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Abstract

In this paper, we investigate equilibrium cycles in dynamic general equilibrium models
with cash-in-advance constraints. Our findings are two-fold. First, in such models, if
an equilibrium cycle exists, then there also exists a continuum of equilibrium cycles in
its neighborhood. Second, the limit cycle, to which a dynamic path converges, varies
continuously according to the initial distribution of the money holdings. Thus, temporary
shocks that affect the initial distribution have permanent effects in such models; that is,
such models exhibit hysteresis. Furthermore, we also explore the logic behind the results.
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1 Introduction

In this paper, we investigate equilibrium cycles in dynamic general equilibrium models with cash-

in-advance constraints, wherein each agent’s money holding varies over time. We first show that

a continuum of equilibrium cycles exists in a specific model with cash-in-advance constraints,

and that the limit cycle, to which a dynamic path converges, varies continuously according to the

initial distribution of money holdings. Thus, temporary shocks that affect the initial distribution

have permanent effects on such models; that is, these models exhibit hysteresis. Then, using a

general framework, we also explore the logic behind the results.
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Our finding on a continuum of equilibrium cycles is new to the literature on this subject.

In optimal growth models, a continuum of equilibrium cycles has never been found as a nonde-

generate case, although a finite number of cycles have been observed. (See, for example, Mitra

and Nishimura [12].) In random matching models with fiat money, a continuum of stationary

(non-cycle) equilibria has been found in both specific and general models. (See, for example,

Green and Zhou [4], [5], Kamiya and Shimizu [6], Matsui and Shimizu [11], and Zhou [13].)1

However, even in such models, a continuum of equilibrium cycles has never been found.

Our finding on hysteresis is also new to the literature on monetary economics.2 In monetary

models with Walrasian markets, there typically exist a finite number of stationary equilibria.

Hysteresis cannot be found in the case of unique stationary equilibrium; that is, if the equilibrium

is stable, then the dynamic paths converge to the stationary equilibrium from any initial point.

In the case of multiple equilibria, only large shocks at the initial point can change the limit

point, and thus, hysteresis cannot be found for a small shock. In a random matching model

with money, Green and Zhou [5] find a continuum of stationary equilibria, and show that any

stationary equilibrium can be reached from any initial point; that is, there is indeterminacy in

dynamic paths. Therefore, in their model, any temporary shock does not have an effect.

Blanchard and Summers [2] demonstrate that unemployment hysteresis arises from insider-

dominated wage determination. In their model, they assume that wage determination is domi-

nated by inside workers. Hysteresis arises since wages depend on the number of inside workers,

which in turn depends on past employment. On the other hand, Baldwin [1] shows that hysteresis

arises from large exchange rate swings under the assumption that market entry costs are sunk.

A large temporary rise in the exchange rate induces foreign firms to enter the market. When

the exchange rate falls to the original level, some new entrants remain in the market because of

sunk costs. These logics are clearly very different from ours; we demonstrate that if fiat money

has value and an equilibrium cycle exists, then hysteresis arises.

In this paper, we first show that in a specific model, there exists a continuum of equilibrium

cycles that exhibits hysteresis. Then, using a general model, we explore the logic behind the

results. In this model, there is a continuum of agents and the number of goods is L ≥ 1,

and in each time period, a Walrasian market with cash-in-advance constraints is open for each

good. Each consumer is characterized by a net demand function, z(η, p1, p2, . . . ), where η is the
1Kamiya and Shimizu [8] also construct models in which centralized auction markets have a continuum of sta-

tionary equilibria, but Walrasian markets with cash-in-advance constraints have a unique stationary equilibrium.
2For a survey on hysteresis in economics, see Franz [3] among others.
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consumer’s money holding at the beginning of the period and pt ∈ RL
++, t = 1, 2, . . . , is a price

vector in period t. In other words, z(η, p1, p2, . . . ) ∈ RL is the first period net consumption

vector when she maximizes a utility stream under some conditions, including budget constraints

and cash-in-advance constraints. We demonstrate that if an equilibrium cycle exists, then there

is a continuum of equilibrium cycles under some conditions. We also show that if a dynamic

path converges to an equilibrium cycle from an initial money holdings distribution, then under

some conditions, the limit cycle continuously depends on the initial money holdings. Thus, a

temporal policy shock that affects the initial money holdings distribution also has a permanent

effect; that is, hysteresis occurs.

In Section 2, we first investigate a specific model, and show that a continuum of equilibrium

cycles exists and that the limit cycle continuously depends on the initial money holdings distri-

bution. Then, in Section 3, even in a rather general framework, we obtain the same results. In

Section 4, we discuss some specific assumptions in the model in Section 2. Finally, we conclude

the paper in Section 5.

2 A Model with Cycles

We use a simple framework that is similar to Kiyotaki and Wright [9]. Time is discrete, denoted

by t = 1, 2, . . . . There is a continuum of agents, whose measure is one. There are T ≥ 3 types of

agents with equal fractions and the same number of types of goods. We assume that the goods

are perishable and divisible. A type τ agent can produce good τ + 1 for τ = 1, . . . , T − 1, and

a type T agent can produce good 1. Throughout this section, we assume that each agent can

produce just one unit of her production good with production cost c ≥ 0 in each time period.3

A type τ agent obtains utility U(q) only when she consumes q amount of good τ . In this section,

we consider a linear utility function U(q) = aq, where a > c. Let δ ∈ (0, 1) be the discount

factor. Our framework includes divisible and durable fiat money, whose nominal stock is M > 0.

At each time period, a competitive spot market is open. Purchases of goods are subject to

a cash-in-advance constraint. We also assume a participation constraint : in each time period an

agent can visit only one market; that is, she must choose to be either a buyer or a seller in each

time period. χ = 1 means that she only consumes her consumption good, and χ = 0 means that
3In this paper, we distinguish between the terms “period” and “time period”; “Period” means a period in

a cycle, while “time period” means a period in an entire sequence. For example, when a sequence of prices is
(p1, p2, p3, p4, p5, p6, p7, p8, . . . ) = (pa, pb, pc, pd, pc, pd, pc, pd, . . . ), then the price in the second time period is pb

and the price in the second period in the cycle is pd.
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she only produces her production good. Each agent solves the following optimization problem

with respect to (χ1, q1), (χ2, q2), . . . :

max
∞∑

t=1

δt−1(χtU(qt)− (1− χt)c)

s.t. χtp̃tqt + ηt+1 = ηt + (1− χt)p̃t, t = 1, 2, . . . ,

χtp̃tqt ≤ ηt, ηt ≥ 0, t = 1, 2, . . . ,

η1 ≥ 0 given,

where ηt is the agent’s money holding at the beginning of time period t, p̃t is the given price of

her consumption good at time period t, and qt is the amount of consumption at time period t.

Note that the agent can choose to “do nothing” by choosing (χ, q) = (1, 0). A sequence of price

(p̃1, p̃2, . . . ) is said to be an equilibrium price vector if each consumer solves the above problem

and all spot markets clear. Below, we focus on equilibria such that the consumers’ policies and

prices of goods are symmetric with respect to types; that is, p̃t and the optimum policies are the

same across types.

For simplicity, we make two assumptions: there is a participation constraint, and each agents

can produce only one unit of her production good. In Section 4 and Appendix, we show that

these assumptions are not necessary for obtaining the same results.

2.1 Equilibrium with a 2-Period Cycle

Here, we demonstrate there is a continuum of 2-period equilibrium cycles; that is, the equilibrium

price vector satisfies p̃t = p̃t+2 for t = 1, 2, . . . and money holdings of each agent alternate between

η0 and η1, or η′0 and η′1, where η0 and η′0 are money holdings in even periods, and η1 and η′1 are

money holdings in odd periods. That is, in even periods, some agents have η0 and the others

have η′0, and in odd periods, the former have η1, and the latter have η′1. Moreover, the prices

are the same in even (odd) periods.

