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Abstract

Extreme values are often correlated over time, for example, in a financial time series,

and these values carry various risks. Max-stable processes such as maxima of moving

maxima (M3) processes have been recently considered in the literature to describe time-

dependent dynamics, which have been difficult to estimate. This paper first proposes

a feasible and efficient Bayesian estimation method for nonlinear and non-Gaussian

state space models based on these processes and describes a Markov chain Monte Carlo

algorithm where the sampling efficiency is improved by the normal mixture sampler.

Furthermore, a unique particle filter that adapts to extreme observations is proposed

and shown to be highly accurate in comparison with other well-known filters. Our

proposed algorithms were applied to daily minima of high-frequency stock return data,

and a model comparison was conducted using marginal likelihoods to investigate the

time-dependent dynamics in extreme stock returns for financial risk management.

Key words: Bayesian analysis, Extreme value theory, Markov chain Monte Carlo,

Marginal likelihood, Maxima of moving maxima processes, Stock returns.
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1 Introduction

Extreme events rarely happen, but they could result in a major crisis. For example, huge

shocks in stock markets or disastrous typhoons cause serious problems in daily life world-

wide. It is critical to investigate the stochastics of rare events in detail, and therefore,

increasing attention has been directed to risk analysis in various areas. The extreme value

theory is known to be useful for describing the properties of extreme phenomena and is

widely used in many fields ranging from environment science to insurance. For example, in

financial econometrics, to measure market risk accurately, there are many concerns about

estimating tails of the distributions of asset returns in the stock or exchange market. It is

well known that for these returns, a normal distribution would fail to capture the extremal

property because its tail is too thin. An extreme value distribution is a good alternative

to investigate such risks. In the univariate case, the extreme value theory discusses such

a distribution in terms of the limiting distribution of the maxima or the minima of a se-

quence of random variables. In the multivariate case, a component-wise maximum is used

to study the statistical properties of its limiting distribution (e.g., Beirlant et al. (2004),

Coles (2001), de Haan and Ferreira (2006), Embrechts et al. (1997), Resnick (1987, 2007)

and Smith (2003)).

Financial time series data often exhibit clustering dynamics over time. Volatility clus-

tering in stock returns is such an example, and the time-varying variance models such as the

generalized autoregressive conditional heteroskedasticity (GARCH) and stochastic volatility

models have been discussed extensively in the literature. On the other hand, the traditional

extreme value theory focuses on independent random variables, but it is not sufficiently de-

veloped to describe the time-dependent structure of rare events despite its importance. For

example, if the price of a stock drops drastically, a high degree of fluctuation in the price

would persist over a few consecutive days. Without taking the time dependency of extreme

values into account, we would fail to evaluate the financial risk.

To incorporate the dynamic structure of extremes, several extreme value models have

been proposed to evaluate time-dependence in recent decades. One way to model such

time-dependence is to exploit the state space representation in which parameters of popular

extreme value models are assumed to follow autoregressive (AR) processes. An earlier
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example was reported by Smith and Miller (1986), and many applications have been studied

in various fields (e.g., Gaetan and Grigoletto (2004), Huerta and Sansó (2007)). Nakajima

et al. (2009) used a different approach to express the generalized extreme value (GEV)

random variable in a manner similar to that of a Box-Cox transformation where the state

variables either follows an AR or a moving average (MA) process with Gumbel innovations.

Another way to capture time dependence is to consider max-stable processes, which are

an infinite-dimensional generalization of the extreme value theory. Max-stable processes

describe dependence across time, and several parametric models for max-stable processes

have been proposed (e.g., Smith (2003)). The moving maxima (MM) process is a stationary

stochastic sequence that marginally follows the Fréchet distribution. Davis and Resnick

(1989) proposed the max-autoregressive moving average (MARMA) process, and Davis

and Resnick (1993) discussed its prediction in detail. Deheuvels (1983) defined the class

of maxima of moving maxima (M3) processes, and Smith and Weissman (1996) extended

the M3 process to the multivariate maxima of moving maxima (M4) process. Smith and

Weissman (1996) also showed that a large class of max-stable processes with unit Fréchet

margins could be approximated by M4 processes under quite general conditions. Zhang

and Smith (2010) also discussed this approximation in detail. Although this approach

is promising, it is difficult to estimate parameters, thus there have not yet been many

applications of these models to real data. Estimation methods and many properties of

these processes have been explored, for example, by Chamú Morales (2005), Hall et al.

(2002), Heffernan et al. (2007), Martins and Ferreira (2005), Smith (2003), Zhang (2002),

Zhang (2009), Zhang and Smith (2004) and Zhang and Smith (2010).

Max-stable processes can be expressed as a nonlinear state space model, and a simple

Markov chain Monte Carlo (MCMC) estimation method for such a model was proposed in

Chamú Morales (2005). However, an efficient estimation method has not yet been proposed.

This statistical model has an identifiability problem, which is well known as a label switching

problem in finite mixture and Markov switching models (e.g., Frühwirth-Schnatter (2006)).

This problem may result in the slow mixing property of the Markov chains and mislead-

ing conclusions. To overcome these difficulties, we propose a feasible and efficient MCMC

algorithm where we sample state variables by using a mixture of normal distributions. Com-
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pared with previous frequentist studies such as Zhang and Smith (2010) whose basic idea is

to estimate empirical distribution functions, the approach in this paper bases on likelihood

functions and does not need to consider how to evaluate such functions. Furthermore, based

on the mixture sampling method, we propose a novel and efficient particle filter method

that adapts to extreme changes in the dependent variables. In addition, we demonstrate

that popular filters such as auxiliary particle filters (e.g., Pitt and Shephard (1999)) fail to

capture them and that they give misleading inaccurate estimates in our empirical exam-

ples. Concerning label switching, this paper solves the identifiability problem by applying

the permutation sampler proposed by Früwirth-Schnatter (2001). The proposed methods

are applied to high frequency stock data and we compare a time-dependent GEV model

based on max-stable processes with a simple GEV model using marginal likelihoods.

The rest of paper is organized as follows. Section 2 reviews statistical models based

on max-stable processes. Section 3 describes our feasible efficient MCMC algorithm for

nonlinear and non-Gaussian state space models where the state variables follow the M3

processes. A particle filter that adapts to extreme observations is also proposed to compute

the likelihood function. Section 4 illustrates the high efficiency of our sampling algorithm

using simulated data. In Section 5, we apply our proposed method to daily minima of

intraday stock returns using high frequency stock price data and compare models using the

marginal likelihoods. Further, the high performance of our proposed particle filter is shown

in comparison with several other well-known particle filters. Finally, Section 6 concludes

this paper.

2 Modeling of max-stable processes

We first reviewed max-stable processes that form the basis of statistical models for extreme

values with dependent structure (e.g., Smith (2003)). We assumed the marginal distribu-

tions are unit Fréchet, since other random variables that follow extreme value distribution

can be transformed to follow unit Fréchet. A stochastic process {Xt, t = 1, 2, ...} with unit

Fréchet margins is called max-stable if any finite dimensional distributions are max-stable,

i.e.,

Pr{X1 ≤ nx1, ..., Xr ≤ nxr}n = Pr{X1 ≤ x1, ..., Xr ≤ xr} for all n ≥ 1, r ≥ 1.
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This definition can be extended to multivariate D-dimensional processes. A stochastic

process {Xt,d, t = 1, 2, ..., 1 ≤ d ≤ D} with unit Fréchet margins is max-stable if for any

n ≥ 1, r ≥ 1,

Pr{Xt,d ≤ nxt,d, 1 ≤ t ≤ r, 1 ≤ d ≤ D}n = Pr{Xt,d ≤ xt,d, 1 ≤ t ≤ r, 1 ≤ d ≤ D}.

