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Abstract

In this paper, spatial competition between two sellers in a market (Hotelling,

1929) and total transportation costs minimization (Weber, 1909) are combined,

and equilibrium and optimum locations of firms are analyzed along with the con-

sequent policy implications. We reveal that when the output prices are fixed and

equal, then both firms agglomerate at the market center, irrespective of the dis-

tribution of inputs. Further, we also show that the middle point of firm locations

in Hotelling’s model is identical to the Weber’s point. Finally, it is indicated that

the location of firms in Hotelling’s model is far from the socially optimal location.
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1 Introduction

In their respective economic theories, Weber (1909) considered the location of a monopo-

list’s manufacturing firm, whereas Hotelling (1929) considered the location of duopolists’

retail firms. It is interesting to imagine what would have happened if they met early in

the early 20th century.

Weber examined the least shipping cost location of a manufacturing firm with respect

to the locations of input materials and consumer demand. In relation to this, Weber

established the Weber triangle or the locational triangle. In this triangle, there is one

product and two sources of raw material and the main interest of a monopolist is to

minimize the transportation costs of two inputs to produce one output.

On the other hand, Hotelling dealt with interfirm competition between duopolists

in location and price of an identical good. Each duopolist attempts to maximize their

profit by selling an identical good to consumers who are equally distributed over a line

segment. Hotelling ignored the input materials and focused only on the output market,

while Weber took both inputs and output into account. Weber (1909) is more realistic

in terms of the fact that manufacturing firms use inputs in producing a final product.

However, Hotelling (1929) is more realistic in terms of the fact that there is competition

between firms.

The purpose of this paper is to combine the two classical location theories. Specifi-

cally, we consider a situation in which two firms use input materials that involve trans-

portation costs a la Weber (1909), and compete in location and price a la Hotelling

(1929). This is a generalization of Weber’s transportation cost minimization and Hotelling’s

profit maximization. In this paper, it is shown that Weber’s firm location coincides

with the midpoint of Hotelling’s firm locations. The coincidence implies the similarity

between these two classical location theories, the establishment of which is the main

objective of this study.

To the best of our knowledge, there is no existing literature that has attempted such

a combination except Hansen et al. (1986) and Birkin and Wilson (1986a, b). Hansen

et al. (1986) indicated that the Hotelling’s duopolists and the Weber’s monopolist

will always choose to be located at the place of median demand when consumers are

distributed at vertices of a symmetric network. However, their model does not involve
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input transportation costs and price competition. On the other hand, in this paper, firms

consider the transportation of not only the output but also inputs and compete in terms

of not only location but also price. Birkin and Wilson (1986a, b) made an ambitious

attempt to unify location models including Weber (1909) and Hotelling (1929). However,

they did not consider strategic behavior of firms and focused more on geography rather

than economics.

The remainder of this paper is organized as follows. Section 2 considers Weber’s

location problem for an arbitrary number of input materials. Section 3 studies a location

game and a location-then-price game in Hotelling’s spatial competition (Anderson, et al.

1992). Section 4 discusses the social welfare by analyzing the first-best and second-best

optima. The final section presents the concluding remarks.

2 Weber’s monopolist location

A Weberian monopolist establishes a firm (= plant) at location x ∈ R, uses n raw

materials (= inputs) to produce final products, and distributes them to all consumers.

Suppose that inputs are distributed discretely and consumers are distributed continu-

ously on a line segment. Specifically, input i(= 1, 2, . . . , n) is located at mi ∈ R and

consumers are uniformly distributed over a unit line segment [0, 1], as illustrated in

Figure 1. Each consumer buys only one unit of the final product from the monopo-

list. The objective of the monopolist is to minimize the sum of the input and output

transportation costs by choosing his plant location.

