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This paper studies minimaxity of estimators of a set of linear combinations of location
parameters µi, i = 1, . . . , k under quadratic loss. When each location parameter is known
to be positive, previous results about minimaxity or non-minimaxity are extended from
the case of estimating a single linear combination, to estimating any number of linear
combinations. Necessary and/or sufficient conditions for minimaxity of general estimators
are derived. Particular attention is paid to the generalized Bayes estimator with respect
to the uniform distribution and to the truncated version of the unbiased estimator (which
is the maximum likelihood estimator for symmetric unimodal distributions). A necessary
and sufficient condition for minimaxity of the uniform prior generalized Bayes estimator
is particularly simple; If one estimates θ = Aµ where A is an ℓ × k known matrix, the
estimator is minimax if and only if (AAt)ij ≤ 0 for any i and j, (i ̸= j). This condition
is also sufficient (but not necessary) for minimaxity of the MLE.

Key words and phrases: Decision theory, generalized Bayes, linear combination, lo-
cation parameter, location-scale family, maximum likelihood estimator, minimaxity, re-
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1 Introduction

Estimation of restricted parameters has received much attention in the literature, and
interesting studies have been developed from a decision-theoretic point of view since Katz
(1961) and Farrell (1964). For recent developments, see Marchand and Strawderman
(2004), Oono and Shinozaki (2005), van Eeden (2006) and Tsukuma and Kubokawa
(2008). It is especially interesting to note that in the estimation of means of normal
distributions, minimax properties of the uniform prior generalized Bayes estimator and
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the maximum likelihood estimator (MLE) in unrestricted estimation problems are not
necessarily inherited in the restricted problems. One example of non-minimaxity is the
case of estimating a bounded mean; Casella and Strawderman (1981) showed that the uni-
form prior generalized Bayes estimator is not minimax and Marchand and Perron (2001)
demonstrated that minimaxity of the MLE is limitted. Another example is the case of
estimating the sum of positively restricted means; Kubokawa (2010) showed the uniform
prior generalized Bayes estimator is not minimax (if k ≥ 2) and Kubokawa and Straw-
derman (2011) demonstrated that minimaxity of the MLE is limited. In this paper, we
consider the extension of the results of these two papers to the simultaneous estimation of
a set of linear combinations of means which are restricted to be positive, and derive neces-
sary and/or sufficient conditions for minimaxity of general types of estimators. Quadratic
loss is considered throughout the paper.

To explain instructively the problem treated here, consider the following problem: Let
X1, . . . , Xk be independent random variables such that Xi has a density fi(x − µi) with
a location parameter µi. Assume that E[X2

i ] < ∞ and that the location parameter µi is
restricted to the positive real numbers {µi > 0} for i = 1, . . . , k. Let ci =

∫ ∞
−∞ zfi(z)dz.

Then, an unbiased estimator of µi is

µ̂U
i = Xi − ci,

which is minimax under the squared error loss. We consider a set of linear combinations∑k
j=1 aijµj for i = 1, . . . , ℓ, which are expressed as at

iµ, where at
i = (ai1, . . . , aik), µt =

(µ1, . . . , µk) and µt denotes the transpose of µ. When µ is restricted to Ω = {µ|µi >
0, i = 1, . . . , k}, we want to estimate the set of the linear combinations

θ =

 θ1
...
θℓ

 =

 at
1µ
...

at
ℓµ

 = Atµ,

where A = (a1, . . . , aℓ), a k × ℓ matrix.

In the case of ℓ = 1, Kubokawa (2010) verified that the linear combination of unbiased
estimators θU

1 =
∑k

j=1 a1jµ̂
U
j is a minimax estimator with a constant risk. Then it was

shown that the minimaxity of the linear combination of uniform prior generalized Bayes
estimators θ̂GB

1 =
∑k

j=1 a1jµ̂
GB
j is quite limited. Here,

µ̂GB
j =

∫ ∞
0

µjfj(Xj − µj)dµj∫ ∞
0

fj(Xj − µj)dµj

= Xj −
∫ Xj

−∞ zfj(z)dz∫ Xj

−∞ fj(z)dz
. (1.1)

In particular, θ̂GB
1 is minimax for k = 1, but not minimax for k ≥ 3. In the case of k = 2,

it is minimax when a11a12 ≤ 0, but not minimax when a11a12 > 0. Also in the case of
ℓ = 1, Kubokawa and Strawderman (2011) treated the truncated estimator

µ̂TR
j = max{µ̂U

j , 0} = Xj − min{Xj, cj},

which is, as well, the MLE of µj for symmetric unimodal distributions and for some other
distributions. Although µ̂TR

j is minimax in estimation of the single location µj, it was
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shown that the minimaxity of the linear combination θ̂TR
1 =

∑k
j=1 a1jµ̂

TR
j is also limited

in the context of estimating θ1. When ℓ = k and A = Ik, the indentity matrix, on the
other hand, it can be verified that the uniform prior generalized Bayes estimator and the
MLE are minimax. Thus, the problem treated in this paper fills in gaps between the
above results for ℓ = 1 and ℓ = k.

In this paper we give a general necessary and sufficient condition for minimaxity of a
general estimator of the form Atµ̂ where each µ̂i(Xi) depends only on Xi. We show the
condition is also sufficient when each µ̂i is either the truncated estimator or the uniform
prior generalized Bayes estimator on (0,∞). The condition takes on the very simple form,
i.e., all off-diagonal elements of AAt are non-positive, for the uniform prior generalized
Bayes estimator. This condition is also sufficient (but not necessary) for minimaxity of
the truncated estimators as well. The sufficiency of the general necessary condition is also
demonstrated for certain other minimax estimator µ̂i.

The paper is organized as follows: A general class of estimators, denoted by θ̂ϕ, of
θ = Atµ is handled throughout the paper. In Section 2, a general necessary condition
(NC) and a sufficient condition (SC) for minimaxity of θ̂ϕ are derived. Additionally, it is
shown that the sufficient condition (SC) is also necessary for minimaxity of the uniform
prior generalized Bayes estimator. Also, some examples of matrices A satisfying the
sufficient condition (SC) are given.

In Section 3, a general condition is derived under which the necessary condition (NC)

becomes sufficient for minimaxity of θ̂ϕ. In particular, it is shown that the truncated
estimators (which are MLE for symmetric unimodal distributions) are governed by this
result, and the necessary and sufficient condition for their minimaxity is given.

In Section 4, we consider the specific case wherein the underlying distributions are
normal. In Section 4.1, we provide a unified approach to necessary and sufficient condi-
tions for minimaxity of the uniform prior generalized Bayes estimator and the MLE. In
Section 4.2, we extend the results to the unknown variance case and show that similar
dominance results hold. Finally, the proof of minimaxity of the unrestricted generalized
Bayes estimator of θ is given for a location-scale family. In particular, this implies that
the unbiased estimator of θ is minimax in normal distributions with a common unknown
variance.

2 Conditions for Minimaxity and Non-minimaxity

2.1 A necessary condition for minimaxity

Consider the problem of estimating a vector of linear combinations θ = Atµ relative to
the squared error loss function ∥θ̂ − θ∥2 for an estimator θ̂ where ∥u∥2 =

∑ℓ
i=1 u2

i for
u = (u1, . . . , uℓ)

t. Let X = (X1, . . . , Xk)
t and c = (c1, . . . , ck)

t. An unbiased estimator of

θ is θ̂
U

= Atµ̂U for
µ̂U = (µ̂U

1 , . . . , µ̂U
k )t = X − c,

and the same arguments as in Kubokawa (2010) can be used to show that θ̂
U

is a minimax
estimator with a constant risk. See also the proof given in the appendix.
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We begin by considering a general type of estimator

µ̂ϕ,j = Xj − ϕj(Xj)

of µj for j = 1, . . . , k, where E[ϕ2
j(Xj)] < ∞. Let

θ̂ffi = Atµ̂ffi, for µ̂ffi = (µ̂ϕ,1, . . . , µ̂ϕ,k)
t. (2.1)

Then the risk function of the estimator θ̂ffi is written as

R(µ, θ̂ffi) =E[∥θ̂ffi − θ∥2] = E[(µ̂ffi − µ)tAAt(µ̂ffi − µ)]

=
k∑

i=1

(AAt)iiRi(µi) +
k∑

i=1

k∑
j=1,j ̸=i

(AAt)ijBi(µi)Bj(µj),

where (AAt)ij denotes the (i, j)-th element of AAt, and Ri(µi) and Bi(µi) are, respec-
tively, the risk function and the bias of the estimator µ̂ϕ,i = Xi − ϕi(Xi), given by

Bi(µi) =E[µ̂ϕ,i − µi] = E[Xi − ϕi(Xi) − µi],

Ri(µi) =E[(µ̂ϕ,i − µi)
2] = E[(Xi − ϕi(Xi) − µi)

2].