Next, we introduce two parametric models based on these max-stable processes:

(i) Moving maximum (MM) process. It is given by

Xt = max
−∞<k<∞

αkZt−k,

where {αk} is a nonnegative sequence where
∑

k αk = 1 and Zt’s are i.i.d. unit Fréchet

random variables. We can show that Xt is a stationary stochastic sequence and the

marginal distributions are unit Fréchet.

(ii) Maxima of moving maxima (M3) process. Deheuvels (1983) defined the process as

Xt = max
0≤l

max
−∞<k<∞

αl,kZl,t−k,

where {αl,k} is a nonnegative sequence satisfying
∑

l

∑
k αl,k = 1 and Zl,t’s are i.i.d.

unit Fréchet random variables. The M3 process is also stationary and max-stable.

The key characterization of M3 process in practice is that any stationary max-stable

process with unit Fréchet margins can be approximated arbitrarily closely by the M3

process under general conditions (see Zhang and Smith (2010) for details).

In practice, we set l and k to some finite constants when we estimate parameters of these

processes.

3 The GEV-M3 model

3.1 Model specification

We set X as a random variable with unit Fréchet distribution function given by

P (X ≤ x) =

exp(−x−1), x ≥ 0,

0, x < 0,
(1)

5



and defined Y as a function of X such that

Y = µ+ ψ
Xξ − 1

ξ
, µ ∈ R, ψ > 0, ξ ∈ R. (2)

Then, Y follows GEV distribution with a distribution function

P (Y ≤ y) = exp

{
−
(
1 + ξ

y − µ

ψ

)−1/ξ

+

}
, (3)

where y+ = max(y, 0). We consider the state space model where the measurement equation

is (2) with an idiosyncratic observational shock. The state equation is the M3 process and

the state variable marginally follows the unit Fréchet distribution (e.g., Chamú Morales

(2005)):

GEV-M3 model:

yt = µ+ ψ
xξt − 1

ξ
+ ϵt, t = 1, 2, ..., n, (4)

xt = max
0≤l≤L

max
0≤k≤K

αl,kzl,t−k, t = 1, 2, ..., n, (5)

where {zl,t} is a sequence of i.i.d. unit Fréchet random variables, {ϵt} is a sequence of i.i.d.

normally distributed random variables with mean 0, variance σ2 and {αl,k} is a sequence

of nonnegative constants satisfying
∑

l

∑
k αl,k = 1. It is more realistic to expect the

maxima or minima of a large set of data to have GEV marginal distribution instead of unit

Fréchet distribution. In addition, the independent GEV distribution model is nested in this

representation.

As Hall et al. (2002) mentioned, we attached more importance to current and past

disturbances than to future disturbances and hence set αl,k = 0 for k < 0. We refer to this

model as the GEV-M3 model. Note that yt ∼ GEV(µ, ψ, ξ) when there is no observational

noise.

3.2 Bayesian estimation

Taking a Bayesian approach, we proposed a feasible efficient MCMC algorithm for esti-

mating parameters and state variables in the GEV-M3 model (4) and (5). The unknown

model parameters of the GEV-M3 model are equal to ϑ ≡ (λ, σ2, α), where λ = (µ, ψ, ξ)′.

Regarding prior distributions, we assumed prior independence among λ, σ2 and α, i.e,

π(λ, σ2, α) = π(λ)π(σ2)π(α). Concerning σ2, we used the conditionally conjugate prior

σ2 ∼ IG(n0/2, S0/2), where IG denotes the inverse gamma distribution and, n0 and S0 are

hyperparameters. Since no such conditionally conjugate priors can be found for λ and α,
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the choice of π(λ) and π(α) was completely arbitrary. In our studies, we assumed prior

independence among all components of λ, with µ and ξ following a normal and ψ following

a Gamma distribution.

For practical Bayesian estimation, we used MCMCmethods to sample from the posterior

distribution, (e.g., Chib (2001), Chib and Greenberg (1996), Gamerman and Lopes (2006),

Geweke (2005) and Koop (2003)). Concerning state variables, since Markov properties of

general M3 processes are not well known, which makes it difficult to sample x ≡ {xt}
directly, we therefore considered sampling z ≡ {zl,t}. As is common for state space models,

the data augmentation method was used by introducing the latent state process z as missing

data.

Firstly, we set y = {yt} and considered the following MCMC algorithm to sample from

the joint posterior density π(ϑ, z|y).

Algorithm 1: MCMC algorithm for the GEV-M3 model

1. Generate (µ, ψ, ξ)|σ2, x, y.

2. Generate σ2|µ, ψ, ξ, x, y.

3. Generate α|µ, ψ, ξ, σ2, z, y.

4. Generate z|ϑ, y.

It is easy to sample σ2 |µ, ψ, ξ, x, y ∼ IG(n̂/2, Ŝ/2) in Step 2 where n̂ = n0 + n, Ŝ =

S0+
∑n

t=1{yt−µ−ψ(x
ξ
t−1)/ξ}2, while sampling from (µ, ψ, ξ) |σ2, x, y and α |µ, ψ, ξ, σ2, z, y

in Steps 1 and 3 requires the implementation of a Metropolis-Hastings (MH) algorithm.

To sample from (µ, ψ, ξ) |σ2, x, y, we generated a candidate from a normal distribution,

where we set its mean and covariance matrix to be equal to the mode and the inverse

of the Hessian matrix multiplied by −1 of the conditional posterior densities (see Ap-

pendix A.1). Concerning α |µ, ψ, ξ, σ2, z, y, we implemented a random walk MH algorithm

where a candidate was generated from a normal distribution truncated over the region

R = {α : αl,k ≥ 0,
∑

l

∑
k αl,k = 1}.

Since the GEV-M3 model is a non-linear and non-Gaussian state space model, it is dif-

ficult to sample the state variables. Moreover, since the likelihood is invariant to relabeling

the component l in the M3 process, it is likely that the labeling of the unobserved indices

changes in the course of sampling from the posterior distribution. Label switching, which

is a jump between the various labeling subspaces, is well known in the finite mixture and

Markov switching models (Frühwirth-Schnatter (2006)) and can make the mixing of Markov

chain very slow, leading to incorrect conclusions.
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i pi mi v2i
1 0.00397 5.09 4.5
2 0.0396 3.29 2.02
3 0.168 1.82 1.1
4 0.147 1.24 0.422
5 0.125 0.764 0.198
6 0.101 0.391 0.107
7 0.104 0.0431 0.0778
8 0.116 −0.306 0.0766
9 0.107 −0.673 0.0947
10 0.088 −1.06 0.146

Table 1: Selection of (pi,mi, v
2
i ) by Frühwirth-Schnatter and Frühwirth (2007).