It is assumed that the transportation costs of inputs and outputs are proportional to

the square of the distance,1 and the unit transportation rates of inputs and outputs are

given by t and 1, respectively. Further, assume that producing one unit of the output

requires (r1, r2, . . . , rn) units of inputs. Without loss of generality, all input prices are

1We consider quadratic transportation costs rather than linear ones throughout the paper. This is

because the existence of price equilibrium is guaranteed only when the output transportation costs are

quadratic (d’Aspremont, Gabszewicz, and Thisse, 1979). Otherwise, we cannot obtain SPNE for any

pair of firm locations in Hotelling’s spatial competition in Section 3.2. In reality, most transportation

costs are often concave in terms of distance. However, when the time costs of transportation are

included, the total transportation costs can become convex in distance.
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zero; however, distance-related transportation costs are incurred. Then, the total cost

is expressed as

min
x

TC(x) =
n∑

i=1

ti(mi − x)2 +

∫ 1

0

(x− z)2dz

= S2 − 2Sx + Tx2 + x2 − x +
1

3
,

where x is the monopolist’s location, ti ≡ tri, T ≡ t
∑n

i=1 ri, S ≡ t
∑n

i=1 rimi, and

S2 ≡ t
∑n

i=1 rim
2
i .

Solving the first-order condition yields the following optimal location:

xW =
2S + 1

2(T + 1)
, (1)

which is the so-called Weber’s point. The second-order conditions are obviously satisfied.

When the input transportation rate t is rather low, Weber’s point approaches the

median point of the consumer distribution, i.e., the market center :

lim
t→0

xW =
1

2
.

When the input transportation rate reaches infinity, Weber’s point is equal to the center

of gravity of the input distribution:

lim
t→∞

xW =
S

T
=

∑
i timi∑

i ti
.

This is nothing less than the principle of median location (Alonso, 1975) because the

median location of the inputs and output are always somewhere between the market

center and the center of gravity.

3 Hotelling’s spatial competition

3.1 Location competition with inputs

In the original Hotelling’s (1929) spatial competition, two retail firms sell products to

consumers without using any input materials. Consumers are assumed to be uniformly

distributed over a line segment [0, 1], visit either one of the firms that provides the
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lowest full price of a good, and purchase exactly one unit of the product. The full price

is the sum of the mill price of a product (= output) and the transportation cost of the

product to the firm’s location. As done in the previous section, it is assumed that the

transportation cost of the output is equal to the square of the distance.

The utility of a consumer who resides at x and purchases one unit of the product

from firm k (= 1, 2) is given by

uk = y − pk − (xk − x)2, (2)

where y is the consumer’s income, pk is the mill price of a product sold by firm k, and

xk is the location of firm k. Further, it is assumed that firms cannot be situated at the

same location: x1 6= x2. Let x̂ be the location of marginal consumers who are indifferent

in terms of purchasing from either firm. Because the full prices are equalized at x̂,

p1 + (x̂− x1)
2 = p2 + (x̂− x2)

2 (3)

should hold. In this section, there is no price competition; thus, the mill prices are fixed

and equal to p. Solving (3) yields the location of the marginal consumers, which is the

market boundary between the two firms:

x̂ =
x1 + x2

2
.

In this sequence, we introduce the transportation costs of input materials into the

Hotelling’s spatial competition model in order to combine Weber (1909) and Hotelling

(1929). Firms need to use ri units of input i located at mi for i = 1, 2, . . . , n in order

to produce one unit of the homogeneous product. Although n = 2 in Weber’s triangle,

n can be an arbitrary number. When n = 0, it degenerates to the original Hotelling’s

spatial competition. In order to ship input i from its location mi to the firm’s location,

firms must incur the unit transportation rate t for each input.

Then, the profit of each firm is given by

π1 =
[
p−

∑
i ti (mi − x1)

2] x̂,

π2 =
[
p−

∑
i ti (mi − x2)

2] (1− x̂).

Since location is the only strategic variable, each firm selects its location in order to

maximize its profit. We assume that

p > max

{∑
i

ti (mi − x1)
2 ,

∑
i

ti (mi − x2)
2

}
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so that the profit of each firm is nonnegative.

The first-order condition for firm 1 is

∂π1

∂x1

=
1

2

[
p−

∑
i

ti (mi − x1)
2

]
+ 2

∑
i

ti (mi − x1) x̂

> 2
∑

i

ti (mi − x1) x̂

= 2 (S − Tx1) x̂.

