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1 Introduction

Recently there has been a growing interest on dynamic panel models, which

are indispensable tools for econometric analysis. As a pioneering work Alvarez

and Arellano (2003) have investigated the asymptotic properties of alternative

estimation methods including the WG (With-in-Groups) estimator, the GMM

(generalized method of moments) estimator and the LIML (limited information

maximum likelihood) estimator for a simple reduced form equation when the time

length is large(i.e. the long panel asymptotics). The asymptotic properties of es-

timators in the long panel model are closely related to the corresponding methods

for the structural equation estimation with many instruments. There has been a

considerable literatures on this problem and Anderson, Kunitomo and Matsushita

(2010) have found that the LIML estimator, originally developed by Anderson and

Rubin (1949, 1950), has some optimal properties as the estimation of structural

equation when there are many instruments. In dynamic panel context, Alvarez

and Arellano (2003) have developed the use of forward-filtered estimation and

obtained the asymptotic properties of alternative estimators (when both the num-

bers of individuals and the time length are large) while Hayakawa (2006, 2007)

have investigated the backward filtered instruments for estimating dynamic panel

reduced form models. For estimating the panel structural equation in the simul-

taneous equation models, Akashi and Kunitomo (2010a, b) have investigated the

asymptotic and the finite sample properties of alternative estimators (the WG, the

GMM and LIML estimators) when we use the forward-filtered panel data and the

backward-filtered instruments. Contrary to some known results in the econometric

literature, they have found that the asymptotic biases of the WG estimator and

the GMM estimator are rather significant and they should not be ignored while

the distribution function of the LIML estimator is almost median-unbiased under

a set of reasonable conditions.

One remaining issue, however, is the fact that the asymptotic bias of the LIML

estimator can be significant when we have heteroscedastic disturbances of the

structural equation in some situations. In the panel econometric analysis the ho-

moscedasticity assumption of disturbances has been often made, but in practical

panel data we often have the situation when the heteroscedasticities beyond the

standard formulation of the individual effects are present. The effects of the similar

bias problem has been investigated independently by Chao, Swanson, Hausman,

Newey and Woutersen (2009), and Kunitomo (2008) for the estimation problem

of structural equations. Some modifications of the instrumental variables (IV)

estimation and the LIML estimation have been considered. For the problem of

estimating the structural equation with many instruments, Kunitomo (2008) has
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shown that a particular modification of the LIML estimation has some asymptotic

optimality among a class of estimators when the disturbances have the persis-

tent heteroscedasticities in the classical structural equations and the reduced form

equations. In the practical panel equation problem it may be often natural to have

heteroscedastic disturbances over different individuals and then it may be impor-

tant to investigate the effects of individual heteroscedasticities on the alternative

estimation methods.

In this paper we shall investigate the asymptotic and finite sample properties

of the modified LIML estimators in the dynamic panel structural equation mod-

els. In particular, we shall investigate an asymptotically optimal modification of

the LIML (AOM-LIML) estimator proposed by Kunitomo (2008) and extend it

to the problem of the dynamic panel structural equation models. We shall show

that the AOM-LIML estimation reduces the possible asymptotic bias caused by

the presence of many instruments and the heteroscedasticities of disturbances.

We also show that the AOM-LIML estimator is free from the asymptotic bias

caused by the forward-filtering of panel data, which was proposed by Alvarez and

Arellano (2003). In addition to the asymptotic bias problem we shall show that

the AOM-LIML estimator attains the asymptotic bound among a class of estima-

tors including the corresponding the fixed-effects instrumental variables estimation

methods. Therefore, when the time length of panel data is not small with long

panels, the modified panel LIML estimation we shall introduce can solve the prob-

lems of individual effects, the dynamic effects, the endogeneity problem and the

individual heteroscedastic disturbances at the same time. The AOL-LIML esti-

mator proposed in this paper will be a promising estimation method for practical

panel applications.

In Section 2 we formulate the dynamic panel structural equation models and

define the alternative estimation methods for unknown parameters in the panel

structural equations with the (possible) heteroscedastic disturbances. Then in

Section 3 we give the main results on the asymptotic properties of the modified

Panel LIML estimation method. In Section 4 we shall discuss some finite sample

properties of the modified GMM and the LIML estimators with the original GMM

and LIML estimators, which have been investigated by Akashi and Kunitomo

(2010a, b) based on a set of Monte Carlo simulations. Concluding remarks will be

given in Section 5. The proofs of our theorems will be given in Section 6. Some

figures of the distribution functions of the normalized estimators will be given in

Appendix.
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2 Dynamic Panel Structural Equations with In-

dividual Heteroscedasticity

2.1 Individual Heteroscedasticity

We consider the dynamic panel structural equation for i = 1, ...,N ; t = 1, ..., T

given by

y
(1)
it = β

′
2y

(2)
it + γ

′
1z

(1)
it−1 + ηi + uit , (2.1)

where y
(1)
it and y

(2)
it (G2×1) are 1+G2 endogenous variables, z

(1)
it−1 is the K1 vector

of the included predetermined variables, then γ1 and β2 are K1 × 1 and G2 × 1

vectors of unknown parameters. We use the notation that the vector z
(1)
it−1 consists

of the lagged endogenous variables y
(g)
it−pg

(0 < pg < ∞ ; g = 1, · · · ,K∗) and the

original sample saize is NT (= n). Also ηi (i = 1, · · · , N) are individual effects

and we assume that uit are mutually independent over individual and periods with

E [uit] = 0 and E [u2
it] = σ2 (if the disturbances are homoscedastic).

We shall investigate the case when the reduced form equation with (2.1) can be

represented as

yit = πi + Πzit−1 + vit , (2.2)

where yit = (y
(1)
it ,y

(2)′
it )

′
is the (1 +G2) vector of endogenous variables, zit−1 is the

K×1 (K = K1 +K2) vector of predetermined variables at t which includes the K1

exogenous variables and lagged endogenous variables, Π and πi are a (1+G2)×K
coefficients matrix and a (1 + G2) × 1 individual effects vector. Also Et(vit) = 0,

Et(vitv
′
it) = Ωi and Et[ . ] is the conditional expectation given the σ-field Ft−1,

which is generated by the set of random variables πi, zit−h and vit−h (h > 0). We

assume the condition

1

N

N∑
i=1

Ωi
p→ Ω (2.3)

and Ω is a positive definite (constant) matrix.

The extended reduced form, or the vector AR(1) representation satisfies

z∗it = π∗
i + Π∗z∗it−1 + v∗

it , (2.4)

yit = J′
1+G2

z∗it , z
(1)
it−1 = J′

K1
z∗it−1 , zit−1 = J′

Kz∗it−1 , (2.5)

where Π∗ is the K∗ ×K∗ autoregressive coefficients (K∗ = K + K3), π∗
i and v∗

it

represent the K∗ × 1 individual effects and the disturbances, respectively, and the

K3-variables are excluded from the (1 + G2) reduced form equations. Also J′
1+G2
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is an (1 + G2) × K∗ appropriate selection matrix whose each element is one or

zero, and then the selection matrices J′
K1

and J′
K are accordingly defined. We

define K∗ as the number of the distinct autoregressive variables in zit−1 and then

K∗ ≤ K ≤ K∗. These notations of this paper agree with Akashi and Kunitomo

(2010b).

We consider the effects of the individual (conditional) heteroscedastic distur-

bances in the panel structural equation model, for which we write

v∗
it = hi ◦ v∗∗

it = (h
(1)
i v

∗∗(1)
it , · · · , h(K∗)

i v
∗∗(K∗)
it )′ , (2.6)

where ◦ denotes the Hadamard product, hi = (h
(1)
i , ..., h(K∗))′ and v∗∗

it are the

K∗ × 1 individual heteroscedasticities and the disturbance terms in the extended

reduced form, respectively. Then the reduced form (2.4) can be re-written as

z∗it = π∗
i + Π∗z∗it−1 + hi ◦ v∗∗

it , (2.7)

where we have Et[hi ◦ v∗∗
it ] = 0 and

Ω∗
i = Et[(hi ◦ v∗∗

it )(hi ◦ v∗∗
it )′] = Ω∗∗

v ◦ hih
′
i , (2.8)

σ2
i = Et[u

2
i ] = β′[J′

1+G2
Ω∗

i J1+G2
]β . (2.9)

and β = (1,−β′
2)

′.

Since we have (2.1) and (2.2), the relation on the coefficients gives the condition

(1,−β
′
2)Π = (γ

′
1,0

′
) and π

′
12 = β

′
2Π22, where Π′

1 = (π11,Π
′
21) is a K1 × (1 +G2)

matrix, Π′
2 = (π12,Π

′
22) is a K2 × (1 + G2) matrix. Then we repress the the

(1 +G2) × (K1 +K2) partitioned matrix of coefficients as

Π =

(
π

′
11 π

′
12

Π21 Π22

)
= [J′

1+G2
Π∗JK,K3

](1+G2)×K , (2.10)

where J′
K,K3

is a K∗ × K∗ selection matrix for re-ordering rows of z∗it−1 as (K-

variables andK3-variables), and [ . ](1+G2)×K stands for the (1+G2)×K sub-matrix

of the corresponding matrix.

We notice that although we may call (2.4) and (2.5) as the reduced form, the pre-

determined variables in zit−1 satisfy E [zit−1v
′
it] = O and they are correlated with

the unobserved variables (πi +vit) since E [zit−1π
′
i] �= O in the general case. Hence

this aspect makes the panel structural equation model of (2.1) and (2.4) different

from the structural equation in the classical simultaneous equation models.
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2.2 Filtering, Instruments and the modified LIML estima-

tion

2.2.1 The Forward and Backward Filters

We define the forward-filter by the transformation that for any variables xit (i =

1, · · · , N ; t = 1, · · · , T ) the transformed variables x
(f)
it (i = 1, · · · , N ; t = 1, · · · , T−

1) have the form

x
(f)
it = ct[xit − (

1

T − t
)(xit+1 + · · · + xiT )] (2.11)

with c2t = (T − t)/(T − t + 1).

When we apply the forward-filter to the structural equation (2.1) for t = 1, · · · , T−
1, the transformed structural equation does not have individual effects as

y
(1,f)
it = β

′
2y

(2,f)
it + γ

′
1z

(1,f)
it−1 + u

(f)
it , (2.12)

but consequently we have the relation that E [z
(1,f)
it−1u

(f)
it ] �= 0.

