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Abstract 
 

The management and monitoring of very large portfolios of financial assets are routine for 

many individuals and organizations. The two most widely used models of conditional 

covariances and correlations in the class of multivariate GARCH models are BEKK and 

DCC. It is well known that BEKK suffers from the archetypal “curse of dimensionality”, 

whereas DCC does not. It is argued in this paper that this is a misleading interpretation of the 

suitability of the two models for use in practice. The primary purpose of this paper is to 

analyze the similarities and dissimilarities between BEKK and DCC, both with and without 

targeting, on the basis of the structural derivation of the models, the availability of analytical 

forms for the sufficient conditions for existence of moments, sufficient conditions for 

consistency and asymptotic normality of the appropriate estimators, and computational 

tractability for ultra large numbers of financial assets. Based on theoretical considerations, the 

paper sheds light on how to discriminate between BEKK and DCC in practical applications.  

 
 
Keywords: Conditional correlations, conditional covariances, diagonal models, forecasting, 
generalized models, Hadamard models, scalar models, targeting.  
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1. Introduction  

 

The management and monitoring of very large portfolios of financial assets are routine for 

many individuals and organizations. Consequently, a careful analysis, specification, 

estimation, and forecasting of financial asset returns dynamics, and the construction and 

evaluation of financial portfolios, are essential in the tool kit of any financial planner and 

analyst. Correlations are used to determine portfolios, with appropriate attention being given 

to hedging and asset specialization strategies, whereas variances and covariances are used to 

forecast Value-at-Risk (VaR) thresholds to satisfy the requirements of the Basel Accord. The 

two most widely used models of conditional covariances and correlations are BEKK and 

DCC, as developed in Engle and Kroner (1995) and Engle (2002), respectively.  

 

There are many similarities between BEKK and DCC. A scalar version of BEKK was 

compared with DCC, which is inherently scalar in practice, in Caporin and McAleer (2008). It 

was found empirically that scalar versions of the two models are very similar in forecasting 

conditional variances, covariances and correlations, which would suggest that they would also 

be similar in forecasting VaR thresholds and the consequent daily capital charges. 

 

Accordingly, there are pertinent aspects regarding alternative versions of the two models that 

have not yet been addressed and clarified in the literature. First, we note that BEKK and DCC 

co-exist, despite one model being able to do virtually everything the other can do, thereby 

raising the pertinent question posed in the title of the paper. Second, we argue that BEKK is 

used to forecast conditional covariances, although it may also be used to forecast conditional 

correlations indirectly, while DCC is used to forecast conditional correlations only, while its 

structure could easily be applied to forecast conditional covariances. Third, the inherent 

differences between BEKK and DCC do not seem to be widely known. This is particularly 

relevant as DCC is equivalent to a targeted scalar BEKK model as applied to the variance 

standardized residuals, and can thereby be interpreted as a conditional correlation matrix only 

because of the standardization. Fourth, both the structural and statistical differences and 

similarities between the two models have not previously been analyzed in the literature. 

 



4 

 

With respect to the first question, we note that Engle and Kroner (1995) is a widely cited 

paper, but most citations would seem to be of a theoretical rather than empirical nature. The 

model is an archetypical example of over-parameterization, thereby leading to the moniker 

“curse of dimensionality”. Engle (2002) is also widely cited, but most citations would seem to 

be of an empirical rather than theoretical nature. The prevailing empirical wisdom would 

seem to be that DCC is preferred to BEKK because of the curse of dimensionality associated 

with the latter. It is argued in the paper that this is a misleading interpretation of the suitability 

of the two models to be used in practice. 

