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Abstract

The problem of classifying a new observation vector into one of the two known
groups distributed as multivariate normal with common covariance matrix is consid-
ered. In this paper, we handle the situation that the dimension, p, of the observation
vectors is less than the total number, N , of observation vectors from the two groups,
but both p and N tend to infinity with the same order. Since the inverse of the
sample covariance matrix is close to an ill condition in this situation, it may be
better to replace it with the inverse of the ridge-type estimator of the covariance
matrix in the linear discriminant analysis (LDA). The resulting rule is called the
ridge-type linear discriminant analysis (RLDA). The second-order expansion of the
expected probability of misclassification (EPMC) for RLDA is derived, and the
second-order unbiased estimator of EMPC is given. These results not only provide
the corresponding conclusions for LDA, but also clarify the condition that RLDA
improves on LDA in terms of EPMC. Finally, the performances of the second-order
approximation and the unbiased estimator are investigated by simulation.

Key words and phrases: High dimension, inverted Wishart distribution, linear
discriminant analysis, misclassification error, multivariate normal, ridge-type esti-
mation, second-order approximation, Wishart identity.

1 Introduction

In this paper, we consider the classical problem of classifying a p × 1 observation vector
x into one of the two population groups Π1 and Π2. For each i = 1, 2, Πi denotes a
population from a multivariate normal distribution Np(µi,Σ), and it is supposed that
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xij, j = 1, . . . , Ni, are observed from the population Πi. Here, µ1, µ2 and Σ are unknown

parameters. These unknown parameters are estimated by xi = N−1
i

∑Ni

j=1 xij, i = 1, 2,

and Σ̂0 = n−1S, where

S =
2∑

i=1

Ni∑
j=1

(xij − xi)(xij − xi)
′, N = N1 +N2, n = N − 2.

A standard classification method is the Linear Discriminant Analysis (LDA), and x is
classified into either Π1 or Π2 as

W0 = (x1 − x2)
′Σ̂

−1

0 {x− 1

2
(x1 + x2)} > (resp. <)0 =⇒ x ∈ Π1(resp.Π2). (1.1)

The classification problem has been studied many times in the literature since Fisher
(1936) and Wald (1944). Of these, asymptotic expansions of expected probability of
misclassification (EPMC) for W0 have been derived by Okamoto (1963), Siotani (1982)
and others in the situation that n is large, but p is bounded. This classical problem
has been revisited by Saranadasa (1993), Fujikoshi and Seo (1998), Tonda and Wakaki
(2003), Fujikoshi (2004), Srivastava (2006), Srivastava and Kubokawa (2007) and Hyodo
and Yamada (2010) in high-dimensional situations that both n and p are large. In this
paper, we handle the case that p is a large number with the constraints n > p and
limn→∞ p/n = γ < 1. This asymptotic theory has been discussed by Saranadasa (1993),
Fujikoshi and Seo (1998), Tonda and Wakaki (2003) and Fujikoshi (2004) for multivariate
discriminant analysis, and by Kubokawa and Srivastava (2011) for the Akaike information
criterion in a multivariate linear regression model. In this situation, we are faced with
the following problems:

(I) The precision matrix Σ̂
−1

0 is closer to an ill condition as p is larger and closer to n,
which results in a larger fluctuation in LDA based on W0 and thus gives a larger EPMC.

(II) Asymptotic approximations of EPMC for W0 were derived by Okamoto (1963),
Siotani (1982) and others based on large sample theory, but this classical approximation
gets worse for larger p.

A simple way for coping with problem (I) is to use the ridge-type estimators for Σ.
Thus, we consider the estimator given by

Σ̂λ = n−1(S + λ̂I), λ̂ = cn
trS

np
,

for cn = O(1). The function λ̂ was used by Srivastava and Kubokawa (2007) and
Kubokawa and Srivastava (2011). Then, the ridge-type linear discrimination analysis
(RLDA) as given in Srivastava and Kubokawa (2007) is given by

Wλ = (x1 − x2)
′Σ̂

−1

λ {x− 1

2
(x1 + x2)} < (resp. >)0 =⇒ x ∈ Π1(resp.Π2). (1.2)

It is noted that the use of RLDA in high dimension was suggested in Fujikoshi (2004),
and recently RLDA with another type of λ̂ was treated by Xu, Brock and Parrish (2009)
and Hyodo and Yamada (2010).
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For problem (II), we consider the asymptotic theory of both n and p going to infinity
such that p/n goes to a constant γ, 0 ≤ γ < 1. In this asymptotic theory, Tonda and
Wakaki (2003) derived the second-order approximation of EPMC of LDA given by W0 and
showed that the high-dimensional approximation is better than the large sample approxi-
mation given by Okamoto (1963). They also gave the second-order unbiased estimator of
EPMC. Since LDA is scale-invariant, the distribution of LDA does not depend on Σ, and
Fujikoshi (2000) showed that W0 can be expressed based on independent standard nor-
mal and chi-square random variables. Tonda and Wakaki (2003) used this expression to
provide the asymptotic expansion. However, their approach cannot be applied to RLDA
since Wλ is not scale-invariant.

In this paper, we derive a second-order approximation of EPMC of RLDA given byWλ.
Our approach is based on a direct approximation with respect to S−1, and we need the
third and fourth moments of the inverted Wishart matrix. Using the Stein-Haff identity,
we derive the higher order moments of the inverted Wishart matrix and evaluate second-
order terms of EPMC. As a result, we obtain the second-order approximation of EPMC
for Wλ. This yields the approximation of EPMC for LDA as a special case, which can
be confirmed to be identical to the approximation given by Tonda and Wakaki (2003) in
the sense of second-order approximation. From the approximation derived in this paper,
it is seen that a difference between RLDA and LDA appears in the second-order term of
their EPMC, and we can establish the condition that RLDA improves on LDA in terms
of EPMC. This approximation also gives us a second-order unbiased estimator of EPMC
for Wλ, which is an extension of Tonda and Wakaki (2003).

The paper is organized as follows: In Section 2, we derive the second-order expansion
of EPMC of Wλ in high dimension with some remarks. Especially, it is noted that the
effect on the ridge estimator does not appear in the second-order term in the usual large
sample theory, but appears in the high dimension. It is also noted that the usual large
sample theory can be induced from the high-dimensional asymptotic theory. In Section
3, we give a second-order unbiased estimator of EPMC for Wλ. In Section 4, we give
simulation results for EPMC and estimators of EPMC. Through the simulation results,
we can confirm that the second-order approximation and its unbiased estimator derived
in this paper are not bad in most cases, and that the asymptotic approximation in high
dimension is better than the large sample approximation given by Okamoto (1963) for
large p. The higher order moments of the inverted Wishart matrix, evaluations of second-
order terms and some proofs are given in the appendix.

2 Second-order Approximation of EPMC for RLDA

In this section, we derive the second-order approximation of EPMC for RLDA under
appropriate assumptions. Throughout the paper, we use the notations

m = n− p, δ = µ1 − µ2 and ∆2 = δ′Σ−1δ.

Also, the expected probability of misclassification (EPMC) of RLDA Wλ and LDA W0

are denoted by

eλ(2|1) = P [Wλ < 0|x ∈ Π1] and e0(2|1) = P [W0 < 0|x ∈ Π1].
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Assume the following conditions:

(A1) n > p+ 7, (n, p) → ∞ and p/n → γ for 0 < γ < 1.

(A2) δ′Σ−1δ is bounded for large p.

(A3) There exist limiting values limn→∞ trΣi/p for i = −1, 1, 2.

Under the condition (A3), Srivastava (2005) showed that λ̂ = Op(1) and λ̂ = λ +
Op(n

−1), where
λ = lim

n→∞
cntr [Σ]/p.

Suppose that x ∈ Π1. Under this condition, a conditional distribution given (x1,x2,S)

is written as (x1 − x2)
′Σ̂

−1

λ {x− 2−1(x1 + x2)}|(x1,x2,S) ∼ Np(−U, V ) where

U =(x1 − x2)
′Σ̂

−1

λ (x1 − µ1)− (1/2)(x1 − x2)
′Σ̂

−1

λ (x1 − x2),

V =(x1 − x2)
′Σ̂

−1

λ ΣΣ̂
−1

λ (x1 − x2).

Then, EPMC of Wλ can be expressed as

eλ(2|1) = E[Φ(U/
√
V )],

where Φ(·) denotes the distribution function of a standard normal random variable.

To expand U and V stochastically, define random variables z1 and z2 by

z1 =N−1/2{N1(x1 − µ1) +N2(x2 − µ2)},
z2 =(N1N2/N)1/2(x1 − x2 − δ).