Considering these factors, our paper employed an auxiliary mixture sampling and ap-

proximated the non-linear non-Gaussian state space models (4) and (5) by a very accurate

finite mixture of non-linear Gaussian state space models. Thanks to this fine approximation,

we could sample the state variables from their posterior distribution efficiently through the

MCMC algorithm. We will discuss this in more detail in the next subsection. Concerning

the identification, we used the random permutation sampler by Früwirth-Schnatter (2001),

which leads to balanced label switching by concluding each MCMC draw by a randomly

selected permutation of the labeling. This method can be used to obtain a sample that

jumps between the various subspaces in a balanced fashion. The MCMC output of the

random permutation sampler was explored to find a suitable identifiability constraint.

3.2.1 Auxiliary mixture sampler for efficient sampling of state variables

As an efficient sampling method, auxiliary mixture sampling has been well developed in

the context of the stochastic volatility model by approximating the log χ2
1 density by a

finite normal mixture (Kim et al. (1998) and Omori et al. (2007)). Recently, this idea was

extended to efficient estimation of non-Gaussian models with latent variables and state space

models for binary, categorical, multinomial, and count data by approximating the density of

the Type I extreme value (or Gumbel) distribution by a finite normal mixture (Frühwirth-

Schnatter and Frühwirth (2007), Frühwirth-Schnatter et al. (2009) and Frühwirth-Schnatter

and Wagner (2006)). Moreover, Nakajima et al. (2009) applied this approximation method

to extreme value analysis.

Firstly, we transform unit Fréchet random variable zl,t in the state equation (5) to

wl,t ≡ log zl,t. Then wl,t follows the Gumbel distribution given by

G(x) ≡ Pr(wl,t ≤ x) = exp(− exp(−x)),
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and we replaced zl,t in the equation (5) by exp(wl,t), that is,

xt = max
0≤l≤L

max
0≤k≤K

αl,k exp(wl,t−k). (6)

We approximated the exact probability density function g(wl,t) of the Gumbel distribution

by a normal mixture of S components as

g(wl,t) = exp(−wl,t − e−wl,t) ≈ ĝ(wl,t) =

S∑
i=1

pifN (wl,t|mi, v
2
i ), (7)

where fN (wl,t|mi, v
2
i ) denotes a probability density function of a normal distribution with

mean mi and variance v2i . Frühwirth-Schnatter and Frühwirth (2007) proposed the fine

mixture approximation based on S = 10 components where the selection of (pi,mi, v
2
i ) for

i = 1, . . . , 10 is reproduced in Table 1.

Next, we introduced a mixture indicator variable, sl,t ∈ {1, . . . , S} for t = 0, . . . , n, l =

0, . . . , L. Conditional on s ≡ {sl,t}, equations (4) and (5) form a non-linear Gaussian state

space model,

yt = µ+ ψ
xξt − 1

ξ
+ ϵt, ϵt ∼ N(0, σ2) t = 1, 2, ..., n, (8)

xt = max
0≤l≤L

max
0≤k≤K

αl,k exp(wl,t−k), (9)

wl,t = msl,t + vsl,tul,t, ul,t ∼ N(0, 1), t = 0, ..., n, l = 0, ..., L. (10)

Taking the fine approximation into consideration, we set w = {wl,t} and implemented

the improved MCMC algorithm to sample from the joint posterior density π(ϑ, s, w|y).

Algorithm 2: Improved MCMC algorithm for the GEV-M3 model

1. Generate (µ, ψ, ξ)|σ2, x, y.

2. Generate σ2|µ, ψ, ξ, x, y.

3. Generate α|µ, ψ, ξ, σ2, w, y.

4. Generate w|ϑ, s, y.

5. Generate s|w

6. Permute index l randomly by

(a) Selecting randomly one of the (L+ 1)! possible permutations ρ(0), ..., ρ(L),
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(b) Replacing αl,k, wl,t, sl,t by αρ(l),k, wρ(l),t, sρ(l),t respectively for k = 0, ...,K, t =

0, ..., n.

Sampling the latent mixture indicator variables s is a standard step in finite mixture

modeling (see e.g., Frühwirth-Schnatter (2006)). Regarding sampling the latent state pro-

cess w, we firstly divided the domain of the state variable wl,t into finite intervals depending

on its posterior representation. In each interval, we approximated the posterior density by

normal density based on a Taylor expansion of the log density in the observation equation

(4). Then, we combined all proposals into a mixture normal density. Details are provided

in Appendix A.1.

3.2.2 Reweighting to correct for the mixture approximation error

Although the normal mixture distribution approximates the Gumbel distribution well, the

MCMC samples drawn from the approximate distribution π̂(ϑ,w|y) by Algorithm 2 is dif-

ferent from those from the exact posterior distribution π(ϑ,w|y). Here, π̂(ϑ,w|y) is the

marginal posterior of the approximate model, where the exact density g(wl,t) is substituted

by the approximate density ĝ(wl,t) given by (7).

This subsection describes the method of correcting for the minor approximation error.

ϑj and wj denoted the j-th sample from the approximated model, j = 1, . . . ,M , where M

is the number of iterations. To sample from the exact posterior distribution π(ϑ,w|y), we
resampled the draws from the approximate posterior density with weights proportional to

ηj =
η∗j∑M
i=1 η

∗
i

, η∗j =
π(ϑj , wj |y)
π̂(ϑj , wj |y)

=
f(wj)

f̂(wj)
, j = 1, . . . ,M, (11)

where f(w) =
∏n

t=0

∏L
l=0 g(wl,t) is given by the product of the exact densities and f̂(w) =∏n

t=0

∏L
l=0 ĝ(wl,t) is given by the product of the approximate densities, i.e. ĝ(wl,t) =∑S

sl,t=1 psl,tfN (wl,t|msl,t , v
2
sl,t

). The posterior moments were obtained by computing the

weighted average of the MCMC draws (e.g., Kim et al. (1998)).

3.3 Associated efficient particle filter

In this subsection, an efficient particle filter method is proposed to compute the likelihood,

which is required to conduct a model comparison discussed in Subsection 5.4. Here, we

assumed ϑ to be known. The basic idea was to sample from a target posterior distri-

bution recursively with the help of the importance function that approximates the target

density well. For the GEV-M3 model, the measurement density and the evolution density

were respectively f(yt|zt−K:t, ϑ) = f(yt|xt, ϑ) from (4) and f(zt) ≡
∏L

l=0 f(zl,t) from (5)
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where zt = (z0,t, . . . , zL,t), zt−K:t = {zj}tj=t−K , xt ≡ max0≤l≤Lmax0≤k≤K αl,kzl,t−k. The

associated particle filter is based on

f(zt+1, zt+1−K:t|y1:t+1, ϑ) ∝ f(yt+1|xt+1, ϑ)f(zt+1)f(zt+1−K:t|y1:t, ϑ),

where y1:t = {yj}tj=1. Here, we assumed K ≥ 1 because it is not necessary to consider

the sequential filtering in the case of K = 0. To draw particles from f(zt+1−K:t|y1:t, ϑ),
we assumed it was approximated well by f̂(zt+1−K:t|y1:t, ϑ) based on discrete distribution

functions.

The simple particle filter (PF) uses f(zt+1) as an importance function, but it is known

to produce an inaccurate estimate of the likelihood. Alternatively, the auxiliary particle

filter (APF, Pitt and Shephard (1999)) is well known as an efficient filter in various fields.

However, such a filter often generates particles with almost zero importance weights for

extreme observations. This is because the APF generates particles without considering

that extreme values are observed occasionally. Many particles with zero weights result in

the poor approximation of the filtering density and inaccurate estimation of the likelihood.

