−1), ..., wN(t−1)), {wit} are defined by (3.1) and dt denotes the

N × 1 vector containing the diagonal elements of Mt = Zt(Z
′
tZt)

−1Z
′
t.

Then by the facts that the i−th element of Et[utu
⊥′
t Ntut] is equal toNt(i,i)E [u

(1)2
it u⊥it ]

and E [w
(g)
it−1] = 0 (g = 1, 2), we have

E [A1nA
′
2n] =

[
1

n
D′

T−1∑
t=1

E [w
′

t−1Et[utu
⊥′

t Ntut]],0

]
(6.113)

=

[
E(u

(1)2
it u⊥it)

1 − c

1

n
D′

T−1∑
t=1

E [w
′

t−1(dt − cιN)],0

]

→

[
E [u

(1)2
it u⊥it ]

1 − c
lim

n→∞

1

n
D′

T−1∑
t=1

E [w
′

t−1dt],0

]
.

Next, we use the decomposition following Kunitomo and Akashi (2010) as

E [A2nA
′
2n] =

1

n

T−1∑
t=1

E [u⊥′

t Nt[σ
2IN + (utu

′
t − σ2IN)]Ntu

⊥
t ]

(
1

0

)
(1, 0) (6.114)

Then the first term converges to

1

n

T−1∑
t=1

tr(N2
t )σ

2E [u⊥2
it ] → (c∗σ

2)E [u⊥2
it ] = c∗|Ω|, (6.115)
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where E [u⊥2
it ] = (1/σ2)[Ωσ2 −Ωββ′Ω](2,2) and [ . ](2,2) = |Ω|. For the second term,

we have

1

n

T−1∑
t=1

E [u⊥′

t Nt[utu
′
t − σ2IN ]Ntu

⊥
t ] (6.116)

=
1

n

T−1∑
t=1

E [
N∑

i,j=1

[utu
′
t − σ2IN ](i,j)(u

⊥
1tNt(i,1) +…+ u⊥NtNt(i,N))

×(u⊥1tNt(j,1) +…+ u⊥NtNt(j,N))]

=
1

n

T−1∑
t=1

N∑
i=1

E [(Nt(i,i))
2Et[(u

2
it − σ2)u⊥2

it ]]

=
E [(u

(1)2
it − σ2)u⊥2

it ]

(1 − c)2

1

n

T−1∑
t=1

N∑
i=1

E [(Mt(i,i) − c)2]

=
E [(u

(1)2
it − σ2)u⊥2

it ]

(1 − c)2

1

n

T−1∑
t=1

(E [d′
tdt] − 2tr(Mt)c+Nc2),

the second equality is from the facts that Et[u
⊥
itujt] = E [u⊥itujt] = 0 for any i, j and

that E [[utu
′
t − σ2IN ](i,i)]E [u⊥2

jt ] = 0 for i ̸= j.

For any N , define 2 × 1 vectors as the martingale difference sequence

At =
1√
N

[
D′

(
w

(1)′

t−1

w
(2)′

t−1

)
ut +

(
u⊥′

t

0′

)
Ntut

]
= A1t + A2t (, say). (6.117)

To apply the martingale central limit theorem, for any 2 × 1 vector a, we check

the condition that (1/n)
∑

t a
′Et[(A1t + A2t)(A1t + A2t)

′]a
p→ limn→∞ a′E [(A1t +

A2t)(A1t +A2t)
′]a. As for the relevant Lyapounov conditions hold from the result

of Kunitomo and Akashi (2010).

By using the facts that (1/n)
∑

t w
′
t−1wt−1

p→ Γ0, (1/n)
∑

t w
′
t−1ιN

p→ 0, (6.110)

and (6.111),

1

T

T−1∑
t=1

Et[A1tA
′
1t]

p→ lim
n→∞

E [A1tA
′
1t],

1

T

T−1∑
t=1

Et[A1tA
′
2t]

p→ lim
n→∞

E [A1tA
′
2t],

and (1/T )
∑T−1

t=1 Et[A2tA
′
2t]

p→ limn→∞ E [A2tA
′
2t].

[ Step 4] : Finally, we evaluate the asymptotic bias in the right-hand side of

(6.66). It is a collection of the terms which the mean-square convergences to

non-zero means, and it can be evaluated as

lim
n→∞

µn = lim
n→∞

E [
1√
n
D′

T−1∑
t=1

Y
(f)′

t−1Ntu
(f)
t +

1√
n

T−1∑
t=1

(
u(f,⊥)′

0′

)
Ntu

(f)
t ]. (6.118)
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We first notice that

E [
1√
n

T−1∑
t=1

u
(⊥,f)′

t Ntu
(f)
t ] =

1√
n

T−1∑
t=1

E [tr(NtE [u
(f)
t u

(⊥,f)′

t ])] = 0. (6.119)

From the result of (6.4) and (6.58),

lim
n→∞

E [
1√
n

T−1∑
t=1

y
(1,f)′

t−1 Ntu
(f)
t ] (6.120)

= lim
n→∞

1

1 − c

2T√
NT

(
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it ]

1 − γ2

− E [u
(1)
it v

(1)
it + ϕβu

(1)
it v

(2)
it ]

1 − γ1

)

− lim
n→∞

c

1 − c

N√
NT

(
E [ϕβu

(1)
it v

(2)
it ]

1 − γ2

− E [u
(1)
it v

(1)
it + ϕβu

(1)
it v

(2)
it ]

1 − γ1

)

= (

√
c

1 − c
)(
E [ϕβu

(1)
it v

(2)
it ]

1 − γ2

− E [u
(1)
it v

(1)
it + ϕβu

(1)
it v

(2)
it ]

1 − γ1

)
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−
√
c

1 − c
)(
E [u

(1)
it v

(1)
it ]

1 − γ1

+
β2γ2E [u

(1)
it v

(2)
it ]

(1 − γ1)(1 − γ2)
).