It is seen that z1 and z2 are mutually independently and identically distributed as
Np(0,Σ). Using these variables, we can rewrite U and V as

U =− 1

2
δ′Σ̂

−1

λ δ − N1 −N2

2N1N2

z′
2Σ̂

−1

λ z2 −
N

1/2
1

(NN2)1/2
δ′Σ̂

−1

λ z2 +N−1/2δ′Σ̂
−1

λ z1

+
1

(N1N2)1/2
z′
1Σ̂

−1

λ z2,

V =δ′Σ̂
−1

λ ΣΣ̂
−1

λ δ +
N

N1N2

z′
2Σ̂

−1

λ ΣΣ̂
−1

λ z2 + 2
N1/2

(N1N2)1/2
δ′Σ̂

−1

λ ΣΣ̂
−1

λ z2.

We begin by expanding U stochastically. Let us define U0, U1 and U2 as

U0 =− 1

2

n

m
∆2 − 1

2

N1 −N2

N1N2

np

m
,

U1 =− 1

2

{
nδ′S−1δ − n

m
∆2

}
− 1

2

N1 −N2

N1N2

{
z′
2nS

−1z2 −
pn

m

}
+N−1/2δ′Σ̂

−1

λ z1 −
N

1/2
1

(NN2)1/2
δ′Σ̂

−1

λ z2 +
1

(N1N2)1/2
z′
1Σ̂

−1

λ z2,

U2 =
1

2
nλ̂δ′S−2δ +

1

2

N1 −N2

N1N2

λ̂nz′
2S

−2z2.

Then the stochastic expansion of U is given in the following lemma.
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Lemma 2.1 Assume the conditions (A1)-(A3). Then, U is expanded as U = U0 + U1 +
U2 +Op(n

−3/2), where U0 = O(1), U1 = Op(n
−1/2) and U2 = Op(n

−1).

Proof. For the proof, we use the expression

(S + λ̂I)−1 =S−1 − λ̂S−1(I + λ̂S−1)−1S−1

=S−1 − λ̂S−2 + λ̂2S−2(I + λ̂S−1)−1S−1,

which is from Srivastava and Khatri (1979). Since p/n → γ, 0 < γ < 1, it follows from Bai
and Yin (1993) that the smallest and largest eigenvalues of Σ−1/2SΣ−1/2/n are almost
surely bounded by a constant. Since λ̂ = Op(1), it is noted that

nλ̂δ′S−2(I + λ̂S−1)−1S−1δ ≤ n−2λ̂δ′(S/n)−3δ = Op(n
−2).

Hence, for the first term in U , namely,

δ′Σ̂
−1

λ δ =nδ′{S−1 − λ̂S−2 + λ̂2S−2(I + S−1)−1S−1}δ
=nδ′{S−1 − λ̂S−2}δ +Op(n

−2).

We note that nλ̂δ′S−2δ = Op(n
−1). Since E[S−1] = (m− 1)−1Σ−1, it is seen that

E[δ′(S/n)−1δ] =
n

m− 1
∆2 =

n

m
∆2 +O(n−1), m = n− p.

Taking this fact into account, we see that δ′Σ̂
−1

λ δ can be decomposed as

δ′Σ̂
−1

λ δ =
n

m
∆2 +

{
nδ′S−1δ − n

m
∆2

}
− n−1λ̂δ′(S/n)−2δ +Op(n

−2). (2.1)

For the second term in U , note that nλ̂2z′
2S

−2(I+λ̂S−1)−1S−1z2 ≤ n−2λ̂2z′
2(S/n)

−3z2

and that n−2z′
2(S/n)

−3z2 = Op(n
−1). Also note that with W = Σ−1/2SΣ−1/2,

E[z′
2S

−1z2] = E[trW−1] =
p

m
+O(n−1).

Then the second term can be expanded as

1

n
z′
2Σ̂

−1

λ z2 =
p

m
+

1

n

{
z′
2nS

−1z2 −
pn

m

}
− λ̂

n2
z′
2(S/n)

−2z2 +Op(n
−2). (2.2)

From (2.1) and (2.2), it follows that U = U0 + U1 + U2 + Op(n
−3/2). It can be seen

that U0 = O(1) and U2 = Op(n
−1). Since E[U2

1 ] = O(n−1) as proved in the appendix, it
can be verified that U1 = Op(n

−1/2), and the proof is complete.

We next expand V using similar arguments. Let us define V0, V1 and V2 as

V0 =
n3

m3
∆2 +

N

N1N2

pn3

m3
,

V1 =
{
n2δ′S−1ΣS−1δ − n3

m3
∆2

}
+

Nn2

N1N2

{
z′
2S

−1ΣS−1z2 −
pn

m3

}
+ 2

N1/2

(N1N2)1/2
δ′Σ̂

−1

λ ΣΣ̂
−1

λ z2,

V2 =− 2n2λ̂δ′S−1ΣS−2δ − 2
Nn2

N1N2

λ̂z′
2S

−1ΣS−2z2.

Then the stochastic expansion of V is given in the following lemma.
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Lemma 2.2 Assume the conditions (A1)-(A3). Then, V is expanded as V = V0 + V1 +
V2 +Op(n

−3/2), where V0 = O(1), V1 = Op(n
−1/2) and V2 = Op(n

−1).

Proof. The first term in V is approximated as

δ′Σ̂
−1

λ ΣΣ̂
−1

λ δ = n2δ′S−1ΣS−1δ − 2n2λ̂δ′S−1ΣS−2δ +Op(n
−2).

Here, from Proposition A.1, it follows that

n2E[δ′S−1ΣS−1δ] = n2E[trW−2ξξ′] = α2n
2(n− 1)∆2 =

n3

m3
∆2 +O(n−1),

where α2 = [m(m − 1)(m − 3)]−1, ξ = Σ−1/2δ and W = Σ−1/2SΣ−1/2. Thus, we can
consider the expansion

δ′Σ̂
−1

λ ΣΣ̂
−1

λ δ =
n3

m3
∆2 +

{
n2δ′S−1ΣS−1δ − n3

m3
∆2

}
− 2n2λ̂δ′S−1ΣS−2δ +Op(n

−2). (2.3)

For the second term, it can be seen that

n−1z′
2Σ̂

−1

λ ΣΣ̂
−1

λ z2 = nz′
2S

−1ΣS−1z2 − 2nλ̂z′
2S

−1ΣS−2z2 +Op(n
−2).

Noting that

nE[z′
2S

−1ΣS−1z2] = nE[trW−2] = α2pn(n− 1) =
pn2

m3
+O(n−1),

we get the approximation

n−1z′
2Σ̂

−1

λ ΣΣ̂
−1

λ z2 =
pn2

m3
+ n

{
z′
2S

−1ΣS−1z2 −
pn

m3

}
− 2nλ̂z′

2S
−1ΣS−2z2 +Op(n

−2). (2.4)

From (2.3) and (2.4), it follows that V = V0 + V1 + V2 + Op(n
−3/2). It can be seen that

V0 = O(1) and V2 = Op(n
−1). Since E[V 2

1 ] = O(n−1) as proved in the appendix, it can be
verified that V1 = Op(n

−1/2), and the proof is complete.

Using the Taylor series expansions given in Lemmas 2.1 and 2.2, we observe that

U

V 1/2
= {U0 + U1 + U2}

1

V
1/2
0

{
1− V1 + V2

2V0

+
3(V1 + V2)

2

8V 2
0

}
+Op(n

−3/2), (2.5)

which gives the expansion

U/V 1/2 = w0 + w1 + w2 +Op(n
−3/2), (2.6)
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where

w0 =V
−1/2
0 U0,

w1 =V
−1/2
0

{
U1 −

U0

2V0

V1

}
,

w2 =V
−1/2
0

{
U2 −

U0

2V0

V2 +
3U0

8V 2
0

V 2
1 − 1

2V0

U1V1

}
.

Using the Taylor series expansion again, we can approximate the EPMC E[Φ(U/V 1/2)]
as

E[Φ(U/V 1/2)] =E[Φ(w0 + (w1 + w2))]

=Φ(w0) + ϕ(w0)E[w1 + w2 −
1

2
w0w

2
1] +O(n−3/2), (2.7)

where ϕ(·) is a pdf of the standard normal distribution. Let H = E[w1 + w2 − 1
2
w0w

2
1].

Then, H can be written as

H =
1

V
1/2
0

{
E[U1] + E[U2]

}
− U0

2V
3/2
0

{
E[V1] + E[V2]

}
− U0

2V
3/2
0

E[U2
1 ] +

U0

8V
5/2
0

(
3− U2

0

V0

)
E[V 2

1 ]−
1

2V
3/2
0

(
1− U2

0

V0

)
E[U1V1]. (2.8)

The moments given in (2.8) can be approximated in the following proposition which will
be shown in the appendix.