Theorem 1 Suppose −1 + δ + δ2 < c
a < δ. Then, a continuum of 2-period equilibrium cycles

exists.

Proof:

We first construct a stationary equilibrium; that is, the case that p̃t is the same for all t. We
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then show that there is a continuum of 2-period equilibrium cycles in a neighborhood of the

stationary equilibrium.

We consider the following candidate for stationary equilibria:

• There exists a real number p > 0, such that (p, p, . . . ) is an equilibrium price vector.

• The policy of each agent is as follows: there exists η̄ ∈ (0, p), such that

– an agent with η ∈ [0, η] sells her production good, and

– an agent with η ∈ (η,∞) spends all her money.

• The stationary money holdings distribution is as follows:

– the measure of agents without money is 1/2, and

– the measure of agents with p is 1/2.

• The value function is continuous.

Since half of the agents have p amount of money,

M =
1
2
p

holds, then

p =
2
M

.

Since agents with p amount of money spend all of it, and agents without money want to sell,

the market clearing condition for goods is

1
2

=
1
2p

p
,

where the LHS is the supply of goods and the RHS is the demand for goods. Clearly, it is an

identity.

By the above policy, the value function is expressed as

V (η) =

{
−c + δV (η + p), for η ∈ [0, η̄] ,
a
pη + δV (0), for η ∈ (η̄,∞) .
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Then, we obtain

V (η) =

{
1

1−δ2 (aδ − c) + aδ
p η, for η ∈ [0, η̄] ,

δ
1−δ2 (aδ − c) + a

pη, for η ∈ (η̄,∞) .

The continuity of V at η implies

η =
p

a(1− δ2)
(aδ − c).

Clearly, η ∈ (0, p) follows from

−1 + δ + δ2 <
c

a
< δ. (1)

Next, we show that the above policy is indeed optimal by stating the following inequality:

• V (η) ≥ 0 for η.

• V (η) ≥ a
pη′ + δV (η − η′) for η ∈ [0, η] and η′ ∈ [0, η].

• V (η) ≥ −c + δV (η + p) for η ∈ (η,∞).

• V (η) ≥ a
pη′ + δV (η − η′) for η ∈ (η,∞) and η′ ∈ [0, η) .

By (1), we can easily verify that the above conditions are satisfied with strict inequalities. Thus,

we have shown that the above candidate is indeed a stationary equilibrium under (1).

Next, we demonstrate that there exists is a continuum of 2-period equilibrium cycles in a

neighborhood of the stationary equilibrium. We denote the price in even periods by p0 and that

in odd periods by p1. Let h0 be the measure of agents with p0 amount of money at the beginning

of odd periods and with no money at the beginning of even periods, and let h1 be the measure

of agents with no money at the beginning of odd periods and with p1 amount of money at the

beginning of even periods. Clearly, h0 > 0, h1 > 0 and

h0 + h1 = 1 (2)

must be satisfied.

Since the total amount of money is M ,

M = h0p0 and M = h1p1 (3)
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hold. Thus,

p0 =
M

h0
and p1 =

M

h1

hold. The condition for market clearing is

h0p0 = h1p1.

That is, in even periods, the LHS is the value of supply and the RHS is the total expenditure,

whereas in odd periods, the LHS is the total expenditure and the RHS is the value of sup-

ply. Thus, (3) clearly implies the market clearing condition. In other words, this condition is

redundant. Note that this argument applies to rather general cases. (See Section 3.1.)

We denote the value function in even periods by V0 and that in odd periods by V1. Then, V0

and V1 satisfy

V0(η) =

{
−c + δV1(η + p0), for η ∈ [0, η̄0] ,
a
p0

η + δV1(0), for η ∈ (η̄0,∞) ,

V1(η) =

{
−c + δV0(η + p1), for η ∈ [0, η̄1] ,
a
p1

η + δV0(0), for η ∈ (η̄1,∞) .

Thus, the value functions are expressed as

V0(η) =

{
aδh1−ch0
(1−δ2)h0

+ aδ
p1

η, for η ∈ [0, η̄0],

δ aδh0−ch1
(1−δ2)h1

+ a
p0

η, for η ∈ (η̄0,∞),

V1(η) =

{
aδh0−ch1
(1−δ2)h1

+ aδ
p0

η, for η ∈ [0, η̄1],

δ aδh1−ch0
(1−δ2)h0

+ a
p1

η, for η ∈ (η̄1,∞).

By the continuity of V0 and V1,

η̄0 =
M(aδh2

1 + cδh0h1 − aδ2h2
0 − ch0h1)

ah0h1(h0 − δh1)(1− δ2)
and (4)

η̄1 =
M(aδh2

0 + cδh0h1 − aδ2h2
1 − ch0h1)

ah0h1(h1 − δh0)(1− δ2)
. (5)

Note that if h0 = h1 = 1
2 , then the above is equal to the value function of the stationary

equilibrium. Recall that the optimality conditions are satisfied with strict inequalities under (1).

Therefore, for sufficiently small ε > 0, the above value functions with (h0, h1) = (1
2 − ε, 1

2 + ε)

constitute an equilibrium under (1).

7



2.2 T -Period Equilibrium Cycles where T ≥ 3

We show that the model also has a continuum of T -period equilibrium cycles, where T ≥ 3. As

in Section 2.1, we first construct a stationary equilibrium with T states, and then transform it

into a continuum of T -period equilibrium cycles.

Theorem 2 Suppose δ − (T − 1)(1 − δ2) < c
a < δ − (T − 2)(1 − δ2). Then, a continuum of

T -period equilibrium cycles exists.

Proof:

First, we consider the following candidate for stationary equilibria:

• There exists a real number p > 0, such that (p, p, . . . ) is an equilibrium price vector.

• The policy of each agent is as follows: there exists η̄ ∈ ((T − 2)p, (T − 1)p) such that

– an agent with η ∈ [0, η] sells her production good, and

– an agent with η ∈ (η,∞) spends all her money.

• The support of a stationary money holdings distribution is {0, p, . . . , (T − 1)p}, and the

measure of agents with money holdings ip is 1/T for i = 0, 1, . . . , T − 1.

• The value function is continuous.

The total amount of money must be equal to M , and the goods market must clear; that is,

M =
T−1∑

i=1

ip

T
,

and

p =
(T−1)p

T

(T − 1) 1
T

.

The former condition implies

p =
2

T − 1
M,

and the latter condition is automatically satisfied.
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The value function satisfies

V (η) =

{
−c + δV (η + p), if η ∈ [0, η̄] ,
a
pη + δV (0), if η ∈ (η̄,∞) .

Then, V is obtained as follows:

V (η) =

{
1

1−δ2 (aδ − c) + aδ
p η, if η ∈ [0, η̄] ,

δ
1−δ2 (aδ − c) + a

pη, if η ∈ (η̄,∞) .
(6)

The continuity of V at η implies

η =
p

a(1− δ2)
(aδ − c).

η ∈ ((T − 2)p, (T − 1)p) follows from the following condition:

δ − (T − 1)(1− δ2) <
c

a
< δ − (T − 2)(1− δ2). (7)

The condition for the optimality of the specified policy is as follows:

• V (η) ≥ 0 for any η.

• V (η) ≥ a
pη′ + δV (η − η′) for any η ∈ [0, η) and any η′ ∈ [0, η].

• V (η) ≥ a
pη′ + δV (η − η′) for any η′ ∈ [0, η).

• V (η) ≥ −c + δV (η + p) for any η ∈ (η,∞).

• V (η) ≥ a
pη′ + δV (η − η′) for any η ∈ (η,∞) and any η′ ∈ [0, η) .

By (6), it is easily verified that the above optimality conditions are satisfied with strict inequal-

ities under (7). Thus, we have shown that the specified money holdings distribution and policy

constitutes an equilibrium under (7).

