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Abstract

The management and monitoring of very large pods$obf financial assets are routine for
many individuals and organizations. The two mosteli used models of conditional
covariances and correlations in the class of maitate GARCH models are BEKK and
DCC. It is well known that BEKK suffers from thechetypal “curse of dimensionality”,
whereas DCC does not. It is argued in this papartths is a misleading interpretation of the
suitability of the two models for use in practiCehe primary purpose of this paper is to
analyze the similarities and dissimilarities betwd&EKK and DCC, both with and without
targeting, on the basis of the structural derivatd the models, the availability of analytical
forms for the sufficient conditions for existencé moments, sufficient conditions for
consistency and asymptotic normality of the appeder estimators, and computational
tractability for ultra large numbers of financiasats. Based on theoretical considerations, the

paper sheds light on how to discriminate betweeKlBENnd DCC in practical applications.

Keywords: Conditional correlations, conditional covariancdggonal models, forecasting,
generalized models, Hadamard models, scalar madedgting.

JEL Classification: C32, G11, G17, G32.



1. Introduction

The management and monitoring of very large pods$obf financial assets are routine for
many individuals and organizations. Consequently,caaeful analysis, specification,
estimation, and forecasting of financial asset rretudynamics, and the construction and
evaluation of financial portfolios, are essentmlthe tool kit of any financial planner and
analyst. Correlations are used to determine pasplvith appropriate attention being given
to hedging and asset specialization strategiesrasbevariances and covariances are used to
forecast Value-at-Risk (VaR) thresholds to sattbfy requirements of the Basel Accord. The
two most widely used models of conditional covatis and correlations are BEKK and
DCC, as developed in Engle and Kroner (1995) argleef2002), respectively.

There are many similarities between BEKK and DCCsdalar version of BEKK was
compared with DCC, which is inherently scalar iagtice, in Caporin and McAleer (2008). It
was found empirically that scalar versions of twe models are very similar in forecasting
conditional variances, covariances and correlatiotgch would suggest that they would also
be similar in forecasting VaR thresholds and thesequent daily capital charges.

Accordingly, there are pertinent aspects regarditeynative versions of the two models that
have not yet been addressed and clarified in tbeature. First, we note that BEKK and DCC
co-exist, despite one model being able to do Migtuaverything the other can do, thereby
raising the pertinent question posed in the tiflthe paper. Second, we argue that BEKK is
used to forecast conditional covariances, althatigimy also be used to forecast conditional
correlations indirectly, while DCC is used to famst conditional correlations only, while its
structure could easily be applied to forecast dimhl covariances. Third, the inherent
differences between BEKK and DCC do not seem tavigely known. This is particularly
relevant as DCC is equivalent to a targeted sd3EiK model as applied to the variance
standardized residuals, and can thereby be interpes a conditional correlation matrix only
because of the standardization. Fourth, both thectstal and statistical differences and

similarities between the two models have not presiypbeen analyzed in the literature.



With respect to the first question, we note thaglErand Kroner (1995) is a widely cited
paper, but most citations would seem to be of aréteal rather than empirical nature. The
model is an archetypical example of over-paramed#dn, thereby leading to the moniker
“curse of dimensionality”. Engle (2002) is also efy cited, but most citations would seem to
be of an empirical rather than theoretical natdiee prevailing empirical wisdom would

seem to be that DCC is preferred to BEKK becaudgbeturse of dimensionality associated
with the latter. It is argued in the paper thas isia misleading interpretation of the suitability

of the two models to be used in practice.

A primary purpose of the paper is to shed somet lgh the similarities and differences
between BEKK and DCC. The comparison commences fmotheoretical perspective. A
comparison of the two models considers severalcéspehich are generally associated with
theoretical econometrics, but which are also furelaal in guaranteeing that the empirical
applications, as well as their interpretation, egkable. With this rationale, we first define
targeting as an aid in estimating matrices assegtiatith large numbers of financial assets,
and then briefly discuss the use of targeting itimeging conditional covariance and
correlation matrices in financial econometrics. V@kso consider the similarities and
dissimilarities between BEKK and DCC, both with amithout targeting; the analytical forms
of the sufficient conditions for the existence adments, sufficient conditions for consistency
and asymptotic normality, computational tractapilior ultra high numbers of financial
assets, use of consistent two step estimation metfor the DCC model to enable it to be
used sensibly in practical situations, and therdatetion of whether BEKK or DCC is to be

preferred in empirical applications.