Then, we have

∂π1

∂x1

> 0 ∀x1 ≤
S

T
, (4)

where S/T is the center of gravity of inputs. Similarly, for firm 2, we obtain

∂π2

∂x2

= −1

2

[
p−

∑
i

ti (mi − x2)
2

]
+ 2

∑
i

ti (mi − x2) (1− x̂)

< 2
∑

i

ti (mi − x2) (1− x̂)

= 2 (S − Tx2) (1− x̂),

hence,

∂π2

∂x2

≤ 0 ∀x2 ≥
S

T
. (5)

When x1 < x2, the following three cases may arise. (i) If x1 ≤ S/T ≤ x2, then both

firms choose to locate back-to-back at the center of gravity from (4) and (5). (ii) If

x1 < x2 ≤ S/T , then firm 1 moves to the right from (4). If firm 2 moves to the left,

both firms locate back-to-back somewhere at x ≤ S/T . If firm 2 moves to the right, it

will hit S/T , which is the upper bound from (5); hence, both firms locate back-to-back

at S/T . (iii) If S/T ≤ x1 < x2, similar to case (ii) both firms locate back-to-back at

S/T .

In any case, both firms locate back-to-back. If the back-to-back locations are x >

1/2, then firm 1’s profit π1 is higher than π2. This is because firm 1’s revenue px̂ is

higher while the input transportation costs for both firms 1 and 2 are almost the same.

As a result, firm 2 has an incentive to jump and locate on the left side and just next to

firm 1. Then, their profits are reversed, which causes firm 1 to jump to the left, and so
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on. Such a jumping process continues until they reach the market center. If the location

is x < 1/2, we obtain the same result. Thus, we have the following proposition.

Proposition 1. Both firms locate at the market center in the Hotelling’s location com-

petition with a fixed equal price and an arbitrary number of inputs.

This proposition indicates that the outcome of the Hotelling’s location competition

is invariant to the number and location of input materials.

3.2 Location-then-price competition with inputs

In this section, we introduce price competition to the model presented in the previous

section. In other words, the two firms simultaneously select their locations x1 and x2 in

the first stage, and then simultaneously choose their mill prices p1 and p2 in the second

stage.

Solving (3) yields the market boundary between the two firms:

x̂ =
p1 − p2 + x2

1 − x2
2

2(x1 − x2)
. (6)

In order to obtain the SPNE, we solve the second-stage price equilibrium first. Each

firm maximizes its profit :

π1 = [p1 −
∑

i ti(mi − x1)
2] x̂,

π2 = [p2 −
∑

i ti(mi − x2)
2] (1− x̂)

(7)

with respect to its price. Solving the first-order conditions yields the following unique

equilibrium prices:

pH
1 = 1

3
[(x2 − x1)(2 + x1 + x2) +

∑
i ti [2(mi − x1)

2 + (mi − x2)
2]] ,

pH
2 = 1

3
[(x2 − x1)(4− x1 − x2) +

∑
i ti [(mi − x1)

2 + 2(mi − x2)
2]] .

(8)

The second-order conditions are also satisfied. Including the prices (8) into the profits

(7) and manipulating, we obtain profits as functions of locations x1 and x2:

π1 = 2(x2 − x1)x̂
2,

π2 = 2(x2 − x1) (1− x̂)2 .
(9)
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Next, we solve the first-stage location equilibrium. Differentiating (9) with respect

to x1 and x2, we get the first-order conditions. Solving them yields the unique SPNE

equilibrium locations pair:(
xH

1 , xH
2

)
=

(
S − 1/4

T + 1
,
S + 5/4

T + 1

)
. (10)

The second-order conditions are also satisfied. The SPNE locations (10) in Hotelling’s

location-then-price competition differ from
(
xHL

1 , xHL
2

)
= (1/2, 1/2) in Hotelling’s loca-

tion competition presented in the previous section.2

Further, we define

xH
1 + xH

2

2
=

S + 1/2

T + 1
(11)

as Hotelling’s midpoint. Then, we have

xH
1 + xH

2

2
− 1

2
=

T

T + 1

(
S

T
− 1

2

)
. (12)

This sign is positive if S/T > 1/2. That is, if the center of gravity of input materials is

to the right of the market center, then Hotelling’s midpoint is also located to the right

of the market center. This inequality is true when a majority of the input locations mi

are to the right of the market center.

Plugging (10) into (7), we get

pH
1 − pH

2 =
3T

(T + 1)2

(
S

T
− 1

2

)
.

