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The estimation of a linear combination of several restricted location parameters is ad-
dressed from a decision-theoretic point of view. The corresponding linear combination of
the best location equivariant and the unrestricted unbiased estimators is minimax. Since
the locations are restricted, it is reasonable to use the linear combination of the restricted
estimators such as maximum likelihood estimators. In this paper, a necessary and suffi-
cient condition for such restricted estimators to be minimax is derived, and it is shown
that the restricted estimators are not minimax when the number of the location parame-
ters is large. The condition for the minimaxity is examined for some specific distributions.
Finally, similar problems of estimating the product and sum of the restricted scale pa-
rameters are studied, and it is shown that similar non-dominance properties appear when
the number of the scale parameters is large.

Key words and phrases: Decision theory, linear combination, location parameter, max-
imum likelihood estimator, restricted parameter, restricted estimator, scale parameter,
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1 Introduction

Point estimation of restricted parameters has been studied from a decision-theoretic point
of view since Katz (1961) and Farrell (1964). This classical problem has been revisited
by Marchand and Strawderman (2004, 2005), Kubokawa and Saleh (1998), Kubokawa
(2004), Tsukuma and Kubokawa (2008) and others. One of the most interesting issues
is whether the generalized Bayes estimator against the uniform prior over the restricted
space is minimax or not. Hartigan (2004) recently considered the simultaneous estimation
of a mean vector restricted to a convex set in a k-variate normal distribution and used
the Gauss divergence theorem to show that the generalized Bayes estimator against the
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uniform prior is minimax. However, Kubokawa (2010) established the non-minimaxity of
the generalized Bayes estimator in the context of the estimation of the sum of k restricted
normal means when k ≥ 2. This shows that there is a deifference in minimaxity con-
siderations between these estimation problems. This paper is concerned with the latter
problem, and we shall investgate the minimaxity of the maximum likelihood estimator or
the restricted best equivariant estimator.

To explain instructively the problem treated here, consider the following simple model:
Let X1, . . . , Xk be mutually independent random variables such that for i = 1, . . . , k, Xi

has a normal distribution N (µi, 1) where the mean µi is restricted to the space µi > 0.
Then, we want to consider the problem of estimating the sum of the means θ =

∑k
i=1 µi

relative to the quadratic loss function (θ̂−θ)2. It is noted that the risk function is the mean
squared error (MSE). A benchmark estimator is the unrestricted estimator θ̂M =

∑k
i=1 Xi,

which is minimax and also the best location equivariant estimator. Since the means µi

are restricted, however, the unrestricted minimax estimator has a drawback of taking
negative values. To address this issue, two methods are available. One is the generalized
Bayes estimator of θ against the uniform prior over the restricted spaces, and the other
is the maximum likelihood estimator (MLE). Kubokawa (2010) recently developed the
results that the generalized Bayes estimator is not minimax for k ≥ 2 while it is minimax
for k = 1. This fact raises the question whether the MLE is minimax or not for k ≥ 2.
The MLE is given by θ̂TR =

∑k
i=1max{Xi, 0}, and intuitively it would be plausible that

the MLE may be minimax, namely, it dominates
∑k

i=1Xi under the restriction µi > 0 for
i = 1, . . . , k.

In this paper, we treat more general location families with restricted location parame-
ters, and consider the problem of estimating linear combinations of the restricted location
parameters relative to quadratic loss. The best location equivariant and unrestricted esti-
mator of the linear combination is minimax, but inadmissible because the parameter space
is restricted. Thus, it is reasonable to consider the linear combination of the truncated
estimators which limit the unrestricted minimax estimators over the restricted space. The
MLE in the case of the above normal distributions is an example of the truncated esti-
mators. In Section 2, we derive a necessary and sufficient condition for the truncated
estimator to be minimax. This condition implies that the truncated estimator is minimax
for small k, but not minimax for large k. In Section 3, the necessary and sufficient con-
dition is examined for scale mixtures of normal distributions including normal, t-, double
exponential and logistic distibutions, symmetric unimodal distributions including a uni-
form distribution, and an exponential distribution. For example, the MLE of

∑k
i=1 µi in

the above normal distributions is minimax for k ≤ 4, while it is not minimax for k ≥ 5.
The behavior of MSE’s of the MLE is illustrated in Figure 1 for k = 1, 4, 5, 8. It is also
shown that the conditoin k ≤ 4 is sufficient for the minimaxity of the MLE in estimation
of any linear combination

∑k
i=1 aiµi.

Section 4 investigates whether the non-minimaxity or non-dominance property of the
truncated estimators can be extended to the estimation of the restricted scale parame-
ters. There we consider the two problems of estimating the product and the sum of the
restricted scale parameters. Since estimation of the product of scales is invariant under the
scale transformations, the best scale equivariant estimator is minimax. A necessary and
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sufficient condition is derived for the product of the truncated estimators to be minimax,
and it is shown that it is not minimax for large k. For the estimation of the sum of scales,
the invariance structure does not hold and we could not provide a minimax estimator.
Instead, we handle an unbiased estimator for the sum of scales, derive a condition for the
restricted estimator to dominate the unbiased estimator, and investigate the condition for
exponential and uniform distributions.

2 Minimaxity and Non-minimaxity of the Truncated

Estimator

2.1 Case of k = 1

We begin by deriving the bias and the mean squared error of the truncated estimator of a
single positive location parameter. Let X be a random variable whose density function is
given by f(x−µ) where µ is a location parameter restricted on the space {µ ∈ R|µ > 0}.
The unbiased estimator of µ is µ̂U = X − c for c = E[X − µ] =

∫
uf(u)du. Since this is

the best location equivariant estimator, it is minimax. Since µ is positive, µ̂U is improved
on by the truncated estimator

µ̂TR = max{X − c, 0},

and the bias, mean squared error and variance are denoted by B(µ) = Bias(µ, µ̂TR) =

E[µ̂TR−µ], M(µ) = MSE(µ, µ̂TR) = E[
(
µ̂TR−µ

)2
] and V (µ) = V ar(µ, µ̂TR) = E[

(
µ̂TR−

E[µ̂TR]
)2
], respectively. Let F (z) be the distribution function of X, namely F (z) =∫ z

−∞ f(u)du.

Lemma 2.1 The bias and mean squared error of the truncated estimator µ̂TR of µ are
expressed as

B(µ) =−
∫ c−µ

−∞
(z − c+ µ)f(z)dz =

∫ c−µ

−∞
F (z)dz, (2.1)

M(µ) =M0 −
∫ c−µ

−∞
(z − c)(z − c+ µ)f(z)dz − µB(µ) = M0 − 2L(µ), (2.2)

where M0 = E[(X − c− µ)2] and

L(µ) = −
∫ c−µ

−∞
(z − c)F (z)dz =

1

2

{∫ c−µ

−∞
(z − c)(z − c+ µ)f(z)dz + µB(µ)

}
.