 

A primary purpose of the paper is to shed some light on the similarities and differences 

between BEKK and DCC. The comparison commences from a theoretical perspective. A 

comparison of the two models considers several aspects which are generally associated with 

theoretical econometrics, but which are also fundamental in guaranteeing that the empirical 

applications, as well as their interpretation, are reliable. With this rationale, we first define 

targeting as an aid in estimating matrices associated with large numbers of financial assets, 

and then briefly discuss the use of targeting in estimating conditional covariance and 

correlation matrices in financial econometrics. We also consider the similarities and 

dissimilarities between BEKK and DCC, both with and without targeting; the analytical forms 

of the sufficient conditions for the existence of moments, sufficient conditions for consistency 

and asymptotic normality, computational tractability for ultra high numbers of financial 

assets, use of consistent two step estimation methods for the DCC model to enable it to be 

used sensibly in practical situations, and the determination of whether BEKK or DCC is to be 

preferred in empirical applications. 

 

The remainder of the paper is organized as follows. Section 2 compares the BEKK and DCC 

specifications, defines the long run solution of conditional covariances (correlations), and 

defines the targeting of conditional covariance (correlation) models. Section 3 discusses the 

asymptotic results for BEKK and DCC. Some concluding comments are given in Section 4. 

 

2. A Comparison of BEKK and DCC  
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This section evaluates directly comparable BEKK and DCC models which are feasible under 

large cross-sectional dimensions. Univariate and multivariate asymmetry and leverage, as 

well as the empirical comparison of the models, are not considered but are left for further 

research (see Caporin and McAleer (2008) for some results based on small scale models). For 

the same reason, we restrict the analysis to the original and simplest specifications given in 

Engle and Kroner (1995), and Engle (2002). Finally, in order to make a fair comparison of 

models for the conditional second-order moments, we assume that the mean dynamics are 

common across all possible model specifications, and focus on mean innovations whose 

conditional covariance matrix is denoted by tΣ . A short description of the models and the 

specifications considered are given in the Appendix. 

 

Two definitions are given below in order to emphasize the approach taken in the paper: 

 

Definition 1: The long run solution of a conditional covariance (correlation) model is given 

by the unconditional expectation of the dynamic conditional covariance (correlation). 

 

For the Scalar BEKK model of Ding and Engle (2001), which is described in the Appendix, 

the unconditional covariance matrix is [ ] ( ) 1
1tE CC α β −′Σ = Σ = − − . 

 

Two topics that are frequently discussed in the financial econometrics literature regarding 

covariance/correlation model estimation are the “curse of dimensionality” and “targeting”. 

The first issue is perceived as the most serious problem in covariance modelling, while the 

second could be considered as a tool for disentangling the serious problem. 

 

It is known that many fully parameterized conditional covariance models have the number of 

parameters that increase at an order greater than the number of assets, otherwise known as the 

“curse of dimensionality”. For example, the most general BEKK model of Engle and Kroner 

(1995) has parameters increasing with order O(k2), the VECH model parameter number is of 

order O(k4),  and the Generalized DCC model of Engle (2002) increases with order O(k2). 

 

In order to control the growth in the number of parameters, several restricted specifications 

have been proposed in the literature, such as the scalar and diagonal models presented in Ding 
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and Engle (2001), the block structured specifications suggested by Billio, Caporin and Gobbo 

(2006), and the parameter restrictions inspired by spatial econometrics concept introduced in 

Caporin and Paruolo (2009). However, restrictions generally operate on the parameters 

driving the dynamics, while little can be done regarding the model intercepts, which include 

O(k2) parameters in both the conditional covariance and correlation models. This still exposes 

the models to the curse of dimensionality. 

 

The “targeting” constraint is useful because it imposes a structure on the model intercept 

based on sample information. Within “targeting”, the constants in the dynamic equations are 

structured in order to make explicit the long run target, which is then fixed using a consistent 

(sample) estimator. As a result, the number of parameters to be estimated by maximizing a 

conditional log-likelihood function can be reduced substantially. Although targeting can be 

applied to both BEKK and DCC, in practice it has been used only for DCC. 

 

We define the “targeting” constraint as follows: 

 

Definition 2: A conditional covariance (correlation) model is “targeted” if and only if the 

following two conditions are satisfied: 

(i) the intercept is an explicit function of the long run covariance (correlation); 

(ii) the long run covariance (correlation) solution is replaced by a consistent estimator of the 

unconditional sample covariance (correlation) of the observed data. 