Since the sign of this equation is identical to that of (12), it may be stated that if

Hotelling’s midpoint is also to the right of the market center 1/2, then firm 1 locates

closer to the market center than firm 2, and firm 1 charges a higher price than firm 2.

Substituting (8) and (10) into (6), the location of marginal consumers is computed

as

x̂H =
1

2
.

2Hotelling concludes that both firms tend to agglomerate at the market center in location-then-price

competition with a linear transportation cost. However, d’Asprement et al. (1979) indicated a flaw

in Hotelling’s proof and suggested a quadratic transportation cost in order to ensure the existence of

SPNE.
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That is, the equilibrium market share is always the same for any asymmetric locations

of input materials. The higher price of the good sold by the firm located closer to the

market center causes the demand to be reduced relative to the demand for the good sold

by the other firm. However, since this effect is mitigated by the locational advantage of

the closer firm, the market shares of the both firms come out even.

Furthermore, plugging (8) and (10) into (7), we have the same profit for both firms:

πH
1 = πH

2 =
3

4(T + 1)
.

In light of the above findings, it may be stated that even in the case of asymmetric

configurations of input materials, although one firm locates closer to the market center

and charges a higher price, the market share and the profits of both firms are identi-

cal in SPNE. Although the firm that is located closer to the market center earns the

higher revenue due to the higher price with the equal market share, it incurs higher

transportation costs of input materials that are located farther. The higher revenue is

compensated by the higher input transportation costs, thereby equalizing the profits of

the two firms.

Finally, comparing Hotelling’s midpoint (11) with Weber’s point (1), we immediately

obtain coincidence between them. Thus, we have established the following proposition

that relates Weber (1909) and Hotelling (1929).

Proposition 2. The Hotelling’s midpoint of duopolists’ locations is equal to the Weber’s

point of monopolist location.3

The above proposition indicates a similarity between the two classical location the-

ories. Hotelling’s midpoint implies filtering out the interfirm competition effect; hence,

it does not differ from Weber’s point of cost minimization. It is evident from this

proposition that the two firms under Hotelling’s spatial competition always locate sym-

metrically around Weber’s point, irrespective of the locations of the input materials, mi

for i = 1, 2, . . . , n.

If the transportation rate t of inputs is sufficiently high relative to the transportation

rate of outputs, then the locations of the two Hotelling’s firms approach the center of

3This can also be shown in the case of triopoly.
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the gravity of input materials, which is also the location of the Weber’s monopolist firm.

Figure 2 depicts the situation in which one input material is located at a considerable

distance from the market with (t,m1, r1) = (5, 5, 1).

For example, the input materials of clay deposits are distributed in five counties in

Illinois, while firms producing clay products (bricks, tiles, etc.) are more diversified in

ten counties in Illinois. We know from Masters et al. (1999, pp. 23-25) that firms tend to

locate closer to the final demand of Chicago than the clay deposits. Firms neither locate

back-to-back unlike Weber (1909) nor locate far apart unlike d’Aspremont, Gabszewicz,

and Thisse (1979). They locate in between, which is consistent with this paper.

4 Welfare considerations

In this section, we first consider the first-best optimum, in which the government is

able to control the locations and prices of all firms in order to maximize the social

welfare. Thereafter, we investigate the second-best optimum, where the policy variables

of the government are limited to the taxes on the transportation of inputs and outputs.

For example, they are gasoline taxes when firms and consumers use automobiles in the

transportation of input materials and products.

4.1 First-best optimum

The social planner determines the locations of the two firms (= plants), x1 and x2, and

the market boundary x̂ in order to maximize social welfare. Since utility is quasilinear,

the sum of the consumers’ expenditure is equal to the sum of the firms’ revenues. This

implies that maximization of social welfare is equivalent to minimization of the sum of

the transportation costs of inputs and outputs. Therefore, the objective function of the

social planner is defined by

min
x1,x2,x̂

TC =
∑

i

ti(mi−x1)
2x̂+

∑
i

ti(mi−x2)
2(1− x̂)+

∫ x̂

0

(x−z)2dz+

∫ 1

x̂

(x−z)2dz.
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Solving the first-order conditions ∂TC/∂x1 = ∂TC/∂x2 = ∂TC/∂x̂ = 0, it is easily

verified that there is a unique minimizer given by

(xo
1, x

o
2, x̂

o) =

(
S + 1/4

T + 1
,
S + 3/4

T + 1
,
1

2

)
.