Also, the variance of µ̂TR is V (µ) = M0 − 2L(µ)− {B(µ)}2.

Proof. Let Z = X − µ, and note that
∫∞
−∞(z − c)f(z)dz = 0. Then,

E[max(X − c, 0)− µ] = E[max(Z − c,−µ)] =

∫ ∞

c−µ

(z − c)f(z)dz − µ

∫ c−µ

−∞
f(z)dz.
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Since
∫∞
c−µ

(z − c)f(z)dz = −
∫ c−µ

−∞ (z − c)f(z)dz, it is observed that B(µ) = −
∫ c−µ

−∞ (z −
c + µ)f(z)dz. Using integration by parts, we can show that

∫ c−µ

−∞ (z − c + µ)f(z)dz =

−
∫ c−µ

−∞ F (z)dz, which gives expression (2.1). Similarly,

E[
(
max{X − c, 0} − µ

)2
] =E[

(
max{Z − c,−µ}

)2
]

=

∫ ∞

c−µ

(z − c)2f(z)dz + µ2

∫ c−µ

−∞
f(z)dz.

Since
∫∞
c−µ

(z−c)2f(z)dz =
∫∞
−∞(z−c)2f(z)dz−

∫ c−µ

−∞ (z−c)2f(z)dz, M(µ) can be rewritten
as

M(µ) =M0 −
∫ c−µ

−∞
(z − c)2f(z)dz − µ

∫ c−µ

−∞
(z − c)f(z)dz

+ µ
{∫ c−µ

−∞
(z − c)f(z)dz + µ

∫ c−µ

−∞
f(z)dz

}
,

which yields that M(µ) = M0 −
∫ c−µ

−∞ (z− c)(z− c+µ)f(z)dz−µB(µ). Using integration
by parts, we can show that∫ c−µ

−∞
(z − c)(z − c+ µ)f(z)dz = −2

∫ c−µ

−∞
(z − c)F (z)dz − µ

∫ c−µ

−∞
F (z)dz, (2.3)

which gives expression (2.2). The variance of µ̂TR can be easily derived from (2.1) and
(2.2).

From (2.1) and (2.2), the derivative of the bias B(µ), the MSE M(µ) and the variance
V (µ) are given by

B′(µ) =− F (c− µ) < 0,

M ′(µ) =2µF (c− µ) > 0,

V ′(µ) =2{µ+B(µ)}F (c− µ) > 0

for µ > 0. These means that B(µ) is decreasing in µ and M(µ) and V (µ) are increasing in
µ. Thus, the maximum bias, the minimumMSE and the minimum variance are attained at
µ = 0, and they are given by B(0) = −

∫ c

−∞(z−c)f(z)dz, M(0) = M0−
∫ c

−∞(z−c)2f(z)dz

and V (0) = M(0)− {B(0)}2.

Lemma 2.2 The bias B(µ) is decreasing in µ for µ > 0 with B(0) > 0 and limµ→∞ B(µ) =
0. The MSE M(µ) and the variance V (µ) are increasing in µ with 0 < M(µ) < M0,
0 < V (µ) < M0 and limµ→∞M(µ) = limµ→∞ V (µ) = M0. In particular, the truncated
estimator µ̂TR is minimax, and has a smaller varaince than µ̂U .

Concerning the MLE of µ, it is given by µ̂ML = max{X, 0} under the condition
that the density f(x − µ) has the mode at x = µ. To get the bias and MSE of the
MLE, it is noted that 0 =

∫∞
−∞(z − c)f(z)dz =

∫ −µ

−∞ zf(z)dz +
∫∞
−µ

zf(z)dz − c and
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M0 =
∫∞
−∞(z− c)2f(z)dz =

∫ −µ

−∞ z2f(z)dz+
∫∞
−µ

z2f(z)dz− c2. Using these equalities and
similar arguments as in Lemma 2.1, we can obtain

BML(µ) =E[max{X, 0} − µ]

=

∫ ∞

−µ

zf(z)dz − µ

∫ −µ

−∞
f(z)dz

=−
∫ −µ

−∞
(z + µ)f(z)dz + c,

MML(µ) =E[
{
max{X, 0} − µ

}2
]

=

∫ ∞

−µ

z2f(z)dz + µ2

∫ −µ

−∞
f(z)dz

=M0 + c2 +

∫ −µ

−∞
(µ2 − z2)f(z)dz.

Since M ′
ML(µ) = 2µ

∫ −µ

−∞ f(z)dz > 0, it can be observed that

MML(µ) ≤ lim
µ→∞

MML(µ) = M0 + c2.

This implies that µ̂ML is not minimax if c ̸= 0. When c = 0, it follows from Lemma 2.2
that µ̂ML is minimax. In the case that the density function f(x− µ) is symmetric about
µ, we have c = 0, and the MLE max{X, 0} is minimax..

2.2 Case of k ≥ 2

We now investigate minimax estimation for a linear combination of positive location
parameters. Let X1, . . . , Xk be mutually independent random variables where Xi has
density fi(xi − µi) for µi > 0, and distribution function

∫ xi

−∞ fi(u − µi)du = Fi(xi − µi)

for Fi(x) =
∫ x

−∞ fi(z)dz. Let us consider the linear combination of the locations given by

θ =
k∑

i=1

aiµi = atµ,

where a1, . . . , ak are real constants. The unbiased estimator of θ is θ̂U =
∑k

i=1 ai(Xi − ci)
for ci = E[Xi − µi] and it is minimax as shown in Kubokawa (2010). However, if for
example, all of the ai’s are positive, it has the drawback of taking negative values with
a positive probability because θ is positive. An alternative is a linear combination of the
truncated estimators given by

θ̂TR =
k∑

i=1

aiµ̂
TR
i ,

where µ̂TR
i = max{Xi − ci, 0} is a truncated estimator of µi. From a decision-theoretic

point of view, an interesting query is whether the truncated estimator is minimax or not.
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Let Λ+ and Λ− be subsets of {1, . . . , k} such that Λ+ ∪ Λ− = {1, . . . , k} and

ai > 0 if i ∈ Λ+, and aj < 0 if j ∈ Λ−. (2.4)

Then θ and θ̂TR are decomposed as

θ =θ+ − θ− for θ+ =
∑
i∈Λ+

aiµi and θ− = −
∑
i∈Λ−

aiµi,

θ̂TR =θ̂TR
+ − θ̂TR

− for θ̂TR
+ =

∑
i∈Λ+

aiµ̂
TR
i and θ̂TR

− = −
∑
i∈Λ−

aiµ̂
TR
i .

(2.5)

The MSE of the truncated estimator θ̂TR is written as

MSE(µ, θ̂TR) = E[(θ̂TR
+ − θ+)

2] + E[(θ̂TR
− − θ−)

2]− 2E[θ̂TR
+ − θ+]E[θ̂TR

− − θ−].