Next, we transform the stationary equilibrium with T states into a continuum of equilibria

with a T -period cycle by perturbing the money holdings distribution. We denote the price at

time period Tn + i (i = 0, . . . , T − 1) by pi. For ease of exposition, let (i) = i mod T . Let hij

be the measure of agents with
∑j

k=1 p(i+T−k) amount of money at time period Tn + i. (Let hi0

be the measure of agents with no money at time Tn + i.4)
4Throughout this paper, let n be the generic symbol of natural numbers including 0.
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The condition for a stationary cycle is that for any i and j, hij = h(i+1).(j+1) = · · · =

h(i+T−1).(j+T−1).5 Therefore, if there is a vector h = (h0, . . . , hT−1) such that

hi > 0, ∀i,
T−1∑

i=0

hi = 1,

hi = h0i = h1.(i+1) = · · · = hT−1.(i+T−1), i = 0, . . . , T − 1,

then the condition holds.

The total money holding must be equal to M :

M =
T−1∑

j=1

hij

j∑

k=1

p(i+T−k), i = 0, . . . , T − 1. (8)

It is verified that (p0, p1, . . . , pT−1) is uniquely determined if each hij is sufficiently close to 1/T .

The condition for market clearing is

pi =
hi.T−1

∑T−1
j=1 p(i+T−j)∑T−2

j=0 hij

, i = 0, . . . , T − 1.

Then, it is easily verified that the conditions for the stationary cycle and (8) imply the condition

for market clearing. In other words, the latter is redundant.

Recall that the optimality condition is satisfied with strict inequalities under (7). Let

hi =

{
1
T − ε−εT

1−ε , if i = 0,
1
T + εi, if i 6= 0.

Then, by redefining η such that the value function is continuous at η, it is easily verified that

the above policy and hi constitute an equilibrium cycle under (7).

Remark 1 For s = 1, 2, . . . , it is verified that there exists a unique δ ∈ (0, 1) such that δ− (s−
1)(1 − δ2) = c

a . We denote such a δ by δ̂s. Then, Theorems 1 and 2 imply that there exists

a continuum of T (≥ 2)-period equilibrium cycles if δ ∈ (δ̂T−1, δ̂T ). Clearly, δ̂1 < δ̂2 < · · · < 1

and lims→∞ δ̂s = 1 hold. Therefore, for almost every δ > c
a , there exists a T ≥ 2 such that

a continuum of T -period equilibrium cycles also exists, and such a T is unique as long as the

equilibria in Theorem 2 are considered.
5We have used hi.j instead of hij when the latter expression may be confusing.
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Remark 2 The indeterminacy in the above theorem is real since the distributions of utilities

are different across ε. However, the welfare that is defined as the weighted average of agents’

values is the same for all ε, since the utility function is linear and the cost function is simple. In

Appendix, we show that the welfare can be different in the case of a strictly convex cost function.

2.3 Dynamic Equilibria Leading to 2-Period Cycles

In this section, we analyze a dynamic path converging to a 2-period equilibrium cycle. Suppose,

at the beginning of period 1, the money holdings distribution is expressed by the following

density function:

f1(η) =





0, η < 0,
1

2M , η ∈ [0, 2M ],
0, η > 2M.

Below, we investigate a path from the above distribution converging to a 2-period cycle. More

precisely, in this subsection and in the next, we show that the limit cycle depends on the initial

distribution; that is, if we slightly perturb the initial distribution, then the limit cycle changes

slightly.

First, we briefly explain the process of obtaining the equilibrium path. As in the previous

section, we focus on the equilibria with the following policy: in each time period, there exists a

threshold η̃ > 0 such that

• an agent with η ∈ [0, η̃] sells her production good, and

• an agent with η ∈ (η̃,∞) spends all her money.

In the first time period, η̃1 ∈ (0, 2M) is a threshold. Note that η̃1 ∈ (0, 2M) will be shown later.

Thus, the money holdings distribution at the beginning of the second time period is such that

agents with measure
∫ 2M
η̃1

1
2M dη do not have any money, and the distribution of money holdings

of the other agents is expressed by the following density function:

f2(η) =

{
1

2M , η ∈ [p̃1, η̃1 + p̃1],
0, otherwise,

where p̃1 is the price in the first time period. In the second time period, we suppose that a

threshold η̃2 is in [0, p̃1). Note that η̃2 ∈ [0, p̃1) will be shown later. Thus, the money holdings

distribution at the beginning of the third time period is such that agents with measure
∫ 2M
η̃1

1
2M dη

11



have p̃2 amount of money and the other agents do not have any money, where p̃2 is the price

in the second time period. We will demonstrate that an equilibrium cycle starts from the third

time period. Thus, from t ≥ 3, in odd periods, agents with measure h0 =
∫ 2M
η̃1

1
2M dη have a

positive amount of money, and in even periods, agents with measure h1 = 1−h0 have a positive

amount of money.

We now obtain the equilibrium path by backward induction. As shown in the previous

subsection, in the cycle, the value function satisfies

V0(0) =
aδh1 − ch0

(1− δ2)h0
, V0(p1) =

ah0 − cδh1

(1− δ2)h1
,

V1(0) =
aδh0 − ch1

(1− δ2)h1
, V1(p0) =

ah1 − cδh0

(1− δ2)h0
,

where p0 and p1 are equilibrium prices in the cycle. p̃2 must be equal to the price in even periods

in the cycle, p0, since in the second time period and in even periods in the cycle, agents with a

positive amount of money use all of it, and the measure of the agent who sells the good is the

same. Thus, the value function in time period 2 satisfies

Ṽ2(0) = V0(0) =
aδh1 − ch0

(1− δ2)h0
, (9)

Ṽ2(η) = V0(η) = a
η

p0
+ δV1(0) =

ah0η

M
+ δ

aδh0 − ch1

(1− δ2)h1
, if η > η̃2. (10)

The value function in time period 1 is expressed as follows:

Ṽ1(η) =

{
−c + δṼ2(η + p̃1), if η ≤ η̃1,

a η
p̃1

+ δṼ2(0), if η > η̃1.

The market clearing condition at time period 1 is

p̃1 =
4M2 − η̃2

1

2η̃1
(11)

since the measure of sellers is
∫ η̃1

0
1

2M dη = η̃1

2M and the total amount of money of the buyers is∫ 2M
η̃1

η
2M dη = 4M2−η̃2

1
4M . Moreover, as shown in the above, the measure of the sellers must be h1;

that is,

η̃1

2M
= h1. (12)

Note that η̃1 ∈ (0, 2M) is automatically satisfied for h1 ∈ (0, 1). Moreover, by the continuity of

Ṽ1 at η = η̃1,

−c + δṼ2(η̃1 + p̃1) = a
η̃1

p̃1
+ δṼ2(0) (13)
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must hold. Substituting (9)–(12) into the above equation, we obtain

2ah2
1

1− h2
1

− δah0h1 − δah0 − ch1

(1− δ2)h1
+ δ

δah1 − ch0

(1− δ2)h0
= 0.

This is equivalent to

ξ(h0, δ) =
c

a
, (14)

where

ξ(h0, δ) =
δ(h2

0 − δh2
1)

(1− δ)h0h1
+ δ(1 + δ)h0h1 − 2(1 + δ)h2

1

1− h2
1

=
−2(1− h0)3 + h2

0(2− h0)(2− 2h0 + h2
0)δ − h0(1− h0)2δ2 − h2

0(1− h0)2(2− h0)δ3

(1− δ)h0(1− h0)(2− h0)
.

Since it is verified that ξ is strictly increasing in h0, and

lim
h0→0

ξ(h0, δ) = −∞ and lim
h0→1

ξ(h0, δ) = ∞,

a unique h0 satisfying (14) exists.