The remainder of the paper is organized as foll@&estion 2 compares the BEKK and DCC
specifications, defines the long run solution ohditional covariances (correlations), and
defines the targeting of conditional covariancerr@ation) models. Section 3 discusses the

asymptotic results for BEKK and DCC. Some conclgdiomments are given in Section 4.

2. A Comparison of BEKK and DCC



This section evaluates directly comparable BEKK B@C models which are feasible under
large cross-sectional dimensions. Univariate andtivanate asymmetry and leverage, as
well as the empirical comparison of the models, rave considered but are left for further
research (see Caporin and McAleer (2008) for saselts based on small scale models). For
the same reason, we restrict the analysis to tiggnal and simplest specifications given in
Engle and Kroner (1995), and Engle (2002). Finaltyprder to make a fair comparison of
models for the conditional second-order moments,aggume that the mean dynamics are
common across all possible model specificationsl fxtus on mean innovations whose

conditional covariance matrix is denoted By. A short description of the models and the

specifications considered are given in the Appendix
Two definitions are given below in order to emphaghe approach taken in the paper:

Definition 1: The long run solution of a conditional covariano®rfelation) model is given

by the unconditional expectation of the dynamiadational covariance (correlation).

For the Scalar BEKK model of Ding and Engle (200¢hjch is described in the Appendix,

the unconditional covariance matrixE&{ ] =% =CC (1-a- ).

Two topics that are frequently discussed in tharfoial econometrics literature regarding
covariance/correlation model estimation are therseuof dimensionality” and “targeting”.
The first issue is perceived as the most seriooblem in covariance modelling, while the

second could be considered as a tool for disentantiie serious problem.

It is known that many fully parameterized condiaboovariance models have the number of
parameters that increase at an order greater ieamuimber of assets, otherwise known as the
“curse of dimensionality”. For example, the moshg@l BEKK model of Engle and Kroner
(1995) has parameters increasing with o@@€), the VECH model parameter number is of
orderO(K", and the Generalized DCC model of Engle (2002)ciases with orded(I€).

In order to control the growth in the number ofgraeters, several restricted specifications

have been proposed in the literature, such asctilarsand diagonal models presented in Ding
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and Engle (2001), the block structured specificetisuggested by Billio, Caporin and Gobbo
(2006), and the parameter restrictions inspiredfmtial econometrics concept introduced in
Caporin and Paruolo (2009). However, restrictiomhegally operate on the parameters
driving the dynamics, while little can be done nelyag the model intercepts, which include
O(K¥) parameters in both the conditional covarianceantelation models. This still exposes
the models to the curse of dimensionality.

The “targeting” constraint is useful because it asgs a structure on the model intercept
based on sample information. Within “targetinge ttonstants in the dynamic equations are
structured in order to make explicit the long rarget, which is then fixed using a consistent
(sample) estimator. As a result, the number of patars to be estimated by maximizing a
conditional log-likelihood function can be reducsdbstantially. Although targeting can be

applied to both BEKK and DCC, in practice it hagmesed only for DCC.

We define the “targeting” constraint as follows:

Definition 2: A conditional covariance (correlation) model isatgeted” if and only if the
following two conditions are satisfied:

(i) the intercept is an explicit function of theatprun covariance (correlation);

(i) the long run covariance (correlation) solutios replaced by a consistent estimator of the

unconditional sample covariance (correlation) o thbserved data.

Note that condition (i) implicitly requires the Igmun solution of the covariance (correlation)
model to be equal to the long run covariance (t¢aticn), and ensures that the long run
solution does not depend on any parameters. Tangeting should be distinguished from the
imposition of parametric restrictions. Furthermocendition (ii) implies the use of all the
available sample data in constructing a consisestimator of the observed long run

covariance (correlation).

The definition of targeting excludes estimating tbieg run matrices using latent variables.
Such exclusion is essential because estimatioateft variables in the conditional volatility



literature does not ensure, by construction, thesistency of the estimator used for the

sample covariance (correlation).

Referring again to the Scalar BEKK model that igegiin the Appendix, targeting leads to a

specification where the intercept is given iél—a—,[z’). The model has two parameters

associated with the dynamics ak(+1)/2 in the intercepty (the parameters in the long run

covariance). Targeting implies the use of a sanupleariance estimator fokE, and the

maximization of the likelihood function with respeto the parametersa and [

(maximization is conditional on the estimates @ kbng run covariance).