Also, note that

E[(θ̂TR
+ − θ+)

2] =
∑
i∈Λ+

a2iMi(µi) +
∑
i∈Λ+

∑
ℓ∈Λ+,ℓ ̸=i

aiaℓBi(µi)Bℓ(µℓ),

where Mi(µi) = E[(µ̂TR
i − µi)

2] and Bi(µi) = E[µ̂TR
i − µi]. Let Li(µi) = −

∫ ci−µi

−∞ (z −
ci)Fi(z)dz. Note that Li(µi) > 0 and that MSE(µ, θ̂U) =

∑
i∈Λ+

a2iE[(Xi − ci − µi)
2] +∑

j∈Λ−
a2jE[(Xj − cj − µj)

2]. Then, the difference of the MSEs of θ̂TR and θ̂U can be
expressed as

∆(µ) =MSE(µ, θ̂TR)−MSE(µ, θ̂U)

=− 2
∑
i∈Λ+

a2iLi(µi) +
∑
i∈Λ+

∑
ℓ∈Λ+,ℓ̸=i

aiaℓBi(µi)Bℓ(µℓ)

− 2
∑
j∈Λ−

a2jLj(µj) +
∑
j∈Λ−

∑
ℓ∈Λ−,ℓ̸=j

ajaℓBj(µj)Bℓ(µℓ)

+ 2
∑
i∈Λ+

∑
j∈Λ−

aiajBi(µi)Bj(µj). (2.6)

We first derive a necessary condition for the minimaxity of θ̂TR. Note that limµi→∞ Li(µi) =
0 and limµi→∞ Bi(µi) = 0. Let C+ be a subset of Λ+. When µi → 0 for all i ∈ C+, µℓ → ∞
for all ℓ ∈ Λ+\C+ and µj → ∞ for all j ∈ Λ−, the MSE difference ∆(µ) converges to

∆(µ) → −2
∑
i∈C+

a2iLi(0) +
∑
i∈C+

∑
ℓ∈C+,ℓ ̸=i

aiaℓBi(0)Bℓ(0).

A similar property holds for a subset C− of Λ−, and these give us a necessary condition
for the minimaxity of θ̂TR. Thus, if θ̂TR is minimax, then the following inequalities hold
for all subsets C+ ⊂ Λ+ and C− ⊂ Λ−:∑

i∈C+

∑
ℓ∈C+,ℓ̸=i

aiaℓBi(0)Bℓ(0) ≤2
∑
i∈C+

a2iLi(0),∑
j∈C−

∑
ℓ∈C−,ℓ̸=j

ajaℓBj(0)Bℓ(0) ≤2
∑
j∈C−

a2jLj(0).
(2.7)

6



We next show that condition (2.7) is sufficient. Since (d/dµi)Li(µi) = −µiFi(ci − µi)
and (d/dµi)Bi(µi) = −Fi(ci − µi), the derivative of ∆(µ) with respect to µi for i ∈ Λ+

can be written as

∂

∂µi

∆(µ) = 2Fi(ci − µi)
{
a2iµi − ai

∑
ℓ∈Λ+,ℓ̸=i

aℓBℓ(µℓ)− ai
∑
j∈Λ−

ajBj(µj)
}
.

Since the content of the above bracket is inceasing in µi, we can consider the two cases:
(1) (∂/∂µi)∆(µ) ≥ 0 for all µi > 0, or (2) there is a positive point µi,0 such that
(∂/∂µi)∆(µ) < 0 for 0 < µi < µi,0, and (∂/∂µi)∆(µ) ≥ 0 for all µi ≥ µi,0. This
means that

∆(µ) ≤ max
{
lim
µi→0

∆(µ), lim
µi→∞

∆(µ)
}
.

Applying this argument for all i ∈ Λ+ and all j ∈ Λ− and noting that∑
i∈Λ+

∑
j∈Λ−

aiajBi(µi)Bj(µj) ≤ 0,

we see that

∆(µ) ≤ max
C+⊂Λ+

{
−2

∑
i∈C+

a2iLi(0) +
∑
i∈C+

∑
ℓ∈C+,ℓ̸=i

aiaℓBi(0)Bℓ(0)
}

+ max
C−⊂Λ−

{
−2

∑
j∈C−

a2jLj(0) +
∑
j∈C−

∑
ℓ∈C−,ℓ̸=j

ajaℓBj(0)Bℓ(0)
}
,

which implies that condition (2.7) is sufficient for the minimaxity of θ̂TR. Hence, we have
the following result.

Proposition 2.1 The condition given in (2.7) is a necessary and sufficient condition for
the truncated estimator θ̂TR to be minimax.

Consider a special case that f1(z) = · · · = fk(z) = f(z) and a1 = · · · = ak = 1,
namely, θ = µ1 + · · ·+ µk. Then, condition (2.7) is expressed as∑

i∈C

∑
ℓ∈C,ℓ ̸=i

{B(0)}2 ≤ 2
∑
i∈C

L(0),

for all subsets C of {1, . . . , k}, where

B(0) =−
∫ c

−∞
(z − c)f(z)dz =

∫ c

−∞
F (z)dz,

L(0) =

∫ c

−∞
(z − c)2f(z)dz = −

∫ c−µ

−∞
(z − c)F (z)dz.

(2.8)

This condition can be simplified as

(k − 1){B(0)}2 ≤ 2L(0), (2.9)

and we get the following proposition.
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Proposition 2.2 Consider the case that f1(z) = · · · = fk(z) = f(z) and a1 = · · · = ak =
1. A necessary and sufficient condition for the minimaxity of the truncated estimator θ̂TR

is that (k− 1){B(0)}2 ≤ 2L(0). That is, θ̂TR is minimax for k ≤ 2L(0)/{B(0)}2 + 1 and
not minimax for k > 2L(0)/{B(0)}2 + 1.

The next result shows that the condition of Poposition 2.2 is sufficient (but not nec-
essary) for minimaxity of θ̂TR for all linear combinations.

Proposition 2.3 Suppose that f1(z) = · · · = fk(z) = f(z) and that the condition k ≤
2L(0)/{B(0)}2 + 1 is satisfied. Then θ̂TR is minimax for all linear combinations.

Proof. We show that the condition (2.7) is satisfied for all subsets C of Λ+. The same
proof holds for subsets of Λ−. Let the cardinality of Λ+ be k+ (≤ k) and the cardinality
of a particular subset C be k∗ (≤ k+ ≤ k). We use the fact that for any set of positive
(or negative) constants (

∑ℓ
i=1 ai)

2 ≤ ℓ
∑ℓ

i=1 a
2
i , and hence that∑

i∈C

∑
j∈C,j ̸=i

aiaj = (
∑
i∈C

ai)
2 −

∑
i∈C

a2i ≤ (k∗ − 1)
∑
i∈C

a2i ≤ (k − 1)
∑
i∈C

a2i .