We also define the backward-filter to the K × 1 vector of instrumental variables

zit−1, which is the transformation of

z
(b)
it−1 = bt

[
zit−1 − 1

t
(zit−2 + · · · + zi0 + zi(−1))

]
, (2.13)

where b2t = t/(t + 1) for t = 1, · · · , T − 1.

If we use the backward-filtered instruments of zit, then we have the orthogonal

conditions E [z
(b)
it−1u

(f)
it ] = 0.

As the initial condition we include zi(−1) in order to simplify the notation of the

index range. By using the notations used in Akashi and Kunitomo (2010b), we

shall consider two types of the sets of instrumental variables. For each case the

matrix of instrumental variables at period t can be expressed as

Z
(a)
t =

⎛
⎜⎝

z
(a)
1(t−1) · · · z

(a)
N(t−1)

...
...

...

z
(a)
10 · · · z

(a)
N0

⎞
⎟⎠

′

, Z
(b)
t =

(
z

(b)
1(t−1), · · · , z(b)

N(t−1)

)′
, (2.14)

where z
(a)
it−1 is the K∗×1 vector such that z

(a)
it−1 = JK∗zit−1 and the selection matrix

JK∗ chooses the nearest lagged variables to t− 1 as autoregressive variables. The

reduction K∗ to K∗ is needed to be of full rank for (Z
(a)′
t Z

(a)
t ). The first matrix

Z
(a)
t is the N×(K∗t) and the second matrix Z

(b)
t is the N×K matrix, and then we

shall investigate two possible use of the instrumental variables, which correspond

to two methods :
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(a) At period t we use all available lagged variables,

(b) At period t we use the only lagged variables included in the reduced form

after the backward filtering.

The order of the number of instruments for the case (a) becomes O(T 2) and the

dynamic GMM method with this filtering has been used in many empirical appli-

cations. The case (b) is equivalent to use an optimal instrumetal variable method

as pointed out by Hayakawa (2007). The asymptotic theory, which corresponds to

Case (a) and it will be called the large-K asymptotics, explicitly depends on the

following ratio in the case of homogenous disturbances and implicitly the resulting

asymptotics depends on it in the case of heteroscedastic disturbance. Under the

double asymptotics N,T → ∞, the ratios of the number of orthogonal conditions

to the total sample NT in two cases are given by

(a)
K∗T (T − 1)

2N(T − 1)
→

N,T→∞
ca = (

K∗
2

) lim
N,T→∞

(
T

N
) , (2.15)

(b)
K(T − 1)

N(T − 1)
→

N,T→∞
cb =

K

N
= 0 , (2.16)

respectively.

2.2.2 The Modified Panel LIML and GMM Estimators

Let y
(f)
t = (y

(1,f)
it ,y

(2,f)′
it )

′
be (1 +G2) vectors,

Y
(f)′
t =

(
y

(f)
1t , · · · ,y(f)

Nt

)
, Z

(1,f)′
t =

(
z

(1,f)
1t , · · · , z(1,f)

Nt

)
,

be (1+G2)×N, and K1×N matrices of the forward-filtered variables, respectively.

In the present situation an asymptotically optimal modification of LIML (AOM-

LIML) estimation proposed by Kunitomo (2008) can be constructed as follows.

For N × N matrices Mt = (mt.ij) = Zt(Z
′
tZt)

−1Z
′
t, we construct Mt.m = (m∗

t.ij)

and Qt.m = (q∗t.ij) = IN − Mt.m such that m∗
t.ij = m∗

t.ij (i �= j) and m∗
t.ii − c =

op(1) (i, j = 1, · · · , N) for c = ca or c = cb. Then we define two (K1 + 1 + G2) ×
(K1 + 1 +G2) matrices 1 by

G(f.m) =
T−1∑
t=1

(
Y

(f)′
t

Z
(1,f)′
t−1

)
Mt.m

(
Y

(f)
t ,Z

(1,f)
t−1

)
, (2.17)

and

H(f.m) =
T−1∑
t=1

(
Y

(f)′
t

Z
(1,f)′
t−1

)
[IN −Mt.m]

(
Y

(f)
t ,Z

(1,f)
t−1

)
, (2.18)

1We impose the condition that G(f.m) is a positive definite matrix. If it is not a positive
definite matrix, we need to modify G(f) further although such situation rarely occur in our
experiences. See Kunitomo (2008) for the detail.
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where Mt = M
(a)
t or M

(b)
t .

By using G(f.m) and H(f.m), we define a class of asymptotically optimal mod-

ifications of the panel LIML estimator (we call it as AOM-LIML) such that

θ̂MLI (= (β̂
′

2.MLI , γ̂
′
1.MLI)

′
) of θ = (β

′
2,γ

′
1)

′
is the solution of

[
1

n
G(f.m) − 1

qn
λnH

(f.m)

][
1

−θ̂MLI

]
= 0 , (2.19)

where qn = n− rn (> 0) and λn is the (non-negative) smallest root of

| 1
n
G(f.m) − l

1

qn
H(f.m)| = 0 . (2.20)

By using these notations, we shall denote θ̂
(.)

MLI = θ̂
(a)

MLI for the case of the forward-

filter with (a) and θ̂
(b)

MLI for the backward-filter with (b), respectively. Also for

both the forward-filter and the backward-filter cases we define the modified GMM

estimator, θ̂
(.)

MGM = (β̂
′

2.MGM , γ̂
′
1.MGM )

′
of (1,−β

′
2,−γ

′
1)

′
= (1,−θ′)′ by

[0, IG2+K1
]

T−1∑
t=1

[
Y

(f)′
t

Z
(1,f)′
t−1

]
Mt,m

[
Y

(f)
t ,Z

(1,f)
t−1

] [ 1

−θ̂
(.)

MGM

]
= 0 (2.21)

and we denote θ̂
(a)

MGM and θ̂
(b)

MGM , respectively.

The LIML estimation method was originally developed by Anderson and Ru-

bin (1949), and here we modify it slightly to define the modified LIML method

and GMM for the dynamic panel structural equation models with individual het-

eroscedasticities. We notice that the Panel LIML estimation can be derived with-

out assuming any particular distribution such as the normality for disturbances,

which is different from the original formulation.

In order to motivate the method developed in this section, we shall illustrate why

the particular modification of the LIML estimation proposed here can work well.

By utilizing the notations in Section 3 and Section 6 below, we can evaluate the

key asymptotic bias as the first order asymptotic behavior of the modified panel

LIML estimator. For instance, we take the case (a) and then the expected value

of the leading term of the stochastic expansion for θ̂
(a)

MLI − θ with the modified

LIML estimator is approximately represented as

AE
[
θ̂

(a)

MLI − θ
]
∝ Φ∗−1

[
1

NT

T−1∑
t=1

E(D
′
Z

(f)′
t−1M

D
t u

(f)
t ) +

1

NT

T−1∑
t=1

E(U
(⊥,f)′
t MD

t u
(f)
t )

]

(2.22)
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and

MD
t = M

(a)
t − D

(a)
t , (2.23)

where AE [ · ] is the expectation operator with respect to the limiting distribution

of the modified LIML estimator, MD
t corresponds to Mt,m with Mt = M

(a)
t ,D

(a)
t =

IN ◦M
(a)
t (we shall use the notation D

(b)
t = IN ◦M

(b)
t in the same way), Φ∗ and D

are some constant matrices (which will be given by (3.5) and (3.12) in Theorem 3.1

and Theorem 3.2). The random matrices Z
(f)
t−1 = (z

(f)
it−1) and u

(f)
t = (u

(f)
it ) are the

forward-filtered random matrices of Zt−1 and U⊥,f
t (= (u⊥,f

it )) is the filtered random

matrix with each row vectors being orthogonal to ut in the case of homogeneous

disturbances. (These notations will be precisely defined by (3.8) and (3.9) in

Section 3 and used in Section 6.) It is important to notice that the LIML estimator

based on MD
t instead of Mt,m in Equations (2.16) and (2.17) is equivalent to the

AOL-LIML estimator.

By evaluating the conditional expectations of (2.22), we find that

AE
[√

NT (θ̂
(a)

MLI − θ)
]

= o(1) . (2.24)

The most important aspect is the finding that the asymptotic bias of the LIML

estimator obtained in Theorems 3.1 and Theorem 3.2 in Akashi and Kunitomo

(2010b) disappears if we modify the original LIML estimation slightly. It should

be noted that the above phenomenon is true not only for the case (a), but also for

the case (b), which has some implication for applications.

In the case of homoscedasticity, the panel LIML estimator is consistent un-

der many instruments mainly because Et[u
⊥
ituit] = 0. However, under the het-

eroscedasticities we generally observe Et[u
⊥
ituit] �= 0. For the LIML estimator, the

corresponding first-term to (2.21) has an asymptotic bias term O(1/
√
NT ) due to

the forward-filtering, and the corresponding second-term has the bias term O(1)

due to the heteroscedasticities of disturbances. However, the AOM-LIML esti-

mator does not have such asymptotic bias terms. It is because (i) off-diagonal

elements of Et[u
(f)
t z

(f)′
t−1] and Et[u

(f)
t u

(⊥,f)′
t ] are 0 by i.i.d., (ii) the diagonal elements

of MD
t are op(1) by construction. It is essential to remove the asymptotic bias

in this method that the off-diagonal elements of Et[u
(f)
t z

(f)′
t−1] and Et[u

(f)
t u

(⊥,f)′
t ] are

op(1).

3 Asymptotic Distribution of the Panel AOM-

LIML Estimator

In order to investigate the asymptotic properties of the class of modified LIML

and GMM estimators, we make a set of assumptions. They may be standard in
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the panel structural equation except the fact we shall consider the situation when

the individual disturbances have heteroscedasticities.

(A-I) The random vectors {v∗∗
it } (i = 1, · · · , N ; t = 1, · · · , T ) are i.i.d. across

time and individuals, which are independent of the indivisual effects π̄∗
i (π̄∗

i are

i.i.d. random variables across individuals) and z∗i0, and E [v∗∗
it ] = 0, E [v∗∗

it v∗∗′
it ] =

Ω∗∗
v with J′

1+G2
Ω∗∗

v J1+G2
> 0 (positive definite) and E [‖v∗∗

it ‖8] exists.