To solve these problems, we proposed an efficient particle filter that always generates

particles directly using the information yt+1. In the first step, we generated zit+1−K:t from

f̂(zt+1−K:t|y1:t, ϑ). In the second step, we assumed xt+1 is driven by the l∗-th element

among L + 1 sequences that comprise the M3 process. Then, the sequence with l∗ was

supposed to link deeply with the observation yt+1. Since the situation where l ∈ {0, . . . , L}
corresponds to l∗ was not observable, we sampled l∗ with each weight α+

l =
∑K

k=0 αl,k (see

Chamú Morales (2005)). This weight can be interpreted as the proportion of times that the

process xt+1 is driven by the lth signature pattern that specifies the shape of the process

near its local maximum (see e.g., Smith (2003) and Smith and Weissman (1996)). In the

third step, zl,t+1, l ̸= l∗ was generated from the unit Fréchet distribution. Finally, given

zit+1−K:t, l
∗ and zl,t+1, we sample zl∗,t+1 based on the mixture approximation of Gumbel

density (see Appendix A.2). Therefore, our proposed importance function is given by

g(zt+1, z
i
t+1−K:t|y1:t+1, ϑ) = g(zt+1|yt+1, z

i
t+1−K:t, ϑ)f̂(z

i
t+1−K:t|y1:t, ϑ)

=
∑
s

g(zt+1|yt+1, z
i
t+1−K:t, ϑ, s)π(s)f̂(z

i
t+1−K:t|y1:t, ϑ)
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where

g(zt+1|yt+1, z
i
t+1−K:t, ϑ, s)

=
L∑

l∗=0

α+
l∗g(zl∗,t+1|yt+1, zl,t+1, zt+1−K:t, sl∗,t+1, ϑ)

∏
l ̸=l∗

f(zl,t+1), (12)

π(s) =
∏

l π(sl,t+1) and g(zl∗,t+1|yt+1, zl,t+1, zt+1−K:t, sl∗,t+1, ϑ) comprise the a mixture nor-

mal distribution discussed in Appendix A.2. To summarize, we implemented the following

algorithm to generate (zt+1, zt+1−K:t) from our proposed importance function:

Algorithm 3: Generating particles from our importance function

1. Generate zit+1−K:t from f̂(zt+1−K:t|y1:t, ω).

2. Generate l∗ from the set {0, . . . , L} with weight α+
l =

∑K
k=0 αl,k.

3. Generate zl,t+1, l ̸= l∗ from the unit Fréchet distribution.

4. Generate zl∗,t+1 from g(zl∗,t+1|yt+1, zl,t+1, zt+1−K:t, sl∗,t+1, ϑ).

If yt+1 is large, more particles are generated from the tail of unit Fréchet distribution,

while a moderate yt+1 value corresponds to the generation of particles from around the

mode of unit Fréchet. Namely, our method automatically adapts the importance function

to the value of yt+1.

Taking that into consideration, we propose the following particle filter method:

1. Initialize t = 1, generate zi0 and zi1 from unit Fréchet for i = 1, . . . , I.

(a) Compute wi
1 = f(y1|xi1, ϑ) and W i

1 = F (y1|xi1, ϑ), where F denotes the distribu-

tion function of yt given xt, and save w̄1 =
1
I

∑I
i=1w

i
1, W̄1 =

1
I

∑I
i=1W

i
1.

(b) Set f̂(zi1|y1, ϑ) = wi
1/
∑I

j=1w
j
1, i = 1, . . . , I.

2. Generate (zit+1, z
i
t+1−K:t) from the importance function g(zt+1, zt+1−K:t|y1:t+1, ϑ) for

i = 1, . . . , I.

(a) Compute

wi
t+1 =

f(yt+1|xit+1, ϑ)f(z
i
t+1)f̂(z

i
t+1−K:t|y1:t, ϑ)

g(zit+1, z
i
t+1−K:t|y1:t+1, ϑ)

=
f(yt+1|xit+1, ϑ)f̂(z

i
t+1)

g(zit+1|yt+1, zit+1−K:t, ϑ)
,

W i
t+1 =

F (yt+1|xit+1, ϑ)f(z
i
t+1)

g(zit+1|yt+1, zit+1−K:t, ϑ)
, i = 1, . . . , I,

and save w̄t+1 =
1
I

∑I
i=1w

i
t+1, W̄t+1 =

1
I

∑I
i=1W

i
t+1.
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(b) Set f̂(zit+2−K:t+1|y1:t+1, ϑ) = wi
t+1/

∑I
j=1w

j
t+1, i = 1, . . . , I.

3. Go to 2.

It can be shown that as I → ∞, w̄t+1
p→ f(yt+1|y1:t, ϑ) and W̄t+1

p→ F (yt+1|y1:t, ϑ)
(e.g., Doucet et al. (2001)). Then, it follows that

∑n
t=1 log w̄t

p→
∑n

t=1 log f(yt|y1:t−1, ϑ). In

Subsection 5.4, we show that our proposed filter outperforms other well-known filters.

4 Illustrative examples

4.1 Evidence of high efficiency in sampling zl,t

This section shows the high efficiency of our proposed estimation method using simulation

data. We assumed l = 0, 1 because we expected shocks in such as stock markets consist

of transitory and persistent components in the M3 process, which corresponds to weak

and strong time-dependent structures. We generated 1,000 observations from the following

GEV-M3 model:

yt = µ+ ψ
xξt − 1

ξ
+ ϵt, ϵt ∼ N(0, σ2) t = 1, ..., n, (13)

xt = max

(
α0,0z0,t, α0,1z0,t−1

α1,0z1,t, α1,1z1,t−1

)
, (14)

where we set true values as µ = 0.2, ψ = 0.1, ξ = 0.3, σ = 0.05, (α0,0, α1,0, α0,1, α1,1) =

(0.6, 0.2, 0.01, 0.19). And Figure 1 shows simulation data of y.
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Figure 1: Simulation data of y.

Since huge state variables are directly linked with extreme observations and have a much

larger impact on the process, it is important to estimate those generated from the tail of the

unit Fréchet distribution. To investigate the sampling efficiency in such a case, we focused
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on large state variables. We fixed all parameters except zl,t in GEV-M3 model (13), (14) and

sampled 10,000 MCMC draws by our proposed method after the initial 1,000 samples were

discarded as a burn-in period. In our method, MCMC draws were resampled to correct

approximation errors discussed in Subsection 3.2.21. As a benchmark, we compared our

method with the simple algorithm where unit Fréchet distribution was used as a proposal

distribution. We drew 1,000,000 samples using the simple algorithm after the initial 100,000

samples were discarded as a burn-in period.

Tables 2 (the benchmark sampler) and 3 (our sampler) give the estimates of posterior

means, standard deviations, the 95% credible intervals, inefficiency factors and acceptance

rates for the maximum of state variables z0,89, the second largest z1,596, the third largest

z1,268, and around the 99th percentile z1,942 and the 95th percentile z0,525.

The inefficiency factor is defined as 1+2
∑∞

s=1 ρs where ρs is the sample autocorrelation

at lag s. It measures how well the MCMC chain mixes (e.g., Chib (2001)). It is the ratio

of the numerical variance of the posterior sample mean to the variance of the sample mean

from uncorrelated draws. The inverse of the inefficiency factor is also known as relative

numerical efficiency (Geweke (1992)). When the inefficiency factor is equal to m, we need

to draw the MCMC sample m times more than the uncorrelated sample 2.