These can be also expressed as

Bi(µi) =E[ci − ϕi(Xi)],

Ri(µi) =E[(Xi − ci − µi)
2] − Di(µi),

(2.2)

where the risk difference can be expressed as

Di(µi) = E[{ci − ϕi(Xi)}{ci + ϕi(Xi) − 2(Xi − µi)}]. (2.3)

Then, the difference between the risk functions of θ̂ffi and the minimax estimator θ̂
U

is

∆(µ) = −
k∑

i=1

(AAt)iiDi(µi) +
k∑

i=1

k∑
j=1,j ̸=i

(AAt)ijBi(µi)Bj(µj), (2.4)

and it is seen that the minimaxity of θ̂ffi is equivalent to ∆(µ) ≤ 0.

We first derive a necessary condition for the minimaxity of θ̂ffi. For this purpose,
we assume that limµi→∞ Bi(µi) = 0 and limµi→∞ Di(µi) = 0. As shown below, this
assumption can be guaranteed when ϕi(w) converges to ci as w → ∞. Let Λ = {1, . . . , k}
and let C be any subset of Λ. If µi → 0 for all i ∈ C, and if µj → ∞ for all j ∈ Λ\C,
then the risk difference ∆(µ) converges to

−
∑
i∈C

(AAt)iiDi(0) +
∑
i∈C

∑
j∈C,j ̸=i

(AAt)ijBi(0)Bj(0).
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Proposition 2.1 Assume that limµi→∞ Bi(µi) = 0 and limµi→∞ Di(µi) = 0. If the esti-

mator θ̂ffi is minimax, then for all subset C of {1, . . . , k},

(NC) : −
∑
i∈C

(AAt)iiDi(0) +
∑
i∈C

∑
j∈C,j ̸=i

(AAt)ijBi(0)Bj(0) ≤ 0. (2.5)

The assumption given in Proposition 2.1 is satisfied if the function ϕi(w) satisfies the
following conditions: (i) limw→∞ ϕi(w) = ci and (ii) there exists a function Φi(z) such
that supµi>0 |ϕi(z + µi)| ≤ Φi(z), Φi(z) is independent of µi, and E[|Φi(Z)|2] < ∞, where
Z has a density fi(z). In fact, using the Lebesgue’s dominated convergence theorem,
we can see that limµi→∞ Bi(µi) = ci − limµi→∞ E[ϕi(Z + µi)] = 0 and limµi→∞ Di(µi) =
limµi→∞ E[{ci − ϕi(Z + µi)}{ci + ϕi(Z + µi) − 2Z}] = 0.

If ϕi(w) satisfies the condition

(A1) ϕi(w) is nondecreasing and limw→∞ ϕi(w) = ci for i = 1, . . . , k,

then it can be seen that supµi>0 |ϕi(z + µi)| ≤ |ϕi(z)| + |ci|, so that the above condition
(ii) is satisfied by E[|ϕi(Z)|2] < ∞. That is, if ϕi(w) satisfies the condition (A1), then
the assumption of Proposition 2.1 holds, namely, Bi(µi) ≥ 0, limµi→∞ Bi(µi) = 0 and
limµi→∞ Di(µi) = 0.

2.2 A sufficient condition for minimaxity

To get sufficient conditions for minimaxity, we need to find conditions such that ∆(µ) ≤ 0
for any µ. In this subsection we derive a general sufficient condition and show that it is
also a necessary condition for minimaxity of the uniform prior generalized Bayes estimator.

[1] A general sufficient condition. If Di(µi) ≥ 0 and Bi(µi) ≥ 0 for µi > 0 and
i = 1, . . . , k, then it follow from (2.4) that ∆(µ) ≤ 0 if all off-diagonal elements of AAt

satisfy the condition (AAt)ij ≤ 0 for all i, j (i ̸= j).

Proposition 2.2 Assume the following conditions:

(SC) :

{
(SC1) Di(µi) ≥ 0 and Bi(µi) ≥ 0 for any µi > 0 and i = 1, . . . , k
(SC2) (AAt)ij ≤ 0 for all i, j (i ̸= j).

Then, the estimator θ̂ffi is minimax.

It is noted that Di(µi) ≥ 0 for any µi > 0 implies that the estimator µ̂ϕ,i dominates
µ̂U

i , or it is minimax. As verified in Kubokawa (2010), the estimator µ̂ϕ,i = Xi −ϕi(Xi) is
minimax if ϕi(w) satisfies the condition (A1) and the condition given by

(A2) ϕi(w) ≥ ϕGB
i (w) for i = 1, . . . , k, where

ϕGB
i (w) =

∫ w

−∞
zfi(z)dz/

∫ w

−∞
fi(z)dz. (2.6)

The conditions (A1) and (A2) imply that Di(µi) ≥ 0 and Bi(µi) ≥ 0 for any µi > 0 and
i = 1, . . . , k, so that the condition (SC2) is sufficient for the minimaxity.
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[2] The uniform prior generalized Bayes estimator and the necessary and
sufficient condition. In general, the sufficient conditions (SC1) and (SC2) are not
necessary for minimaxity. However, it is interesting to note that the condition (SC2) is
necessary and sufficient for minimaxity of the uniform prior generalized Bayes estimator

θ̂
GB

= Atµ̂GB, for µ̂GB = (µ̂GB
1 , . . . , µ̂GB

k )t,

where µ̂GB
i is given in (1.1). In fact, note that µ̂GB

i may be expressed as

µ̂GB
i = Xi − ϕGB

i (Xi),

and that ϕGB
i (w) satisfies the conditions (A1) and (A2). Also, note that the risk function

of the uniform prior generalized Bayes estimator µ̂GB
i attains the constant minimax risk

at µi = 0 as verified in Kubokawa (2010), namely, in (2.2) and (2.3),

Ri(0) = E[(Xi − ci − µi)
2], or Di(0) = 0,

for ϕi(w) = ϕGB
i (w). Thus, the necessary condition (2.5) becomes that∑

i∈C

∑
j∈C,j ̸=i

(AAt)ijBi(0)Bj(0) ≤ 0,

for all subset C of {1, . . . , k}. Since Bi(0) > 0 for i = 1, . . . , k, it can be seen that this
necessary condition is reduced to the condition (SC2).

Proposition 2.3 A necessary and sufficient condition for the uniform prior generalized

Bayes estimator θ̂
GB

to be minimax is that all off-diagonal elements of AAt satisfy the
condition (SC2).

[3] Examples of matrix A satisfying (SC2). We here investigate when the
condition (SC2) is satisfied through some examples.

Example 2.1 (Case of k = 2) Let ai = (ai1, ai2)
t for i = 1, 2. In the case of ℓ = 1,

we have (AAt)12 = (a1a
t
1)12 = a11a12. Then from Proposition 2.3, it follows that the

uniform prior generalized Bayes estimator θ̂
GB

is minimax if and only if a11a12 ≤ 0. For
example, it is minimax for at

1 = (1,−1), but not for at
1 = (1, 1). This corresponds to the

result in Kubokawa (2010).

In the case of ℓ = 2, we have (AAt)12 = (a1a
t
1+a1a

t
1)12 = a11a12+a21a22, so that θ̂

GB

is minimax if and only if a11a12 + a21a22 ≤ 0. Since a11a12 + a21a22 = (a11, a21)(a12, a22)
t,

it is convenient to express A as

At =

(
at

1

at
2

)
=

(
a(1), a(2)

)
for a(1) = (a11, a21)

t and a(2) = (a12, a22)
t. Then, the necessary and sufficient condition

is equivalent to at
(1)a(2) ≤ 0. For example, let at

1 = (1, 1). Then, θ̂
GB

is minimax for

at
2 = (1,−1), (1,−2), but not minimax for at

2 = (1,−1/2).
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Example 2.2 (Case of k = 3) Let ai = (ai1, ai2, ai3)
t for i = 1, 2, 3. In the case of ℓ = 1,

θ̂
GB

is minimax if and only if (AAt)12 = (a1a
t
1)12 = a11a12 ≤ 0, (AAt)13 = a11a13 ≤ 0

and (AAt)23 = a12a13 ≤ 0. There is no solution of non-zero ai1, ai2 and ai3 satisfying

these inequalities. This implies that θ̂
GB

is not minimax in the case of ℓ = 1 and k = 3.
This corresponds to the result of Kubokawa (2010).