The LHS of the first expression in (2.7) (since all Bi(0)’s and Li(0)’s are equal) satisfies

B2(0)
∑
i∈C

∑
j∈C,j ̸=i

aiaj ≤ B2(0)(k − 1)
k∗∑
i=1

a2i .

Now, since the assumption of the proposition is equivalent to B2(0)(k − 1) ≤ 2L(0), we
have that

B2(0)
∑
i∈C

∑
j∈C,j ̸=i

aiaj ≤ B2(0)(k − 1)
k∗∑
i=1

a2i ≤ 2L(0)
k∗∑
i=1

a2i ,

which is the desired condition. This completes the proof.

This result shows that, in a certain sense, the sum of the means is a least favorable
combination as far as minimaxity is concerned when all densities are the same. The
same reasoning implies the slightly stronger conclusion that θ̂TR is minimax provided
k∗ ≤ 2L(0)/{B(0)2} + 1 where k∗ = max{card(Λ+), card(Λ−)}. The condition is also
necessary if |ai| = a for all i.

Finally, the variance of θ̂TR is written as

V ar(µ, θ̂TR) =
k∑

i=1

a2iV ar(µi, µ̂
TR
i ),

which means that the variance of θ̂TR is less than or equal to that of θ̂U if for i = 1, . . . , k,
the variance of µ̂TR

i is less than or equal to that of Xi − ci. Thus, from Lemma 2.2, θ̂TR

has a smaller variance than θ̂U .
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3 Examples of Non-minimaxity of Truncated or Max-

imum Likelihood Estimators

3.1 MLE in normal distributions

Let X1, . . . , Xk be mutually independent random variables such that Xi has a normal
distribution with mean µi and unit variance, namely, Xi ∼ N (µi, 1) for µi > 0. The MLE
of the linear combination θ = µ1 + · · ·+ µk is

θ̂ML = µ̂ML
1 + · · ·+ µ̂ML

k ,

where µ̂ML
i = max{Xi, 0} is the MLE of µi.

From Lemma 2.1, the bias and mean squared error of µ̂ML
i are expressed as

B(µi) =−
∫ −µi

−∞
(z + µi)ϕ(z)dz

=ϕ(µi)− µiΦ(−µi),

M(µi) =1−
∫ −µi

−∞
z(z + µi)ϕ(z)dz − µiB(µi)

=1− Φ(−µi)− µiB(µi),

(3.1)

where ϕ(z) and Φ(z) are density and distribution functions of the standard normal distri-
bution. Then, B(0) = 1/

√
2π, limµi→∞B(µi) = 0. Since L(µi) = {Φ(−µi) + µiB(µi)}/2,

it is observed that L(0) = 1/4 and limµi→∞ L(µi) = 0. Thus, 2L(0)/{B(0)}2 = π, and
the following proposition follows from Propositions 2.2 and 2.3.

Proposition 3.1 In the estimation of θ =
∑k

i=1 µi, a necessary and sufficient condition

for the minimaxity of the MLE θ̂ML is that k ≤ π+1. That is, θ̂ML is minimax for k ≤ 4
and not minimax for k ≥ 5. Also, the condition k ≤ π+1 is sufficient for the minimaxity
in estimation of any linear combination.

It is interesting to illustrate the behaviors of the risk functions of the MLE for several
values of k. For simplicity, let µ1 = · · · = µk = µ and consider the case of θ = µ1+· · ·+µk.
Then, the MSE of the MLE is given as

MSE(µ, θ̂ML) = kM(µ) + k(k − 1){B(µ)}2,

where M(µ) and B(µ) are given in (3.1). Since the MSE of the unbiased estimator of
θ is k, the ratio of the MSE’s of the MLE and the unbiased estimator should be less or
equal to one if the MLE is minimax. The ratio of the MSE’s is illustrated in Figure 1 for
k = 1, 4, 5, 8 and 0 < µ < 3. As seen from this figure, the ratio of the MSE’s for k = 5, 8
exceeds one at µ = 0.

9
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Figure 1: Ratio of MSE’s of the MLE and the unbiased estimator, MSE(µ, θ̂ML)/MSE(µ, θ̂U ), for
k = 1, 4, 5, 8 and 0 < µ < 3

3.2 Scale mixtures of normals distribution

Let X1, . . . , Xk be mutually independent random variables such that Xi has a scale mix-
ture of normals distribution, namely, the conditional distribution of Xi given V has the
nornal distribution N (µi, V ) and V has a distribution G. Then, B(0) = E[V 1/2]/(2π)1/2

and 2L(0) = E[V ]/2, so that

2L(0)/{B(0)}2 = πE[V ]/{E[V 1/2]}2.

Hence from Propositions 2.2 and 2.3, we get the following proposition.

Proposition 3.2 In the estimation of θ =
∑k

i=1 µi, a necessary and sufficient condition

for the minimaxity of the MLE θ̂ML is that

k ≤ πE[V ]/{E[V 1/2]}2 + 1, (3.2)

which is also is sufficient for the minimaxity in estimation of any linear combination.

The normal distribution given in Section 3.1 corresponds to the case where V is degen-
erate at one. Proposition 3.2 shows that the normal distribution is least favorable in the
sense that, since E[V ]/{E[V 1/2]}2 ≥ 1, the critical value of k (for minimaxity of θ̂TR) is
always at least as large for any scale mixtire of normals as it is for the normal distribution
itself.

The scale mixtures of normal distribution includes t-, double exponential and logistic
distributions, and Proposition 3.2 can be applied to these distributions.
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[1] t-distribution. When 1/V has a chi-square with ν degrees of freedom divided by
ν, the resulting distribution is a t-distribution with the density function

fν(x− µi) = Cν

(
1 + (x− µi)

2/ν
)−(ν+1)/2

,

for Cν = (νπ)−1/2Γ((ν + 1)/2)/Γ(ν/2) and µi > 0. In this case, it is seen that

π
E[V ]

{E[V 1/2]}2
=π

E[(ν/V )−1]

{E[(ν/V )−1/2]}2
= π

E[(χ2
ν)

−1]

{E[(χ2
ν)

−1/2]}2

=π
2

ν − 2

( Γ(ν/2)

Γ((ν − 1)/2)

)2

≡ Kν ,

so that the condition (3.2) becomes k ≤ Kν + 1. Using Stirling’s formula, we can easily
verify that Kν → π as ν → ∞, which corresponds to the case of the normal distribution.
For ν = 3, it is observed that K3 = π2/2 = 4.929 since Γ(1/2) =

√
π. Thus, in this case,

θ̂ML is minimax for k ≤ 5 and not minimax for k ≥ 6.