 

Note that condition (i) implicitly requires the long run solution of the covariance (correlation) 

model to be equal to the long run covariance (correlation), and ensures that the long run 

solution does not depend on any parameters. Thus, targeting should be distinguished from the 

imposition of parametric restrictions. Furthermore, condition (ii) implies the use of all the 

available sample data in constructing a consistent estimator of the observed long run 

covariance (correlation).  

 

The definition of targeting excludes estimating the long run matrices using latent variables. 

Such exclusion is essential because estimation of latent variables in the conditional volatility 
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literature does not ensure, by construction, the consistency of the estimator used for the 

sample covariance (correlation). 

 

Referring again to the Scalar BEKK model that is given in the Appendix, targeting leads to a 

specification where the intercept is given as ( )1 α βΣ − − . The model has two parameters 

associated with the dynamics and k(k+1)/2 in the intercept, Σ  (the parameters in the long run 

covariance). Targeting implies the use of a sample covariance estimator for Σ , and the 

maximization of the likelihood function with respect to the parameters α  and β  

(maximization is conditional on the estimates of the long run covariance). 

 

The introduction of targeting reduces the number of intercept parameters, thereby making 

estimation feasible, even for large cross-sectional dimensions. However, the model will still 

be computationally complicated for large k because the likelihood evaluation of the model in 

(2) requires the inversion of a covariance matrix of dimension k. 

 

Although targeting can be computationally useful in terms of reducing, sometimes 

dramatically, the number of parameters to be estimated by maximum likelihood, it requires 

care in terms of the sample estimator that is used. If targeting were to use an inconsistent 

estimator to reduce the number of parameters, as is typical in the dynamic correlation 

literature, the resulting estimators will also be inconsistent. 

 

Consider the BEKK model of Engle and Kroner (1995), with model orders set to 1. This 

model is exposed to the curse of dimensionality and is feasible for small cross-sectional 

dimensions, typically with fewer than 10 assets. 

 

Although it is not necessary to do so, BEKK can be specified with targeting. The introduction 

of this feature requires some constraints to be imposed at the estimation step in order to 

guarantee that the covariance matrices are positive definite (for further details, see the 

Appendix). Fortunately, these constraints are extremely simple in the scalar case. 

 

Focusing on the DCC model, we note it has been proposed directly with a targeting 

constraint, expressing the intercept as a function of the long run correlation. However, the 
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most general specification of DCC without targeting is exposed to the curse of 

dimensionality, and has parameters with order O(k2), as in the BEKK model. Without 

targeting, DCC has the same problems as BEKK. Put differently, if targeting were to be 

included, the constraints required by DCC to ensure positive definiteness of the correlation 

matrix are identical to the constraints required by the Scalar BEK model. 

 

In summary, with respect to computational complexity, when targeting is included, BEKK 

and DCC are equivalent; DCC has a structure equivalent to that of BEKK, and is a correlation 

model only because it includes a standardization. Finally, it should be noted that DCC is more 

flexible than BEKK because it models the conditional variances separately as a first step. 

 

3. Asymptotic Theory 

 

Several papers have purported to establish the consistency and asymptotic normality of the 

Quasi Maximum Likelihood Estimation (QMLE) of BEKK and DCC. Apart from two papers 

that have proved consistency and asymptotic normality of BEKK and VECH, albeit under 

high-order stated but untestable assumptions, the proofs for DCC have typically being based 

on unstated regularity conditions. When the regularity conditions have been stated, they are 

untestable or irrelevant for the stated purposes. 

 

Both DCC and BEKK require the imposition of parameter constraints to ensure covariance 

stationarity. The constraints are discussed in Engle and Kroner (1995), and are valid for the 

Generalized DCC model of Engle (2002). Constraints for the scalar representations have a 

very simple structure, are identical for targeted BEKK and DCC, and are closely related to the 

constraints needed to achieve a positive variance for BEKK and positive definiteness of the 

conditional covariance (correlation) matrices in the two models. 