Theorem 2.1 Assume the conditions (A1)-(A3). The moments in (2.8) are approximated
as E[U1] + E[U2] = HU(δ,Σ) + O(n−2), E[V1] + E[V2] = HV (δ,Σ) + O(n−2), E[U2

1 ] =
H1(∆

2) +O(n−2), E[V 2
1 ] = H2(∆

2) +O(n−2) and E[U1V1] = H12(∆
2) +O(n−2) where

HU(δ,Σ) =− n

2m2

{
∆2 + p

N1 −N2

N1N2

}
+

λ

2

n

m2

{
δ′Σ−2δ +

trΣ−1

m
∆2 +

N1 −N2

N1N2

n

m
trΣ−1

}
,

HV (δ,Σ) =
n2(4n−m)

m4

{
∆2 +

pN

N1N2

}
− λ

2n3

m4

{
δ′Σ−2δ +

2trΣ−1

m
∆2 +

N(n+ p)

N1N2m
trΣ−1

}
,

H1(∆
2) =

n2

2m3

{
∆4 + pn

(N1 −N2)
2

(N1N2)2
+ 2p

N1 −N2

N1N2

∆2 + 2
n

N2

(∆2 +
p

N1

)
}
,

H2(∆
2) =2

n5

m7

{
(4n+ p)∆4 + 2

N

N1N2

{pn+ (n+ p)2}∆2 +
N2p

(N1N2)2
{pn+ (n+ p)2}

}
,

H12(∆
2) =− n4

m5

{
2∆4 + 2

n+ p

N2

∆2 +
N2

1 −N2
2

N2
1N

2
2

p(n+ p)
}
.

Based on the approximations given in Theorem 2.1, we can give the second order
approximation of EPMC eλ(2|1).
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Theorem 2.2 Assume the conditions (A1)-(A3). The second order approximation of
EPMC of RLDA is given by eλ(2|1) = eλ(2|1) +O(n−3/2), where

eλ(2|1) = Φ(U0V
−1/2
0 ) + ϕ(U0V

−1/2
0 )H(δ,Σ). (2.9)

Here, H(δ,Σ) is given by

H(δ,Σ) =
1

V
1/2
0

{
HU(δ,Σ)− U0

2V0

HV (δ,Σ)− U0

2V0

H1(∆
2)

+
U0

8V 2
0

(
3− U2

0

V0

)
H2(∆

2)− 1

2V0

(
1− U2

0

V0

)
H12(∆

2)
}
, (2.10)

where U0 = −2−1(n/m){∆2 + p(N−1
2 −N−1

1 )} and V0 = (n3/m3){∆2 + p(N−1
1 +N−1

2 )}.

Theorem 2.2 gives the following corollary which was derived in Tonda and Wakaki
(2003).

Corollary 2.1 Let H0(δ,Σ) denote the value of H(δ,Σ) when λ = 0. Then, under
the conditions (A1)-(A3), the second order approximation of EPMC of LDA is given by
e0(2|1) = e0(2|1) +O(n−3/2), where

e0(2|1) = Φ(U0V
−1/2
0 ) + ϕ(U0V

−1/2
0 )H0(δ,Σ). (2.11)

In Section 4, we investigate numerically a performance of the approximation given in
Theorem 2.2. It is observed that the difference between LDA and RLDA, given in (1.1)
and (1.2), appears in HU(δ,Σ) and HV (δ,Σ). Investigating the signs of the coefficients
of λ in (2.8), we can see that the sign of the coefficient of λ is not positive if

∆4 + 2
N2m+N1p

N1N2

∆2 +
N2

1 −N2
2

N2
1N

2
2

p2 ≥ 2
mp

N1

δ′Σ−2δ

trΣ−1 .

A sufficient condition for this inequality is given in the following proposition.

Proposition 2.1 Assume the conditions (A1)-(A3). Then, the second-order approxima-
tion eλ(2|1) of EPMC for RLDA given in (1.2) is smaller than e0(2|1) for EPMC of LDA
given in (1.1) when the parameters satisfy the inequality

∆4 +
2

N1

{
m+

N1

N2

p− pm
Chmax(Σ

−1)

trΣ−1

}
∆2 + (N−2

2 −N−2
1 )p2 ≥ 0, (2.12)

where Chmax(A) denotes the largest eigenvalue of matrix A.

Since the condition (2.12) is satified for large ∆2, Proposition 2.1 means that RLDA
improves on LDA in light of minimizing EPMC for large ∆2. In the case of N1 = N2, the
condition (2.12) can be simplified as

∆2 ≥ 2

N1

{
pm

Chmax(Σ
−1)

trΣ−1 − n
}
. (2.13)
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This inequality always holds if pm ≤ n, namely, n ≤ p2/(p− 1).

Although H(δ,Σ) consists of many terms, in the case of N1 = N2, H(δ,Σ) can be
simplified as

H(δ,Σ) =− n

2m2

1

V
1/2
0

∆2 +
n

2m3

λ

V
1/2
0

[
mδ′Σ−2δ + (trΣ−1)∆2

]
− n4

2m6

λ

V
3/2
0

∆2
[
mδ′Σ−2δ + 2trΣ−1∆2 + 4

n+ p

n
trΣ−1

]
+

n3

8m4

1

V
3/2
0

∆2
{
2
4n−m

m
(∆2 +

4p

n
) + ∆4 + 4∆2 + 8

p

n

}
− n6

8m9

1

V
7/2
0

(3V0 −
n2

4m2
∆4)

{
(4n+ p)∆4 +

8

n
(pn+ (n+ p)2)∆2

+
16p

n2
(pn+ (n+ p)2)

}
+

n4

m5

1

V
5/2
0

(V0 −
n2

4m2
∆4)

{
∆4 + 2

n+ p

n

}
. (2.14)

Remark 2.1 In the second order approximation of EPMC in Theorem 2.2, we consider
the case that p is a fixed constant and p/n tends to zero. Since

U0 =− ∆2

2
− p

2n

{
∆2 +

(N1 −N2)n

N1N2

}
+O(n−2),

V0 =∆2 +
p

n

{
3∆2 +

Nn

N1N2

}
+O(n−2),

it can be shown from Theorem 2.2 that eλ(2|1) = eLA(2|1) +O(n−3/2), where

eLA(2|1) = Φ(−∆2

2
) + ϕ(−∆

2
)HLA(∆), (2.15)

where

HLA(∆) =
1

4N1∆

{∆2

4
+ 3(p− 1)

}
+

1

4N2∆

{∆2

4
− (p− 1)

}
+

1

4n
(p− 1)∆.

Since eLA(2|1) does not depend on λ, it is seen that eLA(2|1) gives the second-order
approximation of EPMC for LDA. In fact, this is identical to the expansion derived by
Okamoto (1963) who treated the case that λ̂ = 0, and n tends to infinity, but p is bounded.

The above expression reveals that the effect of the ridge function in Σ̂λ does not appear
in the second order approximation when n → ∞, but p is bounded.

3 Second order Unbiased Estimator of EPMC

We now provide a second order unbiased estimator of EPMC using the second order
expansion.
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Since the second order expansion given in Theorem 2.2 is a function of ∆2, trΣ−1/p

and δ′Σ−2δ, we begin by obtaining their consistent estimators. Define ∆̂2 and ∆̂2
Σ by

∆̂2 =
m

n
δ̂
′
Σ̂

−1

λ δ̂ − Np

N1N2

,

∆̂2
Σ =

m2

n2
δ̂
′
Σ̂

−2

λ δ̂ −
(
∆̂2 +

Nn

N1N2

)tr Σ̂−1

λ

n
,

(3.1)

where δ̂ = x1 − x2. Then, we get the following lemma which will be shown in the
appendix.

Lemma 3.1 Assume the conditions (A1)-(A3). Then, the estimator ∆̂2 is expanded as

∆̂2 = ∆2 +D1 +D2 +Op(n
−3/2) with D1 = Op(n

−1/2) and D2 = Op(n
−1), where

D1 =(mδ′S−1δ −∆2) +
N

N1N2

(mz′
2S

−1z2 − p) + 2
N1/2

(N1N2)1/2
m

n
δ′Σ̂

−1

λ z2,

D2 =−mλ̂δ′S−2δ − Nm

N1N2

λ̂z′
2S

−2z2.

Also, the estimators (m/n)tr Σ̂
−1

λ /p, ∆̂2
Σ and λ̂ are consistent for trΣ−1/p, δ′Σ−2δ and

λ, respectively.

We consider to substitute the consistent estimators given in Lemma 3.1 into the expan-
sion in Theorem 2.2. Let Û0 = −2−1(n/m){∆̂2+p(N−1

2 −N−1
1 )} and V̂0 = (n3/m3){∆̂2+

p(N−1
1 +N−1

2 )}. For the second order term ϕ(U0V
−1/2
0 )H(δ,Σ), it is sufficient to substi-

tute the consistent estimators into the second order term since H(δ,Σ) = O(n−1). For

the term Φ(U0V
−1/2
0 ), however, the estimator Φ(Û0V̂

−1/2
0 ) is not a second order unbiased

estimator of Φ(U0V
−1/2
0 ), since Φ(U0V

−1/2
0 ) = O(1).