[2] Double exponential (or Laplace) distribution. When V has an exponential
distibution mean 2 with the density g(v) = 2−1 exp{−v/2}, Andrews and Mallows (1974)
showed that the resulting distribution is a double exponential or Laplace distribution with
the density

f(x− µi) = 2−1 exp{−|x− µi|}.
See also West (1987), who extended the result to the exponential power family. In this
case, it is seen that E[V ] = 2 and E[V 1/2] =

√
π/2, which yields

πE[V ]/{E[V 1/2]}2 = 4.

Hence, the condition (3.2) becomes k ≤ 5.

[3] Logistic distribution. When V has the density function

g(v) =
∞∑
j=1

(−1)j−1j2 exp{−j2v/2},

Andrews and Mallows (1974) showed that the resulting distribution is the logistic distri-
bution

f(x− µi) = exp{−(x− µi)}[1 + exp{−(x− µi)}]−2.

In this case, it can be seen from Abramowitz and Stegun (1972, pp. 808) that

E[V ] =4
∞∑
j=1

(−1)j−1/j2 = π2/3,

E[V 1/2] =
√
2π

∞∑
j=1

(−1)j−1/j =
√
2π log(2),

which yields

πE[V ]/{E[V 1/2]}2 = π2

6[log(2)]2
= 3.424.

Hence, the condition (3.2) becomes k ≤ 4.
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3.3 Symmetric unimodal distributions

In this section, we study symmetric unimodal distributions and show that the uniform
distribution on [−a, a] is least favorable in the sense that the value of k giving minimaxity
in Proposition 2.2 (and 3.1) is the minimum among all symmetric unimodal distributions,
and that this value is given by 11/3. Hence for k ≤ 3, θ̂TR is minimax for all linear
combinations for all symmetric unimodal distributions. Here is the formal result.

Proposition 3.3 Assume that the assumptions of Proposition 2.2 (and 3.1) are satisfied,
and in addition that all f(z) is symmetric and unimodal. Then,

(a) If k ≤ 2L(0)/{B(0)}2 + 1 = 2E[X2]/{E[|X|]}2 + 1, θ̂TR is minimax for all linear
combinations. The condition is also necessary for minimaxity for the sum of the means.

(b) If X has a uniform distribution on [−a, a], 2E[X2]/{E|X|]}2 + 1 = 11/3.
(c) For any symmetric unimodal distribution, 2E[X2]/{E|X|]}2 + 1 ≥ 11/3, so that

the uniform distribution is least favorable in the sense indicated above.

Proof. To prove part (a), note that for symmetric unimodal distributions 2L(0) =
E[X2]/2, and B(0) = E[|X|]/2, so that the result follows. This calculation is also true
for symmetric distributions for the estimator constructed from the truncated version of
the Xi ’s even though this estimator need not be the MLE.

Part (b) follows from part (a) by direct calculation since for a uniform distribution on
[−1, 1], E[X2] = 1/3, and E[|X|] = 1/2. We note that the result is independent of the
scale parameter.

Part (c) follows since all symmetric unimodal densities are scale mixtures of uni-
form distributions on [−v, v], i.e., the distribution of X|V has the uniform distribution
on [−V, V ] and V has a density, g(v) on v > 0. It follows that E[X2] = E[E[X2|V ] =
E[V 2]/3, and E[|X|] = E[E[|X||V ]] = E[V ]/2. Hence, 2L(0)/{B(0)}2 = 2E[X2]/{E[|X|]}2 =
(8/3)E[V 2]/{E[V ]}2 ≥ 8/3, since for positive random variables, E[V 2]/{E[V ]}2 ≥ 1.
Therefore, 2L(0)/{B(0)}2 + 1 ≥ 11/3, which completes the proof.

It is interesting to compare the results of section 3.2 and this section. In general the
smallest value of k that guarantees minimaxity for unimodal symmetric densities is k = 3,
(attained for the uniform) while for scale mixtures of normals, it is k = 4 (attained for the
normal itself). Note also since scale mixtures of normals are symmetric and unimodal,
part (a), allows an alternative calculation of k.

3.4 Exponential distributions

LetX1, . . . , Xk be mutually independent random variables such thatXi has an exponential
distribution with location parameter µi, namely, the density function of Xi has the form
fi(xi − µi) = exp{−(xi − µi)}I(xi > µi) for µi > 0, where I(xi > µi) is the indicator
function. It is noted that∫ b

a

z exp{−z}dz =[−(z + 1) exp{−z}]ba,∫ b

a

z2 exp{−z}dz =[−(z2 + 2z + 2) exp{−z}]ba.
(3.3)

12



Then ci = E[Xi − µi] = 1, and an unbiased estimator of µi is given by µ̂U
i = Xi − 1 with

variance E[(Xi − 1 − µi)
2] = 1. Since µi > 0, it is reasonable to consider the truncated

estimator µ̂TR
i = max(Xi − 1, 0). Noting that Xi > µi, we can see that µ̂TR

i = Xi − 1 if
µi > 1, but µ̂TR

i ≥ Xi−1 if 0 ≤ µi ≤ 1. The truncated estimator of the linear combination
θ = µ1 + · · ·+ µk is

θ̂TR = max(X1 − 1, 0) + · · ·+max(Xk − 1, 0).

From Lemma 2.1, the bias and mean squared error of µ̂ML
i are expressed as

B(µi) =−
∫ 1−µi

0

(z − 1 + µi) exp{−z}dzI(0 < µi < 1)

={exp{µi − 1} − µi}I(0 < µi < 1),

M(µi) =1−
∫ 1−µi

0

(z − 1)(z − 1 + µi) exp{−z}dzI(0 < µi < 1)− µiB(µi)

=1− (1− µi){1 + µi − 2 exp{µi − 1}}I(0 < µi < 1).

Then, B(0) = 1/e, limµi→∞ B(µi) = 0. Since L(µi) = 2−1(1 − µi){1 + µi − 2 exp{µi −
1}}I(0 < µi < 1), it is observed that L(0) = (1 − 2/e)/2 and limµi→∞ L(µi) = 0. Thus,
2L(0)/{B(0)}2 = e(e− 2) = 1.9524, and from Propositions 2.2 and 2.3, it follows that in
the estimation of θ =

∑k
i=1 µi, a necessary and sufficient condition for the minimaxity of

the truncated estimator θ̂TR is that k ≤ e(e− 2) + 1 = (e− 1)2. That is, θ̂TR is minimax
for k ≤ 2 and not minimax for k ≥ 3. If k ≤ 2, θ̂TR is also minimax for any linear
combination.

4 Extensions to estimation of restricted scale param-

eters

In this section, we treat the estimation of product and sum of the restricted scale param-
eters, and investigate whether a similar phenomenon as studied in the previous sections
still holds.

4.1 Case of k = 1

Let X be a non-negative random variable having density function σ−1f(x/σ) with σ > 1.
When the scale parameter σ is estimated relative to the quadratic loss function (σ̂/σ−1)2,
the scale equivariant estimator of σ is given by

σ̂C = cX.