(A-II) (i) The random vectors v∗
it (t = 1, · · · , T ) are conditionally independent

given hi, (ii) ‖hi‖ are bounded and there exist M1,M2 (M2 > M1 > 0) such that

0 < M1 < h
(k)
i < M2, (i = 1, · · · , N ; k = 1, · · · ,K∗) and (1/N)

∑N
i=1 hih

′
i

p→ Ωh

(positive definite) as N → ∞.

(A-III) (i) The initial observations satisfy

zi0 = (IK∗ − Π∗)−1π̄∗
i + wi0 (i = 1, · · · , N),

where wi0 is independent of π∗
i and i.i.d. with the steady state distribution of

the homogenous process so that wi0 =
∑∞

j=0 Π∗jv∗
i(0−j) with J′

KE [wi0w
′
i0]JK > 0

(positive definite). (ii) All eigenvalues λk of

|Π∗ − λIK∗| = 0 (3.1)

satisfy the stationarity condition |λk| < 1 (k = 1, · · · ,K∗).

The assumptions (A-I) and (A-III) are analogous to the conditions used by

Alvarez and Arellano (2003), and Akashi and Kunitomo (2010b). They imply

that the underlying processes for {yit} after applying the forward filtering are

stationary and we impose the sufficient moment conditions. Define the underlying

process {wit} for yit satisfying

wit = Π∗wit−1 + v∗
it . (3.2)

Then (A-III) means that wit for each i has a stationary solution. For (A-II) we

can set M2 = 1 without loss of generality. The assumption (i) of (A-I) describes

the orthogonal conditions for estimation and covariance stationarity of wit. The

condition (ii) will be used for evaluating the asymptotic distribution of estimators.

We can regard {hi}N
i=1 as the additional scaling parameters for the individual het-

eroscedasticities for keeping the orthogonal conditions and stationarity. Also we

note that the conditions (A-I)-(A-III) can be certainly relaxed with some compli-

cations of our analysis derived in Section 6. The obvious extension would be the

time dependent conditional heteroscedasticities.
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We shall discuss the asymptotic properties of the modified estimators. We first

state the result for the case (a) under the condition on K∗T < N, which ensures

the non-singularity of (Z
(a)′
t Z

(a)
t ). The proof will be given in Section 6.

Theorem 3.1 : Suppose the conditions of (A-I) to (A-III) hold. We assume that

K∗T < N and ca = limN,T→∞(K∗/2)(T/N) < 1/2 as N,T → ∞. Then θ̂
(a)

MLI

p→ θ

and

√
NT

[
θ̂

(a)

MLI −
(

β2

γ1

) ]
d−→ N (0,Ψ∗(a)) , (3.3)

where

Ψ∗(a) = Φ∗(a)−1[ Ψ
∗(a)
1 +

(
IG2

O

)
Ψ

∗(a)
2 (IG2

,O) ]Φ∗(a)−1 , (3.4)

and Φ∗(a), Ψ∗(a) and Ψ
∗(a)
i (i = 1, 2) are defined by

Φ∗(a) = lim
N,T→∞

1

NT
D′J′

KE
[T−1∑

t=1

N∑
i=1

(1 −m
(t,a)
ii )wit−1w

′
it−1

]
JKD , (3.5)

Ψ
∗(a)
1 = lim

N,T→∞
1

NT
D′J′

KE
[

T−1∑
t=1

N∑
i=1

σ2
i (1 −m

(t,a)
ii )2wit−1w

′
it−1

]
JKD , (3.6)

Ψ
∗(a)
2 = lim

N,T→∞
1

NT
E
[

T−1∑
t=1

N∑
i,j=1

(
σ2

i Et[u
⊥
jtu

⊥′
jt ]

+Et[u
⊥
ituit]Et[ujtu

⊥′
jt ])(m

(t,a)
ij [1 − δij ])

2
)]

, (3.7)

u⊥
it = [ 0, IG2

]

[
I1+G2

− Ωββ
′

β
′
Ωβ

]
vit , (3.8)

D =

[
Π2,

(
IK1

O

) ]
, (3.9)

σ2
i = Et[u

2
it], δij = 1 if i = j, 0 (i �= j), and Φ∗(a),Ψ

∗(a)
1 and Ψ

∗(a)
2 are well-defined

and Φ∗(a) is a positive definite (constant) matrix.

Next, we shall state our result for the case (b) with the backward-filtering pro-

cedure for instruments. The proof will be given in Section 6.

Theorem 3.2 : Suppose the conditions of (A-I) to (A-III) hold. Then as N,T →

11



∞, θ̂
(b)

MLI

p→ θ and

√
NT

[
θ̂

(b)

MLI −
(

β2

γ1

) ]
d−→ N (0,Ψ∗(b)) , (3.10)

where σ2
i = Et[u

2
it],

Ψ∗(b) = Φ∗(b)−1 Ψ
∗(b)
1 Φ∗(b)−1 , (3.11)

and

Φ∗(b) = lim
N,T→∞

1

NT

T−1∑
t=1

N∑
i=1

D′J′
KE [wit−1w

′
it−1]JKD , (3.12)

Ψ
∗(b)
1 = lim

N,T→∞
1

NT

T−1∑
t=1

N∑
i=1

D′J′
KE [σ2

i wit−1w
′
it−1]JKD , (3.13)

are well-defined and Φ∗(b) is a positive definite (constant) matrix.

Remark 1: In both theorems the asymptotic distributions do not have asymp-

totic biases and the asymptotic variances depend on up to the second order mo-

ments of disturbances while the panel LIML estimator possibly depends on the

fourth moments in the general case. (See Section 3 of Akashi and Kunitomo

(2010b).)

Remark 2: (i) If T/N → 0 i.e., ca = 0, then the formula for the case (a) is

simplified as

Ψ∗(a) = Φ∗(b)−1 Ψ
∗(b)
1 Φ∗(b)−1 , (3.14)

which does not depend on πi.

(ii) When ca = 0, cb = 0 and the disturbances are homoscedastic (σ2
i = σ2), the

asymptotic variances of the LIML estimator, which was derived by Akashi and

Kunitomo (2010b), and the modified LIML estimator are same as

Ψ∗(a) = Ψ∗(b) = σ2Φ∗(b)−1 . (3.15)

if we adjust the asymptotic biase for the case (a) and the distributions of the

estimators are centered at the vector of the true parameter vector in advance.

(iii) The order conditions for the cases of ca = 0 or cb = 0 are different. In fact

we need only N → ∞ for the case of (b). Additionally, the case (b) allows the

sequence N < T, while the case (a) has the restriction that K∗T < N .

12



Remark 3: (i) Under ca > 0 and the homoscedasticity of disturbances, the

modified LIML estimator is relatively efficient than the modified GMM estimator.

For the simplicity we take the case when K∗ = 1 + G2 and Et(vitv
′
it = Ω. Then

Et[u
⊥
ituit]Et[uitu

⊥′
it ] = O and

J′
G2

[
Ω− Ωββ′Ω

β′Ωβ

]
JG2

= Et[u
⊥
itu

⊥′
it ] ≤ Et[J

′
G2

vitv
′
itJG2

] = J′
G2

ΩJG2
. (3.16)

The corresponding first term of the GMM estimator is the same as Ψ
∗(a)
1 and the

second term is given by

Ψ
∗(a)
2,MGM = lim

N,T→∞
1

NT
E
[
J′

G2
[σ2Ω + Ωββ′Ω]JG2

T−1∑
t=1

N∑
i,j=1

(m
(t,a)
ij [1 − δij ])

2
]
.(3.17)

(ii) In the case of (b) under the homoscedasticity, we do not need double asymp-

toticsN,T → ∞ as mentiond by Akashi and Kunitomo (2010b). The heteroscedas-

ticity setting requires the condition N → ∞ for some second moments convergence

such as 1
N

∑N
i=1 hih

′
i

p−→ Ωh , as N → ∞ when hi are stochastic. However, un-

der the homoscedasticity, the modified LIML estimator also can be apply fixed-N

asymptotics. Then, cb > 0 in (2.16) and by the same arguments of (3.16) the mod-

ified LIML estimator is also relatively efficient than the modified GMM estimator

in the case (b).

For the estimation problem of the vector of structural parameters θ, it may be

natural to consider a set of statistics of two (1+G2 +K1)× (1+G2 +K1) random

matrices G(f) and H(f). Because we consider the modifications of the LIML and

GMM estimators, we shall consider a class of estimators which are some functions

of G(f,m) and H(f,m) and we have some results on the asymptotic optimality. The

proof is quite similar to Theorem 2 of Kunitomo (2008) and so it is omitted.

Theorem 3.3 : In the panel dynamic structural equation models of (2.1) and

(2.2), define the class of consistent estimators for θ = (β
′
2,γ

′
1)

′
by(

β̂2

γ̂1

)
= φ(G(f,m) , H(f,m)) , (3.18)

where φ is continuously differentiable and its derivatives are bounded at the prob-

ability limits of random matrices (1/n)G(f,m) and (1/qn)H(f,m).

Then either under the assumptions of Theorem 3.1 or Theorem 3.2, as N,T → ∞
√
NT

(
β̂2 − β2

γ̂1 − γ1

)
d−→ N (0,Ψ) , (3.19)

13



where

Ψ ≥ Ψ∗ (3.20)

and Ψ∗ (Ψ∗(a) or Ψ∗(b)) is given in Theorem 3.1 and Theorem 3.2. The AOM-

LIML estimator attains the asymptotic bound.

This is a new result on the asymptotic efficiency of the LIML estimation for the

dynamic panel structural equation models. It could be regarded as the extensions

of Theorem 4 of Anderson et al. (2010) and Theorem 3.3 of Akashi and Kunitomo

(2010b).

4 On Finite Sample Properties

It is important to investigate the finite sample properties of estimators partly

because they are not necessarily similar to their asymptotic properties. One simple

example would be the fact that the exact moments of some estimators do not

necessarily exist. (In that case it may be meaningless to compare the exact MSE

of alternative estimators and their Monte Carlo analogues.) Hence we need to

investigate the distribution functions of several estimators in a systematic way.