Since ∆̂2 = ∆2 +D1 +D2 +Op(n
−3/2), it is noted that

Û0 =U0 + c1(D1 +D2) +Op(n
−3/2),

V̂0 =V0 + c2(D1 +D2) +Op(n
−3/2),

for c1 = −n/(2m) and c2 = n3/m3. From (2.5) and (2.6), it follows that

Û0V̂
−1/2
0 =U0V

−1/2
0 + V

−1/2
0 (c1D1 −

U0

V0

c2D1)

+ V
−1/2
0 {c1D2 −

U0

2V0

c2D2 +
3U0

8V 2
0

c22D
2
1 −

1

2V0

c1c2D
2
1}+Op(n

−3/2).

Thus from (2.7), it is observed that

E[Φ(Û0V̂
−1/2
0 ) = Φ(U0V

−1/2
0 ) + ϕ(U0V

−1/2
0 )K(δ,Σ) +O(n−3/2), (3.2)
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where

K(δ,Σ) =
1

V
1/2
0

(c1 −
U0

2V0

c2)E[D1] +
1

V
1/2
0

(c1 −
U0

2V0

c2)E[D2]

+
1

2V
3/2
0

(
3U0

4V0

c22 − c1c2)E[D2
1]−

U0

2V
3/2
0

(c1 −
U0

2V0

c2)
2E[D2

1],

which can be rewritten as

K(δ,Σ) =
1

V
1/2
0

c1E[D1 +D2]−
U0

2V
3/2
0

c2E[D1 +D2]

− U0

2V
3/2
0

c21E[D2
1] +

U0

8V
5/2
0

(3− U2
0

V0

)c22E[D2
1]−

1

2V
3/2
0

(1− U2
0

V0

)c1c2E[D2
1].

Combining (2.9) and (3.2), we can see that the approximation of EPMC is expressed
as

eλ(2|1) =Φ(U0V
−1/2
0 ) + ϕ(U0V

−1/2
0 )H(δ,Σ) +O(n−3/2)

=E[Φ(Û0V̂
−1/2
0 )] + ϕ(U0V

−1/2
0 ){H(δ,Σ)−K(δ,Σ)}+O(n−3/2), (3.3)

where

H(δ,Σ)−K(δ,Σ)

=
1

V
1/2
0

{HU(δ,Σ)− c1E[D1 +D2]} −
U0

2V
3/2
0

{HV (δ,Σ)− c2E[D1 +D2]}

− U0

2V
3/2
0

{H1(∆
2)− c21E[D2

1]}+
U0

8V
5/2
0

(
3− U2

0

V0

)
{H2(∆

2)− c22E[D2
1]}

− 1

2V
3/2
0

(
1− U2

0

V0

)
{H12(∆

2)− c1c2E[D2
1]}. (3.4)

Second order approximations of the moments given above are given in the following
lemma which will be shown in the appendix.

Lemma 3.2 The moments E[D1], E[D2] and E[D2
1] are approximated as

E[D1] =
∆2

m
+

Np

N1N2m
+O(n−2),

E[D2] =− λ

m2
(mδ′Σ−2δ − trΣ−1∆2) + λ

N

N1N2

n

m2
trΣ−1 +O(n−2),

E[D2
1] =

2

m
∆4 + 4

N

N1N2

n+ p

m
∆2 + 2

N2

N2
1N

2
2

np

m
+O(n−2).
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Using this lemma, we can show that

HU(δ,Σ)− c1E[D1 +D2] =
n

N1m2

(
p+ λ

n

m
trΣ−1

)
,

HV (δ,Σ)− c2E[D1 +D2] =
n2

m4
(3n−m)(∆2 +

Np

N1N2

)− λ
n3

m5

{
mδ′Σ−2δ

+ 3(trΣ−1)∆2 +
N

N1N2

(n+ 2p)trΣ−1
}
,

H1(∆
2)− c21E[D2

1] =− pn2

N1N2m3
{2n+ (N1 + 3N2)∆

2},

H2(∆
2)− c22E[D2

1] =2
n5

m7

{
(3n+ p)∆4 + 2

Np

N1N2

(2n+ p)∆2 +
N2p2

N2
1N

2
2

(3n+ p)
}
,

H12(∆
2)− c1c2E[D2

1] =
n4

m5

{
−∆4 + 2

n+ p

N1

∆2 +
Np

N2
1N

2
2

{2nN2 + (N2 −N1)p}
}
.

For notational simplicity, let H̃1(∆
2) = H1(∆

2) − c21E[D2
1], H̃2(∆

2) = H2(∆
2) − c22E[D2

1]

and H̃12(∆
2) = H12(∆

2) − c1c2E[D2
1]. Substituting the consistent estimators given in

Lemma 3.1 into the above functions, we get the estimators

ℓU =
n

N1m2

{
p+ λ̂tr Σ̂

−1

λ

}
,

ℓV =
n2

m4
(3n−m)(∆̂2 +

Np

N1N2

)− λ̂
n2

m4

{m2

n
δ̂
′
Σ̂

−2

λ δ̂ + 2(∆̂2 +
pN

N1N2

tr Σ̂
−1

λ )
}
,

ℓ1 = H̃1(∆̂
2), ℓ2 = H̃2(∆̂

2) and ℓ12 = H̃12(∆̂
2). Then a second order unbiased estimator

of EPMC is given by

êλ(2|1) = Φ(Û0V̂
−1/2
0 ) + ϕ(Û0V̂

−1/2
0 )ℓ(δ̂, Σ̂λ), (3.5)

where

ℓ(δ̂, Σ̂λ) =
1

V̂
1/2
0

{
ℓU − Û0

2V̂0

ℓV − Û0

2V̂0

ℓ1 +
Û0

8V̂ 2
0

(
3− Û2

0

V̂0

)
ℓ2 −

1

2V̂0

(
1− Û2

0

V̂0

)
ℓ12

}
, (3.6)

for Û0 = −2−1(n/m){∆̂2 + p(N−1
2 − N−1

1 )} and V̂0 = (n3/m3){∆̂2 + p(N−1
1 + N−1

2 )}.
Combining (3.3) and (3.5), we get the following theorem.

Theorem 3.1 Assume the conditions (A1)-(A3). Then, E[êλ(2|1)] = eλ(2|1)+O(n−3/2),
namely, êλ(2|1) is a second order unbiased estimator of eλ(2|1).

4 Simulation Studies

We now investigate numerical performances of RLDAWλ, the second-order approximation
eλ(2|1) and the second-order unbiased estimator êλ(2|1) by simulation.

We first investigate the accuracy of asymptotic approximations of EPMC for LDA
and RLDA. The EPMC and the approximations are calculated by simulation with 100,000
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replications, where in each step, the data sets are generated as xij ∼ Np(µi,Σ) for i = 1, 2
and j = 1, . . . , Ni, where Σ is assumed to be the indentity matrix Σ = Ip or to have the
serial correlation structure Σ =

(
ρ|i−j|) for ρ = 0.5, and Σ−1/2µ1 = p−1/2(∆, . . . ,∆)′ for

∆2 = 2, 4 and µ2 = (0, 0, . . . , 0)′.

Let Φ0 = Φ(U0V
−1/2
0 ) be the limiting value of e0(2|1). We compare the true value

e0(2|1), the limiting value Φ0, the second-order approximation e0(2|1) given in Theorem
2.2 and the large sample approximation eLA(2|1) given in (2.15) which was derived in
Okamoto (1963). Concerning RLDA, we compare the true value eλ(2|1) with the limiting

value Φ0 = Φ(U0V
−1/2
0 ) and the second-order approximation eλ(2|1) given in (2.9). These

values by simulation are reported in Table 1 for Σ = Ip and in Table 2 for Σ = (0.5|i−j|),
where the values of eLA(2|1) are omitted in Tables 2.

In comparison of the approximations for LDA in Table 1 for Σ = Ip, it is seen that
the second-order approximation e0(2|1) is closer to the true value e0(2|1) than Φ0 and
eLA(2|1) in most cases. As pointed out by Problem (II) in Section 1, the large sample
approximation eLA(2|1) is not good for large p, but the high-dimensional approximation
e0(2|1) improves on eLA(2|1) in accuracy of the approximation of EPMC. This gives the
similar result as in Tonda and Wakaki (2003) who treated another simulation experiment.

For the approximations of EPMC for RLDA, Tables 1 and 2 show that eλ(2|1) gives a
superior approximation. In the case of Σ = (0.5|i−j|) treated in Table 2, the approxima-
tions for LDA are the same to the case of Σ = Ip since LDA is scale-invariant. Although
RLDA is not scale-invariant, Table 2 shows that eλ(2|1) gives a good approximation and
improves on the first approximation Φ0.