The best scale equivariant and minimax estimator is σ̂M = cMX, and the unbiased
estimator is σ̂U = cUX, where

cM = E[Z]/E[Z2], cU = 1/E[Z]
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for Z = X/σ. Since σ > 1, it is reasonable to consider the truncation of cX at one,
namely, the truncated estimator

σ̂TR = max{cX, 1}.

Let A(σ) = E[(σ̂TR/σ)2]−E[(cX/σ)2] and B(σ) = E[σ̂TR/σ]−E[cX/σ]. We begin with
showing the following lemma which will be helpful for investigating properties of the risk
functions.

Lemma 4.1 (1) A(σ) and B(σ) are expressed as

A(σ) =
1

σ2

∫ 1/cσ

0

(1− c2σ2z2)f(z)dz = 2c2
∫ 1/cσ

0

zF (z)dz,

B(σ) =
1

σ

∫ 1/cσ

0

(1− cσz)f(z)dz = c

∫ 1/cσ

0

F (z)dz,

for F (z) =
∫ z

0
f(x)dx.

(2) A(σ), B(σ), σB(σ), 2B(σ)− A(σ) and σA(σ)/B(σ)− 2σ are decreasing in σ for
σ > 1, and limσ→∞ A(σ) = limσ→∞ B(σ) = 0.

(3) A(1) > B(1) for c = cM = E[Z]/E[Z2].

Proof. The part (1) can be verified by using integration by parts. For the part
(2), the monotonicity of A(σ) and B(σ) can be seen since A′(σ) = −2σ−3F (1/cσ) and

B′(σ) = −σ−2F (1/cσ). Also from the equality given in (1), B(σ)σ =
∫ 1/cσ

0
(1−cσz)f(z)dz,

so that (B(σ)σ)′ = −c
∫ 1/cσ

0
zf(z)dz < 0, which shows that σB(σ) is decreasing. Since

2B′(σ) − A′(σ) = 2σ−3F (1/cσ)(1 − σ) < 0 for σ > 1, it follows that 2B(σ) − A(σ) is
decreasing for σ > 1. Leting g(σ) = σA(σ)/B(σ)− 2σ, we can see that

g(σ) = 2cσ

∫ 1/cσ

0
zF (z)dz∫ 1/cσ

0
F (z)dz

− 2σ,

and

g′(σ) =2c

∫ 1/cσ

0
zF (z)dz∫ 1/cσ

0
F (z)dz

− 2

− 2

σ

(1/cσ)F (1/cσ)
∫ 1/cσ

0
F (z)dz − F (1/cσ)

∫ 1/cσ

0
zF (z)dz

(
∫ 1/cσ

0
F (z)dz)2

=2

∫ 1/cσ

0
(cz − 1)F (z)dz∫ 1/cσ

0
F (z)dz

+
2

σ

F (1/cσ)
∫ 1/cσ

0
(z − 1/cσ)F (z)dz

(
∫ 1/cσ

0
F (z)dz)2

,

which is negative since σ > 1. Thus, g(σ) is decreasing in σ.
Finally, for c = E[Z]/E[Z2], we show the inequality A(1) > B(1), which is rewritten

as h(d) > 0 where h(d) = 2
∫ d

0
zF (z)dz − d

∫ d

0
F (z)dz for d = 1/c. Note that h′(d) =

dF (d)−
∫ d

0
F (z)dz and h′′(d) = df(d). Since h′′(d) > 0 and h′(0) = 0, it is observed that
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h′(d) ≥ 0, so that h(d) is increasing in d. Since h(0) = 0, it is shown that h(d) > 0 for
d > 0, proving the inequality given in the part (3).

The risk function of the truncated estimator σ̂TR is expressed as

R(σ, σ̂TR) =E[(σ̂TR/σ)2]− 2E[σ̂TR/σ] + 1

=E[c2Z2] + A(σ)− 2E[cZ]− 2B(σ) + 1

=R(σ, σ̂C) + A(σ)− 2B(σ).

From Lemma 4.1, it follows that A(σ)−2B(σ) is increasing in σ > 1 and limσ→∞{A(σ)−
2B(σ)} = 0, which means that σ̂TR dominates σ̂C .

Proposition 4.1 For any positive constant c, the estimator σ̂C = cX is dominated by
the truncated estimator σ̂TR = max{cX, 1}.

4.2 Case of k ≥ 2

We now investigate whether the truncated estimators dominate the non-truncated estima-
tors in the case of k ≥ 2. Let X1, . . . , Xk be mutually independent random variables where
Xi has density σ−1

i fi(xi/σi) for σi > 1, and distribution function
∫ xi

0
σ−1
i fi(u/σi)du =

Fi(xi/σi) for Fi(x) =
∫ x

0
fi(z)dz. We consider two problems of estimating the product

and the sum of the restricted scale parameters, given by

η =σ1 × σ2 × · · · × σk,

θ =σ1 + σ2 + · · ·+ σk,

where estimators η̂ and θ̂ are evaluated relative to the quadratic loss functions (η̂/η− 1)2

and (θ̂/θ − 1)2.

We first treat estimation of the product η. Along the line discussed in the case of k = 1,
we consider the estimator σ̂C

i = ciXi and the truncated estimator σ̂TR
i = max{ciXi, 1} for

σi, which lead to the estimators

η̂C =σ̂C
1 × σ̂C

2 × · · · × σ̂C
k ,

η̂TR =σ̂TR
1 × σ̂TR

2 × · · · × σ̂TR
k .

Proposition 4.2 The product of the truncated estimators η̂TR dominates the non-truncated
estimator η̂C if and only if k and the ci’s satisfy the inequality∏k

i=1{c2iE[Z2
i ] + Ai(1)} −

∏k
i=1{c2iE[Z2

i ]}∏k
i=1{ciE[Zi] +Bi(1)} −

∏k
i=1{ciE[Zi]}

≥ 2, (4.1)

where Ai(σi) = E[(σ̂TR
i /σi)

2]− E[(ciZi)
2] and Bi(σi) = E[σ̂TR

i /σi]− E[ciZi].

Proof. From the independence of X1, . . . , Xk, the risk function of η̂TR is written as

R(σ, η̂TR) =
k∏

i=1

{c2iE[Z2
i ] + Ai(σi)} − 2

k∏
i=1

{ciE[Zi] + Bi(σi)}+ 1, (4.2)

15



for σ = (σ1, . . . , σk). Differentiating R(σ, η̂TR) with respect to σj gives that

∂

∂σj

R(σ, η̂TR) =
2

σ3
j

Fj(1/cjσj)
{
σj

∏
i ̸=j

{ciE[Zi] + Bi(σi)} −
∏
i̸=j

{c2iE[Z2
i ] + Ai(σi)}

}
,

which is negative for σj < σ∗
j and positive for σj > σ∗

j , where

σ∗
j =

∏
i̸=j

{c2iE[Z2
i ] + Ai(σi)}/

∏
i̸=j

{ciE[Zi] +Bi(σi)}.