The introduction of targeting reduces the numbemtércept parameters, thereby making
estimation feasible, even for large cross-sectiairaensions. However, the model will still
be computationally complicated for largdecause the likelihood evaluation of the model in

(2) requires the inversion of a covariance matfigimensionk.

Although targeting can be computationally useful terms of reducing, sometimes
dramatically, the number of parameters to be estichy maximum likelihood, it requires
care in terms of the sample estimator that is uHetrgeting were to use an inconsistent
estimator to reduce the number of parameters, agpisal in the dynamic correlation

literature, the resulting estimators will also bednsistent.

Consider the BEKK model of Engle and Kroner (199&ith model orders set to 1. This
model is exposed to the curse of dimensionality enfkasible for small cross-sectional

dimensions, typically with fewer than 10 assets.

Although it is not necessary to do so, BEKK carspecified with targeting. The introduction
of this feature requires some constraints to beosad at the estimation step in order to
guarantee that the covariance matrices are positefsite (for further details, see the

Appendix). Fortunately, these constraints are exétg simple in the scalar case.

Focusing on the DCC model, we note it has been gsexg directly with a targeting

constraint, expressing the intercept as a funabibthe long run correlation. However, the
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most general specification of DCC without targeting exposed to the curse of
dimensionality, and has parameters with or@¥K’), as in the BEKK model. Without
targeting, DCC has the same problems as BEKK. Htdrehtly, if targeting were to be
included, the constraints required by DCC to engastive definiteness of the correlation

matrix are identical to the constraints requiredhsy Scalar BEK model.

In summary, with respect to computational compigxithen targeting is included, BEKK
and DCC are equivalent; DCC has a structure eqenvab that of BEKK, and is a correlation
model only because it includes a standardizatiorally, it should be noted that DCC is more

flexible than BEKK because it models the conditioraiances separately as a first step.

3. Asymptotic Theory

Several papers have purported to establish theistensy and asymptotic normality of the
Quasi Maximum Likelihood Estimation (QMLE) of BEK&nd DCC. Apart from two papers
that have proved consistency and asymptotic notynafi BEKK and VECH, albeit under
high-order stated but untestable assumptions, ribefpfor DCC have typically being based
on unstated regularity conditions. When the regylaronditions have been stated, they are

untestable or irrelevant for the stated purposes.

Both DCC and BEKK require the imposition of paraemetonstraints to ensure covariance
stationarity. The constraints are discussed in &€agld Kroner (1995), and are valid for the
Generalized DCC model of Engle (2002). Constrafatsthe scalar representations have a
very simple structure, are identical for targetdtKIK and DCC, and are closely related to the
constraints needed to achieve a positive variaoc8EKK and positive definiteness of the

conditional covariance (correlation) matrices ia ttvo models.

For BEKK, Jeantheau (1998) proved consistency unther multivariate log-moment

condition. However, the derivation of the log-mormeandition requires the assumption of

the existence of sixth-order moments, which carreotested. Using the consistency result

proved in Jeantheau (1998), Comte and Lieberma®3)2@stablished the asymptotic

normality of the QMLE of BEKK under eighth-order ments which, though stated
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explicitly, cannot be tested. Finally, Hafner anderRinger (2009) proved asymptotic
normality of the VECH model (which nests BEKK) oh@e and Kroner (1995) under the

existence of sixth-order moments.

The consistency and asymptotic normality resultsScalar and Diagonal BEKK follow as
special cases of the results given above, whilselad Hadamard BEKK (see the appendix)
can be derived similarly by noting that Hadamard KBEhas a companion VECH
representation with diagonal parameter matrices. groofs in Jeantheau (1998), Comte and
Lieberman (2003), and Hafner and Preminger (2088)be generalized to include the BEKK
representations where the long run solution ofrtiuglel enters the intercept explicitly. In
such cases, appropriate modifications of the reguleonditions are required. Therefore, the

asymptotic theory for BEKK models has been esthblis albeit under untestable conditions.

3.1. Do Asymptotic Results Exist for DCC?

The primary appeal of the DCC specification, aslea its scalar incarnation, is supposed to
be its computational tractability for very largenmoers of financial assets, with two step
estimation reducing the computational complexitiatree to systems maximum likelihood
estimation. This presumption is appropriate if tbBowing three conditions hold: (i) the
model can be targeted; (ii) the two step estimaswes consistent; and (iii) the number of
parameters increases as a power function of thes-@ectional dimension, with an exponent

less than or equal to 1.