Below, we check the conditions for η̃2, η̄0, and η̄1. First, η̃2 = η̄0 holds, and η̄0 is determined

by (4). Thus, 0 ≤ η̃2 < p̃1 must be satisfied in equilibria since p̃1 < p1. Under (14), this is

equivalent to

δ(h2
1 − δh2

0)
h0h1(1− δ)

≥ c

a
>

δ(h2
1 − δh2

0)− (1− δ2)h0(1− h2
1)(h0 − δh1)

h0h1(1− δ)
(15)

since

1
1 + δ

> h1.

Similarly, η̄1 is determined by (5), and thus, 0 ≤ η̄1 < p0 must be satisfied in equilibria. Under

(14), this is equivalent to

δ(h2
0 − δh2

1)
h0h1(1− δ)

≥ c

a
>

δ(h2
0 − δh2

1)− (1− δ2)h1(h1 − δh0)
h0h1(1− δ)

(16)

since

1
1 + δ

> h0.

Thus, an equilibrium exists if and only if the h0, which is uniquely determined by (14), satis-

fies (16) and (15). We numerically verified that a non-empty set of parameters satisfying the

conditions exists. For example, (h0, δ, a, c) = (.44059, .4, 10, 1) satisfies them.
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2.4 Dynamic Equilibria Leading to 3-Period Cycles

The initial distribution is the same as that in Section 2.3. We investigate dynamic equilibria

leading to a 3-period cycle. More precisely, we focus on the following policy: for some η̃t > 0, t =

1, 2, . . . ,

• an agent with η ∈ [0, η̃t] sells her production good at time period t,

• an agent with η ∈ (η̃t,∞) spends all her money at time period t, and

• each agent spends all her money only once in the first three time periods, say k. Moreover,

she spends all her money at k + 3.

We suppose that the above policy is optimal. By the above, each agent’s money holding becomes

zero only once in the first three periods, and thus, the agents are classified into three groups:

the agents whose money holdings become zero at the end of the first, the second, and the

third periods, respectively. Let the measures of each group of agents be denoted by h1, h0, and

h2 = 1−h0−h1, respectively. We now show that the market clearing conditions for the first six

periods determine (h1, h0) and the equilibrium prices of the first six periods. Then, we show that

the equilibrium prices of t = 7, 8, . . . are determined by a difference equation, and it converges

to a limit cycle.

The maximization problem can be written as follows: for a given sequence (p̃1, p̃2, . . . ),

max
k+3∑

t=1

δt−1(χtaqt − (1− χt)c) + δk+3Vk+3+1(ηk+3+1)

s.t. χtp̃tqt + ηt+1 = ηt + (1− χt)p̃t, t = 1, 2, . . . , k + 3,

χtp̃tqt ≤ ηt, ηt ≥ 0, t = 1, 2, . . . , k + 3,

η1 ≥ 0 given,

where Vk+3+1(ηk+3+1) is the value at k + 3 + 1. By the above assumption, ηk+3+1 = 0. We

suppose that the constraint ηk+3+1 ≥ 0 is binding; that is, the corresponding Lagrange multiplier

is positive. Thus, a small change of (p̃k+3+1, p̃k+3+2, . . . ) does not affect the optimal choice in

the above problem.

14



For some ηa and ηb such that 0 < ηa < ηb < 2M , the threshold η̃t is given by

η̃1 = ηb,

η̃2 = ηa + p̃1,

η̃t ∈ (p̃t−1, p̃t−2 + p̃t−1) ∀t ≥ 3.

That is, in the first time period, agents with η ∈ [ηb,∞) spend all their money, and the measure

of such agents is h1. In the second time period, agents with η ∈ [ηa + p̃1,∞) spend all their

money, and the measure of such agents is h0. Note that by the above argument ηa and ηb do

not locally depend on (p̃7, p̃8, . . . ) but depend only on (p̃1, p̃2, . . . , p̃6); that is, a small change in

(p̃7, p̃8, . . . ) does not affect ηa and ηb. Clearly,

ηa = 2Mh2 and ηb = 2M(1− h1)

hold, where h2 = 1−h0−h1, and h0 and h1 only depend on (p̃1, p̃2, . . . , p̃6). Then, by the market

clearing conditions, the sequence of prices is determined by

p̃1 =
h1

1− h1
M(2− h1),

p̃2 =
h0

1− h0
(M(1− h1) + Mh2 + p̃1) ,

p̃3 =
h2

1− h2
(Mh2 + p̃1 + p̃2) , and

p̃t =
h2−i

1− h2−i
(p̃t−2 + p̃t−1) ∀t = 3n + i ≥ 4.

By the above arguments, (p̃1, p̃2, . . . , p̃6) is determined by the first 6 equations, and thus, h0 and

h1 are determined. Now, let Pn = [p̃3n+1, p̃3n+2, p̃3n+3]′ for n ≥ 1. Then,

Pn+1 = APn

holds, where

A =




0 H1 H1

0 H0H1 H0(1 + H1)
0 H1H2(1 + H0) H2(H0 + H1 + H0H1)




and Hi = hi/(1− hi). Let λj be the eigenvalues of A and xj be the corresponding eigenvectors.

Then, we obtain

A = [x1 x2 x3]




λn
1 0 0
0 λn

2 0
0 0 λn

3


 [x1 x2 x3]−1.
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It is verified that the characteristic equation of A is

−t3 + (H0H1 + H1H2 + H2H0 + H0H1H2)t2 + H0H1H2t = 0.

By solving the above, we obtain

λ1 = 1, λ2 = 0, λ3 = −H0H1H2 > −1,

x1 = [(1 + H0)H1,H0(1 + H1), 1−H0H1]′, x2 = [1, 0, 0]′, and

x3 = [1−H1H2,−H0(1 + H1)H2,H0H1H2(1 + H2)].

Therefore,

lim
n→∞An =




(1 + H0)H1 1 1−H1H2

H0(1 + H1) 0 −H0(1 + H1)H2

1−H0H1 0 H0H1H2(1 + H2)







1 0 0
0 0 0
0 0 0







(1 + H0)H1 1 1−H1H2

H0(1 + H1) 0 −H0(1 + H1)H2

1−H0H1 0 H0H1H2(1 + H2)



−1

=




0 (1+H0)H2
1 (1+H2)

(1+H1)(1+H0H1H2)
(1+H0)H1

1+H0H1H2

0 H0H1(1+H1)(1+H2)
(1+H1)(1+H0H1H2)

H0(1+H1)
1+H0H1H2

0 (1−H0H1)H1(1+H2)
(1+H1)(1+H0H1H2)

1−H0H1
1+H0H1H2




holds. Let the limit be [p1, p2, p0]′ = limn→∞ Pn. Then, it is verified that (p1, p2, p0) satisfies the

condition that the total money holding is equal to M when the money holdings distribution is

(h0, h1, h2). In other words, the dynamic path converges to a 3-period cycle. Note that it does

not converge in finite time.

2.5 Policy on Initial Distribution

In this subsection, we investigate a permanent effect of a redistribution policy. More precisely,

by slightly changing the initial money holdings distribution, the limit cycle also slightly changes;

that is, hysteresis occurs.

We focus on a dynamic path leading to a 2-period cycle. For a small ε > 0, we consider the

following initial distribution:

f1(η) =





0, η ≤ 2Mε,
1

2M , η ∈ (2Mε, 2M(1− ε)],
1
M , η ∈ [2M(1− ε), 2M ],
0, η > 2M.
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Table 1: The case of δ = 0.4, a = 10, and c = 1

ε 0 0.001 0.01 0.05
h0 0.55941 0.55930 0.55841 0.55514

Note that in the case of ε = 0, f1 coincides with that in Section 2.3. As in Section 2.3,

η̃1 = 2M(h1 + ε) (17)

is obtained from

h1 =
∫ η̃1

2Mε

1
2M

dη;

h0 is determined by (2), (3), (9), (10), (13), (17); and the market clearing condition at time

period 1 is expressed as follows:

p̃1 =

∫ 2M(1−ε)
η̃1

η
2M dη +

∫ 2M
2M(1−ε)

η
M dη

∫ η̃1

2Mε
1

2M dη
.