Parameter True Mean Stdev. 95% interval Inefficiency Acceptance rate
z0,89 1486.8 1510.5 112.9 [1320.1, 1758.2] 8862.9 0.0001
z1,596 1161.1 1182.4 104.7 [1029.4, 1376.3] 4869.2 0.002
z1,268 811.3 780.7 61.46 [665.3, 907.4] 4772.3 0.0003
z1,942 106.1 101.3 29.33 [1.067, 138.2] 332.8 0.066
z0,525 19.65 13.10 3.584 [7.043, 21.00] 29.1 0.062

Table 2: Estimation result (the benchmark sampler).

Parameter True Mean Stdev. 95% interval Inefficiency Acceptance rate
z0,89 1486.8 1508.4 92.51 [1334.1, 1689.7] 2.2 0.625
z1,596 1161.1 1178.3 80.28 [1028.2, 1337.7] 2.2 0.627
z1,268 811.3 783.7 61.27 [670.9, 908.3] 2.2 0.637
z1,942 106.1 108.1 16.26 [78.74, 140.2] 4.6 0.608
z0,525 19.65 13.13 3.563 [7.304, 20.93] 3.1 0.609

Table 3: Estimation result (our sampler).

Although all true values are contained in the 95% credible intervals for both methods,

inefficiency factors in our method (2.2 ∼ 4.6) were much smaller than those in the bench-

mark method (29.1 ∼ 8862.9). Acceptance rates in the benchmark method were very small,

1Inefficiency factors and acceptance rates are computed using original samples.
2The inefficiency factors are computed using bandwidths bw = 20, 000 and 150 for the benchmark sampler

and our sampler, respectively.
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and Figure 2 shows that candidates are rejected too often and Markov chains do not mix

well. On the other hand, in our method, acceptance rates were about 0.6, and it is clear

from Figure 3 that the sample paths are stable. In addition, the sample autocorrelations

decayed very slowly in the benchmark sampler (Figure 4), while they vanished quickly in

our sampler (Figure 5), which indicates that our sampling method efficiently produces un-

correlated samples. This is because our method generates samples that considered the data

information. On the other hand, the benchmark does not use this information, even though

large state variables are highly related to extreme observations.
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Figure 2: Sample paths (the benchmark sam-
pler).
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Figure 3: Sample paths (our sampler).
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Figure 4: Sample autocorrelations (the bench-
mark sampler).
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Figure 5: Sample autocorrelations (our sam-
pler).

4.2 Overall sampling efficiency

Next we considered estimating not only state variables but also all parameters. It will

be shown that our proposed method works well and outperforms the benchmark sampler.

Again, we used the data set generated from the GEV-M3 models (13) and (14) 3. Here, we

assumed the following prior distributions:

µ ∼ N(0, 10), ψ ∼ G(2, 2), ξ ∼ N(0, 4)

σ−2 ∼ Ga(2.5, 0.025), (α0,0, α1,0, α0,1, α1,1) ∼ Dirichlet(1, 1, 1, 1).

We drew M = 200, 000 samples using our proposed method after the initial 20,000 samples

were discarded as a burn-in period. In the first step, we drew samples using a random

permutation sampler. Figure 6 shows the scatter plot of α, which indicates α0,0 > α1,0 is

a suitable constraint for identifiability of the index l. To compare the sampling efficiencies,

we again adopted the algorithm as a benchmark where unit Fréchet distribution was simply

used as a proposal distribution for all state variables. We sampled M = 4, 000, 000 draws

by the benchmark method after the initial 400,000 samples were discarded as a burn-in

3The data set is different from that in Subsection 4.1 because some state variables in the previous data
set are too large for the benchmark method to converge the Markov chain.
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period.
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Figure 6: Scatterplot of MCMC draws α from random permutation sampler for simulation
data (x-label × y-label).

The sample paths and the sample autocorrelation function are given in Figures 7 and 9

for the benchmark method and Figures 8 and 10 for our method. Tables 4 (the benchmark

sampler) and 5 (our sampler) show the estimates for posterior means, standard deviations,

the 95% credible intervals and inefficiency factors 4. Here, zmax denotes the maximum of

{zl,t}. In the benchmark, all true values were contained in the 95% credible intervals as well

as in our proposed method, but the inefficiency factors were very large and the sample auto-

correlations decayed very slowly. Therefore, the poor estimation for state variables crucially

affects the efficiency of sampling other parameters. On the other hand, these results show

that the inefficiency factors in our sampler were much smaller and that our autocorrelations

vanished more quickly, which implies our method outperforms the benchmark sampler.

4The inefficiency factors are computed using bandwidths bw = 250, 000 and 3500 for the benchmark
sampler and our sampler.

17



Parameter True Mean Stdev. 95% interval Inefficiency
µ 0.2 0.196 0.004 [0.188, 0.205] 1114.6
ψ 0.1 0.090 0.006 [0.077, 0.102] 6177.2
ξ 0.3 0.289 0.049 [0.200, 0.399] 75218.
σ 0.05 0.058 0.005 [0.048, 0.069] 6686.7
α0,0 0.6 0.649 0.058 [0.532, 0.762] 14658.
α1,0 0.2 0.182 0.033 [0.119, 0.249] 14355.
α0,1 0.01 0.008 0.003 [0.003, 0.017] 68135.
α1,1 0.19 0.159 0.028 [0.105, 0.216] 13098.
zmax 497.8 809.7 412.8 [304.3, 1916.8] 84639.

Table 4: Estimation result for simulated data (the benchmark sampler).

Parameter True Mean Stdev. 95% interval Inefficiency
µ 0.2 0.196 0.004 [0.188, 0.204] 51.0
ψ 0.1 0.090 0.006 [0.077, 0.102] 172.6
ξ 0.3 0.284 0.047 [0.197, 0.383] 345.5
σ 0.05 0.057 0.005 [0.047, 0.069] 292.7
α0,0 0.6 0.669 0.056 [0.556, 0.776] 1305.7
α1,0 0.2 0.171 0.032 [0.111, 0.237] 1256.1
α0,1 0.01 0.008 0.003 [0.003, 0.016] 294.0
α1,1 0.19 0.150 0.026 [0.099, 0.204] 1172.2
zmax 497.8 794.6 424.4 [324.7, 1864.3] 314.1

Table 5: Estimation result for simulated data (our sampler).
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Figure 7: Sample paths for simulation data
(the benchmark sampler).
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Figure 8: Sample paths for simulation data
(our sampler).
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Figure 9: Sample autocorrelations for simula-
tion data (the benchmark sampler).
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Figure 10: Sample autocorrelations for simu-
lation data (our sampler).

5 Application to stock returns data

5.1 Data

In this section, we applied our proposed method to extreme negative returns of high fre-

quency data on the Tokyo Stock Price Index (TOPIX). Currently, increasing numbers of

researchers and practitioners are interested in high-frequency financial data to analyse the

market dynamic structure. For example, day traders pay much attention to high-frequency

data such as 1-min, 3-min, 5-min and 10-min charts. Therefore, the fluctuation in these

charts is an important risk factor that greatly affects them.

Moreover, analyzing intraday data is thought to be crucial to maintain stable financial

markets. A huge stock market disruption occurred on May 6, 2010, which was referred

to as the flash crash. In the crash, the Dow Jones industrial average fell nearly 1,000

points in less than a half-hour. To prevent a recurrence of the flash crash, the Securities

and Exchange Commission (SEC) approved new trading rules, known as circuit breakers.