 

For BEKK, Jeantheau (1998) proved consistency under the multivariate log-moment 

condition. However, the derivation of the log-moment condition requires the assumption of 

the existence of sixth-order moments, which cannot be tested. Using the consistency result 

proved in Jeantheau (1998), Comte and Lieberman (2003) established the asymptotic 

normality of the QMLE of BEKK under eighth-order moments which, though stated 
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explicitly, cannot be tested. Finally, Hafner and Preminger (2009) proved asymptotic 

normality of the VECH model (which nests BEKK) of Engle and Kroner (1995) under the 

existence of sixth-order moments. 

 

The consistency and asymptotic normality results for Scalar and Diagonal BEKK follow as 

special cases of the results given above, while those of Hadamard BEKK (see the appendix) 

can be derived similarly by noting that Hadamard BEKK has a companion VECH 

representation with diagonal parameter matrices. The proofs in Jeantheau (1998), Comte and 

Lieberman (2003), and Hafner and Preminger (2009) can be generalized to include the BEKK 

representations where the long run solution of the model enters the intercept explicitly. In 

such cases, appropriate modifications of the regularity conditions are required. Therefore, the 

asymptotic theory for BEKK models has been established, albeit under untestable conditions. 

 

3.1. Do Asymptotic Results Exist for DCC? 

 

The primary appeal of the DCC specification, at least in its scalar incarnation, is supposed to 

be its computational tractability for very large numbers of financial assets, with two step 

estimation reducing the computational complexity relative to systems maximum likelihood 

estimation. This presumption is appropriate if the following three conditions hold: (i) the 

model can be targeted; (ii) the two step estimators are consistent; and (iii) the number of 

parameters increases as a power function of the cross-sectional dimension, with an exponent 

less than or equal to 1. 

 

Point (i), targeting, reduces by 0.5k(k-1) the number of parameters to be estimated by QMLE, 

given that it fixes part of the intercept. Differently, point (ii) ensures that correct inferential 

procedures can be derived from the estimated parameters and the likelihood function. 

Furthermore, it ensures that the forecasts will not be influenced by parameter distortions. 

Finally, point (iii) controls for the parameters in the model dynamics. Conditions (i) and (iii) 

avoid the curse of dimensionality, while the inclusion of just one of the two previous points 

(either (i) or (iii)) makes the model feasible only for small dimensional systems (the full 

model parameters will increase at least with power O(k2)). 
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Engle (2002) suggests the introduction of targeting (point (i)) and the use of scalar 

representations (point (iii)), and assumes that the standard regularity conditions yielding 

consistent and asymptotically normal QML two step estimators are satisfied (point (ii)). 

 

However, Aielli (2008) proved that the two step estimation of DCC models with targeting is 

inconsistent (see also Aielli (2009)). In fact, Aielli (2008) showed that the sample correlation 

estimator is an inconsistent estimator of the long run correlation appearing in the DCC 

intercept. As a result, the parameters driving the dynamics cannot be consistently estimated 

by Quasi Maximum Likelihood (QML), conditional on an inconsistent estimator of S. 

Therefore, the long run solution cannot be estimated with a sample estimator which, in turn, 

eliminates the targeting constraint in point (i) and, as a consequence, makes the parameter 

number at least of order O(k2). In turn, this affects the consistency of the QML estimates of 

the other parameters, as well as their asymptotic distribution, thereby eliminating point (ii). 

Consequently, all the purported proofs for models with targeting, as presented in Engle (2002) 

and Engle and Sheppard (2001), must be reconsidered. 

 

The need to introduce the long run solution matrix, S, into the estimation step of QML makes 

DCC (even in the scalar case) inconsistent with its primary intended purpose, namely the 

computational tractability for large cross sections of assets. 

 

Aielli (2008) suggested a correction to the DCC model to resolve the previous inconsistency 

between the unconditional expectations. However, the new model proposed does not allow 

targeting, as given in Definition 2. Furthermore, the asymptotic results are not fully reported 

(the author presumes regularity conditions without actually stating them). It is worth 

mentioning that Aielli’s (2008) model was used in Engle, Sheppard and Shephard (2008), 

under the assumption that it included targeting, which is not possible. 