In the case of ℓ = 2, we have

At =

(
at

1

at
2

)
=

(
a(1), a(2),a(3))

)
for a(1) = (a11, a21)

t, a(2) = (a12, a22)
t and a(3) = (a13, a23)

t. Then, the necessary and

sufficient condition is at
(1)a(2) ≤ 0, at

(2)a(3) ≤ 0 and at
(3)a(1) ≤ 0. For example, θ̂

GB
is

minimax for

At =

(
1 1 −1
1 −1 1

)
,

but not minimax for

At =

(
1 1 1
1 −1 1

)
.

In the case of ℓ = 3, we have

At =

 at
1

at
2

at
3

 =
(
a(1), a(2), a(3))

)
for a(1) = (a11, a21, a31)

t, a(2) = (a12, a22, a32)
t and a(3) = (a13, a23, a33)

t. Then, the
necessary and sufficient condition is at

(1)a(2) ≤ 0, at
(2)a(3) ≤ 0 and at

(3)a(1) ≤ 0. For

example, let {a1, a2,a3} be orthonormal vectors. Then, A becomes an orthogonal matrix,
which means that {a(1),a(2),a(3)} are orthonormal vectors and the mutual inner products

are zero. Thus, the condition (SC2) is satisfied and the minimaxity of θ̂
GB

is established.

Example 2.3 (General cases) For k ≥ 4 and ℓ ≥ 1, let

At =

 at
1
...

at
ℓ

 =
(
a(1), . . . , a(k))

)
.

Then, θ̂
GB

is minimax if and only if at
(i)a(j) ≤ 0 for all i, j (i ̸= j). In the case of

ℓ = 1, such vectors a(i)’s do not exist, and it is not minimax. In the case that ℓ = k

and A = (a1, . . . , aℓ) is an orthogonal matrix, the condition (SC2) is satisfied, and θ̂
GB

is minimax.
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3 Necessary and Sufficient Conditions for Minimax-

ity of General Estimators

3.1 Sufficiency of the necessary condition (NC)

We here consider the interesting question of whether the necessary condition (NC) given
in (2.5) is sufficient or not. To answer the question, we need to show that the risk function
attains its maximum on the boundary of the parameter space. Differentiating ∆(µ) with
respect to µi, we see from (2.4) that

∂

∂µi

∆(µ) = −(AAt)ii
∂Di(µi)

∂µi

+ 2
∂Bi(µi)

∂µi

k∑
j=1,j ̸=i

(AAt)ijBj(µj). (3.1)

It is here noted that Bi(µi) and Di(µi) can rewritted as

Bi(µi) =E[ci − ϕi(Zi + µi)],

Di(µi) =E[{ci − ϕi(Zi + µi)}{ci + ϕi(Zi + µi) − 2Zi}],

for Zi = Xi − µi. Differentiating these functions with respect to µi gives the expressions

∂Bi(µi)

∂µi

= − E[ϕ′
i(Xi)],

∂Di(µi)

∂µi

=2E[ϕ′
i(Xi){Xi − µi − ϕi(Xi)}],

where ϕ′
i(w) = (d/dw)ϕi(w). Thus, the partial derivative of ∆(µ) is expressed as

∂

∂µi

∆(µ) =2(AAt)iiE[ϕ′
i(Xi){ϕi(Xi) − (Xi − µi)}] − 2E[ϕ′

i(Xi)]
k∑

j=1,j ̸=i

(AAt)ijBj(µj)

=2E[ϕ′
i(Xi)]

{
(AAt)iiHi(µi) −

k∑
j=1,j ̸=i

(AAt)ijBj(µj)
}

, (3.2)

where Hi(µi) is

Hi(µi) =
E[ϕ′

i(Xi){ϕi(Xi) − (Xi − µi)}]
E[ϕ′

i(Xi)]
. (3.3)

It is noted that only E[ϕ′
i(Xi)] and Hi(µi) depend on µi while all other terms are in-

dependent of µi in (3.2). Assuming that E[ϕ′
i(Xi)] > 0, we see that if Hi(µi) is non-

decreasing in µi, then we can consider the three cases: (1) (∂/∂µi)∆(µ) ≥ 0 for all
µi > 0, (2) (∂/∂µi)∆(µ) ≤ 0 for all µi > 0, or (3) there is a positive point µi,0 such that
(∂/∂µi)∆(µ) < 0 for 0 < µi < µi,0, and (∂/∂µi)∆(µ) ≥ 0 for all µi ≥ µi,0. This implies
that

∆(µ) ≤ max
{

lim
µi→0

∆(µ), lim
µi→∞

∆(µ)
}

.
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Applying this argument for all i ∈ {1, . . . , k} and assuming that limµi→∞ Bi(µi) = 0 and
limµi→∞ Di(µi) = 0, we see that

∆(µ) ≤ max
C

{
−

∑
i∈C

(AAt)iiDi(0) +
∑
i∈C

∑
j∈C,j ̸=i

(AAt)ijBi(0)Bj(0)
}

where C is all subsets of {1, . . . , k}. This implies that the sufficient condition leads to the
necessary condition (2.5). Hence, we have the following result.

Proposition 3.1 Assume that E[ϕ′
i(Xi)] > 0 for i = 1, . . . , k as well as limµi→∞ Bi(µi) =

0 and limµi→∞ Di(µi) = 0. If Hi(µi) given in (3.3) is nondecreasing in µi for i = 1, . . . , k,

then the condition (2.5) is a necessary and sufficient condition for the estimator θ̂ffi to be
minimax.

As verified below Proposition 2.1, the condition (A1) implies that E[ϕ′
i(Xi)] > 0 for

i = 1, . . . , k and that limµi→∞ Bi(µi) = 0 and limµi→∞ Di(µi) = 0, namely, the assumption
of Proposition 3.1 is satisfied.

Although this proposition provides a nice necessary and sufficient condition, it may be
hard to check the monotonicity of the function Hi(µi). For specific cases of estimator and
distribution, however, we can verify this monotonicity. The following proposition give us
a condition on ϕi(·) which implies the monotonicity of Hi(µi).

Proposition 3.2 Assume the condition (A1). If ϕ′
i(z + u2)/ϕ

′
i(z + u1) and ϕi(z)− z are

nonincreasing in z on {z|ϕ′
i(z + u1) > 0} for 0 < u1 < u2, then Hi(µi) is nondecreasing

in µi, and the condition (2.5) is necessary and sufficient.

Proof. We omit the index i in this proof. For 0 < u1 < u2, we need to show that

E[ϕ′(Z + u1){ϕ(Z + u1) − Z}]
E[ϕ′(Z + u1)]

≤ E[ϕ′(Z + u2){ϕ(Z + u2) − Z}]
E[ϕ′(Z + u2)]

,

which holds if

E[ϕ′(Z + u1){ϕ(Z + u1) − Z}]
E[ϕ′(Z + u1)]

≤ E[ϕ′(Z + u2){ϕ(Z + u1) − Z}]
E[ϕ′(Z + u2)]

.

Since ϕ′
i(Z + u2)/ϕ

′
i(Z + u1) and ϕi(Z + u1) − Z are nonincreasing in Z, this inequality

holds.

When ϕ′
i(z) is differentiable, it is noted that ϕ′

i(z + u2)/ϕ
′
i(z + u1) is nonincreasing in

z for 0 < u1 < u2 if ϕ′′
i (z)/ϕi(z) is nonincreasing in z.

Remark 3.1 In the general setup, it would be interesting if we could show that Hi(µi)
is nondecreasing in µi for the uniform prior generalized Bayes estimators. Unfortunately
we have not been able to show this. However, when the distributions are normal, it will
be verified in Section 4.1 that the uniform prior generalized Bayes estimator as well as
the MLE lead to monotonicity of Hi(µi).
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3.2 Truncated estimators and the necessary and sufficient con-
dition

In this subsection we study minimaxity of truncated estimators. The truncated estimator
of µi is

µ̂TR
i = max{Xi − ci, 0} = Xi − ϕTR

i (Xi),

for ϕTR
i (Xi) = min{Xi, ci}. This is the MLE of µi in a symmetric unimodal distribution.

More generally, we can consider the truncated estimators

µ̂TRγ
i = max{Xi − ci, (1 − γ)(Xi − ci)} = Xi − ϕTRγ

i (Xi),

where γ > 0 and

ϕTRγ
i (Xi) = min{γ(Xi − ci) + ci, ci} =

{
γ(Xi − ci) + ci for Xi < ci,
ci for Xi ≥ ci.