Table 1. Comparison of approximations of EPMC for LDA and RLDA where
Σ = Ip, p = 10, 50, ∆2 = 2, 4

LDA RLDA
∆2 (p,N1, N2) e0(2|1) Φ0 e0(2|1) eLA(2|1) eλ(2|1) Φ0 eλ(2|1)

(10,20,20) 0.308 0.310 0.308 0.318 0.304 0.310 0.305
2 (10,30,10) 0.265 0.265 0.267 0.270 0.262 0.265 0.264

(10,10,30) 0.372 0.377 0.372 0.401 0.370 0.377 0.371
(10,20,20) 0.219 0.221 0.219 0.217 0.215 0.221 0.216

4 (10,30,10) 0.194 0.193 0.195 0.191 0.191 0.193 0.192
(10,10,30) 0.264 0.267 0.263 0.264 0.262 0.267 0.260

(50,40,40) 0.387 0.388 0.387 0.445 0.381 0.388 0.380
2 (50,50,30) 0.353 0.356 0.354 0.382 0.345 0.356 0.345

(50,30,50) 0.425 0.427 0.425 0.525 0.421 0.427 0.421
(50,40,40) 0.317 0.319 0.317 0.310 0.308 0.319 0.306

4 (50,50,30) 0.293 0.294 0.292 0.276 0.283 0.294 0.280
(50,30,50) 0.349 0.349 0.347 0.354 0.341 0.349 0.337
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Table 2. Comparison of approximations of EPMC for LDA and RLDA where
Σ = (0.5|i−j|), p = 10, 50, ∆2 = 2, 4

LDA RLDA
∆2 (p,N1, N2) e0(2|1) Φ0 e0(2|1) eλ(2|1) Φ0 eλ(2|1)

(10,20,20) 0.308 0.310 0.308 0.305 0.310 0.305
2 (10,30,10) 0.265 0.265 0.267 0.262 0.265 0.263

(10,10,30) 0.372 0.377 0.372 0.367 0.377 0.370
(10,20,20) 0.219 0.221 0.219 0.216 0.221 0.215

4 (10,30,10) 0.194 0.193 0.195 0.191 0.193 0.190
(10,10,30) 0.264 0.267 0.263 0.263 0.267 0.258

(50,40,40) 0.387 0.388 0.387 0.378 0.388 0.375
2 (50,50,30) 0.353 0.356 0.354 0.342 0.356 0.339

(50,30,50) 0.425 0.427 0.425 0.418 0.427 0.418
(50,40,40) 0.317 0.319 0.317 0.303 0.319 0.299

4 (50,50,30) 0.293 0.294 0.292 0.274 0.294 0.272
(50,30,50) 0.349 0.349 0.347 0.335 0.349 0.332

Comparing the values of e0(2|1) and eλ(2|1) in Tables 1 an 2, we see that eλ(2|1) <
e0(2|1), namely RLDA improves on LDA in the sense of minimizing EPMC. Table 3 gives
those values in the cases of smaller N1 and N2, and shows that the improvement is more
significant when n is closer to p for n = N1 + N2 − 2. In light of Problem (I) raised in
Section 1, RLDA is more useful than LDA in high dimension.

Table 3. Comparison of EPMC e0(2|1) and eλ(2|1) of LDA and RLDA for
Σ = Ip, p = 10, 50, ∆2 = 2, 4

p = 10 p = 50
∆2 (p,N1, N2) e0(2|1) eλ(2|1) (p,N1, N2) e0(2|1) eλ(2|1)

(10,8,8) 0.388 0.366 (50,28,28) 0.443 0.410
2 (10,9,9) 0.376 0.361 (50,29,29) 0.438 0.410

(10,10,10) 0.367 0.359 (50,30,30) 0.430 0.407

(10,8,8) 0.319 0.286 (50,28,28) 0.408 0.352
4 (10,9,9) 0.302 0.278 (50,29,29) 0.396 0.350

(10,10,10) 0.286 0.268 (50,30,30) 0.384 0.347

We next investigate the bias and mean squared error (MSE) of the second-order un-
biased estimator êλ(2|1). For comparison, we consider the leave-one-out cross-validation
method (CV), which is a popular method for estimating prediction errors for small sam-
ples. Set for j = 1, . . . , N1

X
(j)
1 = (x1, · · · ,xj−1,xj+1, · · · ,xN1).

The set X
(j)
1 represents the leave-one-out learning set, which is the collection of data with

observation xi removed. It calculates the rate of misclassification when predicting for
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each specimen using a learning set containing all other observations in the sample. We
define the discriminant function using the learning set by

W
(j)
λ = (x

(j)
1 − x2)

′Σ̂
(j)−1

λ

{
xj −

1

2
(x

(j)
1 + x2)

}
,

where x
(j)
1 and Σ̂

(j)−1

λ are calculated like procedures given around (1.1) based on the

learning set X
(j)
1 . Then the CV estimator of eλ(2|1) is given by

CVλ(2|1) =
1

N1

N1∑
j=1

I{W (j)
λ >0}(W

(j)
λ ),

where the function IA(x) is the indicator function defined as

IA(x) =

 1, x ∈ A,

0, x /∈ A.

The biases and MSEs of the estimators CVλ(2|1) and êλ(2|1) are given in Table 4 for
Σ = Ip and in Table 5 for Σ = (0.5|i−j|). These tables show that êλ(2|1) has smaller
MSEs than CVλ(2|1), while CVλ(2|1) has smaller biases than êλ(2|1). Since biases and
MSEs of both estimators are small, it seems that they are good estimators for EPMC
eλ(2|1).

Table 4. Comparison of bias and MSE of CVλ(2|1) and êλ(2|1) for
Σ = Ip, p = 10, 50, ∆2 = 2, 4

CVλ(2|1) êλ(2|1)
∆2 (p,N1, N2) Bias MSE Bias MSE

(10,20,20) 0.000 0.009 0.003 0.005
2 (10,30,10) 0.001 0.019 0.005 0.005

(10,10,30) 0.008 0.033 0.017 0.012
(10,20,20) 0.003 0.007 0.004 0.004

4 (10,30,10) -0.007 0.011 0.001 0.004
(10,10,30) 0.007 0.022 0.007 0.007

(50,40,40) -0.002 0.006 -0.020 0.003
2 (50,50,30) -0.005 0.009 0.009 0.004

(50,30,50) 0.004 0.014 0.016 0.006
(50,40,40) -0.004 0.006 -0.018 0.002

4 (50,50,30) -0.008 0.008 -0.004 0.004
(50,30,50) -0.003 0.011 0.014 0.006
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Table 5. Comparison of bias and MSE of CVλ(2|1) and êλ(2|1) for
Σ = (0.5|i−j|), p = 10, 50, ∆2 = 2, 4

CVλ(2|1) êλ(2|1)
∆2 (p,N1, N2) Bias MSE Bias MSE

(10,20,20) 0.003 0.009 0.006 0.005
2 (10,30,10) 0.004 0.019 0.008 0.005

(10,10,30) 0.014 0.033 0.023 0.012
(10,20,20) 0.006 0.007 0.007 0.004

4 (10,30,10) -0.004 0.011 0.004 0.004
(10,10,30) 0.008 0.022 0.008 0.007

(50,40,40) 0.007 0.006 -0.011 0.003
2 (50,50,30) 0.006 0.009 0.020 0.004

(50,30,50) 0.011 0.014 0.023 0.006
(50,40,40) 0.010 0.006 -0.004 0.002

4 (50,50,30) 0.011 0.008 0.015 0.004
(50,30,50) 0.011 0.011 0.028 0.006

5 Concluding Remarks

In this paper, we have derived the second-order approximation of EPMC of RLDA given
by (1.2) under the high-dimensional situation that (n, p) → ∞ and limn→∞ p/n = γ for
0 ≤ γ < 1. We also have obtained the second-order unbiased estimator of EPMC of
RLDA. As their by-products, the second-order approximation of EPMC for LDA and its
second-order unbiased estimator of EPMC have been provided. The difference between
RLDA and LDA in terms of EPMC appears in the second-order term, and the condition
for RLDA improving on LDA has been extracted. It is noted that their difference does
not appear in the second-order term in the usual large sample theory.