 

Aielli’s (2008) results preclude the estimation of DCC with targeting, but this does not affect 

the DCC specifications without targeting. Hence, the asymptotic properties are still unknown. 

Clearly, despite the possibility of estimating DCC models in a single step, the curse of 

dimensionality will always be present as the intercept includes 0.5k(k-1) parameters in the 

long run correlation matrix. 
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In summary, the purported asymptotic theory for DCC models has simply been stated without 

formal proofs of the conditions required for the results to hold, and without checking any of 

the assumptions underlying the general results in Newey and McFadden (1994). 

 

3.2 Consistent Estimation of Correlations for BEKK 

 

McAleer et al. (2008) showed that scalar BEKK and diagonal BEKK could be derived as a 

multivariate extension of the vector random coefficient autoregression (RCA) model of Tsay 

(1987) (see Nicholls and Quinn (1982) for a statistical analysis of random coefficient models). 

However, BEKK and Hadamard BEKK cannot be derived using the RCA approach. 

 

Caporin and McAleer (2008) showed that a theoretical relation could be derived to compare 

scalar DCC and BEKK with and without targeting. They suggested the derivation of 

conditional correlations from alternative BEKK representations, and referred to the derived 

model as Indirect DCC (which, despite its name, is not a different model but rather a bi-

product of BEKK). 

 

As there is presently no consistency result for DCC when estimated by QML, the theorem 

below will represent a first contribution to the area. Its advantage will be clarified in the 

following: 

 

Theorem 1: The indirect DCC conditional correlations derived from BEKK representations 

are consistent for the true conditional correlations. 

 

Proof: The conditional covariance matrix, Qt, satisfies the decomposition t t t tQ D D= Γ . If the 

dynamic covariances have been estimated by a BEKK model, with or without targeting, they 

are consistent. The matrices, Dt, contain the conditional volatilities along the main diagonal. 

In turn, these may be obtained as part of the conditional variance matrix, Qt, or from a 

different univariate or multivariate GARCH model. In all cases, they will include consistent 

estimates of the conditional volatilities, as given by the results for BEKKs, or in Bougerol and 

Picard (1992) (for univariate models), and Ling and McAleer (2003) (for VARMA-GARCH 
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specifications). Therefore, the indirect conditional correlations, 1 1
t t t tD Q D− −Γ = , are given by 

the product of consistent estimators of the conditional covariance matrices and conditional 

standard deviations, and are hence consistent.� 

 

The theorem shows how BEKK may be used to obtain consistent estimates of the conditional 

correlation matrix. The BEKK model may also be used to derive starting values for a full 

system estimation of DCC models by QML. In this case, the intercept may be calibrated as 

the sample mean of indirect conditional correlations, while the DCC parameters may be 

calibrated at the corresponding parameters in a given BEKK model. 

 

An empirical example showing the indirect derivation of dynamic conditional correlations 

from scalar BEKK estimates is given in Caporin and McAleer (2008). 

 

4. Concluding Remarks 

 

The efficient management and monitoring of very large portfolios of financial assets are 

routine for many individuals and organizations. Quantitative tools are then used to analyze 

financial asset returns for the purposes of generating forecasts, and in constructing, managing 

and evaluating financial portfolios. There are different models for different purposes, such as 

correlation models to create and evaluate a portfolio, and covariance models to forecast 

Value-at-Risk (VaR) on a daily basis for a given portfolio.  

 

BEKK and DCC are the two most widely used models of conditional covariances and 

correlations, as developed in Engle and Kroner (1995) and Engle (2002), respectively, in the 

multivariate GARCH class. Although the two models are similar in many respects, the 

literature has not yet addressed some critical issues pertaining to these models, namely: 

clarification of the reasons for BEKK and DCC to co-exist when one model can do virtually 

everything the other model can do, namely: determination as to why DCC is used to forecast 

conditional correlations rather than conditional covariances, and why BEKK is used to 

forecast conditional covariances rather than conditional correlations; examination of the 

inherent differences between BEKK and DCC, especially when DCC is equivalent to a scalar 
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BEKK model applied to the standardized residuals; and comparisons of both structural and 

statistical differences and similarities between the two models. 