This implies that

R(σ, η̂TR) ≤ max{ lim
σj→1

R(σ, η̂TR), lim
σj→∞

R(σ, η̂TR)}.

Repeating this argument shows the inequality

R(σ, η̂TR) ≤ max{ lim
σj→1,j=1,...,k

R(σ, η̂TR), lim
σj→∞,j=1,...,k

R(σ, η̂TR)}.

Since limσj→∞,j=1,...,k R(σ, η̂TR) = R(σ, η̂C), we can see that the condition (4.1) is a
necessary and sufficient condition for η̂TR to dominate η̂C .

In the case of f1(z) = · · · = fk(z) = f(z) and c1 = · · · = ck = c, the condition (4.1)
can be simplified as

[1 + A(1)/{c2E[Z2]}]k − 1

[1 + B(1)/{cE[Z]}]k − 1
≤ 2

(
E[Z]

cE[Z2]

)k

, (4.3)

where A(σ) and B(σ) are given in (1) of Lemma 4.1 and Z is a random variable having
the density f(z). When σ̂C

i = cMXi is the best scale equivariant estimator, namely,
cM = E[Z]/E[Z2], the condition (4.3) can be described as

[1 + A(1)/{cME[Z]}]k − 1

[1 +B(1)/{cME[Z]}]k − 1
≤ 2, (4.4)

or [
1 + A(1)/{cME[Z]}
1 +B(1)/{cME[Z]}

]k
1− [1 + A(1)/{cME[Z]}]−k

1− [1 +B(1)/{cME[Z]}]−k
≤ 2. (4.5)

From (3) of Lemma 4.1, it is noted that A(1) > B(1), so that the l.h.s. of (4.5) exceeds
2 for large k. Thus, we get the following proposition.

Proposition 4.3 Assume that f1(z) = · · · = fk(z) = f(z) and c1 = · · · = ck = c. The
best scale equivariant estimator of η is given by η̂C =

∏k
i=1(c

MXi) for cM = E[Z]/E[Z2],
and the condition (4.4) or (4.5) is a necessary and sufficient condition for the truncated
estimator η̂TR to dominate η̂C. Further, η̂TR does not dominate η̂C for large k.

We next treat the estimation of the sum of the restricted scales θ =
∑k

i=1 σi. For
σ̂C
i = ciXi and σ̂TR

i = max{ciXi, 1}, we consider the two estimators

θ̂C =σ̂C
1 + σ̂C

2 + · · ·+ σ̂C
k ,

η̂TR =σ̂TR
1 + σ̂TR

2 + · · ·+ σ̂TR
k .
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Proposition 4.4 Assume that the constants ci’s satisfy that ciE[Zi] ≤ 1 for 1 = 1, . . . , k.
Then, the sum of the truncated estimators θ̂TR dominates the non-truncated estimator θ̂C

if k and the ci’s satisfy the inequalities

k∑
j ̸=i

{Bj(1) + 2cjE[Zj]− 2} ≤ 2− Ai(1)

Bi(1)
, (4.6)

for i = 1, . . . , k.

Proof. The risk function of the truncated estimator θ̂TR is

R(σ, θ̂TR) =E[{
k∑

i=1

(σ̂TR
i − σi)}2]/θ2

=
k∑

i=1

σ2
iE[(σ̂TR

i /σi − 1)2]/θ2

+
k∑

i=1

k∑
j ̸=i

σiσjE[σ̂TR
i /σi − 1]E[σ̂TR

j /σj − 1]/θ2

=
k∑

i=1

σ2
i {c2iE[Z2

i ] + Ai(σi)− 2ciE[Zi]− 2Bi(σi) + 1}/θ2

+
k∑

i=1

k∑
j ̸=i

σiσj{ciE[Zi] +Bi(σi)− 1}{cjE[Zj] +Bj(σj)− 1}/θ2, (4.7)

which is less than or equal to R(σ, θ̂C) if and only if for any σi > 1, i = 1, . . . , k,

k∑
i=1

σiBi(σi)
{
σi
Ai(σi)

Bi(σi)
− 2σi +

k∑
j ̸=i

σj{Bj(σj) + 2cjE[Zj]− 2}
}
≤ 0. (4.8)

Note that cjE[Zj] − 1 ≤ 0 from the condition of ci’s given in Proposition 4.4. From the
monotonicity properties of σiAi(σi)/Bi(σi)− 2σi and σiBi(σi) given in (2) of Lemma 4.1,
it follows that

σi
Ai(σi)

Bi(σi)
− 2σi ≤

Ai(1)

Bi(1)
− 2,

σj{Bj(σj) + 2cjE[Zj]− 2} ≤ Bj(1) + 2cjE[Zj]− 2.

Hence, the condition (4.8) holds if for i = 1, . . . , k,

Ai(1)

Bi(1)
− 2 +

k∑
j ̸=i

{Bj(1) + 2cjE[Zj]− 2} ≤ 0,

which is given in (4.6).
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It is noted that the inequality (4.8) is a necessary and sufficient condition for θ̂TR to
dominate θ̂C . We thus derive the necessary condition given by

k∑
i=1

Bi(1)
{Ai(1)

Bi(1)
− 2 +

k∑
j ̸=i

{Bj(1) + 2cjE[Zj]− 2}
}
≤ 0, (4.9)

which is weaker than the sufficient condition given in Proposition 4.4.

As described in the case of k = 1, the best scale equivariant and minimax estimator
of σi is σ̂

M
i = cMi Xi for c

M
i = E[Zi]/E[Z2

i ], and the unbiased estimator is σ̂U = cUi Xi for
cUi = 1/E[Zi]. It is noted that both of cMi and cUi satisfy the assumption ciE[Zi] ≤ 1 in
Proposition 4.4.

In the case of f1(z) = · · · = fk(z) = f(z) and c1 = · · · = ck = c, the necessary
condition (4.9) can be simplified as

A(1)

B(1)
− 2 + (k − 1){B(1) + 2cE[Z]− 2} ≤ 0, (4.10)

which is identical to the sufficient condition given in Proposition 4.4.

Proposition 4.5 Assume that f1(z) = · · · = fk(z) = f(z) and c1 = · · · = ck = c. For
the constant c satisfying cE[Z1] ≤ 1, the sum of the truncated estimators θ̂TR dominates
the non-truncated estimator θ̂C if and only if k satisfies the condition (4.10).

4.3 Examples

We here provide two examples of exponential and uniform distributions. We first treat
the case of exponential distributions. Let X1, . . . , Xk be mutually independent random
variables such that Xi has an exponential distribution with scale parameter σi, namely,
the density function of Xi has the form σ−1fi(xi/σ) = σ−1 exp{−xi/σi}I(xi > 0) for
σi > 1. Moments and integrals of the exponential distribution can be computed by using
(3.3). Then, E[Z] = 1, E[Z2] = 2 and

A(σ) =(1/σ + 1/2)e−2/σ + 1/σ2 − 1/2,

B(σ) =e−2/σ/2 + 1/σ − 1/2.