Table 1 illustrates how a change of ε induces a change of h0. In other words, the policy that

affects the initial money holdings distribution has a permanent effect.

2.6 Policy on Stationary Equilibrium

In this subsection, we consider an effect of a tax-subsidy scheme, which is analyzed in a random

search environment in Kamiya and Shimizu [7], on the equilibrium with a cycle. More precisely,

in the model, we consider that the government levies s amount of money as a tax from g measure

of agents with money holdings more than s and gives s amount of money as a subsidy to g measure

of agents with money holdings less than s, where g is a small positive number.

We show that the size of s affects the existence of the equilibria with a 2-period cycle. We

assume that (1) holds throughout this section. First, it is clear that a very small s does not

affect the trading pattern. Next, we set s = M . Then, using the notations in Section 2.1, the

condition for the stationary cycle is

h1 = (1− g) {(1− g)h1 + gh0}+ g {(1− g)h0 + gh1} .

Then, we obtain a unique distribution h0 = h1 = 1/2. Clearly, this is not a cycle.
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The logic is simple: If a redistribution policy is sufficiently large, then the transition of money

holdings distributions becomes ergodic. It is well known that an ergodic stochastic process has

a unique limit distribution.

3 A General Model

In this section, we consider the logic behind the existence of a continuum of equilibrium cycles

and hysteresis in the previous section. More precisely, we show that if an equilibrium cycle exists,

then under a regularity condition, there also exists a continuum of equilibrium cycles in a rather

general framework, and that the limit cycle depends on the initial money holdings distribution.

Thus, a policy that affects the initial money holdings distribution has a permanent effect.

We begin with the excess demand functions. Note that the cash-in-advance constraint does

not appear explicitly, but it implicitly guarantees that money has a positive value. In other

words, in any framework in which money has a positive value, the following argument applies.

3.1 Equilibria with Cycles

There is a continuum of agents whose measure is one. The number of goods is L ≥ 1. There

exists completely divisible and durable fiat money of which nominal stock is M > 0.

In each time period, a Walrasian market with a cash-in-advance constraint is open for each

good. Agents have the same net demand function, denoted by z(η, p1, p2, . . . ) ∈ RL, where η

is the agent’s money holding at the beginning of the time period and pt ∈ RL
++, t = 1, 2, . . . ,

is a price vector in time period t. In other words, z(η, p1, p2, . . . ) is the first time period net

consumption vector when the agent maximizes a utility stream under some conditions such as

budget constraints and cash-in-advance constraints. Similarly, z(η, pt, pt+1, . . . ) is the t-th time

period net consumption vector when the agent has η amount of money at the beginning of time

period t. We do not specify the domain of an infinite sequence (p1, p2, . . . ) since we focus on the

case of cycles, and it can be considered as a finite dimensional case. We assume that for any

given (p1, p2, . . . ), z is a Borel measurable function of η.

The money holding distribution at the beginning of time period 1 is a Borel probability

measure denoted by g1(·) on R+; that is, g1(A) is the measure of agents whose money holdings

are in a Borel set A ⊂ R+. The transition from time period t money holding to time period t+1

18



money holding is defined as

Qt(ηt, pt, pt+1, . . . ) = ηt − pt · z(ηt, pt, pt+1, . . . ), t = 1, 2, . . . . (18)

Definition 1 For given z and g1, a pair of (p1, p2, . . . ) and money holdings distributions

(g2, g3, . . . ) is said to be an equilibrium if the following conditions hold:

• Qt(η, pt, pt+1, . . . ) ≥ 0 for all η ∈ R+ and all t = 1, 2, . . . .

• for a Borel set A ⊂ R+,

gt+1(A, p) = gt({η|Qt(η, pt, pt+1, . . . ) ∈ A}, p), t = 1, 2, . . .

is satisfied, where g1(·, p) = g1(·).

• the market clearing conditions for goods and money hold: for t = 1, 2, . . . ,
∫

z(η, pt, pt+1, . . . )gt(dη, p) = 0 and
∫

ηgt(dη, p) = M.

We now investigate equilibria in which a sequence of money holdings of each agent is in some

finite set

Ω = {(η1
1, η

1
2, . . . ), . . . , (η

K
1 , ηK

2 , . . . )}.

That is, each agent’s sequence of money holdings is one of the elements in the above set; for each

agent, there exists a k ∈ {1, . . . , K} such that her sequence of money holdings is (ηk
1 , ηk

2 , . . . ). We

investigate a T -cycle equilibrium, where T ≥ 2. More precisely, T -cycle equilibria are defined as

follows.

Definition 2 An equilibrium is said to be a T -cycle equilibrium if there exists a set Ω =

{(η1
1, η

1
2, . . . ), . . . , (η

K
1 , ηK

2 , . . . )} such that

• for any η1 in the support of g1, the sequence of money holdings derived from (18), denoted

by (η1, η2, . . . ), is in Ω,

• ηk
t = ηk

t+T for t = 1, 2, . . . ,

• pt = pt+T for t = 1, 2, . . . , and
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• K ≥ 2.

Let p = (p1, . . . , pT ). In parallel with this, we denote z(η, p) and (ηk
1 , . . . , ηk

T ) instead of

(ηk
1 , ηk

2 , . . . ). We indicate the distribution of agents on the set of sequences of money holdings by

(h1, . . . , hK), where hk is a measure of agents with (ηk
1 , . . . , ηk

T ). The following conditions must

hold:

hk ≥ 0, k = 1, . . . ,K,

K∑

k=1

hk = 1.

Let

(t) = t mod T.

Then, the conditions for a T -cycle equilibrium are as follows:

ηk
t − ηk

(t+1) = pt · z(ηk
t , pt, . . . , p(t+T−1)), t = 1, . . . , T, k = 1, . . . ,K, (19)

K∑

k=1

hkz(ηk
t , pt, . . . , p(t+T−1)) = 0, t = 1, . . . , T, (20)

K∑

k=1

hkη
k
t = M, t = 1, . . . , T. (21)

Note that (20) is the condition for market clearing and (21) is the condition that the total money

holding is equal to M .

From (21),

K∑

k=1

hk(ηk
t − ηk

(t+1)) = 0, t = 1, . . . , T

is obtained. Then, by (19),

K∑

k=1

hkpt · z(ηk
t , pt, . . . , p(t+T−1)) = 0, t = 1, . . . , T (22)

holds. Thus, if (19) and (21) hold, the market clearing conditions for goods 1, . . . , L − 1 are

sufficient for (20). Thus, the number of linearly independent equations in (19)–(21) is TK +

T (L−1)+T = TL+TK. On the other hand, considering that p and ηk
t are endogenous variables,
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the system has TL + TK variables. If z is of class C1 and the Jacobian matrix of the TL + TK

equations with respect to p and ηk
t is nonsingular, then by the implicit function theorem, p

and ηk
t are locally expressed by C1 functions of (h1, . . . , hK−1). Thus, there is a continuum of

equilibrium cycles. In other words, (22) plays the role of Walras’ law in each period; that is,

there are T Walras’ laws in total. As is well known, in intertemporal models without money,

only one intertemporal Walras’ law is observed.

Theorem 3 Let (p∗, (ηk∗
t )t=1,...,T,k=1,...,K , h∗1, . . . , h

∗
K−1, 1 −

∑K−1
k=1 h∗k) ∈ RTL+TK+K

++ be a so-

lution to (19)–(21). Suppose the system is of class C1 and that the Jacobian matrix of the

system at the solution with respect to p and ηk
t is of rank TL + TK. Then, there is an

open set A ⊂ RK−1
++ and a C1 function ξ : A → RTL+TK

++ such that (h∗1, . . . , h
∗
K−1) ∈ A,

ξ(h∗1, . . . , h
∗
K−1) = (p∗, (ηk∗

t )t=1,...,T,k=1,...,K), and (ξ(h1, . . . , hK−1), h1, . . . , hK−1, 1 −
∑K−1

k=1 hk)

form a solution to the system.