 

The primary purpose of the paper has been to examine these issues. For this purpose, we 

highlighted that BEKK possessed asymptotic properties under untestable moment conditions, 

whereas the asymptotic properties of DCC have simply been stated under a set of untestable 

regularity conditions. In addition, we clarified the concept of targeting as a tool for reducing 

the curse of dimensionality associated with multivariate conditional covariance models. 

Finally, we provided a result which demonstrated that BEKK could be used to obtain 

consistent estimates of dynamic conditional correlations, with a direct link to the Indirect 

DCC model suggested in Caporin and McAleer (2008). 

 

In summary, the paper demonstrated that, from a theoretical perspective, the optimal model 

for estimating conditional covariances (and thereby also conditional correlations) was the 

Scalar BEKK model, regardless of whether targeting was used. 

 



14 

 

References 

Aielli, G.P., 2008, Consistent estimation of large scale dynamic conditional correlations, 

University of Messina, Department of Economics, Statistics, Mathematics and 

Sociology, Working paper n. 47. 

Aielli, G.P., 2009, Dynamic conditional correlations: On properties and estimation, Available 

at SSRN: http://ssrn.com/abstract=1507743.  

Billio, M., M. Caporin and M. Gobbo, 2006, Flexible dynamic conditional correlation 

multivariate GARCH for asset allocation, Applied Financial Economics Letters, 2, 

123-130. 

Bollerslev T., 1990, Modelling the coherence in short-run nominal exchange rates: A 

multivariate generalized ARCH approach, Review of Economic and Statistics, 72, 498-

505. 

Bougerol, P. and N. Picard, 1992, Stationarity of GARCH processes, Journal of 

Econometrics, 52, 115-127. 

Caporin, M. and M. McAleer, 2008, Scalar BEKK and indirect DCC, Journal of Forecasting, 

27, 537-549. 

Caporin, M. and M. McAleer, 2009, Do we really need both BEKK and DCC? A tale of two 

covariance models, Available at SSRN: http://ssrn.com/abstract=1338190. 

Caporin, M., and P. Paruolo, 2009, Structured multivariate volatility models, Available at 

SSRN: http://ssrn.com/abstract=1318639.  

Cappiello L., R.F. Engle, and K. Sheppard, 2006, Asymmetric dynamics in the correlations of 

global equity and bond returns, Journal of Financial Econometrics, 4, 537-572. 

Comte, F. and O. Lieberman, 2003, Asymptotic theory for multivariate GARCH processes, 

Journal of Multivariate Analysis, 84, 61-84. 

Ding, Z. and R. Engle, 2001, Large scale conditional covariance modelling, estimation and 

testing, Academia Economic Papers, 29, 157-184. 

Engle, R.F., 2002, Dynamic conditional correlation: a simple class of multivariate generalized 

autoregressive conditional heteroskedasticity models, Journal of Business and 

Economic Statistics, 20, 339-350. 

Engle, R.F. and K.F. Kroner, 1995, Multivariate simultaneous generalized ARCH, 

Econometric Theory, 11, 122-150. 



15 

 

Engle, R.F., and K. Sheppard, 2001, Theoretical and Empirical Properties of Dynamic 

Conditional Correlation Multivariate GARCH, Working Paper 2001-15, University of 

California at San Diego. 

Engle, R.F., N. Shephard, and K. Sheppard, 2008, Fitting vast dimensional time-varying 

covariance models, Oxford Financial Research Centre, Financial Economics Working 

Paper n. 30. 

Hafner, C.M., and A. Preminger, 2009, On asymptotic theory for multivariate GARCH 

models, Journal of Multivariate Analysis, 100, 2044-2054. 