The goodness of the asymptotic approximation of EPMC for RLDA and LDA and
the bias and mean squared error of the second-order unbiased estimator have been in-
vestigated by simulation. Through the simulation results, we have confirmed that the
second-order approximation and the unbiased estimator are not bad in most cases, and
that the asymptotic approximation in high dimension is better than the large sample
approximation given by Okamoto (1963) for large p. We also have checked that RLDA
improves on LDA in terms of EPMC for larger p. These tell us answers for the problems
(I) and (II) raised in Section 1.
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A Appendix

A.1 Higher order moments of the inverted Wishart matrix

Let W = (wij) be a p × p random matrix having the Wishart distribution Wp(I, n).
Let A = (Aij) and B = (Bij) be p × p symmetric matrices. To evaluate the sec-
ond order terms in the expansion of EPMC, we need the moments E[trW−1AW−1B],
E[(trW−1A)(trW−1B)], E[trW−1AW−2B], E[(trW−1A)(trW−2B)], E[trW−2AW−2B]
and E[(trW−2A)(trW−2B)]. The higher order moments of the inverted Wishart ma-
trix have been derived by Haff (1982), von Rosen (1988), Letac and Massam (2004) and
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others. However, we cannot find any results for some of the above moments in the lit-
erature. For example, it is hard to calculate the expectations E[trW−2AW−2B] and
E[(trW−2A)(trW−2B)]. We here use the Stein-Haff identity to calculate those mo-
ments systematically. Let G(W ) be a p × p matrix such that the (i, j) element gij(W )
is a function of W and denote

{DG(W )}ij =
∑
a

diagaj(W ),

where for W = (wij),

dia =
1

2
(1 + δia)

∂

∂wia

,

with δia = 1 for i = a and δia = 0 for i ̸= a. Then Stein (1977) and Haff (1979) derived
the following identity:

E [trG(W )] = E
[
(m− 1)trG(W )W−1 + 2trDG(W )

]
, for m = n− p. (A.1)

For differentiating W−1, we use the equation

∂

∂wij

W−1 = −W−1(eie
′
j + eje

′
i)W

−1/(1 + δij),

where ei is a p×1 vector such that the i-th element is one and the others are zero. Denote
the (i, j) element of W−1 by wij. Then,

dijw
ab =

1

2
(1 + δij)

∂

∂wij

e′
aW

−1eb = −1

2
e′
aW

−1(eie
′
j + eje

′
i)W

−1eb

=− 1

2
(waiwjb + wajwib). (A.2)

Also,

dijtrW
−1A =

1

2
(1 + δij)

∂

∂wij

trW−1A = −1

2
trW−1(eie

′
j + eje

′
i)W

−1A

=− 1

2
{(W−1AW−1)ji + (W−1AW−1)ij}. (A.3)

To explain instructively how to calculate higher order terms from lower order terms, we
begin with calculating the second order momentsE[trW−1AW−1B] and E[(trW−1A)(trW−1B)].
Letting G = G(W ) = AW−1B, from (A.2), we can see that

(DG)ii =
∑
a,b,c

diaAabw
bcBci = −1

2

∑
a,b,c

Aab(w
biwac + wbawic)Bci

=− 1

2
{(W−1AW−1B)ii + (trW−1A)(W 1B)ii}, (A.4)

which implies that

trDG = −1

2
trW−1AW−1B − 1

2
(trW−1A)(trW−1B).
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Then, the Stein-Haff identity (A.1) gives that

E[trAW−1B] =E[(m− 1)trAW−1BW−1 − trW−1AW−1B − (trW−1A)(trW−1B)]

=(m− 2)E[trW−1AW−1B]− E[(trW−1A)(trW−1B)]. (A.5)

Letting G = (trW−1A)B, from (A.3), we observe that

(DG)ii =
∑
a

diaBaitrW
−1A = −1

2

∑
a

Bai{(W−1AW−1)ai + (W−1AW−1)ia}

=− (W−1AW−1B)ii, (A.6)

which implies that
trDG = −trW−1AW−1B.

Then, the Stein-Haff identity (A.1) gives that

E[(trW−1A)(trB)] = (m− 1)E[(trW−1A)(trW−1B)]− 2E[trW−1AW−1B] (A.7)

Since E[W−1] = (m − 1)−1I, the equations (A.5) and (A.7) provide the simultaneous
equations

(m− 2)E[trW−1AW−1B]− E[(trW−1A)(trW−1B)] = (m− 1)−1trAB,

− 2E[trW−1AW−1B] + (m− 1)E[(trW−1A)(trW−1B)] =
(trA)(trB)

m− 1
.

(A.8)

The solutions of the simultaneous equations can be easily obtained, and we get the fol-
lowing proposition.

Proposition A.1 Assume that m = n− p > 3. Let α2 = [m(m− 1)(m− 3)]−1. Then,

E[trW−1AW−1B] =α2[(m− 1)trAB + (trA)(trB)], (A.9)

E[(trW−1A)(trW−1B)] =α2[2trAB + (m− 2)(trA)(trB)]. (A.10)

Of course, (A.9) can be derived directly from E[W−1AW−1] = [m(m − 3)]−1A +
[m(m−1)(m−3)]−1tr [A]I, which appeared in the literature. For example, see Srivastava
and Khatri (1979). From Proposition A.1, it follows that

E[trW−2] =α2p(n− 1),

E[{trW−1}2] =α2p{n− 1 + (p− 1)(m− 3)},
E[(trW−1)ξ′W−1ξ] =α2{(m− 2)p+ 2}∆2,

(A.11)

for ξ = Σ−1/2µ and ∆2 = ξ′ξ.

The arguments as used above can be employed to evaluate the third order moments
E[trW−1AW−2B] and E[(trW−1A)(trW−2B)].
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Proposition A.2 Assume that m = n − p > 5. Let α3 = α2[m(m − 1)(m − 3)]−1 =
[(m+ 1)m(m− 1)(m− 3)(m− 5)]−1. Then,

E[trW−1AW−2B] =α3(n− 1)[(m− 1)trAB + 2(trA)(trB)], (A.12)

E[(trW−1A)(trW−2B)] =α3(n− 1)[4trAB + (m− 3)(trA)(trB)]. (A.13)

Proof. For G = (trW−2B)A, the Stein-Haff identity gives that

E[(trW−2B)(trA)] = (m− 1)E[(trW−1A)(trW−2B)]− 4E[trW−1AW−2B],

where we used the equality trW−1AW−2B = trW−1BW−2A. Exchanging A and B
yields

E[(trW−2A)(trB)] = (m− 1)E[(trW−1B)(trW−2A)]− 4E[trW−1AW−2B],

so that it is seen that E[(trW−1A)(trW−2B)] = E[(trW−1B)(trW−2A)], since from
Proposition A.1, E[(trW−2B)(trA)] = E[(trW−2A)(trB)] = α2(n − 1)(trA)(trB).
Hence, we get one of the equations given by

−4E[trW−1AW−2B] + (m− 1)E[(trW−1B)(trW−2A)]

= α2(n− 1)(trA)(trB). (A.14)

For G = AW−2B, the Stein-Haff identity gives

E[trW−2AB] = (m− 3)E[trW−1AW−2B]− 2E[(trW−1A)(trW−2B)],

or

(m− 3)E[trW−1AW−2B]− 2E[(trW−1B)(trW−2A)]

= α2(n− 1)(trAB). (A.15)

Solving the simultaneous equations (A.14) and (A.15) gives the solutions given in (A.12)
and (A.13), and the proof is complete.

We now derive the fourth order momentsE[trW−2AW−2B] and E[(trW−2A)(trW−2B)],
which are much harder to evaluate.

Proposition A.3 Assume that m = n− p > 7. Let α4 = α3[(m+2)(m− 2)(m− 7)]−1 =
[(m+ 2)(m+ 1)m(m− 1)(m− 2)(m− 3)(m− 5)(m− 7)]−1. Then,

E[trW−2AW−2B]

=α4(n− 1)
{
{(m− 1)(n− 2)− 6}[(m− 1)trAB + 2(trA)(trB)]

+ (2m+ 3p− 2)[4trAB + (m− 3)(trA)(trB)]
}
, (A.16)

E[(trW−2A)(trW−2B)]

=α4(n− 1)
{
2(2m+ 3p− 2)[(m− 1)trAB + 2(trA)(trB)]

+ {(m− 4)(n− 1)− 6}[4trAB + (m− 3)(trA)(trB)]
}
. (A.17)
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Proof. We first note that E[trW−1A)(trW−3B)] = E[(trW−1B)(trW−3A)] and
E[(trW−1)(trW−1A)(trW−2B)] = E[(trW−1)(trW−1B)(trW−2A)], which can be
verified by the same arguments as in the proof of Proposition A.2.