Point (i), targeting, reduces loy5k(k-1)the number of parameters to be estimated by QMLE,
given that it fixes part of the intercept. Diffetin point (ii) ensures that correct inferential
procedures can be derived from the estimated paeasn@and the likelihood function.
Furthermore, it ensures that the forecasts will Ib@tinfluenced by parameter distortions.
Finally, point (iii) controls for the parameterstime model dynamics. Conditions (i) and (iii)
avoid the curse of dimensionality, while the inadunsof just one of the two previous points
(either (i) or (iii))) makes the model feasible orftyr small dimensional systems (the full

model parameters will increase at least with po@ge)).



Engle (2002) suggests the introduction of target{pgint (i)) and the use of scalar
representations (point (iii)), and assumes that dtemdard regularity conditions yielding

consistent and asymptotically normal QML two stepreators are satisfied (point (ii)).

However, Aielli (2008) proved that the two stepirasttion of DCC models with targeting is
inconsistent (see also Aielli (2009)). In fact, Wi€2008) showed that the sample correlation
estimator is annconsistentestimator of the long run correlation appearingthe DCC
intercept. As a result, the parameters drivingdiieamics cannot be consistently estimated
by Quasi Maximum Likelihood (QML), conditional om ainconsistent estimator d&
Therefore, the long run solution cannot be estichatgh a sample estimator which, in turn,
eliminates the targeting constraint in point (iJdaas a consequence, makes the parameter
number at least of ord@(i€). In turn, this affects the consistency of the QBMtimates of
the other parameters, as well as their asymptasicilnltion, thereby eliminating point (ii).
Consequently, all the purported proofs for modats vargeting, as presented in Engle (2002)
and Engle and Sheppard (2001), must be reconsidered

The need to introduce the long run solution majxnto the estimation step of QML makes
DCC (even in the scalar case) inconsistent withprimary intended purpose, namely the
computational tractability for large cross sectiohgassets.

Aielli (2008) suggested a correction to the DCC midd resolve the previous inconsistency
between the unconditional expectations. Howeves,nibéw model proposed does not allow
targeting, as given in Definition 2. Furthermoieg tasymptotic results are not fully reported
(the author presumes regularity conditions withagtually stating them). It is worth
mentioning that Aielli's (2008) model was used ingte, Sheppard and Shephard (2008),
under the assumption that it included targetingctvis not possible.

Aielli’s (2008) results preclude the estimation@EC with targeting, but this does not affect
the DCC specifications without targeting. Hence, éisymptotic properties are still unknown.
Clearly, despite the possibility of estimating D@dels in a single step, the curse of
dimensionality will always be present as the ingptcincludesD.5k(k-1) parameters in the

long run correlation matrix.
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In summary, the purported asymptotic theory for D@Qdels has simply been stated without
formal proofs of the conditions required for theuks to hold, and without checking any of

the assumptions underlying the general resultsewey and McFadden (1994).

3.2 Consistent Estimation of Correlations for BEKK

McAleer et al. (2008) showed that scalar BEKK amagdnal BEKK could be derived as a
multivariate extension of the vector random coedfit autoregression (RCA) model of Tsay
(1987) (see Nicholls and Quinn (1982) for a statidtanalysis of random coefficient models).
However, BEKK and Hadamard BEKK cannot be deriveithgithe RCA approach.

Caporin and McAleer (2008) showed that a theorkteation could be derived to compare

scalar DCC and BEKK with and without targeting. Yhsuggested the derivation of

conditional correlations from alternative BEKK repentations, and referred to the derived
model as Indirect DCC (which, despite its namenas a different model but rather a bi-

product of BEKK).

As there is presently no consistency result for D@&n estimated by QML, the theorem
below will represent a first contribution to theear Its advantage will be clarified in the

following:

Theorem 1 The indirect DCC conditional correlations derivadrh BEKK representations

are consistent for the true conditional correlatson

Proof. The conditional covariance matri;, satisfies the decompositia@ = D', D, . If the

dynamic covariances have been estimated by a BEK#emmwith or without targeting, they
are consistent. The matricd, contain the conditional volatilities along theimdiagonal.
In turn, these may be obtained as part of the tiomadl variance matrixQ;, or from a
different univariate or multivariate GARCH modeh &ll cases, they will include consistent
estimates of the conditional volatilities, as ginmnthe results for BEKKSs, or in Bougerol and
Picard (1992) (for univariate models), and Ling anclAleer (2003) (for VARMA-GARCH

11



specifications). Therefore, the indirect conditiboarrelations,I”, = D,”"Q,D,*, are given by

the product of consistent estimators of the cood#i covariance matrices and conditional
standard deviations, and are hence consifent.