Jeantheau, T., 1998, Strong consistency of estimators for multivariate ARCH models, 

Econometric Theory, 14, 70-86. 

Ling, S. and M. McAleer, 2003, Asymptotic theory for a vector ARMA-GARCH model, 

Econometric Theory, 19, 278-308. 

McAleer, M., F. Chan, S. Hoti and O. Lieberman, 2008, Generalized autoregressive 

conditional correlation, Econometric Theory, 24, 1554-1583. 

Newey, W.K.  and D. McFadden, 1994, Large sample estimation and hypothesis testing, in 

Handbook of Econometrics, Vol. 4, Elsevier North-Holland. 

Nicholls, D.F. and B.G. Quinn, 1982, Random Coefficient Autoregressive Models: An 

Introduction, Springer-Verlag, New York. 

Tsay, R.S., 1987, Conditional heteroscedastic time series models, Journal of the American 

Statistical Association, 82, 590-604. 



16 

 

Appendix 

 

 
A.1. BEKK models 

Engle and Kroner (1995) introduced the BEKK class of multivariate GARCH models. We 

will consider the simplest BEKK specification, which is standard, with all lag orders set to 1: 

 

1 1 1t t t tCC A A B Bε ε− − −
′′ ′ ′Σ = + + Σ          (A.1) 

 

where A and B are k k×  parameter matrices (not necessarily symmetric), and C is a lower 

triangular parameter matrix. The fully parameterized model includes 2.5k2+0.5k parameters. 

The conditional covariance matrices are positive definite, by construction, and the conditional 

variances are positive, regardless of the parameter signs. Engle and Kroner (1995) propose a 

more general representation than is given in (A.1), but it does not seem to have been used in 

empirical applications. 

 

In order to make the model feasible for large cross-sectional dimensions, two restricted 

parameterizations have been proposed in Ding and Engle (2001), namely the diagonal and 

scalar specifications. In the scalar BEKK model, the parameter matrices A and B in (A.1) are 

replaced by scalar coefficients (A Iα=  and B Iβ= , where I is an identity matrix of 

dimension k), whereas in the Diagonal BEKK version, A and B are diagonal matrices. A 

further representation of a BEKK-type model may be based on the Hadamard matrix product, 

as follows (we name it Hadamard BEKK): 

 

1 1 1t t t tCC A Bε ε− − −
′′Σ = + + Σ� � .        (A.2) 

 

In this case, the parameter matrices A and B must be symmetric and positive definite, and the 

number of parameters is still O(k2). Generally, (A.2) is not estimated directly, but rather by 

imposing a structure for A and B to ensure positive definiteness (by making A and B equal to 

the product of triangular matrices, as in the case of the intercept). Positive definiteness of the 
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conditional covariance matrices is guaranteed, by construction (see Ding and Engle, 2001). 

Finally, we note that the diagonal specification is a restricted parameterization of the 

Hadamard BEKK model in equation (A.2).  

 

Define the sample covariance matrix, t tE ε ε ′ = Σ
 

, which can be consistently estimated by 

the sample estimator. The BEKK equation may be redefined as follows: 

 

( ) ( )1 1 1t t t tA A B Bε ε− − −
′ ′ ′Σ = Σ + − Σ + Σ − Σ        (A.3) 

 

Similar representations could be obtained for restricted BEKK models and for the Hadamard 

BEKK version. We can easily check that the model in (A.3) gives [ ]tE Σ = Σ , as 

1 1t tE ε ε− −
 ′ = Σ
 

 and [ ]1tE −Σ = Σ . Note that (A.3) allows the introduction of targeting by 

replacing Σ  with a sample estimator. Positive definiteness of the conditional covariance 

matrices must be imposed at the estimation step by constraining the model intercept; 

otherwise the estimates cannot be interpreted as covariance matrices. In (A.3) positive 

definiteness of the conditional covariance matrices is guaranteed by imposing positive 

definiteness of A A B B′ ′Σ − Σ − Σ . 