Letting G = W−1AW−2B, G = W−1AW−1BW−1 and G = (trW−1AW−2B)I,
from the Stein-Haff identity, we can get the equations

E[trW−1AW−2B] =E[(m− 3)trW−2AW−2B − (trW−2A)(trW−2B)

− trW−1AW−3B − (trW−1A)(trW−3B)

− (trW−1)(trW−1AW−2B)],

E[trW−1AW−2B] =E[(m− 3)trW−1AW−3B − trW−2AW−2B

− (trW−2A)(trW−2B)− 2(trW−1)(trW−1AW−2B)],

E[ptrW−1AW−2B] =E[(m− 1)(trW−1)(trW−1AW−2B)

− 2trW−2AW−2B − 4trW−1AW−3B],

respectively. Letting G = (trW−2B)W−1A, G = (trW−1A)W−1BW−1 and G =
(trW−1A)(trW−2B)I, we can also get the equations

E[(trW−1A)(trW−2B)] =E[(m− 2)(trW−2A)(trW−2B)− 2trW−2AW−2B

− 2trW−1AW−3B − (trW−1)(trW−1A)(trW−2B)],

E[(trW−1A)(trW−2B)] =E[(m− 3)(trW−1A)(trW−3B)− 2trW−2AW−2B

− 2(trW−1)(trW−1A)(trW−2B)],

E[p(trW−1A)(trW−2B)] =E[(m− 1)(trW−1)(trW−1A)(trW−2B)]

− 2(trW−2A)(trW−2B)− 4(trW−1A)(trW−3B)],

respectively. For simplicity, let C = E[trW−1AW−2B] andD = E[(trW−1A)(trW−2B)].
Also let

a1 = E[trW−2AW−2B], a2 = E[(trW−2A)(trW−2B)], a3 = E[trW−1AW−3B],

a4 = E[(trW−1A)(trW−3B)], a5 = E[(trW−1)(trW−1AW−2B)],

a6 = E[(trW−1)(trW−1A)(trW−2B)].

Then, we get the simultaneous equations

(m− 3)a1 − a2 − a3 − a4 − a5 =C,

−a1 − a2 + (m− 3)a3 − 2a5 =C,

−2a1 − 4a3 + (m− 1)a5 =pC,

−2a1 + (m− 2)a2 − 2a3 − a6 =D,

−2a1 + (m− 3)a4 − 2a6 =D,

−2a2 − 4a4 + (m− 1)a6 =pD.

(A.18)
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Eliminating a5 and a6 from the equations (A.18) gives
(2m− 5)a1 − a2 − (m− 1)a3 − 2a4 =C,

(m2 − 4m+ 1)a1 − (m− 1)a2 − (m+ 3)a3 − (m− 1)a4 =(n− 1)C,

−2a1 + 2(m− 2)a2 − 4a3 − (m− 3)a4 =D,

−2(m− 1)a1 +m(m− 3)a2 − 2(m− 1)a3 − 4a4 =(n− 1)D.

(A.19)

Eliminating a3 and a4 from (A.19), we can get{
(m− 2)(m− 4)a1 − 3(m− 2)a2 =(n− 2)C −D,

−6(m− 2)a1 + (m− 1)(m− 2)a2 =(n− 1)D − 2C.
(A.20)

The values of C and D are given in Proposition A.2. Thus, the values of a1 and a2 can
be derived from (A.20), and the proof of Proposition A.3 is complete.

A.2 Evaluation of the second order term

Using the higher order moments of the inverted Wishart matrix given in the previous
section, we can evaluate the expectations E[U1], E[U2], E[V1], E[V2], E[U2

1 ], E[U1V1]
and E[V 2

1 ] up to O(n−1). This gives a proof of Theorem 2.1. Also, from the fact that
E[U2

1 ] = O(n−1) and E[V 2
1 ] = O(n−1), it follows that U1 = Op(n

−1/2) and V1 = Op(n
−1/2)

in Lemmas 2.1 and 2.2.

Before giving the proof, we note the following equality for p × p matrices A and B,
and a random vector y having Np(0, I):

E[y′Ayy′By] = 2tr [AB] + tr [A]tr [B]. (A.21)

[1] Evaluation of E[U1] and E[V1]. For the expectations E[U1] and E[V1], from the
results in the previous subsection, it is noted that

nE[δ′S−1δ] =nE[trW−1ξξ′] =
n

m
∆2 +

n

m2
∆2 +O(n−2),

E[z′
2S

−1z2] =E[trW−1] =
p

m
+

p

m2
+O(n−2),

n2E[δ′S−1ΣS−1δ] =n2E[trW−2ξξ] =
n3

m3
∆2 +

n2(4n−m)

m4
∆2 +O(n−2),

nE[z′
2S

−1ΣS−1z2] =nE[trW−2] =
pn2

m3
+

pn(4n−m)

m4
+O(n−2),

(A.22)

which can be used to get that

E[U1] =− n

2m2

{
∆2 + p

N1 −N2

N1N2

}
+O(n−3/2),

E[V1] =
n2(4n−m)

m4

{
∆2 + p

N

N1N2

}
+O(n−3/2).

(A.23)
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[2] Evaluation of E[U2]. For evaluation of E[U2], it is noted that λ̂− λ = Op(n
−1)

for λ = cntrΣ/p. Since nλ̂δ′S−2δ = nλδ′S−2δ+n(λ̂−λ)δ′S−2δ = nλδ′S−2δ+Op(n
−2),

it is sufficient to get the moment nλE[δ′S−2δ]. For ξ = Σ−1/2δ, it is observed that

nE[δ′S−2δ] = nE[ξ′W−1Σ−1W−1ξ] = nα2[(m− 1)δ′Σ−2δ + (trΣ−1)∆2],

so that

E[nλ̂δ′S−2δ] = λ
{ n

m2
δ′Σ−2δ +

n

m3
(trΣ−1)δ′Σ−1δ

}
+O(n−2). (A.24)

Similarly, E[λ̂z′
2S

−2z2] can be approximated as

E[λ̂z′
2S

−2z2] = λE[trW−2Σ−1] +O(n−2) =
n

m3
λ(trΣ−1) +O(n−2), (A.25)

so that E[U2] is evaluated as

E[U2] =
λ

2

{ n

m2
δ′Σ−2δ +

n

m3
(trΣ−1)∆2

}
+

λ

2

N1 −N2

N1N2

n2

m3
trΣ−1 +O(n−3/2). (A.26)

[3] Evaluation of E[V2]. For E[V2], the same arguments as in the evaluation of E[U2]
can be used, but we need to calculate the third moments of S−1. It is seen from (A.12)
that

n2E[λ̂δ′S−1ΣS−2δ] =n2λE[ξ′W−2Σ−1W−1ξ] +O(n−2)

=λα3n
2(n− 1)[(m− 1)δ′Σ−2δ + 2trΣ−1∆2] +O(n−2)

=λ
n3

m5
(mδ′Σ−2δ + 2trΣ−1∆2) +O(n−2).

Also,

nE[λ̂z2S
−1ΣS−2z2] =λnE[trΣ−1W−3] +O(n−2)

=λα3n(n− 1)(n+ p− 1)trΣ−1 +O(n−2)

=λ
n2

m5
(n+ p)trΣ−1 +O(n−2),

so that E[V2] is estimated as

E[V2] =− 2λ
n3

m5

{
mδ′Σ−2δ + 2(trΣ−1)∆2) +

N

N1N2

(n+ p)trΣ−1
}
+O(n−2). (A.27)

[4] Evaluation of E[U2
1 ]. For the moment E[U2

1 ], it can be approximated as

E[U2
1 ] =

1

4
E[

{
nξ′W−1ξ − n

m
∆2

}2
] +

1

4

(N1 −N2)
2n2

(N1N2)2
E[

(
z′
2S

−1z2 −
p

m

)2
]

+
N1 −N2

2N1N2

n(nξ′W−1ξ − (n/m)∆2)(z′
2S

−1z2 − p/m)

+
n

N2

{
nE[ξ′W−2ξ] +

n

N1

E[trW−2]
}
+O(n−3/2)

=
1

4
I1 +

1

4

(N1 −N2)
2n2

(N1N2)2
I2 +

N1 −N2

2N1N2

nI3 +
n

N2

I4 +O(n−3/2), (say).
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First, I1 is rewritten as

I1 =E[
{
nξ′W−1ξ − n

m
∆2

}2
]

=n2E[ξ′W−1ξξ′W−1ξ]− 2
n2

m
∆2E[ξ′W−1ξ] +

n2

m2
∆4

=n2{α2m− 2

m(m− 1)
+

1

m2
}∆4

=2
n2

m3
∆4 +O(n−2). (A.28)

We next evaluate I2. Note that

E[(trW−1)2] = α2(2 + (m− 2)p)p =
p2

m2
+ 2

p2

m3
+O(n−2).

Then, from (A.21),

I2 =E[
(
z′
2S

−1z2 − p/m
)2
]

=E[(z′
2S

−1z2)
2]− 2

p

m
E[z2S

−1z2] +
p2

m2

=E[2trW−2 + (trW−1)2]− 2
p

m
E[trW−1] +

p2

m2

=
2pn

m3
+O(n−2). (A.29)

For I3, note that

nE[(trW−1)trW−1ξξ′] = α2n(2 + p(m− 2))∆2 =
np

m2
∆2 + 2

np

m3
∆2 +O(n−2),

which is used to evaluate I3 as

I3 =nE[(ξ′W−1ξ −m−1∆2)(trW−1 − p/m)]

=nE[ξ′W−1ξtrW−1]− 2
np

m(m− 1)
∆2 +

np

m2
∆2

=O(n−2). (A.30)

Using (A.22), we can approximate I4 as

I4 = nE[ξ′W−2ξ] +
n

N1

E[trW−2] =
n2

m3
(∆2 +

p

N1

) +O(n−2).