The theorem shows how BEKK may be used to obtansistent estimates of the conditional
correlation matrix. The BEKK model may also be usedlerive starting values for a full

system estimation of DCC models by QML. In thisesabe intercept may be calibrated as
the sample mean of indirect conditional correlagjowhile the DCC parameters may be

calibrated at the corresponding parameters in engBEKK model.

An empirical example showing the indirect derivatiof dynamic conditional correlations

from scalar BEKK estimates is given in Caporin daAleer (2008).

4. Concluding Remarks

The efficient management and monitoring of verygéaportfolios of financial assets are

routine for many individuals and organizations. Qiuative tools are then used to analyze
financial asset returns for the purposes of gemgyddrecasts, and in constructing, managing
and evaluating financial portfolios. There are eliént models for different purposes, such as
correlation models to create and evaluate a p@if@nd covariance models to forecast

Value-at-Risk (VaR) on a daily basis for a givemtfudio.

BEKK and DCC are the two most widely used modelsconditional covariances and
correlations, as developed in Engle and Kroner $18&d Engle (2002), respectively, in the
multivariate GARCH class. Although the two modele a&imilar in many respects, the
literature has not yet addressed some criticalessuertaining to these models, namely:
clarification of the reasons for BEKK and DCC toeast when one model can do virtually
everything the other model can do, namely: deteastion as to why DCC is used to forecast
conditional correlations rather than conditionavaances, and why BEKK is used to
forecast conditional covariances rather than caoht correlations; examination of the

inherent differences between BEKK and DCC, esplgorghen DCC is equivalent to a scalar

12



BEKK model applied to the standardized residuatsl eomparisons of both structural and
statistical differences and similarities betweentthio models.

The primary purpose of the paper has been to exathiese issues. For this purpose, we
highlighted that BEKK possessed asymptotic propsrtinder untestable moment conditions,
whereas the asymptotic properties of DCC have sirhpen stated under a set of untestable
regularity conditions. In addition, we clarifiedetltoncept of targeting as a tool for reducing
the curse of dimensionality associated with muitatg conditional covariance models.
Finally, we provided a result which demonstratedt tBEKK could be used to obtain
consistent estimates of dynamic conditional coti@hg, with a direct link to the Indirect
DCC model suggested in Caporin and McAleer (2008).

In summary, the paper demonstrated that, from ar¢tieal perspective, the optimal model

for estimating conditional covariances (and theralgo conditional correlations) was the
Scalar BEKK model, regardless of whether targetvag used.
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Appendix

A.1l. BEKK models

Engle and Kroner (1995) introduced the BEKK clagsnaltivariate GARCH models. We
will consider the simplest BEKK specification, whits standard, with all lag orders set to 1:

> =CC'+ A &, A+ B _ B (A.1)

where A andB are kx k parameter matrices (not necessarily symmetriaj, @Gris a lower
triangular parameter matrix. The fully parametatizeodel includes 215+0.5 parameters.
The conditional covariance matrices are positiiinde, by construction, and the conditional
variances are positive, regardless of the paransegas. Engle and Kroner (1995) propose a
more general representation than is given in (AfMj},it does not seem to have been used in
empirical applications.

In order to make the model feasible for large cEsgional dimensions, two restricted
parameterizations have been proposed in Ding amleH2001), namely the diagonal and
scalar specifications. In the scalar BEKK moded, pfarameter matrices andB in (A.1) are

replaced by scalar coefficientsAEal and B= I, wherel is an identity matrix of

dimensionk), whereas in the Diagonal BEKK versiofA,and B are diagonal matrices. A
further representation of a BEKK-type model maybbsed on the Hadamard matrix product,
as follows (we name it Hadamard BEKK):

> =CC+ Aog &, +BoZ .. (A.2)

In this case, the parameter matriégeandB must be symmetric and positive definite, and the

number of parameters is still IB). Generally, (A.2) is not estimated directly, ather by

imposing a structure fok andB to ensure positive definiteness (by makikgndB equal to

the product of triangular matrices, as in the adshe intercept). Positive definiteness of the
16



conditional covariance matrices is guaranteed, dnstuction (see Ding and Engle, 2001).
Finally, we note that the diagonal specification asrestricted parameterization of the
Hadamard BEKK model in equation (A.2).