For the condition (A2), it is noted that the function ϕGB
i (w) given in (2.6) is increasing

in w and limw→∞ ϕGB(w) = ci, and that ϕGB
i (w) ≤ min{w, ci} ≤ min{γ(w − ci) + ci, ci}

for 0 < γ ≤ 1. Thus, the function ϕTRγ
i (w) satisfies the conditions (A1) and (A2)

for 0 < γ ≤ 1, so that from Kubokawa (2010), the resulting truncated estimator µ̂TRγ
i

dominates Xi, namely, it is minimax for 0 < γ ≤ 1 in the context of estimation of µi.
However, Kubokawa (2010)’s result can not be used to extend this dominance result to
the case of 0 < γ ≤ 2.

To show directly the dominance result for 0 < γ ≤ 2, it is noted that µ̂TRγ
i = Xi −

ci − γ(Xi − ci)I(Xi < ci) for the indicator function I(·), so that the bias and the risk of
µ̂TRγ

i are written as

Bi(µi) =E[Xi − ci − µi − γ(Xi − ci)I(Xi < ci)]

= − γE[(Xi − ci)I(Xi < ci)],

Ri(µi) =E[{Xi − ci − µi − γ(Xi − ci)I(Xi < ci)}2]

=E[(Xi − ci − µi)
2] − Di(µi),

(3.4)

where Di(µi) = γE[{2(Xi − ci − µi) − γ(Xi − ci)}(Xi − ci)I(Xi < ci)]. Letting Fi(w) =∫ w

−∞ fi(z)dz and z = xi − µi, we can rewrite them as

Bi(µi) = − γ

∫ ci−µi

−∞
(z − ci + µi)fi(z)dz = γ

∫ ci−µi

−∞
Fi(z)dz,

Di(µi) =γ(2 − γ)

∫ ci−µi

−∞
(z − ci)(z − ci + µi)fi(z)dz + γµiBi(µi)

=2γ
{
−(2 − γ)

∫ ci−µi

−∞
(z − ci)Fi(z)dz + (γ − 1)µi

∫ ci−µi

−∞
Fi(z)dz

}
,

since
∫ ci−µi

−∞ (z − ci)(z − ci + µi)fi(z)dz = −2
∫ ci−µi

−∞ (z − ci)Fi(z)dz − µi

∫ ci−µi

−∞ Fi(z)dz as
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shown in Kubokawa and Strawderman (2011). Then, for µi = 0, we have

Bi(0) = − γ

∫ ci

−∞
(z − ci)fi(z)dz = −γ

∫ ci

−∞
Fi(z)dz,

Di(0) =γ(2 − γ)

∫ ci

−∞
(z − ci)

2fi(z)dz

= − 2γ(2 − γ)

∫ ci

−∞
(z − ci)Fi(z)dz.

(3.5)

Proposition 3.3 The truncated estimator µ̂TRγ
i always dominates Xi − ci for 0 < γ ≤ 1,

while this dominance result holds for 1 < γ ≤ 2 if f ′(z)/f(z) is non-increasing in z. When
γ > 2, however, µ̂TRγ

i does not dominate Xi − ci.

Proof. For simplicity, we omit the index i in Xi, µi, Di(·), ci and others. It is noted
that the dominance of µ̂TRγ over X − c is equivalent to the inequality D(µ) ≥ 0 for any
µ > 0. Also, note that limµ→∞ B(µ) = limµ→∞ D(µ) = 0. When γ > 2, it follows from
(3.5) that D(0) < 0, which means that µ̂TRγ does not dominate X − c. Then, we shall
establish the dominance property when 0 < γ ≤ 2. Differentiating B(µ) and D(µ) given
in (3.4) with respect to µ gives B′(µ) = −γ

∫ c−µ

−∞ f(z)dz and

D′(µ) =γ(2 − γ)

∫ c−µ

−∞
(z − c)f(z)dz + γB(µ) + γµB′(µ)

=2γ
{

(1 − γ)

∫ c−µ

−∞
(z − c + µ)f(z)dz − µ

∫ c−µ

−∞
f(z)dz

}
.

(3.6)

Since
∫ c−µ

−∞ (z − c + µ)f(z)dz ≤ 0, it is seen that D′(µ) ≤ 0 for µ > 0 when 0 < γ ≤ 1,
so that D(µ) is non-increasing in µ. Thus, D(µ) ≥ 0 for all µ > 0 since D(0) > 0 and
limµ→∞ D(µ) = 0. When γ > 1, making the transformation x = z + µ, we rewrite D′(µ)
as

D′(µ) = 2γ

∫ c

−∞
f(x − µ)dx

{
(1 − γ)

∫ c

−∞ xf(x − µ)dx∫ c

−∞ f(x − µ)dx
− c(1 − γ) − µ

}
.

We here show that
∫ c

−∞ xf(x−µ)dx/
∫ c

−∞ f(x−µ)dx is non-decreasing in µ if f ′(z)/f(z)
is non-increasing in z. In fact, differentiating the function with respect to µ, we observe
that the derivative is proportional to

−
∫ c

−∞ xf ′(x − µ)dx∫ c

−∞ f(x − µ)dx
+

∫ c

−∞ xf(x − µ)dx∫ c

−∞ f(x − µ)dx

∫ c

−∞ f ′(x − µ)dx∫ c

−∞ f(x − µ)dx

which is non-negative if f ′(x−µ)/f(x−µ) is non-increasing in x. Since (1−γ)
∫ c

−∞ xf(x−
µ)dx/

∫ c

−∞ f(x − µ)dx is non-increasing in µ for γ > 1, it can be seen that D′(µ) ≤ 0 for
all µ > 0, or there exists a point µ0 such that D′(µ) ≥ 0 for 0 < µ ≤ µ0, and D′(µ) < 0
for µ > µ0. This implies that D(µ) ≥ min{D((0), 0} for all µ > 0. Hence, D(µ) ≥ 0 for
all µ > 0 when 1 < γ ≤ 2.
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Proposition 3.4 For the function ϕTRγ
i (w), the function Hi(µi) is increasing in µi > 0

when 0 < γ ≤ 1. When γ > 1, the function Hi(µi) is also increasing in µi if f ′(z)/f(z) is
non-increasing in z. Thus, for both cases of γ, (2.5) is a necessary and sufficient condition

for minimaxity of θ̂
TRγ

= Atµ̂TRγ for µ̂TRγ = (µ̂TRγ
1 , . . . , µ̂TRγ

k )t.

Proof. For simplicity, we omit the index i in Xi, µi, Hi(·), ci and others. Also, we
here write ϕTRγ

i (X) as ϕ(X) for notatonal convenience. Since ϕ′(X) = γI(X < c), it is
seen that E[ϕ′(X)] = γ

∫
I(x < c)f(x − µ)dx = γ

∫ c−µ

−∞ f(z)dz. On the other hand,

E[ϕ′(X){ϕ(X) − (X − µ)}] =

∫
γI(x < c){γ(x − c) + c − (x − µ)}f(x − µ)dx

=γ

∫ c−µ

−∞
{(γ − 1)(z − c + µ) + µ}f(z)du,

so that the function H(µ) can be written as

H(µ) =(γ − 1)

∫ c−µ

−∞ (z − c + µ)f(z)dz∫ c−µ

−∞ f(z)dz
+ µ (3.7)

=(γ − 1)ϕGB(c − µ) − c(γ − 1) + γµ,

for ϕGB(w) defined in (2.6). Since ϕGB(w) is increasing in w, it is seen that ϕGB(c− µ) is
decreasing in µ. Thus, H(µ) is increasing in µ when 0 < γ ≤ 1. When γ > 1, from (3.7),
H(µ) is expressed as

H(µ) = (γ − 1)

∫ c

−∞ xf(x − µ)dx∫ c

−∞ f(x − µ)dx
+ µ.

As verified in the proof of Proposition 3.3,
∫ c

−∞ xf(x − µ)dx/
∫ c

−∞ f(x − µ)dx is non-
decreasing in µ if f ′(z)/f(z) is non-increasing in z. Thus, H(µ) is increasing in µ when
γ > 1, and the proof is complete.

It is noted that the assumption that f ′(z)/f(z) is nonincreasing in z is satisfied by
the normal distribution and, more generally, all other location density functions with
monotone likelihood ratio.