Under these rules, trading of any S&P500 stock that rises or falls 10% or more in a five

minute period would be halted for five minutes, and initially, these new rules will be tested

during a six-month pilot period through December 10, 2010. These facts clearly show the

importance of risk analysis using high-frequency data such as 5-min returns to stabilize the
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equity markets.

We chose 5-min frequency data and analyzed the dynamic structure of the daily minima

of 5-min stock return data. Our data were obtained from the Nikkei NEEDS MT tick data,

which records the price every minute. The Tokyo Stock Exchange (TSE) is open from

9:00-11:00 (morning session) and 12:30-15:00 (afternoon session) on usual trading days and

only for the morning session on the first and last trading days in every year.

Mean Stdev. Skewness Kurtosis Max. Min.
0.2780 0.1719 2.6689 14.582 1.6947 0.0423

Table 6: Summary statistics for the TOPIX minimum data (multiplied by −1, n = 3, 321).

The original sample period was from April 1, 1996 through September 30, 2009, and

we used the minimum of 5-min returns in one day as an extreme value. We used a log

difference to compute the return (multiplied by 100), excluding the overnight and lunch

time intervals, and obtained 24 and 30 5-min intraday returns in the morning and afternoon

sessions, respectively. This operation led to a series of 3,321 daily minimum observations.

For estimation, we used the minimum series multiplied by −1. Table 6 summarizes the

descriptive statistics, and Figure 11 plots the minima time series. The skewness is positive,

and the kurtosis is larger than that of the normal distribution, which implies a longer right

tail and fatter tails.
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Figure 11: Minimum return data for the TOPIX (multiplied by −1, 1996/April –
2009/September).
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5.2 Estimation results

We estimated the GEV-M3 model for TOPIX minima data. The prior specification and the

iteration size are the same as in the simulation study.
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Figure 12: Scatterplot of MCMC draws α from the random permutation sampler for the
TOPIX minimum return data (x-label × y-label).
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Parameter GEV GEV-M3
0.201 (0.001) 0.203 (0.002)

µ [0.198, 0.205] [0.199, 0.207]
37.2 58.1

0.079 (0.003) 0.073 (0.003)
ψ [0.073, 0.085] [0.066, 0.079]

128.9 238.1
0.294 (0.025) 0.382 (0.032)

ξ [0.247, 0.344] [0.321, 0.450]
301.5 596.4

0.041 (0.003) 0.050 (0.002)
σ [0.036, 0.047] [0.046, 0.055]

172.7 483.8
0.544 (0.034)

α0,0 [0.478, 0.615]
1918.7

0.236 (0.024)
α1,0 [0.189, 0.291]

2367.7
0.019 (0.004)

α0,1 [0.011, 0.028]
445.2

0.199 (0.018)
α1,1 [0.163, 0.235]

1634.3

The first row: posterior mean and standard deviation in parentheses.

The second row: 95% credible interval in square brackets.

The third row: inefficiency factor.

Table 7: Estimation result of the GEV models for the TOPIX minimum data.

Figures 12 shows the scatter plots of MCMC draws from the random permutation sam-

pler. From this figure, we set the suitable constraint α0,0 > α1,0 for the GEV-M3 model.

Table 7 reports the estimation result of GEV and GEV-M3 models. Regarding the pos-

terior means for the parameters in the GEV distribution, µ and ψ were not different between

these two models, while ξ was larger in the GEV-M3 model than in simple GEV model,

which indicates the tail in GEV-M3 model tends to be heavier. In addition, the posterior

mean of σ also was larger in this order, which shows that the idiosyncratic error tends to

be larger. The posterior means of ξ in both two models were estimated to be positive, and

the 95% credible intervals did not contain zero, which indicated that corresponding GEV

distributions belong to the Fréchet type and have heavier tails than other types.

Next, we will discuss the estimation results concerning time dependence. For the

(α0,0, α0,1) corresponded to the index l = 0, and the posterior mean of α0,0 was much

larger than that of α0,1. This result implies that one part of the M3 process has a weak

time-dependent structure. On the other hand, the posterior means of α1,0 and α1,1 were

relatively similar. This indicates that the impact of the current shock appeared to remain
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in the next period and that the other part of the M3 process has strong time dependence.

To measure the strength of dependence of the process, the extremal index θ was sug-

gested to be a key parameter (e.g., Coles (2001) and Leadbetter et al. (1983)). Loosely, the

extremal index can be interpreted as the inverse of the mean cluster size in the point pro-

cess of exceedance times over a high threshold. For independent series, the extremal index

θ = 1. The extremal index of the M3 process is given by θ =
∑

l maxk αl,k (see e.g., Smith

and Weissman (1996)). For the TOPIX data, the estimation result is reported in Table 8.

The posterior mean was around 0.8, apart from 1, and considering the 95% interval, this

result shows that time dependence certainly exists in the TOPIX minimum return data.

Finally, Figures 13, 14 and 15 show the sample paths, the sample autocorrelations, and

the posterior densities for the GEV-M3 model, respectively. The MCMC results show that

the Markov chains mixed well.

Parameter Mean Stdev. 95% interval
θM3 0.780 0.018 [0.746, 0.817]

Table 8: Estimated extremal index for the TOPIX minimum return data.
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Figure 13: Sample paths for the TOPIX minimum return data.
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Figure 14: Sample autocorrelations for the TOPIX minimum return data.
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Figure 15: Posterior densities for the TOPIX minimum return data.

5.3 Model comparison using marginal likelihoods

In this subsection, we compare GEV and GEV-M3 models using marginal likelihood. The

marginal likelihood is defined as the integral of the likelihood with respect to the prior

density of the parameter. Following Chib (1995), the basic marginal likelihood identity is
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satisfied for any ϑ ∈ Θ (Θ:parameter space):

m(y) =
f(y|ϑ)π(ϑ)
π(ϑ|y)

where m(y) is marginal likelihood, π(ϑ) is a prior density, f(ϑ|y) is a likelihood and π(ϑ|y)
is a posterior density. Here if we take the log, then

logm(y) = log f(y|ϑ) + log π(ϑ)− log π(ϑ|y).

If we evaluate the prior, posterior and likelihood at the fix point ϑ = ϑ∗, we can estimate

the marginal likelihood m(y). Theoretically, any ϑ∗ ∈ Θ can be used, but we typically

use the posterior mean or mode for stable estimation of m(y). The prior density is easily

evaluated, and the likelihood is calculated by the filtering method discussed in Subsection

5.4. For the posterior ordinate, we used a previously described method (Chib (1995) and

Chib and Jeliazkov (2001)), using samples from the reduced form of the MCMC algorithm.

In our study, the likelihood was estimated using 10,000 particles, and 10 replications of

the filter were implemented to compute the standard error of the likelihood. The posterior

ordinate was estimated by the reduced MCMC runs using 10,000 and 50,000 draws for GEV

and GEV-M3 respectively.

Model GEV GEV-M3
Likelihood ordinate 2176.18 2279.93
(S.E.) (0.20) (0.29)

Prior ordinate -8.47 -3.65

Posterior ordinate 21.05 35.43
(S.E.) (0.17) (0.31)

Marginal likelihood 2146.66 2240.84
(S.E.) (0.26) (0.32)

*All values are in natural log scale. Standard errors are in parentheses.