In our experiments we took Example 2 (G2 = 1, K1 = 2, K∗ = 3, K =

4, K∗ = 5) of Akashi and Kunitomo (2010b). We set the unknown parameters

such as (β2, γ11) = (.5, .5) γ12 = .3, and (ω11, ω12, ω22) = (1.0, .3, 1.0). Also we

control the variance of each components of πi as 1, and generate hi from uniform

distribution u[0, 2] independently over k = 1, · · · ,K∗. Then we generate a large

number of normal random variables except for hi, and calculate the empirical

distribution function of the GMM and LIML estimators in their normalized forms.

We repeat 3,000 replications for each case and the smoothing technique to estimate

the empirical distribution functions. Then among a large number of simulations,

we only report the results for (N, T ) = (75, 25) and (150, 50).

For both cases (a) and (b), by using true parameters we have set the normalizing

factors as the corresponding sample analogues,

Φ† =
1

N(T − 2)
D′J′

K

T−1∑
t=2

W′
t−1[IN − Dt]Wt−1JKD , (4.1)

Ψ†
1 =

1

N(T − 2)
D′J′

K

T−1∑
t=2

W′
t−1(Λ

(σ)
N [IN −Dt]

2)Wt−1JKD , (4.2)

Ψ†
2 =

1

N(T − 2)

T−1∑
t=2

N∑
i,j=1

ω⊥′
[σ2

i Ωj + Ωiββ′Ωj]ω
⊥[m

(t)
ij (1 − δij)]

2 , (4.3)
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where Λ
(σ)
N = diag{σ2

i }, Wt = (wit), Dt = D
(a)
t or D

(b)
t , and ω⊥′

= (0, 1)[I2 −
Ωββ′/σ2]. Then we investigate the empirical distribution of the normalized esti-

mator 2

√
N(T − 2)

[
(ψ†

11)
− 1

2 0

0 (ψ†
22)

− 1
2

][
β̂2 − β2

γ̂11 − γ11

]
, (4.4)

where ψ†
11 and ψ†

22 are the (1,1)-th element and (2,2)-th element of Ψ† = Φ†−1[Ψ†
1+

(1, 0, 0)′Ψ†
2(1, 0, 0)]Φ†−1 in the case (a), Ψ† = Φ†−1Ψ†

1Φ
†−1 in the case (b).

Figures 1-4 show the results of the forward-filtering case (a), and compare the

LIML and GMM estimators by Akashi and Kunitomo (2010b) and the correspond-

ing modified estimators. We first notice that the modification removes the biases

caused by the forward filtering and heterogeneity for LIML and GMM estimators.

As for the LIML estimator, an investigation of its empirical distribution as (4.4)

by increasing the sample size indicates that the order of bias due to the hetero-

geneity is O(NT ). For the simulation of β2, the modified LIML estimator seems

to be slightly efficient than those of GMM estimator. But we have found that

the difference of two estimators become often small. This aspect on the estima-

tion methods confirms the findings of Anderson et al. (2008, 2010) and Kunitomo

(2008) because the number of instruments is large in some sense.

Figures 5-8 show the results of the backward-filtering case (b), and we see the

similar results as the case of (a). In the case of (b) the LIML estimator is asymp-

totically median-unbiased for the homogeneous disturbances. However, in the

case of heteroscedastic disturbances the non-centered scaling of the distribution

of the LIML estimator has some bias so that the order of bias of (4.4) seems

to be O(1). The label “(b)∗” stands for using the different normalizing factor

as Ψ† = Φ†−1[Ψ†
1 + (1, 0, 0)′Ψ†

2(1, 0, 0)]Φ†−1 as if we had the homogeneous dis-

turbances with a fixed-N . It seems that the approximation of the finite sample

distribution of estimators have been improved.

5 Conclusions

In this paper we have introduced a class of the modified LIML estimators and in-

vestigated their asymptotic properties and finite sample properties in the dynamic

panel structural equation models when we have significant individual heteroscedas-

ticities. When we have panel dynamic structural equations, we often need to cope

with the individual effects and the use of the forward-filtering panel data has been

2Reduction of sample size from T to T − 2 is due to using the backward filtering in the case
(b), and from the result the sample analogue of ca are actually less than 1/2.
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one of standard methods in panel econometric analysis. However, this procedure

causes some additional bias in the standard estimation methods such as the GMM

estimator, which may complicate the evaluation of estimation methods. In this

paper we have shown that if we apply an asymptotically optimal modification

of the LIML (AOM-LIML) estimator proposed by Kunitomo (2008) to the panel

structural equation, the resulting estimator does not have the asymptotic bias and

also its asymptotic covariance does depend on the second order moments. More

importantly, the AOM-LIML estimator attains the asymptotic bound in a class

of estimators. Because it has also reasonable finite sample properties, it should

be useful for many practical applications in the econometric panel data analyses.

Because the AOM-LIML estimator has the simple form of the asymptotic variance,

it is straightforward to develop the hypothesis testing procedure for coefficients of

the structural equation in the dynamic panel models.

There are alternative ways to use the filtering methods, namely the forward-

filtering and the backward filtering, to the panel structural equation given a set of

panel data. Although the backward-filtering looks an attractive way of handling

panel data, their asymptotic results depend on the list of instrumental variables.

Often it may be reasonable to have many instrumental variables, the forward-

filtering has been one way to solve the problem of handling panel data. Since the

resulting estimators have different asymptotic properties and finite sample prop-

erties, the comparison of alternative methods are currently under investigation.

6 Mathematical Details

We shall derive the limiting distributions of the modified LIML estimators re-

ported as Theorems 3.1 and 3.2 in several steps. Because the arguments used

in our derivations are very similar to those developed by Akashi and Kunitomo

(2010a, b), we shall try to give the additional arguments to derive the results.

When we use the generic notations of (MD
t ,Mt,Dt,Υ

(.)
n ), the relevant derivation

is valid for the each case of (a) and (b), and then Υ(.)
n = (Υ

(.)
11n,Υ

(.)
12n,Υ

(.)
21n,Υ

(.)
22n,Υ

(.)
4n)

will be defined in (6.46)-(6.50) below. We shall use the notation that ei, ek∗ (i =

1, ...,N ; k∗ = 1, ...,K∗) stand for the i-th(k∗-th) unit vectors and J′
K ,J

′
G2

are

K(G2) ×K∗ selection matrices. We shall freely use the results in Lemma 3 and

Lemma 4 of Akashi and Kunitomo (2010b). Then for the heteroscedastic models

we need to change the derivations of the asymptotic properties of estimators from

those used by Akashi and Kunitomo (2010b). In the following derivations and the

proofs we shall use the representation of MD
t = Mt −Dt with Mt = M

(a)
t or M

(b)
t

and Dt = D
(a)
t or D

(b)
t instead of M t,m for the resulting mathematical convenience.
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We have omitted the proof of Theorem 3.3 because it is essentially the same as

Theorems reported in Anderson and Kunitomo (2010b).

First, we prepare the following lemma, which is an extension of the one of

Arvarez and Arellano (2003) and Akashi and Kunitomo (2010b), and the results

will be repeatedly used in our derivations.

Lemma 1 : Let ε
(a)
t = h

(a)
i ◦ ε

∗(a)
t = (h

(a)
i ε

∗(a)
it ) be an N × 1 vector and MD

t =

M
(a)
t −D

(a)
t , where ε

(a)
it (i = 1, · · · , N) are conditionally independent across i with

Et[ε
(a)
it ] = 0, where Ft−1 is the σ−field generated the random variables given at

t− 1. Then, for l ≥ r ≥ t, p ≥ q ≥ s, t ≥ s,

Cov[ε
(a)′
l MD

t ε(b)
r , ε(a)′

p MD
s ε(b)

q ] (6.1)

≤

⎧⎪⎨
⎪⎩

(m(3) +m(2))tr(Mt) if l = r = p = q,

m(3)tr(Mt) if l = p �= r = q,

0 otherwise,

where

m(2) = m(2)(ε
∗(a)
t , ε

∗(b)
t ) = (E [ε

∗(a)
it ε

∗(b)
it ])2,

m(3) = m(3)(ε
∗(a)
t , ε

∗(b)
t ) = E [ε

∗(a)2
it ]E [ε

∗(b)2
it ] . (6.2)

Proof of Lemma 1 : The unconditional covariances are represented by

Cov[ε
(a)′
l MD

t ε(b)
r , ε(a)′

p MD
s ε(b)

q ] (6.3)

= E [Covt[ε
(a)′
l MD

t ε(b)
r , ε(a)′

p MD
s ε(b)

q ]] + Cov[Et[ε
(a)′
l MD

t ε(b)
r ], Et[ε

(a)′
p MD

s ε(b)
q ]]

= E [Et[ε
(a)′
l MD

t ε(b)
r ε(a)′

p MD
s ε(b)

q ]] .

We notice that if p < t ε
(a)′
p Msε

(b)
q is constant and the covariances vanish. The

second equality follows from Et[ε
(a)′
l M

(D)
t ε

(b)
r ] = 0 and Et[ε

(a)′
p M

(D)
s ε

(b)
q ] = 0. In

fact,

Et[ε
(a)′
l MD

t ε(b)
r ] = tr(MD

t Et[ε
(b)
r ε

(a)′
l ])

{
E [ε

(a)
it ε

(b)
it ]tr(MD

t Λ
(a)
N Λ

(b)
N ) = 0 if l = r,

0 if l �= r,

Et[ε
(a)′
q MD

s ε(b)
p ] = tr(MD

s Et[ε
(b)
p ε(a)′

q ])

{
E [ε

(a)
it ε

(b)
it ]tr(MD

s Λ
(a)
N Λ

(b)
N ) = 0 if q = p,

0 if q �= p.

since we use the notationΛ
(a)
N = diag(h

(a)
i ) and Λ

(b)
N = diag(h

(b)
i ) is a diagonal

matrix, and then the diagonal elements of MD
t ,M

D
s are zeros.
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As for the leading term of (6.3) we have

Et[ε
(a)′
l MD

t ε(b)
r ε(a)′

p MD
s ε(b)

q ] (6.4)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Et[ε
(a)′
l MD

t ε
(b)
l ε

(a)′
l MD

s ε
(b)
l ] if l = r = p = q,

Et[ε
(a)′
l MD

t ε
(b)
l ε

(a)′
l ]MD

s ε
(b)
q = 0 if l = r = p �= q < t,

Et[El∧p(ε
(a)′
l MD

t ε
(b)
l )El∧p(ε

(a)′
p MD

s ε
(b)
p )] = 0 if l = r �= p = q,

tr(MD
t Et[ε

(b)
r ε

(b)′
r ]MD

s Et[ε
(a)
l ε

(a)′
l ]) if l = p �= r = q,

0 otherwise.