Remark 3 Note that if money has a positive value, that is , p∗ ∈ RTL
++, then the above theorem

holds. That is, this theorem applies to any framework, aside from economies with cash-in-advance

constraints, wherein money has a positive value.

3.2 Policy and Dynamics

In this subsection, we generalize the arguments in Subsection 2.4. More precisely, in the general

model, we show that the limit cycle varies according to the initial money holdings distribution.

Thus, a policy that affects the initial money holdings distribution has a permanent effect.

Below, we assume that each agent’s cash-in-advance constraint becomes binding only once

in the first T time periods. We introduce a function fs(η, ps, ps+1, . . . ) ∈ {0, 1} such that

fs(η, ps, ps+1, . . . ) = 1 implies that the agents with (η, ps, ps+1, . . . ) spend all their money η in

time period s (the cash-in-advance constraint is binding), and fs(η, ps, ps+1, . . . ) = 0 implies

that the agents with (η, ps, ps+1, . . . ) do not spend all their money in time period s.

We focus on the following policy: for all t = 1, 2, . . . , there exists an ηt > 0 such that

• an agent with η ∈ [0, η̄t] sells her production good at time period t, and

• an agent with η ∈ (η̄t,∞) spends all her money at time period t.

Assumption 1 • The above policy is optimal.
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• For a given η1 ≥ 0, let the sequence of money holdings derived from (18) be (η1, η2, . . . ).

Then, for each η1 in the support of g1, there exist only two time periods, t ∈
{1, . . . , T} and t + T , in the first 2T time periods, such that ft(ηt, pt, pt+1, . . . ) =

ft+T (ηt+T , pt+T , pt+T+1, . . . ) = 1.

• For all s = 1, . . . , T , the measure of agents with η such that fs(η, ps, ps+1, . . . ) = 1 is

positive.

All agents whose cash-in-advance constraints become binding in time period t have the same

amount of money from t + 1 onwards since such agents spend all their money at t and they take

the same consumption behavior from t + 1 onwards. Thus, in the cycle, a sequence of money

holdings of an agent is in a finite set {(η1
T+1, η

1
T+2, . . . ), . . . , (η

K
T+1, η

K
T+2, . . . )}. Let the measure

of agents on the set be denoted by h = (h1, . . . , hK); that is, hi is the measure of agents whose

sequence of money holdings is {(ηi
T+1, η

i
T+2, . . . )}. By Assumption 1, K = T clearly holds.

Let p = (p1, p2, . . . ) be an equilibrium sequence of prices in the cycle. By Assumption 1, the

measure of agents who spend all their money at time period 1 is equal to hT :

hT =
∫

{η|f1(η,p)=1}
g1(dη, p). (23)

Similarly, for t = 2, . . . , T − 1,

ht =
∫

{η|fT+1−t(η,p)=1}
gT+1−t(dη, p). (24)

We make the following assumption.

Assumption 2 Suppose in a sequence of optimal money holdings (η1, η2, . . . ),

fk(ηk, pk, pk+1, . . . ) = fk+T (ηk+T , pk+T , pk+T+1, . . . ) = 1 holds. Then, fk and fk+T do

not depend on (pk+T+1, pk+T+2, . . . ).

The above assumption is typically satisfied in cash-in-advance models. Indeed, the maximization

problem in Section 2 can be written as follows: for a given sequence (p1, p2, . . . ),

max
k+T∑

t=1

δt−1(χtU(qt)− (1− χt)c) + δk+T Vk+T+1(ηk+T+1)

s.t. χtptqt + ηt+1 = ηt + (1− χt)pt, t = 1, 2, . . . , k + T,

χtptqt ≤ ηt, ηt ≥ 0, t = 1, 2, . . . , k + T,

η1 ≥ 0 given,
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where Vk+T+1(ηk+T+1) is the value at k + T + 1. Suppose ηk+T+1 = 0 and that the constraint

ηk+T+1 ≥ 0 is binding; that is, the corresponding Lagrange multiplier is positive. Then, a small

change of (pk+T+1, pk+T+2, . . . ) does not affect the optimal choice in the above problem.

By Assumption 2, (h1, . . . , hT ) does not depend on (p2T+1, p2T+2, . . . ), but it depends on

the initial money holdings distribution g1. Then, from period T + 1, there exist only T -types of

money holdings: in time period t ≥ T , agents with mass hi have the same money holding for

i = 1, . . . , T . Suppose the economy converges to the T -cycle. Since (h1, . . . , hT ) depends on g1,

temporary shocks on g1 have permanent effects; that is, the model exhibits hysteresis.

4 Discussion

In the previous sections, we have demonstrated that there is a continuum of equilibrium cycles

and hysteresis occur in both specific and general models. However, the results in the general

model depend on the existence of an equilibrium cycle and the regularity conditions. One

might think that some special structures of the specific model guarantee the conditions. In this

section, we discuss the special structures in the model in Section 2 and show that our results do

not depend on such structures.

In the model, we have adopted a specific utility function and a specific production function:

the utility function is linear, and an agent can produce just one unit of good. Even if we change

these functions, the outline of the proof does not change greatly. Indeed, in Appendixes A.1 and

A.2, we demonstrate that there is a continuum of equilibrium cycles in models with a nonlinear

utility function and a convex production function.

It is well known that if the stochastic process is ergodic, then it has a unique stationary

distribution. One might think that a similar argument applies; if the economy has a small

stochastic shock, then the set of equilibrium cycles is not a continuum. In Appendix A.3, we

refute this argument; that is, even if there is a small stochastic shock in utility, a continuum of

equilibrium cycles exists.

It is possible that the participation constraint may be considered as the most restrictive

assumption in the model. Therefore, in Appendix A.4, we present a model with durable goods,

in which agents can be a seller and a buyer simultaneously, and we show that a continuum of

equilibrium cycles exists even in this case.
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5 Conclusion

In this paper, we have investigated dynamic general equilibrium models with cash-in-advance

constraints, wherein each consumer’s money holding varies over time. We first demonstrated

that a continuum of equilibrium cycles exists in a specific model and that the model exhibits

hysteresis; that is, the limit cycle, to which a dynamic path converges, depends on the initial

distribution of money holdings. Then, we have shown that even in a rather general framework,

the same result can be obtained; that is, if an equilibrium cycle exists, then there is a continuum

of these cycles, and the limit cycle depends on the initial distribution of money holdings.

Furthermore, we have explored the logic behind the results. The market clearing condition

for money implies Walras’ law in each period, and thus, there are T − 1 degrees of freedom in

the equilibrium condition for a T -period cycle. Moreover, in the dynamic path to an equilibrium

T -cycle, there are T − 1 equations that determine (h1, . . . , hT−1).

A Appendix

A.1 Nonlinear Utility Functions

In the model in Section 2, we change the utility function as follows:

U(q) =

{
aq, if q ≤ 2

3 ,
2
3a, if q > 2

3 .

Then, we demonstrate that a continuum of equilibria with 3-period cycles exists. We first

construct a stationary equilibrium with 3 states and then transform it into a continuum of

equilibria with 3-period cycles.

First, we show that there exists a stationary equilibrium with the following features:

• A policy is characterized by η as follows:

– an agent with η ∈ [0, η] sells her production good,

– an agent with η ∈ (
η, 2

3p
]

spends all her money, and

– an agent with η ∈ (
2
3p,∞)

spends only 2
3p.

• A stationary money holdings distribution is discrete with 3 states:

– the measure of agents without money is 1/3,
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– the measure of agents with 1
3p is 1/3, and

– the measure of agents with p is 1/3.