Table 9: Estimated marginal likelihood for the TOPIX minimum return data.

Table 9 reports the estimation result of the marginal likelihood. Although the marginal

likelihood of the GEV-M3 model was more penalized by the prior and the posterior ordinates

due to additional parameters compared with that of GEV model, the result shows that

the GEV-M3 model outperforms the simple GEV model. Therefore, the importance of

capturing time dependence in a financial time series is clear.
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5.4 Efficiency comparison of proposed particle filters

Using the daily minima stock returns, this subsection compares our proposed particle filter

(denoted by ’New’) with other filters: simple particle filter (PF) and auxiliary particle

filter (APF, Pitt and Shephard (1999)). For each filter, we used R = 500, 1000, 5000, and

10000 particles to compute the likelihood and its standard error was obtained based on 10

replications of the filter.

Table 10 shows the estimation result, where we found that our filter produces the most

accurate estimates among all filters. In addition, our estimates were found to be very

stable, since the differences in estimates among R = 500, 1000, 5000, and 10000 cases were

the smallest and each standard error was less than those of the other filters.

Since the simple particle filter (PF) uses unit Fréchet as an importance function, it

fails to generate sufficient particles from the tail of the unit Fréchet distribution, and hence

most weights wi
t+1 = f(yt+1|xit+1, ϑ), i = 1, . . . , I are likely to be small especially when R

is small. This could lead to inaccurate estimates for small values of R in PF. In addition,

the standard errors were very large, further indicating its lower stability compared with our

filter.

Concerning APF, the estimates were incorrectly much smaller than those in New and

PF. To determine how these incorrect estimates were obtained, we considered the weights

for APF given by

wi
t+1 =

f(yt+1|xit+1, ϑ)f(z
i
t+1)f̂(z

i
t+1−K:t|y1:t, ϑ)

f(zit+1)h(z
i
t+1−K:t|y1:t, ϑ)

=
f(yt+1|xit+1, ϑ)f̂(z

i
t+1−K:t|y1:t, ϑ)

h(zit+1−K:t|y1:t, ϑ)
,

where

h(zit+1−K:t|y1:t, ϑ) =
f(yt+1|νit+1, ϑ)f̂(z

i
t+1−K:t|y1:t, ϑ)∑M

j=1 f(yt+1|νjt+1, ϑ)f̂(z
j
t+1−K:t|y1:t, ϑ)

,

and νit+1 is equal to xit+1 except that zl,t+1 in xit+1 is replaced by the median of unit

Fréchet distribution (= 1/ log 2) as a likely value for l = 0, 1, . . . , L. When yt+1 is large,

νt+1 fails to approximate xt+1 and most particles generated from the importance function

h(zit+1−K:t|y1:t, ϑ) have almost zero weights. Additionally, only a small number of particles

have large weights. As a result, such particles with high h(zit+1−K:t|y1:t, ϑ) values are likely

to be sampled in the first step. In the second step, zt+1 was generated from unit Fréchet as

PF. Therefore, APF leads to a case with large h(zit+1−K:t|y1:t, ϑ) and small f(yt+1|xit+1, ϑ)

values’ for most particles, which could cause much smaller estimates as shown in Table 10.

Concerning CPU time, new filter needs more time than other filters and, as a future

work, we have to work on reducing this calculation time. However, in terms of accuracy, it
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is clear that our filtering method outperforms other filters.

New PF APF
R = 500 2273.81 1931.08 -270.97

(1.01) (64.10) (26.55)
[5:35:02] [0:0:42] [0:1:10]

R = 1, 000 2276.48 2125.75 11.87
(0.79) (42.25) (25.46)

[10:45:13] [0:1:22] [0:2:17]
R = 5, 000 2279.65 2271.15 441.9

(0.39) (1.57) (7.56)
[51:49:03] [0:6:19] [0:12:10]

R = 10, 000 2279.93 2275.95 571.95
(0.29) (1.02) (8.94)

[104:21:47] [0:12:34] [0:21:48]

R denotes the number of particles. The first, second and third rows denote estimated

log-likelihood, standard error and CPU time ([hr.:min.:sec.]) respectively. These are

calculated using a computer with Intel Core 2 Duo T9900 3.06GHz processor.

Table 10: Estimated log-likelihoods for the TOPIX minimum data using three particle filter
methods; New (proposed filter), PF (simple particle filter) and APF (Auxiliary particle
filter).

6 Conclusion

This paper discusses Bayesian estimation for time dependent extreme value models based

on M3 processes. We proposed an improved MCMC algorithm using a mixture sampler,

which approximated Gumbel density by a ten-component mixture of normal. A simulation

study showed that our MCMC algorithm works successfully and outperforms a benchmark

method. In addition, we proposed an associated particle filter method that generates par-

ticles directly based on the data information and demonstrated that our filtering method is

superior to those reported previously. In application to high-frequency TOPIX minimum

returns data, the parameter estimates showed that the daily series of minimum returns

certainly has time dependence. Moreover, a model comparison using marginal likelihood

indicated that the GEV-M3 model outperforms the simple GEV model.

With respect to future work, to describe jumps from the GEV-M3 model more flexibly,

the observational errors in (4) can be extended to contain jump terms or follow heavy-tailed

distribution. In addition, instead of block maxima approach, the threshold approach may

be helpful for the inference on jumps. And it is possible to extend the MCMC algorithm

proposed in this paper to multivariate time series models such as M4 processes, mainly

by adding components connected with the multiple data structure to the mixture normal

proposal distribution for state variables.
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In our examples, we assumed no informative prior distribution before we applied permu-

tation sampler to find constraint for the identification. If some information clearly indicates

a specific informative prior, we will have to assume its appropriate shape. However, it

may be difficult to find such prior in complex models. As a solution, Chib and Ergashev

(2009) propose a promising simulation-based method to obtain a prior with a specific shape

flexibly. Such a method is potentially applicable in Bayesian inference of the max-stable

processes, and we will fully explore this application in our future projects.

In addition to the marginal likelihood, forecasting performance is an important crite-

rion for model comparison. This can be achieved by studying one step predictive density

π(yt+1|y1:t) defined by

π(yt+1|y1:t) =
∫
f(yt+1|xt+1, ϑ)f(zt+1)π(ϑ, s, w|y1:t)dϑdzt+1dsdw.

To obtain samples from this predictive distribution, we firstly generate (ϑ, s, w) ∼ π(ϑ, s, w|y1:t)
by the proposed MCMC algorithm and zt = {zl,t+1}Ll=0 from unit Fréchet distributions.

Given ϑ, s, w and zt+1, we calculate xt+1 and finally generate yt+1 ∼ f(yt+1|xt+1, ϑ).
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A Details on MCMC Estimation

A.1 GEV-M3 Model

A.1.1 Generation of the model parameters (µ, ψ, ξ), σ2 and α

In Step 1 of Algorithm 1, the conditional posterior density of λ = (µ, ψ, ξ)′ is given by π(λ|σ2, x, y) ∝
π(λ)f(y|λ, σ2, x), where f is the conditional likelihood of the observation equation (4). To sample

from this conditional posterior distribution, we utilized the Metropolis-Hastings (M-H) algorithm

using a normal proposal density as follows. First, we determined λ̂ = (µ̂, ψ̂, ξ̂)′ which maximizes

(or approximately maximizes) the conditional posterior density. Next, we generated a candidate λ∗

28



from a normal distribution truncated over the region R = {λ : ψ > 0}, T NR(λ∗,Σ∗), where

λ∗ = λ̂+Σ∗
∂ log π(λ|σ2, x, y)

∂λ

∣∣∣∣
λ=λ̂

, Σ−1
∗ = − ∂ log π(λ|σ2, x, y)

∂λ∂λ′

∣∣∣∣
λ=λ̂

,

and accept with probability

α(λ, λ∗) = min

{
π(λ∗|σ2, x, y)fN (λ|λ∗,Σ∗)

π(λ|σ2, x, y)fN (λ∗|λ∗,Σ∗)
, 1

}
,

where λ denotes the current value and fN (·|µ,Σ) denotes the probability density function of the

normal distribution with mean µ and covariance matrix Σ. If the candidate λ∗ was rejected, we

took λ as a next sample.