For the first type of non-zero terms

Et[ε
(a)′
l MD

t ε
(b)
l ε

(a)′
l MD

s ε
(b)
l ] (6.5)

=
∑

i

∑
j

∑
k

∑
�

m
(D,t)
ij m

(D,s)
k� (h

(a)
i h

(b)
j h

(a)
k h

(b)
� )Et[ε

(a)
il ε

(b)
jl ε

(a)
kl ε

(b)
�l ]

= E [ε
(a)2
it ε

(b)2
it ]

∑
i

m
(D,t)
ii m

(D,s)
ii h

(a)2
i h

(b)2
i + (E [ε

(a)
it ε

(b)
it ])2

∑
i,k,k �=i

m
(D,t)
ii m

(D,s)
kk h

(a)
i h

(b)
i h

(a)
k h

(b)
k

+ E [ε
(a)2
it ]E [ε

(b)2
it ]

∑
i,j,j �=i

m
(t)
ij m

(s)
ij h

(a)2
i h

(b)2
j + (E [ε

(a)
it ε

(b)
it ])2

∑
i,j,j �=i

m
(t)
ij m

(s)
ji h

(a)
i h

(b)
i h

(a)
j h

(b)
j

= m(3)[tr(Λ
(a)2
N MtΛ

(b)2
N Ms) − tr(Λ

(a)2
N DtΛ

(b)2
N Ds)]

+m(2)[tr(Λ
(a)
N Λ

(b)
N MtΛ

(a)
N Λ

(b)
N Ms) − tr(Λ

(a)
N Λ

(b)
N DtΛ

(a)
N Λ

(b)
N Ds)] ,

where m
(D,t)
ij and m

(D,s)
k� denotes elements of MD

t and MD
s respectively, and we use

the fact that m
(D,t)
ii = 0 and m

(D,t)
ij = m

(t)
ij (i �= j).

Let Ct be an N × N orthogonal matrix such that Λt = C′
tMtCt is a diagonal

matrix, Ps = C′
tΛ

(a)
N Λ

(b)
N MsΛ

(b)
N Λ

(a)
N Ct(≥ O) and CtC

′
t = IN . Then

tr(Λ
(a)
N Λ

(b)
N MsΛ

(a)
N Λ

(b)
N Mt) = tr(PsΛt) =

N∑
i=1

λ
(t)
i p

(s)
ii ≤

N∑
i=1

p
(s)
ii ≤ tr(Ms) (6.6)

because the first inequality is due to p
(s)
ii ≥ 0, 0 ≤ λ

(t)
i ≤ 1 and the second

inequality follows from that
∑N

i=1 p
(s)
ii = tr(Λ

(a)
N Λ

(b)
N MsΛ

(a)
N Λ

(b)
N ) and 0 < h

(a)
i h

(b)
i ≤

1.

For the second type

Et[ε
(a)′
l MD

t ε
(b)
l ε

(a)′
l ]MD

s ε(b)
q = E [ε

(a)2
it ε

(b)
it ](m

(D,t)
11 h

(a)2
1 h

(b)
1 , ...,m

(D,t)
NN h

(a)2
N h

(b)
N )MD

s ε(b)
q

= 0 , (6.7)

and third type is also zero since El∧p(ε
(a)′
l MD

t ε
(b)
l ) = 0 or El∧p(ε

(a)′
p MD

t ε
(b)
p ) = 0.

For the fourth type

tr(MD
t Et[ε

(b)
r ε(b)′

r ]MD
s Et[ε

(a)
l ε

(a)′
l ]) = m(3)[tr(Λ

(a)2
N MtΛ

(b)2
N Ms) − tr(Λ

(a)2
N DtΛ

(b)2
N Ds)] .
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For the term tr(Λ
(a)2
N MtΛ

(b)2
N Ms) in the first and fourth types, we have

|tr(Λ(a)2
N MtΛ

(b)2
N Ms)| ≤ [ tr(Λ

(a)2
N M2

tΛ
(a)2
N )tr(MsΛ

(b)4
N Ms) ]

1
2 (6.8)

= [ tr(Λ
(a)4
N Mt)tr(Λ

(b)4
N Ms) ]

1
2

≤ tr(Mt)

because each elements of h
(a)
i , h

(b)
i are bounded and s ≤ t. Q.E.D.

Derivations of Theorem 3.1 and Theorem 3.2 : We shall show the deriva-

tions of Theorem 3.1 and Theorem 3.2 in several steps.

(Step 1) : At this step, we shall show the convergence of G(f) and H(f) based on

MD
t = Mt −Dt. The many parts of the derivations are some modifications of the

corresponding ones in Akashi and Kunitomo (2010b). We shall show that

1

NT
G(f) p−→ G0 = B′Φ∗B , (6.9)

1

NT
H(f) p−→ H0 =

[
Ω O

O O

]
+ B′Φ∗

2B , (6.10)

where B = (θ, IG2+K1
), Φ∗ = Φ∗

1 −Φ∗
2 and

Φ∗
1 = D′J′ lim

N,T→∞
1

NT

N∑
i=1

T−1∑
t=1

E [(1 −mt,a
ii )wi(t−1)w

′
i(t−1)]JD (6.11)

Ω = J′
1+G2

( Ω∗∗
v ◦ plimN,T→∞

1

N

N∑
i=1

[hih
′
i] )J1+G2

> 0 , (6.12)

Φ∗
2 = D′J′

K

(
lim

N,T→∞
1

NT

T−1∑
t=1

E [W′
t−1DtWt−1]

)
JKD ≥ 0 . (6.13)

Consider the decomposition

G(f) = G(f,1) + G(f,2) + G(f,2)′ + G(f,3) , (6.14)

where

G(f,1) = B′D′
T−1∑
t=1

Z
(f)′
t−1M

D
t Z

(f)
t−1DB , (6.15)

G(f,2) = B′D′
T−1∑
t=1

Z
(f)′
t−1M

D
t (V

(f)
t ,O) , (6.16)

G(f,3) =

T−1∑
t=1

(
V

(f)′
t

O
)MD

t (V
(f)
t ,O) , (6.17)
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and V
(f)′
t = (v

(f)
1t , · · · ,v(f)

Nt ), v
(f)
it are the corresponding forward-filtered distur-

bances of vit.

First, we notice that (1/NT )G(f,2) p→ O because (1/
√
NT )G(f,2) = Op(1) by using

the argument in Step 2 below.

Second, we evaluate G(f,3). For g, h = 1, · · · , (1+G2), by the construction of MD
t ,

we have

E [e′
gJ

′
1+G2

G(f,3)J1+G2
eh] =

T−1∑
t=1

E [tr(MD
t Et[v

(f,g)
t v

(f,h)′
t ])] = 0 . (6.18)

By using V
(f)
t = (Vt − V̄)/ct, we have

1

NT

T−1∑
t=1

e′
gJ

′
1+G2

G(f,3)J1+G2
eh (6.19)

=
1

NT

T−1∑
t=1

c−2
t v

(g)′
t MD

t v
(h)′
t − 2

NT

T−1∑
t=1

c−2
t v

(g)′
t MD

t v̄
(h)′
tT +

1

NT

T−1∑
t=1

c−2
t v̄

(g)′
tT MD

t v̄
(h)′
tT .

By using Lemma 1 and the fact (c−2
t )2 ≤ 2, the variance of the first term in (6.19)

is given by

Var[ 1

NT

T−1∑
t=1

c−2
t v

(g)′
t MD

t v
(h)′
t ] ≤ 2

(NT )2

T−1∑
t=1

[e′
gΩ

∗∗ege
′
hΩ

∗∗eh + (e′
gΩ

∗∗eh)
2]tr(Mt) .

The second and third terms of (6.19) can be evaluated analogously as Υ
(k)
21 and Υ

(k)
22

in Step 3 below. In fact, for the case (a), the order of variances of the second and

third terms are O(log T/N2T ), O((log T )2/N2T ), respectively. For the case of (b),

they are O(log T/(NT )2), O((log T )2/(NT )2). Thus, we have (1/NT )G(f,3) p→ O.

Next, we use the representation

Z
(f)′
t−1 = J′

K

(
ct[IK∗ − 1

T − t
(

T−t∑
j=1

Π∗j)]W′
t−1 − ctṼ

′
tT

)
= Ψ′

tW
′
t−1 − ctṼ

′
tT (, say). (6.20)

Then we shall investigate the asymptotic behavior of G(f,1) and we further decom-

pose (1/NT )G(f,1) as

1

NT

T−1∑
t=1

Z
(f)′
t−1M

D
t Z

(f)
t−1 =

1

NT

T−1∑
t=1

Ψ′
tW

′
t−1M

D
t Wt−1Ψt − 1

NT

T−1∑
t=1

ctΨ
′
tW

′
t−1M

D
t ṼtT

− 1

NT

T−1∑
t=1

ctṼ
′
tTMD

t Wt−1Ψt +
1

NT

T−1∑
t=1

c2t Ṽ
′
tTMD

t ṼtT . (6.21)
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The expected value of the fourth term of (6.21) is O. By using the similar argu-

ments for Υ
(k)
22 , the order of variance of the fourth term is O((logT )2/N2T ) for the

case (a), and it is O((logT )2/(NT )2) for the case (b).

The second and third terms of (6.21) have zero means, and for j, k = 1, · · · ,K
we use the Cauchy-Schwarz inequality

V ar[
1

NT

T−1∑
t=1

cte
′
jΨ

′
tW

′
t−1M

D
t ṼtTek] (6.22)

≤ 1

(NT )2

T−1∑
t=1

T−1∑
s=1

√
c2tE [(e

′
jΨ

′
tW

′
t−1M

D
t ṼtTek)2]

√
c2sE [(e

′
kṼsTMD

s Ws−1Ψsej)2] .