• η ∈ (
0, 1

3p
)
.

• V is continuous.

The condition that the total money holding is equal to M and the market clearing condition

are

M =
1
3
p +

1
3
· 1
3
p and

1
3
p =

1
3
· 2
3
p +

1
3
· 1
3
p respectively.

Then, the former condition implies

p =
9
4
M.

The latter condition is automatically satisfied.

The value function is defined as

V (η) =





−c + δV (η + p), if η ∈ [0, η] ,
a
pη + δV (0), if η ∈ (

η, 2
3p

]
,

2a
3 + δV

(
η − 2

3p
)
, if η ∈ (

2
3p,∞)

.

We decompose η ≥ 0 into an multiple of 2
3p and a residual; that is, η = 2np

3 + ι such that

ι ∈ [
0, 2

3p
)
. Then we obtain

V

(
2np

3
+ ι

)
=





1
1−δ

{
2a
3 − δn

[
2a
3 − 1

1+δ+δ2

(
−c + aδ(2+δ)

3

)
− aδ2(1−δ)

p ι
]}

, if ι ≤ η,

1
1−δ

{
2a
3 − δn

[
2a
3 − δ

1+δ+δ2

(
−c + aδ(2+δ)

3

)
− a(1−δ)

p ι
]}

, if ι > η.

The continuity of V at η implies

η =
p

a(1 + δ)(1− δ3)

(
−c +

aδ(2 + δ)
3

)
.

η ∈ (
0, 1

3p
)

follows from the following condition:

−3− δ + δ2 + 3δ3 + 3δ4 <
3c

a
< δ(2 + δ). (25)

Note that this interval is non-empty.

The optimality condition is stated as follows:
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• V (η) ≥ 0 for any η.

• V (η) ≥ a
pη′ + δV (η − η′) for any η ∈ [0, η) and any η′ ∈ [0, η].

• V (η) ≥ a
pη′ + δV (η − η′) for any η′ ∈ [0, η).

• V (η) ≥ −c + δV (η + p) for any η ∈ (η,∞).

• V (η) ≥ a
pη′ + δV (η − η′) for any η ∈ (

η, 2
3p

]
and any η′ ∈ [0, η).

• V (η) ≥ a
pη′ + δV (η − η′) for any η ∈ (

2
3p,∞)

and any η′ ∈ [
0, 2

3p
)
.

Under (25), it is verified that this entire condition is satisfied with strict inequalities. Then, we

have shown that the specified money holdings distribution and policy constitute an equilibrium

under (25).

Next, we transform the stationary equilibrium into a continuum of 3-period equilibrium

cycles. We denote the price at time period 3n + i ( i = 0, 1, 2) by pi. For ease of exposition,

let p3 = p0 and p4 = p1. We express the money holdings distribution by using notations hij

(i, j = 0, 1, 2), defined as follows:

• hi0: the measure of agents with no money at time period 3n + i,

• hi1: the measure of agents with pi+1 − 2
3pi+2 money at time period 3n + i, and

• hi2: the measure of agents with pi+2 money at time period 3n + i.

The condition for a stationary cycle is satisfied if there exists an h = (h0, h1, h2) such that

• h0 = h00 = h12 = h21,

• h1 = h01 = h10 = h22,

• h2 = h02 = h11 = h20, and

• h0 + h1 + h2 = 1.

Note that if h0 = h1 = h2 = 1/3, then they form the stationary equilibrium constructed above.
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The condition that the total money holding should be equal to M is

M = h01

(
p1 − 2

3
p2

)
+ h02p2,

M = h11

(
p2 − 2

3
p0

)
+ h12p0,

M = h21

(
p0 − 2

3
p1

)
+ h22p1.

If the condition for stationary cycle holds, this is equivalent to

p0 =
3h1(9h2 + 4h0 − 6h1)

D
M,

p1 =
3h2(9h0 + 4h1 − 6h2)

D
M,

p2 =
3h0(9h1 + 4h2 − 6h0)

D
M,

where

D = 27h0h1h2 + (3h0 − 2h2)(3h2 − 2h1)(3h1 − 2h0).

D is not zero if all hij are sufficiently close to 1/3.

The condition for market clearing is expressed as follows:

M = h01

(
p1 − 2

3
p2

)
+ h02p2,

M = h11

(
p2 − 2

3
p0

)
+ h12p0,

M = h21

(
p0 − 2

3
p1

)
+ h22p1,

h00p0 = h01

(
p1 − 2

3
p2

)
+ h02

2
3
p0,

h10p1 = h11

(
p2 − 2

3
p0

)
+ h12

2
3
p1,

h20p2 = h21

(
p0 − 2

3
p1

)
+ h22

2
3
p2.

Then, it is easily verified that the conditions for a stationary cycle and a constant stock of fiat

money imply the condition for market clearing; in other words, the latter is redundant.

Recall that the optimality conditions are satisfied with strict inequalities. Let

• h0 = 1
3 − ε(1 + ε),
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• h1 = 1
3 + ε, and

• h2 = 1
3 + ε2

for sufficiently small ε. Then, by redefining η such that the value function is continuous at η, it

is verified that (h0, h1, h2) also constitutes an equilibrium under condition (25).

A.2 Convex Cost Functions

We modify the model in Section 2 by assuming that an agent can produce any amount of her

production good with a convex cost function. Let the cost function be C(q) = bq2. We show

that there is a continuum of equilibria with a 2-period cycle even in this environment.

First, we consider the following stationary equilibrium with 2 states:

• A policy is characterized by η and Q(η) as follows:

– an agent with η ∈ [0, η] sells Q(η) amount of her production good, and

– an agent with η ∈ (η,∞) spends all her money.

• The support of a stationary money holdings distribution comprises 2 states; that is,

– the measure of agents without money is 1/2, and

– the measure of agents with pQ(0) is 1/2.

• η + pQ(η) > η̄ for any η ∈ [0, η̄].

• η > 0.

• V is continuous.

The value function is defined as

V (η) =

{
−b(Q(η))2 + δV (η + pQ(η)), if η ∈ [0, η],
aη

p + δV (0), if η ∈ (η,∞).

If η + pQ(η) > η̄ holds, then

Q(η) = arg max
q

{
−bq2 + δ

[
aq + a

η

p
+ δV (0)

]}
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must hold. It follows that

Q(η) =
aδ

2b
.

Then we obtain the value function

V (η) =

{
aδ η

p + a2δ2

4b(1−δ2)
, if η ∈ [0, η],

aη
p + a2δ3

4b(1−δ2)
, if η ∈ (η,∞).

The continuity of V at η̄ implies

η =
aδ2

4b(1− δ2)
p.

Then, the condition η + pQ(η) > η̄ is satisfied for all η ∈ [0, η̄] if

2− δ − 2δ2 > 0. (26)

Given V as specified above, we check the optimality condition. First, we consider the condi-

tions that producing Q(η) is optimal. We denote the value of one shot deviation by choosing to

be a seller and selling q amount of goods by Ṽ (η, q); that is,

Ṽ (η, q) =

{
−bq2 + aδ2q + aδ2 η

p + a2δ3

4b(1−δ2)
, if q ≤ η̄−η

p ,

−bq2 + aδq + aδ η
p + a2δ4

4b(1−δ2)
, if q > η̄−η

p .

If q is in ( η̄−η
p ,∞), then Ṽ (η, q) attains the maximum value V (η) at q = aδ

2b = Q(η) since

∂Ṽ

∂q
= −2bq + aδ,

and η + aδ
2bp > η̄ hold. Then, it suffices to find a condition for

sup
q≤ η̄−η

p

Ṽ (η, q) ≤ V (η)

for all η ∈ [0, η̄]. For q ∈ [0, η̄−η
p ],

∂Ṽ

∂q
= −2bq + aδ2

holds. Thus, the condition is that for all η ∈ [0, η̄],

[−2bq + aδ2
]
q= η̄−η

p
≥ 0
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holds or

[−2bq + aδ2
]
q= η̄−η

p
< 0 and

V (η) ≥ Ṽ

(
η,

aδ2

2b

)

hold. We can show that the above is equivalent to

1− 2δ2 ≥ 0.