3.3 Case of the same distribution

Consider a special case that f1(z) = · · · = fk(z) = f(z). Then, condition (2.5) is expressed
as ∑

i∈C

∑
j∈C,j ̸=i

(AAt)ij{B(0)}2 ≤
∑
i∈C

(AAt)iiD(0),

for all subsets C of {1, . . . , k}. This condition is simplified as∑
i∈C

∑
j∈C(AAt)ij∑

i∈C(AAt)ii

≤ Kf,ϕ, (3.8)
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where

Kf,ϕ =
D(0)

{B(0)}2
+ 1. (3.9)

For example, consider the case of at
1 = (1, . . . , 1), at

2 = (1,−1, 0, . . . , 0), at
3 = (0, 1,−1, 0, . . . , 0),

. . ., at
ℓ = (0, . . . , 0, 1,−1, 0, . . . , 0) for 1 ≤ ℓ ≤ k + 1, namely,

At =



1 1 1 1 1 1 1 1 1 · · · 1
1 −1 0 0 0 0 0 0 0 · · · 0
0 1 −1 0 0 0 0 0 0 · · · 0
0 0 1 −1 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 1 −1 0 · · · 0


,

where for ℓ = k + 1, the bottom row vector of At is given by at
k+1 = (−1, 0, . . . , 0, 1).

This setup means that θ1 =
∑k

j=1 µj is the sum of means and the other parameters are
contrasts θ2 = µ1 − µ2, . . . , θk = µk−1 − µk and θk+1 = µk − µk+1. In this case, the
condition (3.8) is simplified as

k2

k + 2(ℓ − 1)
≤ Kf,ϕ. (3.10)

For ℓ = 1, this is just k ≤ Kf,ϕ, which corresponds to the result of Kubokawa and
Strawderman (2011). It is interesting to note that larger ℓ eases more the condition for
the minimaxity, and for ℓ = k + 1, it is k/3 ≤ Kf,ϕ.

We may summarize much of the discussion for the case of f1(z) = · · · = fk(z) = f(z)
as follows:

(I) A necessary and sufficient condition for the uniform prior generalized Bayes esti-
mator to be minimax is that condition (SC2) holds, namely, (AAt)ij ≤ 0 for any i and j,
(i ̸= j).

(II) A necessary and sufficient condition for the truncated estimator θ̂
TRγ

to be min-
imax is that condition (3.8) hold. In this case, we can obtain Kf,TRγ = Kf,ϕTRγ =
D(0)/{B(0)}2 + 1 for ϕTRγ(w) = min{γ(w − c) + c, c}, where B(0) and D(0) are given
in (3.5), and γ > 0. The following values of Kf,TRγ have been found in Kubokawa and
Strawderman (2011).

(a) Normal distribution, X ∼ N (0, 1): Kf,TRγ = (2/γ − 1)π + 1.

(b) Variance mixtures of normal distributions, namely, X|V ∼ N (0, V ) and V ∼ G:
Kf,TRγ = (2/γ − 1)πE[V ]/{E[V 1/2]}2 + 1.

In particular, t- and double exponential distributions give the following values.

(b1) t-distribution, X ∼ tν ,

Kf,TRγ = (2/γ − 1)π
2

ν − 2

( Γ(ν/2)

Γ((ν − 1)/2)

)2

+ 1.
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(b2) Double exponential distribution, X ∼ DE(0): Kf,TRγ = 4(2/γ − 1) + 1.

(b3) Logistic distribution, Kf,TRγ = (2/γ−1)π2/{6[log(2)]2}+1 = 3.424(2/γ−1)+1.

(c) X ∼ Symmetric unimodal distributions: Kf,TRγ = 2(2/γ − 1)E[X2]/{E[|X|]}2 +
1 ≥ (8/3)(2/γ − 1) + 1.

Of course, for the case

At =


1 0 0 · · · 0 · · · 0
0 1 0 · · · 0 · · · 0
0 0 1 · · · 0 · · · 0
...

...
...

...
...

...
...

0 0 0 · · · 1 · · · 0

 , AAt =

(
Iℓ 0
0 0

)
,

the condition (3.8) holds for all distributions. This implies that any subset of estimators
(µ̂i1 , . . . , µ̂iℓ) is minimax for (µi1 , . . . , µiℓ). However, as we have shown, for other linear
combinations, the trucated estimator (often the MLE) may or may not be minimax, but
the condition (3.8) gives a reasonably straightforward necessary and sufficient condition
for minimaxity for a set of linear combinations.

Remark 3.2 It is interesting to note that it may be possible to construct an example
such that each estimator is not minimax in the context of estimating a single location
parameter, but such that their combination is minimax for estimating the corresponding
linear combination. For example, consider the estimation of θ = µ1 − µ2 in normal
distributions. Since At = (1,−1), the l.h.s. of the inequality (3.8) is zero, and the
minimaxity of the truncated estimator θ̂TRγ is given by 0 ≤ (2/γ − 1)π + 1, or 0 < γ ≤
2π/(π − 1). Taking γ = 2π/(π − 1), from Proposition 3.3, we can see that each estimator
µ̂TRγ

i is not minimax for estimating µi since γ > 2, while θ̂TRγ is minimax in estimation
of θ = µ1 − µ2.

4 Minimaxity and Non-minimaxity in Normal Dis-

tributions

In this section, we consider the cases of normal distributions with known or unknown
variance. In Section 4.1, we provide a unified approach to necessary and sufficient condi-
tions for minimaxity of the uniform prior generalized Bayes estimator and the MLE. In
Section 4.2, we extend the dominance results to the unknown variance case.

4.1 A unified condition for minimaxity

Let X1, . . . , Xk be mutually independent random variables such that Xi has a normal
distribution with mean µi and unit variance, namely, Xi ∼ N (µi, 1) for µi > 0. In the
estimation of µi, an unbiased estimator of µi is µ̂U

i = Xi, which is minimax relative to the
mean squared error. The maximum likelihood estimator of µi is µ̂ML

i = max{Xi, 0} =
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Xi − ϕTR(Xi) for ϕTR(w) = min{w, 0}. The uniform prior generalized Bayes estimator is
written as µ̂GB

i = Xi − ϕGB(Xi) for

ϕGB(w) =

∫ w

−∞
z exp{−z2/2}dz/

∫ w

−∞
exp{−z2/2}dz.

Both estimators are minimax, namely, they dominate µ̂U
i . As mentioned before, in general,

an estimator of the form Xi − ϕ(Xi) is minimax if
(A1′) ϕ(w) is nondecreasing and limw→∞ ϕ(w) = 0,
(A2′) ϕ(w) ≥ ϕGB(w).

We now treat the estimation of the vector of the linear combinations θ = Atµ and
consider the estimators θ̂ϕ = Atµ̂ϕ where µ̂ϕ = (µ̂ϕ,1, . . . , µ̂ϕ,k)

t for µ̂ϕ,i = Xi − ϕ(Xi).

Necessary and sufficient conditions for minimaxity of θ̂ϕ are summarized in the following
proposition which follows from Propositions 2.1, 2.2 and 3.1. Let B(0) = −E[ϕ(Z)],
D(0) = 2E[ϕ(Z){Z − ϕ(Z)/2}] and H(µ) = E[ϕ′(Z + µ){ϕ(Z + µ) − Z}]/E[ϕ′(Z + µ)]
for Z ∼ N (0, 1).

Proposition 4.1 (1) Assume the condition (A1′). If the estimator θ̂ϕ is minimax, then
for all subset C of {1, . . . , k}, ∑

i∈C

∑
j∈C(AAt)ij∑

i∈C(AAt)ii

≤ Kϕ, (4.1)

where Kϕ = D(0)/{B(0)}2 + 1 for the standard normal distribution.

(2) Assume the conditions (A1′) and (A2′). Then, the estimator θ̂ϕ is minimax if
(SC2) (AAt)ij ≤ 0 for all i, j (i ̸= j).

(3) Assume the condition (A1′) and that H(µ) is nondecreasing in µ. Then, the

condition (4.1) is a necessary and sufficient condition for the estimator θ̂ϕ to be minimax.

In general, it may be hard to check the monotonicity of H(µ) in part (3) of Proposition
4.1. When ϕ(w) is twice differentiable, however, this condition can be simplified in normal
distributions as

(A3) The derivative ϕ′(w) is absolutely continuous and ϕ(w) − ϕ′′(w)/ϕ′(w) is non-
decreasing in w.

Proposition 4.2 Under the normality assumption, if the condition (A3) is satisfied, then
H(µ) is nondecreasing in µ, and the condition (4.1) is a necessary and sufficient condition

for the estimator θ̂ϕ to be minimax.