Also we have

c2tE [(e
′
jΨ

′
tW

′
t−1M

D
t ṼtTek)

2]

= c2tE
[
e

′
jΨ

′
tW

′
t−1M

D
t

[ 1

(T − t)2

T−t∑
h=1

e
′
kJΦ

′
hEt[v

∗
i0v

∗′
i0]ΦhekJ

]
MD′

t Wt−1Ψtej

]

=

K∗∑
l,�=1

([ e′
lΩ

∗∗e�

(T − t)2

T−t∑
h=1

e
′
kJΦ

′
hele

′
�ΦhekJ

]

× c2tE
[
(e′

lπiπ
′
ie�)e

′
jΨ

′
tW

′
t−1(Mt − Dt)

2Wt−1Ψtej

])

≤
K∗∑

l,�=1

[ |e′
lΩ

∗∗e�|
(T − t)2

T−t∑
h=1

|e′
kJΦ

′
hel||e′

�ΦhekJ |
]
E
[
e

′
jΨ

′
tW

′
t−1Wt−1Ψtej

]

= O
(K∗2N
T − t

)
e

′
jΨ

′
tE [wi0w

′
i0]Ψtej , (6.23)

where ekJ stands for ekJ = JKek.

The inequality in (6.23) follows from the relations that c2t < 1, |e′
lhih

′
ie�| ≤ 1 and

λmax{(Mt − Dt)
2} ≤ 1, which is the result of MD

t = (MD
t )′, λmax{(Mt −Dt)

2} =

maxi |λi{Mt − Dt}|2 and

−1 ≤ λmin{Mt} + λmin{−Dt} ≤ λi{Mt − Dt} ≤ λmax{Mt} + λmax{−Dt} ≤ 1 .

Hence

V ar[
1

NT

T−1∑
t=1

cte
′
jΨtW

′
t−1M

D
t ṼtTek] ≤ 1

(NT )2

T−1∑
t=1

√
O(

N

T − t
)

T−1∑
s=1

√
O(

N

T − s
)

= O
((

√
T )2

NT 2

)
. (6.24)
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For the first term of (6.21), we further decompose it as

1

NT

T−1∑
t=1

Ψ′
tW

′
t−1M

D
t Wt−1Ψt

=
1

NT

T−1∑
t=1

W
′
t−1M

D
t Wt−1 − 1

NT

T−1∑
t=1

(
1

T − t+ 1
)W

′
t−1M

D
t Wt−1 (6.25)

− 1

NT

T−1∑
t=1

c2t
T − t

W
′
t−1M

D
t Wt−1(

T−t∑
j=1

Π∗j)
′ − 1

NT

T−1∑
t=1

c2t
T − t

(

T−t∑
j=1

Π∗j)W
′
t−1M

D
t Wt−1

+
1

NT

T−1∑
t=1

(
ct

T − t
)2(

T−t∑
j=1

Π∗j)W
′
t−1M

D
t Wt−1(

T−t∑
j=1

Π∗j)
′

p→ lim
N→∞

1

N

N∑
i=1

E [wi(t−1)w
′
i(t−1)] − lim

N,T→∞
1

NT

T−1∑
t=1

E [W′
t−1DtWt−1] ,

where we have used the fact c2t = 1 − 1/(T − t+ 1).

For the second term of (6.25), for j, k = 1, · · · ,K, we have

E
[ ∣∣∣ 1

NT

T−1∑
t=1

(
1

T − t + 1
)e′

jJW
′
t−1M

D
t Wt−1ekJ

∣∣∣ ] (6.26)

≤ 1

NT

T−1∑
t=1

(
1

T − t+ 1
)E [|w(j)′

t−1(Mt − Dt)
2w

(j)
t−1w

(k)′
t−1w

(k)
t−1|

1
2 ] (6.27)

=
O(N logT )

NT
,

where the inequality is due to the Cauchy-Schwartz inequality, and we have used

it as E [|w(j)′
t−1w

(j)
t−1w

(k)′
t−1w

(k)
t−1|

1
2 ] ≤ E [(w

(j)′
t−1w

(j)
t−1)(w

(k)′
t−1w

(k)
t−1)]

1
2 = O(N).

Therefore the second term of (6.25) converges in probability to 0. By using the

similar arguments and the boundedness of |ej(
∑T−t

j=1 Π∗j)ekJ |, the third and fifth

terms of (6.25), which are of the orders of O(log T/T ) and O(1/T ) respectively,

converge to O. The first term of (6.25) converges as N,T → ∞ by using Lemma

3 and Lemma 4 of Akashi and Kunitomo (2010b) and the assumption (A-III).

Hence, we have shown that (1/NT )G(f) p→ G0.

Next, we turn to show that (1/NT )H(f) p→ H0 by evaluating each terms of the
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decomposition

1

NT

T−1∑
t=1

(
Y

(f)′
t

Z
(1,f)′
t−1

)
(Y

(f)
t ,Z

(1,f)
t−1 )

=
1

NT
B

′
D

′
T−1∑
t=1

Z
(f)′
t−1Z

(f)
t−1DB +

1

NT
B′D

′
T−1∑
t=1

Z
(f)′
t−1(V

(f)
t ,O)

+
1

NT

T−1∑
t=1

(
V

(f)′
t

O

)
Z

(f)
t−1DB +

1

NT

T−1∑
t=1

(
V

(f)′
t

O

)
(V

(f)
t ,O) . (6.28)

For the fourth term, by using the property of the forward filter

1

NT

T−1∑
t=1

E [e′
gV

(f)′
t V

(f)
t eh] =

1

NT

N∑
i=1

E [v
(g)′
i QTv

(h)
i ]

p→ Ω − 1

NT
lim

N→∞

N∑
i=1

E [h
(g)
i h

(h)
i e′

gΩ
∗∗eh] , (6.29)

where QT = IT − ιT ι′T/T and the second equality follows from the fact that

E [(h
(g)
i v

∗∗(g)
is )(h

(h)
t v

∗∗(h)
it )] = 0 if s �= t. Using the mutual independence of vit over

i = 1, · · · , N , the variance of the first term of (6.28) is given by

Var[ 1

NT

N∑
i=1

v
(g)′
i v

(h)
i ] =

1

(NT )2

N∑
i=1

Var[
T∑

t=1

(h
(g)
i v

∗∗(g)
it )(h

(h)
i v

∗∗(h)
it )] (6.30)

=
N

(NT )2
× O

(
T (T − 1)Var[h(g)

i h
(h)
i ](e′

gΩ
∗∗eh)

2
)
,

where Cov[h(g)
i v

∗∗(g)
is h

(h)
i v

∗∗(h)
is , h

(g)
i v

∗∗(g)
it h

(h)
i v

∗∗(h)
it ] = Var[h(g)

i h
(h)
i ](e′

gΩ
∗∗eh)

2 for s �=
t. Then the variance of the second term of (6.29) is given by

Var[ 1

NT 2

N∑
i=1

v
(g)′
i ιT ι′Tv

(h)
i ] =

N

(NT 2)2
Var[v(g)′

i ιT ι′Tv
(h)
i ] =

O(NT 4)

(NT 2)2
,(6.31)

since v
(g)′
i ιT ι′Tv

(h)
i = Op(T

2). Hence we find that the variance order of the last

term of (6.28) is O(1/N).

Turning to consider the second term of (6.28), we have

1

NT

T−1∑
t=1

E [Z
(f)′
t−1V

(f)
t ] = O − N

NT 2
× O

(
(T − 1)J′

K(IK∗ − Π∗)−1E [v∗
i0v

∗′
i0J1+G2

]
)
.

By the similar arguments as used for evaluating (6.31), the variance order of the

second term of (6.28) is O(1/N).
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Finally, we consider the first term of (6.28),

1

NT

T−1∑
t=1

E [e′
jJZ

(f)′
t−1Z

(f)
t−1ekJ ] (6.32)

=
1

N

N∑
i=1

E [w
(j)

i(t−1)w
(k)

i(t−1)] −
N

NT 2
e′

jJ [

T−1∑
l=0

l∑
h=0

Γih +

T−1∑
l=1

l∑
h=1

Γ′
ih]ekJ

=
1

N

N∑
i=1

E [w
(j)
i(t−1)w

(k)
i(t−1)] − O(

NT

NT 2
) , (6.33)

where Γih = E [witw
′
i(t+h)].

By using the similar arguments as for evaluating (6.31), the variance order of the

first term of (6.28) is also O(1/N).

Therefore we have established that as N,T → ∞

1

NT
H(f) p−→ B′Φ∗

1B +

[
Ω O

O O

]
− G0 = H0 . (6.34)

(Step 2) : We consider the consistency and the limiting distribution of the AOL-

LIML estimator θ̂MLI . For this purpose, we need to evaluate the sampling error

form for θ̂MLI . We notice that the continuity of the minimum eigenvalue function∣∣∣∣∣B′Φ∗B − plimn→∞λn

([ Ω O

O O

]
+ B′Φ∗

2B
)∣∣∣∣∣ = 0 ,

and we have 0 as a solution due to the singularity of G0. If plimn→∞λn < 0, we

observe |G0 −plimn→∞λnH0| > 0. This is because for any (1 +G2 +K1) non-zero

vector d
′
= (d′

1,d
′
2) we have d′

1Ωd1 > 0, or for d1 = 0 and d2 �= 0,

(0′,d′
2)B

′Φ∗B

(
0

d2

)
= (0′,d′

2)Φ
∗
(

0

d2

)
> 0 . (6.35)

Thus we have plimn→∞λn = 0. Then the non-singularity of (6.35) and Φ∗(θ̂MLI −
θ) = 0 + op(1), we obtain θ̂MLI

p→ θ.

Next, we consider the limiting distribution form of the modified LIML estimator.

Define G
(f)
1 =

√
n[(1/n)G(f)−G0], H

(f)
1 =

√
n[(1/n)H(f)−H0], b1 =

√
n[θ̂MLI −

θ] and λ
(f)
1n =

√
n[λn − 0]. By substituting these random variables into (2.19), it

is asymptotically equivalent to

G0

[
1

−θ

]
+

1√
n

[G
(f)
1 − λ

(f)
1n H0]

[
1

−θ

]
+

1√
n
G0b1 = op(

1√
n

) . (6.36)
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Then by using the relation of B(1,−θ′)′ = 0, we have

(B′Φ∗B)b1 = [G
(f)
1 − λ

(f)
1n H0]

[
1

−θ

]
+ op(1) . (6.37)

Multiplication of (6.37) from the left by (1,−θ) yields

λ
(f)
1n =

(1,−θ′)G(f)
1 (1,−θ′)′

(1,−θ′)H0(1,−θ′)′
+ op(1) . (6.38)

Also the multiplication of (6.37) from the left by (0, IG2+K1
) and substitution of

λ
(f)
1n for (6.37) yields

Φ∗√n
[

β̂2MLI − β2

γ̂1MLI − γ1

]
= [0, IG2+K1

]
[
G

(f)
1 − λ

(f)
1n H0

] [ 1

−θ

]
+ op(1)(6.39)

= [0, IG2+K1
]

[
I1+G2+K1

− 1

β′Ωβ

(
Ωβ

0

)
(1,−θ′)

]
G

(f)
1

[
1

−θ

]
+ op(1) .