A.1.2 Generation of s

We drew a sample sl,t from its discrete conditional posterior distribution with a probability mass

function,

π(sl,t = i|w) ∝ pi
1

vi
exp

{
− 1

2v2i
(wl,t −mi)

2

}
for l = 0, . . . , L, i = 1, . . . , S, and t = 0, . . . , n.

A.1.3 Sampling state variables

We sampled wl,t = log zl,t from the conditional posterior distribution. Taking the relation between

w and x into account, wl,t is contained as an element in xt, . . . , xt+K . We defined x̂l,t+k, which is a

maximum of the components in xt+k except the element of wl,t, as

x̂l,t+k = max
l′,k′

{αl′,k′ exp(wl′,t+k−k′)| 0 ≤ l′ ≤ L, 0 ≤ k′ ≤ K, (l′, k′) ̸= (l, k)}, 0 ≤ k ≤ K.

αl,k exp(wl,t) ≥ x̂l,t+k means αl,k exp(wl,t) = xt+k, and we used information about yt+k to con-

struct proposal distributions. Otherwise, since αl,k exp(wl,t) < x̂l,t+k indicates that wl,t has no

influence on xt+k, the likelihood function f(yt+k|xt+k, ϑ) can be considered a constant term in the

posterior representation of wl,t. Also αl,k = 0 implies that f(yt+k|xt+k, ϑ) can be treated as a

constant term. Therefore, when αl,k = 0 for all k, we generated samples simply from Gumbel(0,1)

distribution. When αl,k > 0 for some k, the inequality αl,k exp(wl,t) ≥ x̂l,t+k is equivalent to

wl,t ≥ log(x̂l,t+k/αl,k), and we allowed M to denote the number of such αl,k values. We defined

x∗l,t+k = log(x̂l,t+k/αl,k) as a boundary point for wl,t to be included in the likelihood. By arranging

them in ascending order such that x∗l,t+k1
≤ . . . ≤ x∗l,t+km

≤ . . . ≤ x∗l,t+kM
, we divided the real line
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as follows:

R0 = {wl,t|wl,t < x∗l,t+k1
}

Rj = {wl,t|x∗l,t+kj
≤ wl,t < x∗l,t+kj+1

}, j = 1, . . . ,M − 1,

RM = {wl,t|x∗l,t+kM
≤ wl,t}.

In the interval R0, αl,k exp(wl,t) < x̂l,t+k for all k and the conditional posterior density is given by

π(wl,t|y, ϑ, w/wl,t, s) ∝ exp

{
− 1

2v2sl,t

(
wl,t −msl,t

)2}
. (15)

Then, we generated samples from T NR0(w̄l,t, σ̄
2
l,t) where w̄l,t = msl,t and σ̄2

l,t = v2sl,t .

In other intervals, Ri for i = 1, . . . ,M , the conditional posterior density of wl,t is

π(wl,t|y, ϑ, w/wl,t, s) ∝ exp

{
− 1

2v2sl,t

(
wl,t −msl,t

)2}

× exp

− 1

2σ2

i∑
m=1

{
yt+km − µ− ψ

αξ
l,km

exp(ξwl,t)− 1

ξ

}2
 .

To construct a normal proposal density, we considered the second-order Taylor expansion of the

logarithm of the likelihood (excluding the constant term)

h(wl,t) ≡ − 1

2σ2

i∑
m=1

{
yt+km − µ− ψ

αξ
l,km

exp(ξwl,t)− 1

ξ

}2

,

around the mode ŵl,t. We allowed h′(ŵl,t) and h
′′(ŵl,t) to denote the first and the second derivative

of h(wl,t) evaluated at wl,t = ŵl,t, respectively. Then,

h(wl,t) ≈ h(ŵl,t) + h′(ŵl,t)(wl,t − ŵl,t) +
1

2
h′′(ŵl,t)(wl,t − ŵl,t)

2

=
1

2
h′′(ŵl,t)

{
wl,t −

(
ŵl,t −

h′(ŵl,t)

h′′(ŵl,t)

)}2

+ const.

= −
(w∗

l,t − wl,t)
2

2σ∗2
l,t

+ const.,

where σ∗
l,t

2 = −{h′′(ŵl,t)}−1 and w∗
l,t = ŵl,t + σ∗

l,t
2h′(ŵl,t). Based on this approximation, we used

the following proposal density qi in Ri.

qi(wl,t|y, ϑ, w/wl,t, s) ∝ exp

{
−
(w∗

l,t − wl,t)
2

2σ∗
l,t

2

}
exp

{
−
(wl,t −msl,t)

2

2v2sl,t

}

∝ exp

{
− (wl,t − w̄l,t)

2

2σ̄2
l,t

}
, (16)
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where

σ̄2
l,t =

(
σ∗
l,t

−2 + v−2
sl,t

)−1

, w̄l,t = σ̄2
l,t

(
w∗

l,t

σ∗
l,t

2 +
msl,t

v2sl,t

)
.

If w̄l,t was smaller than the lower bound of Ri, that is, x∗l,t+ki
, or larger than the upper bound of

Ri, x
∗
l,t+ki+1

, then we reset w̄l,t = x∗l,t+ki
or w̄l,t = x∗l,t+ki+1

respectively. Then, we approximated

the posterior density in Ri using truncated normal NRi(w̄l,t, σ̄
2
l,t).

Finally, we constructed the proposal distribution q combining proposals in each interval Ri as

follows:

q(wl,t|y, ϑ, w/wl,t, s) =
M∑
i=0

pi∑M
j=0 pj

qi(wl,t|y, ϑ, w/wl,t, s), (17)

where qi is the truncated normal proposal in region Ri and

pi =

∫
Ri

1√
2πσ̄l,t

exp

{
− (wl,t − w̄l,t)

2

2σ̄2
l,t

}
dwl,t.

A.2 Associated efficient particle filter

Subsection 3.3 discusses our proposed particle filter based on the auxiliary mixture sampler. We

constructed g(zl∗,t+1|yt+1, zl,t+1, zt+1−K:t, sl∗,t+1, ϑ) in (12) using the same mixture approximation

method as in Appendix A.1.3. Since the data information y1:t+1 is available up to time t+1, wl,t+1

could appear only through xt+1. Based on x∗l,t+1, we divided the domain of wl,t into two intervals,

R0 = {wl,t+1|wl,t+1 < x∗l,t+1} and R1 = {wl,t+1|wl,t+1 ≥ x∗l,t+1} where the proposals are given by

(15) and (16) respectively. Finally, we used a normal mixture distribution (17) with the two intervals

as an importance function.
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