Thus, A(1) = (1 + 3e−2)/2 and B(1) = (1 + e−2)/2 for Z = X1/σ1. Note that cM =
E[Z]/E[Z2] = 1/2 and cU = E[Z] = 1.

Concerning the estimation of the product of σi’s, it is noted that

[1 + A(1)/{cME[Z]}]k − 1

[1 +B(1)/{cME[Z]}]k − 1
=

(2 + 3e−2)k − 1

(2 + e−2)k − 1
.

Then from Proposition 4.2 and the condition (4.4), it follows that
∏k

i=1max{cMXi, 1}
dominates

∏k
i=1(c

MXi) if and only if (2+ 3e−2)k − 1 ≤ 2(2+ e−2)k − 2. Investigating this
inequality numerically, we can see that this condition is satisfied for k ≤ 5, while it does
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not hold for k ≥ 6. From (4.2), the MSE function of the truncated estimator of the best
scale equivariant estimator η̂TR is written as

MSE(σ, η̂TR) =
[
(1/2 + A(σ))k − 2(1/2 +B(σ))k + 1

]
σ2k,

in the case of σ1 = · · · = σk = σ. The numerical behavior of the ratio of the MSE’s,
MSE(σ, η̂TR)/MSE(σ, η̂C), is illustrated in Figure 2 for k = 1, 5, 6, 10 and 1 < σ < 5.
From this figure, we can observe that the truncated estimator does not dominate the
non-truncated estimator for k ≥ 6.

For the estimation of the sum of σi’s, from (4.10), the necessary and sufficient condition
is given by

k − 1

2
(1 + e−2 + 4c− 4) ≤ 1− e−2

1 + e−2
.

For c = cM = 1/2, we have 1 + e−2 + 4cM − 4 = e−2 − 1 < 0, so that
∑k

i=1max{cMXi, 1}
always dominates

∑k
i=1(c

MXi), which is the sum of the best scale equivariant estimators.

For c = cU = 1, 1+e−2+4cU −4 = 1+e−2 > 0, so that
∑k

i=1max{cUXi, 1} dominates the

unbiased estimator
∑k

i=1(c
UXi) if and only if k− 1 ≤ 2(1− e−2)/(1+ e−2)2. Investigating

the inequality numerically, we can see that
∑k

i=1max{cUXi, 1} dominates
∑k

i=1(c
UXi)

for k = 1, 2, while this dominance does not hold for k ≥ 3. From (4.7), in the case of
σ1 = · · · = σk = σ, the MSE of the truncated estimator for the unbiased estimator is
written as

R(σ, θ̂TR) =
[
A(σ)− 2B(σ) + 1 + 2(k − 1){B(σ)}2

]
kσ2.

The ratio of the MSE’s, MSE(σ, θ̂TR)/MSE(σ, θ̂C), is illustrated in Figure 3 for k =
1, 2, 3, 5 and 1 < σ < 5.

We next treat the case of uniform distributions, namely, let X1, . . . , Xk be mutually
independent random variables such that Xi has a uniform distribution with the density
function σ−1f(x/σ) for f(z) = I(0 < z < 1) where σi > 1. Since E[Z] = 1/2 and E[Z2] =
1/3, we have cM = 3/2 and cU = 2. Also note that A(1) = 2/(3c) and B(1) = 1/(2c).

Concerning the estimation of the product of σi’s, it is noted that

[1 + A(1)/{cME[Z]}]k − 1

[1 + B(1)/{cME[Z]}]k − 1
=

(1 + 16/27)k − 1

(1 + 4/9)k − 1
.

Then from Proposition 4.2 and the condition (4.4), it follows that
∏k

i=1max{cMXi, 1}
dominates

∏k
i=1(c

MXi) if and only if (1 + 16/27)k − 1 ≤ 2(1 + 4/9)k − 2. Since this
inequality is satisfied for k ≤ 6, the dominance result holds for k ≤ 6, while it does not
hold for k ≥ 7.

For the estimation of the sum of σi’s, from (4.10), the necessary and sufficient condition
is given by

(k − 1)((2c)−1 + c− 2) ≤ 2/3.

For c = cM = 3/2, we have (2c)−1 + c − 2 = −1/6, thus
∑k

i=1max{cMXi, 1} always

dominates
∑k

i=1(c
MXi). For c = cU = 2, (2c)−1+ c−2 = 1/4, so that

∑k
i=1max{cUXi, 1}

dominates
∑k

i=1(c
UXi) if and only if k−1 ≤ 8/3 or k ≤ 3, while this dominance property

does not hold if k − 1 > 8/3 or k ≥ 4.
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Figure 2: Ratio of MSE’s of the truncated estimator η̂TR and the best scale equivariant estimator for
k = 1, 5, 6, 10 and 1 < σ < 5
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Figure 3: Ratio of MSE’s of the truncated estimator θ̂TR and the unbiased estimator for k = 1, 2, 3, 5
and 1 < σ < 5
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5 Concluding Remarks

In this paper, we address the problem of estimation of a linear combination of restricted
location parameters where estimators are evaluated through MSE. The linear combination
of the best location equivariant estimators is a minimax estimator with a constant MSE,
and it is used as a benchmark estimator. Since each location parameter is restricted to
the positive real line, it is reasonable to consider the linear combination of the truncated
estimators. Our interest is to investigate whether the restricted estimator remain minimax
or not. In this paper, we have derived a necessary and sufficient condition for the restricted
estimator to be minimax, and have examined this condition for some specific distributions.
Especially, we have an interest in the minimaxity of the MLE in the estimation of the sum
of the restricted means in k normal distributions, and we have established that the MLE is
not minimax for k ≥ 5, while it is still minimax for k ≤ 4. This result corresponds to the
result of Kubokawa (2010) who showed that the generalized Bayes estimator against the
uniform prior over the restricted space is not minimax for k ≥ 2. Thus, in the estimation
of the sum of the restricted normal means, the MLE as well as the generalized Bayes
estimator are not minimax for large k. It has been also shown that such a decision-
theoretic phenomenon remains true in the estimation of the product and the sum of the
restricted scale parameters.

In the context of the simultaneous estimation of k restricted normal means, Hartigan
(2004) established that the generalzed Bayes estimator against the uniform prior over the
restricted parameter space is still minimax, and it can be also shown that the MLE is
minimax. However, the minimaxity of the generalized Bayes estimator and the MLE do
not hold for large k in the context of estimation of the sum of the restricted means. This
may be an interesting decision-theoretic phenomenon, and it is conjectured that such a
property still hold for distributions other than the location and scale families treated in
this paper.
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