Hence, E[U2
1 ] is evaluated as

E[U2
1 ] =

1

2

n2

m3
∆4 +

1

2

(N1 −N2)
2

(N1N2)2
pn3

m3
+

n3

N2m3
(∆2 +

p

N1

) +O(n−2). (A.31)

The fact that E[U2
1 ] = O(n−1) implies that U1 = Op(n

−1/2).
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[5] Evaluation of E[V 2
1 ]. We next evaluate the moment E[V 2

1 ], which is expressed
as

E[V 2
1 ] =E[

{
n2ξ′W−2ξ − n3

m3
∆2

}2
] +

N2n2

(N1N2)2
E[

{
nz′

2S
−1ΣS−1z2 −

pn2

m3

}2
]

+ 2
Nn

N1N2

E[
{
n2ξ′W−2ξ − n3

m3
∆2

}{
nz′

2S
−1ΣS−1z2 −

pn2

m3

}
]

+ 4
N

N1N2

E[δ′Σ̂
−1

λ ΣΣ̂
−1

λ ΣΣ̂
−1

λ ΣΣ̂
−1

λ δ]

=J1 +
N2n2

(N1N2)2
J2 + 2

Nn

N1N2

J3 + 4
Nn

N1N2

J4 +O(n−3/2), (say).

For J1, it is noted from Propositions A.1 and A.3 that

n4E[(trW−2ξξ′)2] =
n6

m6
∆4 + 2

n5(7n+ 2p)

m7
∆4 +O(n−2).

Noting this equality and (A.22), we can approximate J1 as

J1 =E[
{
n2ξ′W−2ξ − n3

m3
∆2

}2
]

=E[n4(ξ′W−2ξ)2]− 2
n3

m3
∆2E[ξ′W−2ξ] +

n6

m6
∆4

=2
n5(4n+ p)

m7
∆4 +O(n−2).

For J2, from Proposition A.3, it is noted that

n2E[trW−4] =
pn3{np+ (n+ p)2}

m7
+O(n−2),

n2E[(trW−2)2] =
p2n4

m6
+ 2

p2n3(4n−m)

m7
+O(n−2),

pn3

m3
E[trW−2] =

p2n4

m6
+

p2n3(4n−m)

m7
+O(n−2),

which are utilized to evaluate J2 as

J2 =n2E[
{
z′
2S

−1ΣS−1z2 −
pn

m3

}2
]

=n2E[2trW−4 + (trW−2)2 − 2
pn

m3
trW−2 +

p2n2

m6
]

=2
pn3{np+ (n+ p)2}

m7
+O(n−2).

Similarly, for J3, it is observed that

J3 =nE[
{
n2ξ′W−2ξ − n3

m3
∆2

}{
z′
2S

−1ΣS−1z2 −
pn

m3

}
]

=nE[n2(trW−2)(ξ′W−2ξ)− n3

m3
∆2trW−2 − pn

m3
n2ξ′W−2ξ +

pn4

m6
∆2]

=O(n−2),
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by noting (A.22) and

n3E[(trW−2)(trW−2ξξ′)] =
pn5

m6
∆2 + 2

pn4(4n−m)

m7
∆2 +O(n−2).

It can be seen from Proposition A.3 that J4 is approximated as

J4 = n3E[ξ′W−4ξ] +O(n−2) =
n4{np+ (n+ p)2}

m7
∆2 +O(n−2).

Combining the above evaluations gives that

E[V 2
1 ] =2

n5(4n+ p)

m7
∆4 + 4

Nn5

N1N2m7
{pn+ (n+ p)2}∆2

+ 2
N2n5p

(N1N2)2m7
{pn+ (n+ p)2}+O(n−2). (A.32)

[6] Evaluation of E[U1V1]. Finally, we shall evaluate the moment E[U1V1], which is
expressed as

E[U1V1] =− 1

2
E
[{

nδ′S−1δ − n

m
∆2

}
×

{[
n2δ′S−1ΣS−1δ − n3

m3
∆2

]
+

Nn2

N1N2

[
z′
2S

−1ΣS−1z2 −
pn

m3

]}]
− 1

2

N1 −N2

N1N2

E
[{

nz′
2S

−1z2 −
pn

m

}
×

{[
n2δ′S−1ΣS−1δ − n3

m3
∆2

]
+

Nn2

N1N2

[
z′
2S

−1ΣS−1z2 −
pn

m3

]}]
− 2

N2

E
[
δ′Σ̂

−1

λ ΣΣ̂
−1

λ ΣΣ̂
−1

λ δ
]

=− 1

2
K1 −

1

2

(N1 −N2)n

N1N2

K2 − 2
n

N2

K3 +O(n−3/2), (say).

For K1, it is noted that

n3E[(trW−1ξξ′)(trW−2ξξ′)] =
n4

m4
∆4 +

n3(9n−m)

m5
∆4 +O(n−2),

n2E[(trW−2)(trW−1ξξ′)] =
n3p

m4
∆2 +

n2p(5n−m)

m5
∆2 +O(n−2),

which are used to evaluate K1 as

K1 =E[
{
nξ′W−1ξ − n

m
∆2

}{
(n2ξ′W−2ξ − n3

m3
∆2) +

Nn2

N1N2

(trW−2 − pn

m3
)
}
]

=E[n3ξ′W−1ξξ′W−2ξ − n4

m3
∆2ξ′W−1ξ − n3

m
∆2ξ′W−2ξ +

n4

m4
∆4]

+
Nn2

N1N2

E[n(trW−2)ξ′W−1ξ − n

m
∆2trW−2 − pn2

m3
ξ′W−1ξ +

pn2

m4
∆2]

=4
n4

m5
∆4 +O(n−2).
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For K2, it is evaluated as

K2 =n−1E[{ntrW−1 − pn

m
}{n2ξ′W−2ξ − n3

m3
∆2}]

+
Nn

N1N2

E[nz′
2S

−1z2z
′
2S

−1ΣS−1z2 −
pn2

m3
z′
2S

−1z2 −
pn

m
z′
2S

−1ΣS−1z2 +
p2n2

m4
]

=E[n2(trW−1)ξ′W−2ξ − n3

m3
∆2trW−1 − pn2

m
ξ′W−2ξ +

pn3

m4
∆2]

+
Nn

N1N2

E[2ntrW−3 + n(trW−1)(trW−2)− pn2

m3
trW−1 − pn

m
trW−2 +

p2n2

m4
]

=2
Nn3p(n+ p)

N1N2m5
+O(n−2),

since

nE[(trW−1)(trW−2)] =
n2p2

m4
+

np2(5n−m)

m5
+O(n−2).

Finally, K3 is approximated as

K3 = n2E[ξ′W−3ξ] +O(n−2) =
n3(n+ p)

m5
∆2 +O(n−2).

Combining the values of K1, K2 and K3 gives

E[U1V1] =− 2
n4

m5
∆4 − 2

n4(n+ p)

N2m5
∆2 − (N2

1 −N2
2 )n

4p(n+ p)

N2
1N

2
2m

5
+O(n−2). (A.33)

A.3 Proofs of Lemma 3.1 and 3.2

We here derive the expectations E[D1], E[D2] and E[D2
1]. This gives a proof of Lemma

3.2. Also, from the fact that E[D2
1] = O(n−1), it follows that D1 = Op(n

−1/2) in Lemma
3.1.

Since D1 is given by

D1 = (mδ′S−1δ −∆2) +
N

N1N2

(mz′
2S

−1z2 − p) + 2
N1/2

(N1N2)1/2
m

n
δ′Σ̂

−1

λ z2,

it is easily seen that

E[D1] =
1

m
∆2 +

N

N1N2

p

m
+O(n−2).

For E[D2], it is noted that

D2 = −mλ̂δ′S−2δ − Nm

N1N2

λ̂z′
2S

−2z2.

From (A.24) and (A.25), it follows that

E[D2] = − λ

m2
(mδ′Σ−2δ + trΣ−1∆2) + λ

N

N1N2

n

m2
trΣ−1 +O(n−2).
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Finally, E[D2
1] is written as

E[D2
1] =E[(mδ′S−1δ −∆2)2] +

N2

N2
1N

2
2

E[(mz′
2S

−1z2 − p)2]

+ 4
N

N1N2

m2

n2
E[δ′Σ̂

−1

λ ΣΣ̂
−1

λ δ]

+
2N

N1N2

E[(mδ′S−1δ −∆2)(mz′
2S

−1z2 − p)].

Using (A.28), (A.29) and (A.30), we can see that E[D2
1] is expressed as

E[D2
1] =

2

m
∆4 + 4

N

N1N2

n+ p

m
∆2 + 2

N2

N2
1N

2
2

np

m
+O(n−2).
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