 

Although the constraints may seem to be quite simple for heavily restricted models, their 

computational complexity is entirely relevant, in particular, when the cross-sectional 

dimension is simply moderate rather than high. In fact, imposing positive definiteness of the 

intercepts results in a set of highly non-linear constraints on the parameters. In addition, it 

should be stressed that covariance stationarity constraints need to be taken into account. These 

constraints are extremely simple in the Scalar BEKK case, and collapse to 2 2 1α β+ < . 

 

A.2.. DCC models 
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The Dynamic Conditional Correlation (DCC) model was introduced by Engle (2002) as a 

generalization of the Constant Conditional Correlation (CCC) model of Bollerslev (1990). 

The covariance matrix is decomposed as follows: 

 

t t t tD R DΣ =            (A.4) 

( )1, 2, ,, ,...t t t k tD diag σ σ σ=          (A.5) 

( )½ ½,      t t t t t tR Q Q Q Q dg Q− −= =         (A.6) 

 

where Dt includes the conditional volatilities, which are modelled as a set of univariate 

GARCH equations (see Bollerslev (1990) and Engle (2002)). The dynamic correlation matrix, 

Rt , is not explicitly driven by a dynamic equation, but is derived from a standardization of a 

different matrix, Qt , which has a dynamic structure. The form of Qt determines the model 

complexity and feasibility in large cross-sectional dimensions. 

 

Several specifications have been suggested for Qt. The DCC model (or Hadamard DCC) is 

given in Engle (2002) as: 

 

( ) ( )½ ½
1 1 1 1 1t t t t t tQ S A D D S B Q Sε ε− − − − −

′= + − + −� � ,      (A.7) 

 

where A and B are symmetric parameter matrices and S is a long run correlation matrix. As 

distinct from standard practice, we maintain explicitly in the model the dependence on the 

conditional variances. The number of parameters in this model is of order O(k2), such that it is 

affected by the “curse of dimensionality”. Notably, the model has been proposed in the 

literature directly with a targeting constraint, thereby highlighting the long run component. 

However, we note that imposing targeting in (A.7) is counterintuitive since Qt is then 

standardized to obtain dynamic conditional correlations. Targeting was included as a tool for 

the reduction of the numbers of parameters, given that the S matrix could be estimated by the 

sample correlation matrix, so that A and B can be estimated by maximum likelihood methods, 

conditional on the value assigned to S. Note that the model requires appropriate constraints 

for covariance stationarity and positive definiteness of Qt. Aielli (2008) shows that the sample 
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correlation is an inconsistent estimator of S, thereby eliminating the advantage of targeting as 

a tool for controlling the curse of dimensionality for DCC models. 

 

An alternative fully parameterized model, the Generalized DCC (GDCC) specification, is 

given in Cappiello, Engle and Sheppard (2006). The dynamic equation driving the conditional 

correlation matrix is: 

 

( ) ( )½ ½
1 1 1 1 1t t t t t tQ S A D D S A B Q S Bε ε− − − − −

′ ′ ′= + − + − ,      (A.8) 

 

where A and B are parameter matrices (not necessarily symmetric), while S is a long run 

correlation matrix. The GDCC model has parameter numbers increasing with order O(k2), as 

for the Hadamard DCC model.  However, despite the introduction of correlation targeting, the 

two models, Hadamard DCC and Generalized DCC, are infeasible with large cross sectional 

dimensions because the numbers of parameters in the matrices A and B in both models are of 

order O(k2).  

 

Two major restricted specifications may be considered, namely the diagonal and scalar 

models. The most frequently estimated version of the DCC model is what we will call the 

scalar DCC model, where A=aii’ , B=bii’ , and i is a vector of ones. Note that the DCC models 

can be represented without targeting, but this will require the joint estimation of all the 

parameters, including the long run correlations. In the scalar DCC model, the constraints for 

covariance stationarity and positive definiteness collapse to a>0, b>0, and a+b<1. These are 

observationally equivalent to the constraints for the Scalar BEKK model as the DCC model 

can be considered as a Scalar BEKK model. 