Proof. The function H(µ) is expressed as

H(µ) =

∫ ∞
−∞ ϕ′(x){ϕ(x) − (x − µ)}f(x − µ)dx∫ ∞

−∞ ϕ′(x)f(x − µ)dx
.
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Note that −
∫ ∞
−∞ ϕ′(x)(x−µ)f(x−µ)dx =

∫ ∞
−∞ ϕ′(x)f ′(x−µ)dx. Since ϕ(x) is absolutely

continuous, by integration by parts, it can be seen that∫ ∞

−∞
ϕ′(x)f ′(x − µ)dx = −

∫ ∞

−∞
ϕ′′(x)f(x − µ)dx,

so that H(µ) is rewritten as

H(µ) =

∫ ∞
−∞{ϕ′(x)ϕ(x) − ϕ′′(x)}f(x − µ)dx∫ ∞

−∞ ϕ′(x)f(x − µ)dx
.

Differentiating H(µ) with respect to µ shows that the derivative is proportional to

−
∫ ∞
−∞{ϕ′(x)ϕ(x) − ϕ′′(x)}f ′(x − µ)dx∫ ∞

−∞ ϕ′(x)f(x − µ)dx

+

∫ ∞
−∞{ϕ′(x)ϕ(x) − ϕ′′(x)}f(x − µ)dx∫ ∞

−∞ ϕ′(x)f(x − µ)dx

∫ ∞
−∞ ϕ′(x)f ′(x − µ)dx∫ ∞
−∞ ϕ′(x)f(x − µ)dx

. (4.2)

Since f ′(x−µ)/f(x−µ) is decreasing in x, and {ϕ′(x)ϕ(x)−ϕ′′(x)}/ϕ′(x) is nondecreasing
in x, it can be seen that the derivative in (4.2) is positive, so that H(µ) is increasing in
µ.

As shown below, the uniform prior generalized Bayes estimator satisfies the condition
(A3). Taking into account this fact and Propositions 4.2 and 4.2, in normal distributions,
we can provide a unified necessary and sufficient condition for minimaxity of the MLE
and the uniform prior generalized Bayes estimator.

As an application of Propositions 4.1 and 4.2, we deal with estimators of the form
µ̂i,λ = Xi − ϕλ(Xi) where

ϕλ(w) =

∫ w

−∞
z exp{−λz2/2}dz/

∫ w

−∞
exp{−λz2/2}dz

for λ > 0. This estimator was studied by Maruyama and Iwasaki (2005), who showed that
ϕλ(w) is nondecreasing in w and also in λ, which implies that ϕλ(w) ≥ ϕ1(w) = ϕGB(w)
for λ ≥ 1. Maruyama and Iwasaki (2005) proved that µ̂i,λ is minimax if and only if λ ≥ 1.
Considering the estimation of θ, we can get sufficient conditions for minimaxity of the
corresponding estimator θ̂λ = Atµ̂λ for µ̂λ = (µ̂1,λ, . . . , µ̂k,λ)

t.

Proposition 4.3 (1) For λ > 1, the estimator θ̂λ is minimax if the condition (SC2)
holds.

(2) For 0 < λ ≤ 1, the estimator θ̂λ is minimax if and only if the condition (4.1)
holds.

Proof. For part (1), the function ϕλ(w) satisfies the conditions (A1′) and (A2′) as
demonstrated in Maruyama and Iwasaki (2005), so that the estimators µ̂i,λ are minimax.
Thus, the minimaxity result for λ > 1 follows from Proposition 4.1 (2).
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For part (2), we shall show that the function ϕλ(w) satisfies the condition (A3). Since∫ w

−∞ z exp{−λz2/2}dz = −λ−1 exp{−λw2/2}, the function ϕλ(w) is written as

ϕλ(w) = −1

λ

exp{−λw2/2}∫ w

−∞ exp{−λz2/2}dz
.

Then,

ϕ′
λ(w) = − λ(w − ϕλ(w))ϕλ(w),

ϕ′′
λ(w) = − λ(1 − ϕ′

λ(w))ϕλ(w) − λ(w − ϕλ(w))ϕ′
λ(w),

so that
ϕ′′

λ(w)

ϕ′
λ(w)

= λϕλ(w) − λ(w − ϕλ(w)) +
1

w − ϕλ(w)
.

Thus,

ϕλ(w) − ϕ′′
λ(w)

ϕ′
λ(w)

= (1 − λ)ϕλ(w) + λ(w − ϕλ(w)) − 1

w − ϕλ(w)
.

Note that w − ϕλ(w) =
∫ ∞

0
u exp{−λ(w − u)2/2}du/

∫ ∞
0

exp{−λ(w − u)2/2}du. Differ-
entiating w − ϕλ(w) with respect to w, we can see that w − ϕλ(w) is increasing in w.
Hence, ϕλ(w)−ϕ′′

λ(w)/ϕ′
λ(w) is increasing in w for 0 < λ ≤ 1. The result (2) follows from

Proposition 4.2.

As shown in Maruyama and Iwasaki (2005), the estimator µ̂i,λ is not minimax for
0 < λ < 1. It is, however, interesting to note that Proposition 4.3 (2) implies that the

estimator θ̂λ is minimax for certain conditions on (AAt)ij even for 0 < λ < 1. It is also
worth noting that the case of λ = 1 corresponds to the uniform prior generalized Bayes
estimator and that Proposition 4.3 means the function ϕGB(w) satisfies the condition
(A3). That is, the condition (4.1) is a necessary and sufficient condition for the uniform
prior generalized Bayes estimator to be minimax. Since D(0) = 0 for the uniform prior
generalized Bayes estimator µ̂GB

i , the condition (4.1) is identical to the condition (SC2)
as shown in Proposition 2.3.

4.2 An extension to the case of unknown variance

It is quite interesting to consider the extension of the previous results to location-scale fam-
ilies. In general, however, this extension may be difficult, because estimators of location
parameters are not necessarily independent of estimators of scale parameters. Extension
for a specific distribution may be feasible however. We here treat normal distributions
with common unknown variance.

Let X1, . . . , Xk and S be mutually independent random variables distributed as

Xi ∼N (µi, σ
2), for i = 1, . . . , k,

S ∼σ2χ2
m,

where µi’s are restricted as µi > 0 and χ2
m denoted a chi-square distribution with m degrees

of freedom. This is a canonical form of a random sample from k normal populations with
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unknown common variance. As studied in the previous sections, we deal with estimation
of a set of the linear combinations θ = (θ1, . . . , θℓ)

t = Atµ for the restricted parameter
space Ω = {(µ, σ2)|µi > 0, i = 1, . . . , k, σ2 > 0} for A = (a1, . . . , aℓ), a k × ℓ matrix,

and µ = (µ1, . . . , µk)
t. An estimator θ̂ of θ is evaluated relative to the quadratic loss

∥θ̂ − θ∥2/σ2 =
∑k

i=1(µ̂i − µi)
2/σ2.

Proposition 4.4 The unbiased estimator θ̂
U

= AtX for X = (X1, . . . , Xk)
t is minimax

under the restricted space Ω with unknown variance σ2.

The proof of Proposition 4.4 is given in the appendix. To construct a class of minimax

estimators improving on θ̂
U
, consider estimators of the form

θ̂ϕ = Atµ̂ϕ for µ̂ϕ = (µ̂ϕ,1, . . . , µ̂ϕ,k)
t, (4.3)

where
µ̂ϕ,i = Xi −

√
Sϕ

(
Xi/

√
S
)

,

for an absolutely continuous function ϕ. It can be seen that the expectations E[(µ̂ϕ,i −
µi)(µ̂ϕ,j−µj)/σ

2] depends on µi, µj and σ2 through λi and λj for λi = µi/σ and λj = µj/σ.
Let R(λi) = E[(µ̂ϕ,i −µi)

2/σ2]. The following lemmas due to Kubokawa (2004) are useful

for deriving conditions for minimaxity of the estimator θ̂ϕ.

Lemma 4.1 The risk difference of the two estimators Xi and µ̂ϕ,i is

D(λi) =E[(Xi − µi)
2/σ2] − R(λi)

=2c

∫
{Gλi

(wi) − ϕ(wi)}ϕ′(wi)Fλi
(wi)dwi,

where c is the normalizing constant and

Gλ(w) =

∫ ∫ w

−∞(y − λ/
√

v)v(m+1)/2e−v{1+(y−λ/
√

v)2}/2dydv∫ ∫ w

−∞ v(m+1)/2e−v{1+(y−λ/
√

v)2}/2dydv

= −
∫

v(m−1)/2e−v(1+w2)/2+
√

vwλdv/Fλ(w).

for Fλ(w) =
∫ ∫ w

−∞ v(m+1)/2e−v(1+y2)/2+
√

vyλdydv.