Observe the same properties as Hotelling’s price-then-location competition in section

3.2. First, the midpoint of the social optimum locations, (xo
1 + xo

2)/2, coincides with

Weber’s point. Second, the market boundary of the social optimum locations, x̂o, also

coincides with the market center 1/2.4

Finally, comparing Hotelling’s price-then-location competition, we can show that

xH
1 < xo

1 and xo
2 < xH

2

This means that in order to relax price competition, firms in Hotelling’s spatial compe-

tition tend to further from the socially optimum locations.

The above account may be summarized in the form of the following proposition:

Proposition 3. The socially optimum midpoint of firm locations is equal to Weber’s

point. Furthermore, firms tend to locate rather far from the socially optimum locations

in Hotelling’s spatial competition.

Consider two polar cases as done in the previous section. When the input trans-

portation rate t becomes zero, the optimal locations of firms are given by

lim
t→0

(xo
1, x

o
2) =

(
1

4
,
3

4

)
.

This coincides with the social optimum configuration in the absence of input transporta-

tion.

On the other hand, when the input transportation rate t reaches infinity, the optimal

locations of firms are given by

lim
t→∞

(xo
1, x

o
2) =

(
S

T
,
S

T

)
.

That is, two firms approach the center of the gravity of input materials, which is the

similar to the finding in Section 2. If the input and output transportation rates are

finite, then the optimum locations are between the two extreme cases.

4Qualitatively similar results hold in the linear transportation cost.
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4.2 Second-best optimum

Although the first-best optimum is the most desirable for society as a whole, it may

not be possible to achieve it in a market economy. In fact, the social planner cannot

determine the locations of two firms in the real world. However, the social planner can

impose gasoline taxes. Thus, the second-best optimum may be examined by considering

the following three-stage game. In the first stage, the social planner determines the

ad valorem gasoline tax rates on transporting inputs and outputs, whose rates can be

different. In the second stage, the two firms simultaneously decide their locations x1 and

x2. In the third stage, they simultaneously choose their product prices p1 and p2. The

analysis of the last two stages presented in section 3.2 can be utilized with the addition

of the gasoline taxes.

The inclusion of the gasoline tax for outputs, gτ , leads to the following modification

of consumer utility (2) at x visiting firm k

uk = y − pk − (1 + gτ )(xk − x)2,

and the market boundary between the firms

x̂ =
p1 − p2 + x2

1 − x2
2

2(1 + gτ )(x1 − x2)
, (13)

With the gasoline tax for inputs, gt, the profits are rewritten as

π1 = [p1 −
∑

i t(1 + gt)(x1 − s)2] x̂,

π2 = [p2 −
∑

i t(1 + gt)(x2 − s)2] (1− x̂).
(14)

Solving the first-order conditions ∂π1/∂p1 = ∂π2/∂p2 = 0, plugging them into (14),

and solving them for the first-order conditions yield the following unique SPNE location:

(xs
1,x

s
2, x̂

s) =

(
S(1 + gt)− (1 + gτ )/4

T (1 + gt) + (1 + gτ )
,
S(1 + gt) + 5(1 + gτ )/4

T (1 + gt) + (1 + gτ )
,
1

2

)
. (15)

The second-order conditions for x∗1 and x∗2 are also satisfied. The market boundary of

the second-best optimum locations, x̂s, also coincides with the market center 1/2.

The objective of the social planner is to maximize the social welfare, which comprises

the consumer surplus, producer surplus, and tax revenues. Since the consumer utility
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is quasilinear, it is transferable and can be added. Therefore, the consumer surplus is

defined as:

CS ≡
∫ x̂

0

u1dx +

∫ 1

x̂

u2dx,

where x̂ is given by (13). The producer surplus is defined by

PS ≡ π1 + π2.

The tax revenue is defined by

TR = gt

[∑
i

ti(x1 −mi)
2x̂ +

∑
i

ti(x2 −mi)
2(1− x̂)

]
+gτ

[∫ x̂

0

(x1 − x)2dx +

∫ 1

x̂

(x2 − x)2dx

]
.