Define the sample covariance matrE[stgt'J =3, which can be consistently estimated by

the sample estimator. The BEKK equation may befireel as follows:
S =%+ A(gt_lgt_l' —i) A+B(3_,-5)B (A.3)

Similar representations could be obtained for igst BEKK models and for the Hadamard

BEKK version. We can easily check that the model (h3) gives E[Zt]:i, as
E[gt_lgt_l'}:i and E[%,_,]=%. Note that (A.3) allows the introduction of tariget by

replacing = with a sample estimator. Positive definitenessthef conditional covariance
matrices must be imposed at the estimation stepcdmstraining the model intercept;
otherwise the estimates cannot be interpreted aariemce matrices. In (A.3) positive

definiteness of the conditional covariance matricesguaranteed by imposing positive

definiteness oE - ASA - BB .

Although the constraints may seem to be quite snipt heavily restricted models, their
computational complexity is entirely relevant, irarficular, when the cross-sectional
dimension is simply moderate rather than high.aket,fimposing positive definiteness of the
intercepts results in a set of highly non-lineanstoaints on the parameters. In addition, it

should be stressed that covariance stationaritgtcaints need to be taken into account. These

constraints are extremely simple in the Scalar BEiéKe, and collapse &’ + 5% <1.

A.2.. DCC models
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The Dynamic Conditional Correlation (DCC) model wasoduced by Engle (2002) as a
generalization of the Constant Conditional Corretat{(CCC) model of Bollerslev (1990).

The covariance matrix is decomposed as follows:

2, =DRD (A.4)
D, =diag(a,,,0,,,..0,,) (A.5)
R=Q"QQ" Q=dd Q (A.6)

where Dy includes the conditional volatilities, which areodelled as a set of univariate
GARCH equations (see Bollerslev (1990) and Engl®23). The dynamic correlation matrix,
R: , is not explicitly driven by a dynamic equatidnt is derived from a standardization of a
different matrix,Q; , which has a dynamic structure. The formQ@fdetermines the model

complexity and feasibility in large cross-sectiodathensions.

Several specifications have been suggestedforhe DCC model (or Hadamard DCC) is
given in Engle (2002) as:

Qt =S+ A [xlgt—lgt—l' [le_ %"' B( Q1_ $’ (A-7)

whereA andB are symmetric parameter matrices &id a long run correlation matrix. As
distinct from standard practice, we maintain expian the model the dependence on the
conditional variances. The number of parametethi;imodel is of orde®(I€), such that it is
affected by the “curse of dimensionality’. Notabljpe model has been proposed in the
literature directly with a targeting constraintetbby highlighting the long run component.
However, we note that imposing targeting in (A.8) dounterintuitive since&); is then
standardized to obtain dynamic conditional corretet. Targeting was included as a tool for
the reduction of the numbers of parameters, gifiahtheS matrix could be estimated by the
sample correlation matrix, so thatandB can be estimated by maximum likelihood methods,
conditional on the value assigned3oNote that the model requires appropriate congsai

for covariance stationarity and positive definitenefQ;. Aielli (2008) shows that the sample
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correlation is an inconsistent estimatorSpthereby eliminating the advantage of targeting as
a tool for controlling the curse of dimensionality DCC models.

An alternative fully parameterized model, the Gatlired DCC (GDCC) specification, is
given in Cappiello, Engle and Sheppard (2006). dyreamic equation driving the conditional

correlation matrix is:
Qt =S+ A( Ij—zlgt—lgt—ll Iizl_ % A+ E@ Ql_ )3 ', (A.8)

where A and B are parameter matrices (not necessarily symmetsibjle S is a long run
correlation matrix. The GDCC model has parametenbvers increasing with ord@(ié), as
for the Hadamard DCC model. However, despitenb@duction of correlation targeting, the
two models, Hadamard DCC and Generalized DCC,rdeasible with large cross sectional
dimensions because the numbers of parameters mdlr&cesA andB in both models are of
orderO(Ié).

Two major restricted specifications may be congdemamely the diagonal and scalar
models. The most frequently estimated version ef MCC model is what we will call the
scalar DCC model, where Aig B=hi’, andi is a vector of ones. Note that the DCC models
can be represented without targeting, but this vatjuire the joint estimation of all the
parameters, including the long run correlationsthie scalar DCC model, the constraints for
covariance stationarity and positive definitenesfapse toa>0, b>0, anda+b<1. These are
observationally equivalent to the constraints far Scalar BEKK model as the DCC model

can be considered as a Scalar BEKK model.
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