Using the relations of (6.38), we have

G
(f)
1

[
1

−θ

]
=

1√
n
B

′
D

′
T−1∑
t=1

Z
(f)′
t−1M

D
t u

(f)
t +

1√
n

T−1∑
t=1

(
V

(f)′
t

O

)
MD

t u
(f)
t , (6.40)

where MD
t = Mt − Dt. Therefore

Φ∗√n
(

β̂2MLI − β2

γ̂1MLI − γ1

)
=

1√
n
D′

T−1∑
t=1

Z
(f)′
t−1M

D
t u

(f)
t +

1√
n

T−1∑
t=1

(
U

(⊥,f)′
t

O

)
MD

t u
(f)
t

+op(1) , (6.41)

where

U
(⊥,f)′
t = [0, IG2

]

[
I1+G2

− Ωββ
′

β
′
Ωβ

]
V

(f)′
t = (u

(⊥,f)
1t , ...,u

(⊥,f)
Nt ) . (6.42)

(Step 3) : At this step we shall evaluate the effects of the forward-filtering on

the limiting distribution of the modified LIML estimator. The sampling error

Φ∗√n(θ̂ − θ) can be written as

1√
n
D′

T−1∑
t=1

Z
(f)′
t−1M

D
t u

(f)
t +

1√
n

T−1∑
t=1

(
U

(⊥,f)′
t

O

)
MD

t u
(f)
t + op(1) (6.43)

=
1√
n
D′

T−1∑
t=1

J
′
W

′
t−1[Mt −Dt]ut +

1√
n

T−1∑
t=1

(
U⊥′

t

O

)
[Mt − Dt]ut + b(f) + op(1)

=
1√
n
D′

T−1∑
t=1

J
′
W

′
t−1[IN − Dt]ut +

1√
n

T−1∑
t=1

(
U⊥′

t

O

)
[Mt − Dt]ut + op(1)

= a1n + a2n + op(1), (, say) .
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We shall show the first and second equalities and that the bias b(f) due to the

forward filtering is 0. In order to show the first equality,] we use the fact u
(f)
t =

(ut − utT )/ct and consider the decompositions, for k = 1, ...,K ; g = 1, ...,G2,

1√
n

T−1∑
t=1

e′
kJZ

(f)′
t−1M

D
t u

(f)
t

= (
1√
n

T−1∑
t=1

e′
kJW

′
t−1M

D
t ut − Υ

(k,.)
11n − Υ

(k,.)
12n ) − ( Υ

(k,.)
21n − Υ

(k,.)
22n ) , (6.44)

1√
n

T−1∑
t=1

e′
gU

(⊥,f)′
t MD

t u
(f)
t =

1√
n

T−1∑
t=1

e′
gU

⊥′
t MD

t ut + Υ
(g,.)
4n , (6.45)

where

Υ
(k,.)
11n =

1√
n

T−1∑
t=1

e′
kJW

′
t−1M

D
t ūtT , (6.46)

Υ
(k,.)
12n =

1√
n

T−1∑
t=1

(
ct

T − t
)e′

kJW̃
′
t−1M

D
t u

(f)
t , (6.47)

Υ
(k,.)
21n =

1√
n

T−1∑
t=1

e′
kJṼ

′
tT MD

t ut , (6.48)

Υ
(k,.)
22n =

1√
n

T−1∑
t=1

e′
kJṼ

′
tT MD

t ūtT , (6.49)

Υ
(g,.)
4n =

1√
n

T−1∑
t=1

[
(

1

T − t
)e′

gU
⊥′
t MD

t ut − c−2
t e′

gU
⊥′
t MD

t ūtT

−c−2
t e′

gŪ
⊥′
tT MD

t ut + c−2
t e′

gŪ
⊥′
tTMD

t ūtT

]
, (6.50)

and

ūtT = (ut + · · · + uT )/(T − t+ 1) , ut = (u1t, · · · , uNt)
′ , (6.51)

W̃
′
t−1 = (

T−t∑
h=1

Π∗h)W′
t−1 , Ṽ

′
tT =

1

T − t

T−t∑
h=1

ΦhV
∗′
T−h , (6.52)

V∗′
h = (v∗

1h, ...,v
∗
Nh) = (v

∗(1)
h , · · · ,v∗(K∗)

h )′ , (6.53)

Φh = (IK∗ − Π∗)−1(IK∗ − Π∗h) , (6.54)

U⊥′
t = [0, IG2

]

[
I1+G2

− Ωββ
′

β
′
Ωβ

]
V

′
t = (u⊥

1t, ...,u
⊥
Nt) , (6.55)

Ū⊥
t = (U⊥

t + · · · + U⊥
T )/(T − t+ 1) . (6.56)
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We shall investigate the convergences from (6.46) to (6.50). For Υ
(k)
11n, we have

E [w
(k)′
t−1M

D
t Et[ūtT ū′

sT ]MD′
s w

(k)
s−1] (6.57)

=
1

(T − s+ 1)
E [w

(k)′
t−1(MtΛ

(σ)
N Ms −MtΛ

(σ)
N Ds − DtΛ

(σ)
N Ms + DtΛ

(σ)
N Ds)w

(k)
s−1] .

where Λ
(σ)
N = diag{σ2

i }. Consider the first term of (6.57),

1

(T − s+ 1)
E [w

(k)′
t−1MtΛ

(σ)
N Msw

(k)
s−1] (6.58)

=
1

(T − s+ 1)

[
E [w

(k)′
t−1Λ

(σ)
N (IN − Ms)ε

(k)
s−1] − E [w

(k)′
t−1Λ

(σ)
N w

(k)
s−1]

−E [ε
(k)′
t−1(IN − Mt)Λ

(σ)
N (IN −Ms)ε

(k)
s−1] + E [ε

(k)′
t−1(IN − Mt)Λ

(σ)
N w

(k)
s−1]
]
,

where we used the decomposition w
(k)′
h−1Mh = w

(k)′
h−1 − ε

(k)′
h [IN − Mh] for h = t, s,

and ε
(k)
h was defined in Lemma 3 and Lemma 4 of Akashi and Kunitomo (2010b)

for the cases of (a),(b). For the second term of (6.57), we use

E [w
(k)′
t−1Λ

(σ)
N w

(k)
s−1] =

N∑
i=1

E [σ2
i Es[w

(k)
it−1]w

(k)
is−1] (6.59)

≤
N∑

i=1

E [σ2
i |

K∗∑
j=1

(e′
kJΠ

∗t−sej)||w(j)
is−1w

(k)
is−1|]

≤ σ̄2
( K∗∑

j=1

|e′
kJΠ

∗t−sej|
)( N∑

i=1

max
j

E [|w(j)
i0 w

(k)
i0 |]
)
,

since Es[σ
2
iwit−1] = σ2

i Es[wit−1] and 0 < σ2
i ≤ σ̄2 w.p.1. Thus, by using Lemma 2

in Akashi and Kunitomo (2010b), the corresponding order is O(log T/T ). For the

third of (6.57),

E [ε
(k)′
t−1(IN − Mt)Λ

(σ)
N (IN − Ms)ε

(k)
s−1] (6.60)

≤ (E [ε
(k)′
t−1(IN −Mt)Λ

(σ)2
N (IN − Mt)ε

(k)
t−1ε

(k)′
s−1(IN − Ms)

2ε
(k)
s−1])

1
2

≤ σ̄2(E [ε
(k)′
t−1ε

(k)
t−1ε

(k)′
s−1ε

(k)
s−1])

1
2 ,

since λmax{Λ(σ)2
N } ≤ (σ̄2)2 and (IN −Mt) is idempotent. Thus, by using the same

arguments used in Akashi and Kunitomo (2010b), we obtain the corresponding

order of (6.57) as O(logT/
√
T ). Similarly, we apply the same arguments to the

second, third and forth terms of (6.57) by using the fact 0 < [Dt]ii = m
(t)
ii ≤ 1.

Therefore, Var[Υ(k)
11n] = O(logT/

√
T ).
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For Υ
(k,a)
12n and Υ

(k,b)
12n , by using the facts that Et[u

(f)2
it ] = σ2

i and Et[u
(f)
is u

(f)
it ] =

0 (s < t),

Var[Υ(k,.)
12n ] =

1

NT

T−1∑
t=1

c2t
(T − t)2

E [w̃
(k)′
t−1M

D
t Λ

(σ)
N MD′

t w̃
(k)
t−1]

≤ σ̄2

NT

T−1∑
t=1

c2t
(T − t)2

E [w̃
(k)′
t−1(Mt −Dt)

2w̃
(k)
t−1]

≤ σ̄2

NT

T−1∑
t=1

c2t
(T − t)2

E [w̃
(k)′
t−1w̃

(k)
t−1] = O(

1

T
) .

For Υ
(k,a)
21n , by using Lemma 1 and the same arguments in Akashi and Kunitomo

(2010b), we can obtain Var[Υ(k,a)
21n ] = O(log T/N).