Lemma 4.2 When λ goes to zero, Gλ(w) converges to limλ→0 Gλ(w) = ϕGB(w), where

ϕGB(w) =

∫ ∞

0

∫ w

−∞
ye−v(1+y2)/2dyv(m+1)/2dv /F0(w)

= − 1

m + 1

(1 + w2)−(m+1)/2∫ w

−∞(1 + y2)−(m+1)/2−1dy
, (4.4)

for F0(w) = limλ→0 Fλ(w). Also, Gλ(w) ≤ ϕGB(w).
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The above lemmas imply the following proposition.

Proposition 4.5 Assume that ϕ(w) satisfies the following conditions:
(A1′′) ϕ(w) is nondecreasing in w, and limw→∞ ϕ(w) = 0,
(A2′′) ϕ(w) ≥ ϕGB(w).

Then µ̂ϕ,i dominates the unbiased estimator Xi.

Let B(λi, λj) = E[(µ̂ϕ,i − µi)(µ̂ϕ,j − µj)/σ
2] for i ̸= j. Then, B(0, 0) for λi = λj = 0 is

written as
B(0, 0) = E[Tϕ(Z1/

√
T )ϕ(Z2/

√
T )], (4.5)

where Z1, Z2 and T are mutually independent random variables such that Z1 ∼ N (0, 1),
Z2 ∼ N (0, 1) and T ∼ χ2

m.

Proposition 4.6 (1) Assume the condition (A1′′). If the estimator θ̂ϕ is minimax, then
for all subset C of {1, . . . , k}, ∑

i∈C

∑
j∈C(AAt)ij∑

i∈C(AAt)ii

≤ K∗
ϕ, (4.6)

where K∗
ϕ = D(0)/B(0, 0) + 1.

(2) Assume the conditions (A1′′) and (A2′′). Then, the estimator θ̂ϕ is minimax if
(SC2) (AAt)ij ≤ 0 for all i, j (i ̸= j).

Proof. Let λ = (λ1, . . . , λk)
t. The risk function of the estimator θ̂ffi is written as

R(λ, θ̂ffi) =E[∥θ̂ffi − θ∥2/σ2] = E[(µ̂ffi − µ)tAAt(µ̂ffi − µ)/σ2]

=
k∑

i=1

(AAt)iiR(λi) +
k∑

i=1

k∑
j=1,j ̸=i

(AAt)ijB(λi, λj),

so that the risk difference of θ̂ϕ and θ̂
U

is

∆(λ; ϕ) =R(λ, θ̂ffi) − R(λ, θ̂
U
)

= −
k∑

i=1

(AAt)iiD(λi) +
k∑

i=1

k∑
j=1,j ̸=i

(AAt)ijB(λi, λj). (4.7)

For part (i), note that limλi→∞ D(λi) = 0 and limλi→∞ B(λi, λj) = 0. Let C be any
subset of Λ = {1, . . . , k}. If µi → 0 for all i ∈ C, and if µj → ∞ for all j ∈ Λ\C, then
the risk difference ∆(µ) converges to

−
∑
i∈C

(AAt)iiD(0) +
∑
i∈C

∑
j∈C,j ̸=i

(AAt)ijB(0, 0),

which yields the necessary condition (4.6).
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For part (2), Proposition 4.5 shows that the conditions (A1′′) and (A2′′) imply that
D(λi) ≥ 0 and B(λi, λj) ≥ 0 for λi > 0 and λj > 0. Thus, part (2) follows from (4.7).

Particular attention is paid to the truncated invariant prior generalized Bayes esti-
mator and the maximum likelihood estimator. When we assume the truncated invariant
prior distribution (

∏k
i=1 dµi)dσ2/σ2 over µi > 0, σ2 > 0 for i = 1, . . . , k, the generalized

Bayes estimator of θ is written as

θ̂
GB

= Atµ̂GB for µ̂GB = (µ̂GB
1 , . . . , µ̂GB

k )t, (4.8)

where

µ̂GB
i =

∫ ∞
0

∫ ∞
0

µi(σ
2)−(m+1)/2−2e−{(Xi−µi)

2+S}/2σ2
dµidσ2∫ ∞

0

∫ ∞
0

(σ2)−(m+1)/2−2e−{(Xi−µi)2+S}/2σ2dµidσ2

=Xi −
√

SϕGB(Xi/
√

S),

where the function ϕGB(w) is defined by (4.8). It can be seen that ϕGB(w) satisfies all
the conditions of Proposition 4.5, and the generalized Bayes estimator µ̂GB dominates Xi.
Also, note that D(λi) = 1 − R(λi) ≥ 0 and L(0) = 0 for ϕGB(w). This fact implies that
the necessary and sufficient condition for minimaxity is (SC2).

Concerning the MLE, it is given by θ̂
TR

= Atµ̂TR for µ̂TR = (µ̂TR
1 , . . . , µ̂TR

k )t, where

µ̂TR
i = max{Xi, 0} = Xi −

√
SϕTR(Xi/

√
S),

for ϕTR(w) = min{w, 0}. It is noted that ϕTR(Xi/
√

S) = min{Xi, 0}/
√

S. It can be seen
that the same arguments as in the case of known σ2 can be used to derive the minimaxity

of the MLE. Thus, the necessary and sufficient condition for minimaxity of θ̂
TR

is given
by (4.6), where KϕTR = D(0)/{B(0)}2 + 1 = π + 1.

Proposition 4.7 (1) The truncated invariant prior generalized Bayes estimator θ̂
GB

given in (4.8) is minimax if and only if the condition (SC2) is satisfied.

(2) The MLE θ̂
TR

is minimax if and only if for all subsets C of {1, . . . , k},∑
i∈C

∑
j∈C

(AAt)ij/
∑
i∈C

(AAt)ii ≤ π + 1.

Remark 4.1 It is noted that B(λi, λj) defined around (4.5) can be written as B(λi, λj) =
E[Tϕ((Zi +λi)/

√
T )ϕ((Zj +λj)/

√
T )] for i ̸= j. Thus, the partial derivative with respect

to λi is

∂

∂λi

B(λi, λj) =E[
√

Tϕ′((Zi + λi)/
√

T )ϕ((Zj + λj)/
√

T )]

=ET
[√

TE[ϕ′((Zi + λi)/
√

T )|T ] · E[ϕ((Zj + λj)/
√

T )|T ]
]
,

which cannot be separated into two expectations like (3.1). Hence, we cannot use the
same arguments as in Section 3.1 to show the sufficiency of the necessary condition. It
would be desirable to get a result corresponding to Propositions 3.1 and 4.1(3) in the case
of unknown variance.
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Remark 4.2 Proposition 4.7 (2) can be extended to symmetric unimodal location-scale
distributions. Let (X1, V1), . . . , (Xk, Vk) be mutually independent random variables such
that (Xi, Vi) has joint density function σ−2fi((xi − µi)/σ, vi/σ) with µi > 0 and unknown
scale σ, where fi(z, w) is symmetric and unimodal on z = 0 with respect to z. Then, the

MLE of θ is θ̂
TR

= Atµ̂TR where µ̂TR is a vector of max{Xi, 0}. Noting that the MLE

θ̂
TR

does not depend on statistics Vi’s, and that Xi’s are mutually independent, we can
apply the same arguments as in Section 3.1 to show that the necessary sufficient condition

for minimaxity of θ̂
TR

is (2.5), where from (3.4) with γ = 1,

Bi(λi) = −
∫ −λi

−∞
(z + λi)gi(z)dz,

Di(λi) =

∫ −λi

−∞
z(z + λi)gi(z)dz + λiBi(λi).

where gi(z) =
∫ ∞
0

fi(z, w)dw and λi = µi/σ.

5 Concluding Remarks

In this paper, we have derived necessary and/or sufficient conditions for minimaxity of
general types of estimators in the simultaneous estimation of a set of linear combinations
θ = Atµ where the location parameters µi’s are restricted to positive real numbers. When

θ is estimated by the uniform prior generalized Bayes estimator θ̂
GB

, the necessary and
sufficient codition for minimaxity is that all the off-diagonal ellements (AAt)ij, (i ̸= j), are

not positive. Hartigan (2004) proved that θ̂
GB

is always minimax in normal distributions
when A is the identity matrix Ik, where his result guarantees the minimaxity when µ is
restricted to a general convex set. When At = (a1, . . . , ak), on the other hand, Kubokawa

(2010) showed that θ̂
GB

is minimax if and only if k = 1, or (k = 2, a1a2 ≤ 0). This means,
in a sense, that the results given in this paper fill in gaps between the two results given
by Hartigan (2004) and Kubokawa (2010).