By the similar calculation as for (6.58),

E [y
(2,f)′

t−1 Mtu
(f)
t ] = −2TE [u

(1)
it v

(2)
it ]

1 − γ2

[1 − 1

T (1 − γ2)

T∑
t=1

(1 − γt
2)

t
], (6.121)

and from the result of (6.5),

lim
n→∞

E [
1√
n

T−1∑
t=1

y
(2,f)′

t−1 Ntu
(f)
t ] = lim

n→∞

1

1 − c

2T√
NT

(−E [u
(1)
it v

(2)
it ]

1 − γ2

) (6.122)

− lim
n→∞

c

1 − c

N√
NT

(−E [u
(1)
it v

(2)
it ]

1 − γ2

)

= (
−
√
c

1 − c
)(
E [u

(1)
it v

(2)
it ]

1 − γ2

).

Hence we summarize these results as

lim
n→∞

µn = (
−
√
c

1 − c
)D′(I2 − Π)−1Ωβ, (6.123)

where Ωβ = E [vitu
(1)
it ]. Thus, we can define the asymptotic bias of

√
n(θ̂LI − θ)

by

b = Φ∗−1 lim
n→∞

µn . (6.124)
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6.4 GMM (Derivation of (3.5))

We now turn to the asymptotic covariance and the bias of the GMM estimator

when c = 0. (The general case has been treated in Akashi and Kunitomo (2010).)

The normalized GMM estimators are asymptotically equivalent to

G0

√
n(θ̂GM − θ)

=
1√
n
D′

T−1∑
t=1

(
w

(1)
t

w
(2)
t

)
ut +

1√
n

T−1∑
t=1

(
V

(2)
t

O

)
Mtut + op(1) .

By using Lemma 1,

V ar
[ 1√

n

T−1∑
t=1

V
(2)′

t Mtut

]
=

1

NT

T−1∑
t=1

V ar[V
(2)′

t Mtut]

= O(c) . (6.125)

Then the asymptotic covariance-variance matrix becomes G−1
0 (σ2Φ∗)G−1

0 = σ2Φ∗−1.

Under the condition
∑

t tr(Mt) /(
√
NT ) <∞, its asymptotic bias is given by

b
(a)
0 = lim

N,T→∞

[ 1√
NT

T−1∑
t=1

tr(Mt)
]
Φ∗−1

(
(1, 0)E [vitu

(1)
it ]

0

)
. (6.126)

The derivation of the asymptotic normality of the GMM estimator is similar to

the one for the LIML estimator and it is omitted.

Q.E.D.
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APPENDIX : Some Figures

In Figures the distribution functions of the WG, the GMM and the LIML estimators are

shown with the large sample normalization (i.e. the case of c = 0) and the large-K normalization.

The limiting distributions for the LIML estimator in the large-K asymptotics are N2(0, I2) and

its marginal distributions are N(0, 1) as n → ∞, which are denoted as ”o”. For the sake of

comparisons, the distribution functions of the WG and the GMM estimators are normalized

in the same way and presented in figures. The parameters of our settings and the details of

numerical computation method are similar to those explained in Anderson et al. (2005, 2008a).

The BB model stands for the one by Blundel and Bond (2000) and the AA model stands for

the one by Alvarez and Arellano (2003). The just identified model is the simultaneous equation

with γ1 = 0.
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Figure 1: β2 (BB-model) : N = 75, T = 25, c = 1/3
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Figure 2: β2 (BB-model) : N = 75, T = 25 , c = 1/3
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Figure 3: γ1 (BB-model) : N = 75, T = 25, c = 1/3
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Figure 4: γ1 (BB-model) : N = 75, T = 25 , c = 1/3
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Figure 5: β2 (BB-model) : N = 150, T = 50, c = 1/3
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Figure 6: β2 (BB-model) : N = 150, T = 50 , c = 1/3
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Figure 7: γ1 (BB-model) : N = 150, T = 50, c = 1/3

−5 −4 −3 −2 −1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
LIML−var. correct 
WG 

GMM 
N(0,1) 

Figure 8: γ1 (BB-model) : N = 150, T = 50 , c = 1/3
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Figure 9: β2 (Just-identified Case) : N = 75, T = 25, c = 1/6
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Figure 10: β2 (Just-identified Case) : N = 75, T = 25 , c = 1/6
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Figure 11: γ1 (AA-model) : N = 75, T = 25, c = 1/6
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Figure 12: γ1 (AA-model) : N = 75, T = 25 , c = 1/6
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Figure 13: β2 (Just-identified Case) : N = 150, T = 50, c = 1/6
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Figure 14: β2 (Just-identified Case) : N = 150, T = 50 , c = 1/6
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Figure 15: γ1 (AA-model) : N = 150, T = 50, c = 1/6
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Figure 16: γ1 (AA-model) : N = 150, T = 50 , c = 1/6
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