For Υ
(k,a)
22n , it is sufficient to show that

Var[ṽ∗(k,j)′
tT MD

t ūtT ] = Var[ (h
(j)
N ◦ ṽ

∗∗(k,j)
tT )′MD

t (

1+G2∑
g=1

βgh
(g)
N ◦ v̄

(g)
tT ) ] (6.61)

≤ (1 +G2)
2 max

g
{Var[ (h

(j)
N ◦ ṽ

∗∗(k,j)
tT )′MD

t (h
(g)
N ◦ βgv̄

(g)
tT ) ]}

= O(tr(Mt))[m
(1)(ṽ

∗∗(k,j)
tT , βgv̄

(g)
tT ) +m(3)(ṽ

∗∗(k,j)
tT , βgv̄

(g)
tT )] ,

where the first inequality is due to the Cauchy-Schwartz inequality, and the last

equality follows from that the same arguments used for the case of l = r = p = q in

Lemma 1, and m(2) ≤ m(1)(ṽ
∗∗(k,j)
tT , βgv̄

(g)
tT ) = E [(e′

iṽ
∗∗(k,j)
tT )2(βge

′
iv̄

(g)
tT )2]. Therefore,

the rest of the proof is to show that Var[Υ(k,a)
22n ] = O((log T )2/N), which is quite

similar to the ones in Akashi and Kunitomo (2010b).

For the case of (b), by using the fact tr(Mt) = O(1), we have

Var[Υ(k,b)
21n ] = O(

logT

NT
), Var[Υ(k,b)

22n ] = O(
(logT )2

NT
) . (6.62)

For the first term of Υ
(g,.)
4n , by using Lemma 1, the order of its variance is

(1/NT )
∑T−1

t=1 (1/T − t)2tr(Mt) = o(1). The orders of the variances of second and

third terms for (Υ
(g,a)
4n ,Υ

(g,b)
4n ) are the same as those of (Υ

(k,a)
21n ,Υ

(k,b)
21n ), respectively.

By the same token, for both (a) and (b) cases, the variance order of fourth term

of Υ
(g,.)
4n are the same as the ones for (Υ

(k,a)
22n ,Υ

(k,b)
22n ).

Thus, the variances of (6.46) to (6.50) converge to zeros as N,T → ∞. Hence,

b(f) can be evaluated as the sum of expectations of these terms by the mean

squared convergence. These expectations are zeros by the construction of MD
t =

Mt −Dt and then b(f) = 0 for both (a) and (b) cases.
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The second equality of (6.43) holds for both (a) and (b) cases, since Mt =

IN − (IN − Mt) and the results due to Lemma 3 and Lemma 4 of Akashi and

Kunitomo (2010), which is

Var[ 1√
n

T−1∑
t=1

W′
t−1(IN − Mt)ut] = O(

logT

T
) . (6.63)

(Step 4) : At this step we shall evaluate the asymptotic variance-covariance terms

of the modified LIML estimator. For this purpose, we utilize the representation of

(6.43). First,

E [a1na
′
1n] =

1

NT
D′J′

T−1∑
t=1

N∑
i,j=1

E [wit−1(1 −m
(t)
ii )uitujt(1 −m

(t)
jj )w′

it−1]JD

=
1

NT
D′J′

T−1∑
t=1

N∑
i=1

E [Et[u
2
it](1 −m

(t)
ii )2wit−1w

′
it−1]JD , (6.64)

where the first equality is from [IN − Dt]ij = 0 for i �= j, and the second equality

follows from Et[uitujt] = 0 for i �= j.

Second,

E [a1na
′
2n] =

( 1

NT
D′J′

T−1∑
t=1

E
[ N∑

i=1

wit(1 −m
(t)
ii )uit

N∑
j,k=1

ujt(m
(t)
jk − δjkm

(t)
jk )u⊥′

kt

]
,O
)

=
(
O,O

)
, (6.65)

where δjk = 1 if j = k, 0 otherwise. The second equality follows from that

(m
(t)
jk −m

(t)
jj )Et[uitujtu

⊥
kt] = 0 and Et[u

⊥
kt] = 0 for any i, j, k.

Third,

E [J′
G2

a2na
′
2nJG2

]

=
1

NT

T−1∑
t=1

E
[ N∑

i,j,i�=j

u⊥
itm

(t)
ij ujt

N∑
k,l,k �=l

uktm
(t)
kl u

⊥′
lt

]
(6.66)

=
1

NT

T−1∑
t=1

E
[ N∑

i,j,i�=j

u⊥
itm

(t)
ij ujt(uitm

(t)
ij u⊥′

jt + ujtm
(t)
ji u⊥′

it )
]

=
1

NT

T−1∑
t=1

E
[ N∑

i,j=1

(Et[u
⊥
ituit]Et[ujtu

⊥′
jt ] + Et[u

2
jt]Et[u

⊥
itu

⊥′
it ])(m

(t)
ij [1 − δij])

2
]
,

where the last equality is from m
(t)
ji = m

(t)
ij .
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Consider the statements in (3.14) and (3.15) or the cases ca = 0, cb = 0. As for

Φ∗, by the Cauchy-Schwartz inequality

E
[ 1

NT

T−1∑
t=1

N∑
i=1

m
(t)
ii |e′

jJwit−1w
′
it−1ekJ |

]
(6.67)

≤ E
[ 1

T

T−1∑
t=1

( 1

N

N∑
i=1

m
(t)2
ii

) 1
2
( 1

N

N∑
i=1

(e′
jJwit−1w

′
it−1ekJ)2

) 1
2
]

≤ 1

T

T−1∑
t=1

(tr(Mt)

N

) 1
2
(
E [(e′

jJwi0w
′
i0ekJ)2]

) 1
2
,

where the last quantity is O(T
√
T/T

√
N) = O(

√
ca) or O(T/T

√
N) = O(

√
cb).

Because of the mean convergence, these terms converge in probability to zeros,

and then Φ∗ → Φ∗
1.

By using the similar arguments, Ψ∗
1 converges to a constant matrix in probability.

Moreover, for g, h = 1, · · · , G2, we can show

|e′
gΨ

∗
2eh| ≤ 1

NT

T−1∑
t=1

tr(Mt) × O(1) (6.68)

since |e′
g(σ

2
i Et[u

⊥
jtu

⊥′
jt ]+Et[u

⊥
ituit]Et[ujtu

⊥′
jt ])eh| are bounded w.p.1 and

∑N
i,j=1m

(t)2
ij =

tr(Mt). Thus, we can conclude that Ψ∗
2 → O.

[ Step 5 ]: Finally we consider the asymptotic normality of the modified LIML

estimator and the modified GMM estimator. For this purpose, define the (G2 +

K1) × 1 martingale difference sequence by

αt =
1√
N

[
D′J′

KWt−1[IN − Dt]ut + (U⊥
t ,O)′[Mt − Dt]ut

]
= α1t + α2t (, say)

where (1/
√
T )
∑T−1

t=1 α1t = a1n and (1/
√
T )
∑T−1

t=1 α2t = a2n for (6.43). For any

(G2 +K1)×1 constant vector d and any function f(.) such N = f(T ), f(T ) → ∞
as T → ∞,

1

T

T−1∑
t=1

d′Et[αtα
′
t]d

p−→ lim
T→∞

1

T

T−1∑
t=1

d′E [αtα
′
t]d . (6.69)

For the case of (a), (6.69) holds by the assumptions (A-I) to (A-IV) and

1

NT

T−1∑
t=1

N∑
i=1

σ2
i wit−1w

′
it−1

p−→ E [σ2
i wit−1w

′
it−1] . (6.70)

For the case of (b), the condition (6.69) is equivalent to (6.70).
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By using the similar arguments as the modified LIML estimator, the limiting

distribution of Φ∗√n(θ̂GMM − θ) for the modified GMM estimator is given by

1√
n
D′

T−1∑
t=1

J
′
W

′
t−1[IN − Dt]ut +

1√
n

T−1∑
t=1

(
J′

G2
V′

t

O

)
[Mt − Dt]ut + op(1) . (6.71)

Then for both the modified LIML and GMM estimators, it is enough to investigate

the 4-th order moments as the Lyapounov condition for the asymptotic normality.

For the case of (b), |d′α1t|4 are uniformly bounded in h by (A-I). For the case of

(a), it sufficient to show the boundedness of |d′α1t|4 and |h′α1t|4.
Define t

(t)
i by (d′U⊥′

t ei) or (d′JG2
V′

tei), m
(t,D)
ij = e′

i[Mt − Dt]ej and re-write

u
(t)
j = ujt, then Et[ |d′U⊥′

t MD
t ut|4 ] or Et[ |d′JG2

V
′
tM

D
t ut|4 ] are given by

N∑
i,i

′
,i
′′

,i
′′′

N∑
j,j

′
,j

′′
,j

′′′
m

(t,D)
ij m

(t,D)

i
′
j
′ m

(t,D)

i
′′

j
′′ m

(t,D)

i
′′′

j
′′′ σ(i, i

′
, i

′′
, i

′′′
, j, j

′
, j

′′
, j

′′′
) (6.72)

where σ(i, i
′
, i

′′
, i

′′′
, j, j

′
, j

′′
, j

′′′
) = Et[t

(t)
i t

(t)

i
′ t

(t)

i
′′ t

(t)

i
′′′u

(t)
j u

(t)

j
′ u

(t)

j
′′ u

(t)

j
′′′ ] does not depend on

t. Then after some evaluations we can summarize the results as Lemma 2 below,

which is similar to Lemma 5 of Akashi and Kunitomo (2010b). (The proof is

omitted.) (Q.E.D.)

Lemma 2: Define the (G2 +K1) × 1 martingale difference sequence by

α1t =
1√
N

[
D′J

′
N∑

i=1

wi(t−1)ut

]
,α2t =

1√
N

[(U⊥′
t

O

)
Ntut

]
. (6.73)

Then for any t,N and any constant vector d, there exists a positive constant Δ

such that (i) E [ |d′α1t|4 ] ≤ Δ and (ii) E [ |d′α2t|4 ] ≤ Δ .
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APPENDIX : Some Figures

In Figures the distribution functions of the modified GMM and LIML estimators and the
GMM and LIML proposed by Akashi and Kunitomo (2010a, b) are shown with the same
normalization (4.4) in each case (a) and (b). The marginal limiting distributions for the
modified LIML estimator for (β2, γ11) are N (0, 1) as N,T → ∞, which is denoted as “o”.
Note that the modified LIML estimator denoted as (b)∗ in Figures 5-8 are normalized
by the different way as explained in Section 4. The parameters of our settings and the
details of numerical computation method have been explained in Akashi and Kunitomo
(2010a, b).
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Figure 1: β2 : N = 75, T = 25, ca = 3
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Figure 3: β2 : N = 150, T = 50, ca = 3
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Figure 6: γ11 : N = 75, T = 25, cb = 4
75
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Figure 7: β2 : N = 150, T = 50, cb = 4
150
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