The paper also gives conditions on estimators under which the condition (2.5) becomes
necessary and sufficient for minimaxity, and this result has been applied to a class of
truncated estimators. When the underlying distributions are normal, we have shown that
this gives a unified condition which can be applied to both the uniform prior generalized
Bayes estimator and the MLE.

Finally, we want to conclude this section by describing some interesting related issues
to be (hopefully) resolved in the future.

(1) Is it possible to construct a prior distribution, other than the uniform prior, such
that the resulting generalized Bayes estimator is minimax ? No such prior has been found
even for k = 1.

(2) An admissible and minimax estimator of θ = Atµ was derived by Kubokawa
(2010) when At = (a1, . . . , ak), namely, ℓ = 1. Can this result be extended to the case of
ℓ ≥ 2?
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(3) In this paper, the location parameters µi’s are restricted to positive real numbers.
Can the results given in this paper be extended to the case where µ is restricted to a
general convex cone?

(4) When X ∼ Nk(µ, Ik) and µ is restricted to a convex set, Hartigan (2004) proved
that X is dominated by the uniform prior generalized Bayes estimator. Is it possible to
extend his result to the case of X ∼ Nk(µ,Σ) for known Σ or more general location
family?
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A Minimaxity of Unbiased Estimators in Location-

Scale Family

We here give the proof of Proposition 4.4, namely, minimaxity of the unbiased estimator
AtX under the restriction Ω = {(µ, σ)|µi > 0, i = 1, . . . , k, σ > 0}. In this section, we
treat the following location-scale family: Let X = (X1, . . . , Xk)

t and V be random vari-
ables whose joint density function is given by σ−k−1f((x − µ)/σ, v/σ) where (µ, σ) ∈ Ω
and f((x − µ)/σ, v/σ) denotes f((x1 − µ1)/σ, . . . , (xk − µk)/σ, v/σ). This includes the
canonical form treated in Section 4.2. The random variable S in Proposition 4.4 corre-
sponds to S = V 2. When the quadratic loss ∥θ̂ − θ∥2/σ2 is used to evaluate estima-
tors of θ = Atµ, the unrestricted generalized Bayes estimator against the uniform prior

d(µ, σ) = (
∏k

i=1 dµi)dσ/σ is written as θ̂
M

= Atµ̂M , where

µ̂M =

∫
ab−k−4f((X − a)/b, V/b)d(a, b)/

∫
b−k−4f((X − a)/b, V/b)d(a, b)

=X − cV, (A.1)

where c =
∫

ξτf(ξ, τ)d(ξ, τ)/
∫

τ 2f(ξ, τ)d(ξ, τ) and the integrals are taken over −∞ <
ξi < ∞, i = 1, . . . , k, 0 < τ < ∞ for ξ = (ξ1, . . . , ξk)

t. When f(ξ, τ) is symmetric on
ξi = 0 for i = 1, . . . , k, we have µ̂ = X since c = 0 in this case.

Proposition A.1 The unrestricted generalized Bayes estimator θ̂
M

is minimax under
the restriction (µ, σ) ∈ Ω.

Proof. Let Ωn = {(µ, σ)|0 < µi < n, i = 1, . . . , k, n−1 < σ < n} for n ≥ 2. Consider
the sequence of prior distributions given by

πn(µ, σ)d(µ, σ) =

{
{2nk log n}−1σ−1dµdσ if (µ, σ) ∈ Ωn

0 otherwise,

where d(µ, σ) means dµdσ for dµ =
∏k

i=1 dµi. Then the Bayes estimators θ are given by

θ̂
π

n = Atµ̂π
n where

µ̂π
n =

∫
Ωn

ab−k−4f((x − a)/b, v/b)d(a, b)

∫
Ωn

b−k−4f((x − a)/b, v/b)d(a, b)
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with the Bayes risk function

rn(πn, θ̂
π

n) ={2nk log n}−1

∫
Ωn

∫
∥At(µ̂π

n(x) − µ)∥2

σ2

1

σk+2
f

(
x − µ

σ
,
v

σ

)
dxd(µ, σ)

={2nk log n}−1

∫
Ωn

∫
∥At(µ̂π

n(σz + µ) − µ)∥2

σ2
f (z) dz

1

σ
d(µ, σ) (A.2)

where z = (x − µ)/σ. Letting t = (t1, . . . , tk)
t = (a − µ)/σ and s = b/σ, we see that

µ̂π(σz + µ) − µ

σ
=

∫
Ωn

[(a − µ)/σ](σ/b)k+4f([z − (a − µ)/σ]σ/b)d(a, b)∫
Ωn

(σ/b)k+4f([z − (a − µ)/σ]σ/b)d(a, b)

=

∫
Ω∗

n
ts−k−4f((z − t)s)d(t, s)∫

Ω∗
n
s−k−4f((z − t)s)d(t, s)

, (A.3)

where Ω∗
n = {(t, s)

∣∣∣ −µi < σti < n−µi, i = 1, . . . , k, n−1 < σs < n}. Let ξ = (ξ1, . . . , ξk)
t

for ξi = (2/n)µi − 1 and η = log σ/ log n. Then, Ω∗
n is rewritten as

Ω∗
n =

{
(t, s)| − 1

2
n1−η(1 + ξi) < ti <

1

2
n1−η(1 − ξi), i = 1, . . . , k,

− (1 + η) log n < log s < (1 − η) log n
}

(A.4)

and we denote the quantity (A.3) by µ̂∗
n(z|ξ, η). Since the condition that (µ, σ) ∈ Ωn is

equivalently expressed by

(ξ, η) ∈ U0 = {(ξ, η) | |ξi| < 1, i = 1, . . . , |η| < 1} ,

the Bayes risk (A.2) is rewritten as

rn(πn, µ̂π
n) =

(n/2)k log n

2nk log n

∫
(‰,η)∈U0

∫ ∥∥Atµ̂∗
n(z|ξ, η)

∥∥2
f(z)dzd(ξ, η)

≥ 1

2k+1

∫
(‰,η)∈Uε

∫ ∥∥Atµ̂∗
n(z|ξ, η)

∥∥2
f(z)dzd(ξ, η),

where Uε = {(ξ, η) | |ξi| < 1− ε, i = 1, . . . , |η| < 1− ε} for ε > 0. Noting that 1− η > ε,
1 + η > ε, 1 − ξ > ε and 1 + ξ > ε, we see that the set Ω∗

n given in (A.4) contains the
subset

(t, s) ∈
{
−ε

2
nε < ti <

ε

2
nε, i = 1, . . . , k,−ε log n < log s < ε log n

}
,

which implies that all the end points of ti and log s go to infinity or minus infinity as n
tends to infinity, so that

lim
n→∞

µ̂∗
n(z|ξ, η) = µ̂M .

Hence, Fatou’s lemma is used to evaluate the Bayes risk as

lim inf
n→∞

rn(πn, θ̂
π

n) ≥ 1

2k+1

∫
(‰,η)∈Uε

d(ξ, η)

∫
∥Atµ̂M(z)∥2f(z)dz

=(1 − ε)k+1

∫
∥Atµ̂M(z)∥2f(z)dz,
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which establishes the minimaxity of the estimator θ̂
M

.

It is noted that the same arguments as in the above proof can be applied to show
minimaxity of the unrestricted uniform prior generalized Bayes estimator in various
location-scale distributions. For exmple, consider joint density function

∏k
i=1{σ−2fi((xi−

µi)/σ, vi/σ)} for random variables (X1, V1), . . . , (Xk, Vk). Then, the unrestricted general-
ized Bayes estimator against the uniform prior d(µ, σ) = (

∏k
i=1 dµi)dσ/σ is written as

θ̂
M∗

= Atµ̂M∗, where

µ̂M∗ =

∫
ab−2k−3

∏k
i=1 fi((Xi − ai)/b, Vi/b)d(a, b)∫

b−2k−3
∏k

i=1 fi((Xi − ai)/b, Vi/b)d(a, b)

=X −
∫

ξτ k
∏k

i=1 fi(ξi, Viτ)d(ξ, τ)∫
τ k+1

∏k
i=1 fi(ξi, Viτ)d(ξ, τ)

.

The minimaxity of θ̂
M∗

can be verified based on the same arguments.
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