Moreover, this implies (26). Hereafter, we assume that this condition holds with strict inequality;

that is,

δ <
1√
2
. (27)

In addition, it is easily verified that (27) implies that there is no incentive for

• an agent with η ∈ [0, η̄] to be a buyer,

• an agent with η ∈ (η̄,∞) to be a seller, and

• an agent with η ∈ (η̄,∞) to be a buyer but not to spend all her money.

The condition that the total money holding is equal to M and the market clearing condition

are

M =
1
2
· aδ

2b
p and

1
2
· aδ

2b
p =

1
2
· aδ

2b
p respectively.

Then, the former condition implies

p =
4b

aδ
M.

The latter condition is automatically satisfied.

We perturb the stationary equilibrium as follows:

h0 =
1
2
− ε and

h1 =
1
2

+ ε.

30



Then, the discounted sum of the utility stream in the (2n + i)-th time period is

Wi =
a2δ

4b(1− δ2)

[
δhi

(
hi+1

hi

)2/3

+ (2− δ2)hi+1

(
hi

hi+1

)2/3
]

.

Then, their weighted average of them is

1
2
W0 +

1
2
W1 =

a2δ(2− δ − δ2)
8b(1− δ2)

[
δh1

(
h0

h1

)2/3

+ h0

(
h0

h1

)2/3
]

.

This is unimodal with the peak at ε = 0. This implies that the indeterminacy is real.

A.3 Small Stochastic Shocks

Now, we introduce a preference shock into the model in Section 2; that is,

U(q) = θq,

where θ is uniformly distributed on [a−Θ, a + Θ] for some Θ ∈ (0, a).

We first construct a stationary equilibrium with 2 states. The value function satisfies

V (η, θ) =

{
−c + δEθ̃V (η + p, θ̃), if η ∈ [0, η̄(θ)],
θ
pη + δEθ̃V (0, θ̃), if η ∈ (η̄(θ),∞).

Then, we obtain

V (η, θ) =

{
aδ
p η + aδ−c

1−δ2 , if η ∈ [0, η̄(θ)],
θ
pη + δ(aδ−c)

1−δ2 , if η ∈ (η̄(θ),∞).

If

Θ < a(1− δ) (28)

holds, then η̄(θ) is determined as

η̄(θ) =
aδ − c

(1 + δ)(θ − aδ)
p.

The condition ∀θ, η̄(θ) ∈ (0, p) is equivalent to

c

a
< δ and (29)

Θ <
a(1− δ − δ2) + c

1 + δ
. (30)
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By (28)–(30), the equilibrium condition can be expressed by (30) and

−1 + δ + δ2 <
c

a
< δ. (31)

In other words, if the size of the noise is sufficiently small, there exists a stationary equilibrium

with 2 states. Thus, it can be transformed into a continuum of 2-period equilibrium cycles, as

in the previous sections.

Remark 4 It is worthwhile to compare the above result with that of Lucas [10], who shows that

a stochastic version of a cash-in-advance model has a unique limit distribution. This result is

obtained from Assumption (2.2) in Lucas [10]. In our environment, this assumption is equivalent

to

lim
θ→θ̄

∂U(q, θ)
∂q

= ∞,

where U is the instantaneous utility and θ̄ is the upper bound of realization of a stochastic element

θ. It implies that, for any agent, there always exists a small probability that she consumes some

amount of goods irrespective of the amount of fiat money she has. This renders an economy-wide

money holdings transition ergodic.

A.4 Durable Goods

There exist a perishable good x and a durable good y; we assume that both goods are divisible.

The durable good can be consumed for two time periods; that is, the depreciation rates in the

second and third time periods are zero and one respectively. We assume that if an agent has

a positive amount of the durable good, she cannot buy the good.6 An agent obtains utility ay

when she consumes y amount of the durable good, where a > 0. Each agent is endowed with one

unit of the perishable good, and the durable good is produced by production function y = αx,

where α > 0. Moreover, we do not impose the participation constraint; an agent can buy and

sell simultaneously.

We show that a continuum of equilibria with 2-period cycles exists. We first construct a

stationary equilibrium and then transform it into a continuum of equilibria with 2-period cycles.

First, we consider the following candidate for stationary equilibrium. Let the prices of x and

y be p and q respectively. Then, by the zero profit condition, q = p
α .

6Even if we assume that she can buy the durable good, we obtain similar results.
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• The policy is characterized by η as follows:

– an agent with η ∈ [0, η] only sells one unit of x and does not buy y;

– an agent with η ∈ (η,∞) and without durable good sells one unit of x and spends all

her money for y good; and

– an agent with positive y only sells one unit of x.

• A stationary money holdings distribution is discrete with 2 states:

– the measure of agents with p money and with 2α amount of the durable good is 1/2,

and

– the measure of agents with 2p money and without durable good is 1/2.

• η is in η ∈ (0, p).

• V is continuous.

The condition that the total money holding is equal to M and the market clearing condition

are

M =
1
2
(p + 2p) and

α =
2p

q

1
2

respectively.

Then, the former condition implies

p =
2
3
M.

The latter condition is automatically satisfied.

The value function satisfies

V (p, 2α) = 2aα + δV (2p, 0) and

V (2p, 0) = 2aα + δV (p, 2α).

Then, we obtain

V (p, 2α) = V (2p, 0) =
2aα

1− δ
.
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η̄ satisfies

a
η̄

q
+ aδ

η̄

q
+ δ2V (2p, 0) = aδ

η̄ + p

q
+ aδ2 η̄ + p

q
+ δ3V (2p, 0).

Thus, we obtain

η̄ =
δp

1 + δ
.

Then, η̄ < p is automatically satisfied.

By the policy, for η > η̄,

V (η, 0) =
aη

q
+ δ

aη

q
+ δ2V (2p, 0)

holds. Thus, for η > η̄,

V (η, 0) =
aαη

p
+ δ

aαη

p
+ δ2 2aα

1− δ
.

Thus, for η ∈ [0, η̄],

V (η, 0) = δV (η + p, 0) =
aα(η + p)

p
+ δ

aα(η + p)
p

+ δ2 2aα

1− δ
.

Similarly, for y > 0,

V (η, y) = ay + δV (η + p, 0) = ay + δ

(
aα(η + p)

p
+ δ

aα(η + p)
p

+ δ2 2aα

1− δ

)
.

Next, we transform the stationary equilibrium with 2 states into a continuum of equilibria

with 2-period cycles by perturbing the money holdings distribution. Let the prices at time 2n

and 2n + 1 be p0 and p1 respectively. Let h0 be the measure of agents with p1 in even periods

and p0 + p1 in odd periods, and let h1 be the measure of agents with p0 in odd periods and

p0 + p1 in even periods. Obviously, h0 + h1 = 1 holds.

The condition that the total money holding is equal to M is

M = p1h0 + (p0 + p1)h1, (32)

M = p0h1 + (p0 + p1)h0. (33)

Subtracting (33) from (32), we obtain

p0h0 = p1h1. (34)
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The conditions for market clearing are

p0 = (p0 + p1)h1 and

p1 = (p0 + p1)h0.

The above conditions are clearly obtained from (34). Thus, the conditions for a stationary cycle

and a constant stock of fiat money imply the condition for market clearing; in other words, the

latter is redundant.

Let

h0 =
1
2
− ε,

h1 =
1
2

+ ε

for sufficiently small ε. Then, by redefining η such that the value function is continuous at η, it

is verified that they also constitute an equilibrium.
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