Substituting equilibrium prices and (15) into the RHS of CS, PS and TR, the social

welfare

W ≡ CS + PS + TR

is expressed as a function of gt and gτ . Solving ∂W/∂gt = ∂W/∂gτ = 0 yields the two

identical equations given by

gs
τ =

(16S2 − 16ST + 7T 2)gs
t − 6T (T + 1)

16 (S − T/2)2 + 9T 2 + 6T
. (16)

This suggests that there is a continuum of optimal combinations of the two tax rates

gs
t and gs

τ . Stated differently, the second-best optimum is guaranteed as far as (16) is

satisfied.5 Substituting the optimal tax rates into (15), the second-best locations of

firms may be expressed as a function of the primitives S and T .

The firm locations of the first-best, the second-best, and Hotelling’s location-then-

price competition are illustrated in Figure 3 with (m1, r1, t, y) = (1, 3/4, 1, 1). It must

be observed that the first-best locations of firms are inside the Hotelling’s ones as shown

by Proposition 3. Further, it must be noted that it cannot be generally stated whether

5For example, we can determine the optimal tax rates go
t = 0 and

go
τ =

−6T (T + 1)
16 (S − T/2)2 + 9T 2 + 6T

< 0.

This implies zero gasoline tax for firms and a gasoline subsidy for consumers.
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or not the second-best locations are too far apart in comparison with those of Hotelling’s

spatial competition.

Finally, comparing the social welfare of the first-best optimum, second-best optimum,

and Hotelling’s spatial competition, it may be indicated that the social welfare of the

first-best is larger than that of the second-best, and that of the second-best is larger

than that of Hotelling’s spatial competition. From the example presented in Figure 3,

they are 0.845, 0.801, and 0.702, respectively.

5 Conclusions

The main objective of this paper is the combination of the two classical location the-

ories: Weber’s (1909) total transportation cost minimization in a monopolistic market

and Hotelling’s (1929) spatial duopoly competition in a duopolistic market under as-

sumptions of discrete input distribution and continuous consumer distribution. First,

we showed that Weber’s point is located at the center of gravity. Thereafter, solving the

SPNE, we showed that Hotelling firms agglomerate at the market center, irrespective

of the distribution of inputs with a fixed price of the output. Further, we showed that

Weber’s point is identical to Hotelling’s midpoint with and without price competition.

Finally, the analysis revealed that the first- and the second-best locations are different

from the equilibrium locations.

References

[1] W. Alonso (1975) “Location theory,” in J. Friedmann and W. Alonso (eds.), Regional

Policy: Readings in Theory and Applications, Cambridge, (Mass.): MIT Press.

[2] S.P. Anderson, A. de Palma, J.-F. Thisse (1992) Discrete Choice Theory of Product

Differentiation, Cambridge, (Mass.): MIT Press.

[3] M. Birkin, A. G. Wilson (1986a) “Industrial location models 1: a review and an

integrating framework,” Environment & Planning A, 18, 175-205.

13



[4] M. Birkin, A. G. Wilson (1986b) “Industrial location models 2: Weber, Palander,

Hotelling, and extensions within a new framework,” Environment & Planning A 18,

293-306.

[5] C. d’Aspremont, J. Gabszewicz, J.-F. Thisse (1979) “On Hotelling’s stability in

competition,” Econometrica 47, 1145-50.

[6] P. Hansen, J.-F. Thisse, and R.E. Wendell (1986) “Equivalence of solutions to net-

work location problems,” Mathematics of Operations Research 11, 672-678.

[7] H. Hotelling (1929) “Stability in competition,” Economic Journal 39, pp.41-57.

[8] J.M. Masters, V.C. Ipe, L.R. Smith, and M. Falter (1999) Directory of Illinois Min-

eral Producers, and Maps of Extraction Sites 1997, Department of Natural Resources,

Illinois State Geological Survey: Illinois Minerals 117.
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Figure 1: The discrete distribution of input materials and continuous distribution of

consumers on a line
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Figure 2: The Weber point and the locations of Hotelling’s firms
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Figure 3: The locations of first-best, second-best, and Hotelling’s competition
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