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Abstract 
 

 We investigate combinatorial exchanges as a generalization of combinatorial 
auctions and bilateral trades, where the multiple commodities to be traded are possessed 
by participants and a central planner as endowments. Private values, risk neutrality, and 
independent types are assumed. Efficiency, Bayesian Incentive Compatibility, and 
Interim Individual Rationality are required. We characterize the least upper bound of the 
central planner’s expected revenue. We introduce a stability notion, namely, the 
marginal core, to the assumption that the central planner’s endowment is unprotected. 
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core is non-empty. 
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1. Introduction 

 

 This paper investigates collective decision problems that have incomplete 

information, namely, combinatorial exchanges. Combinatorial exchanges are regarded 

to unify and generalize both cases of bilateral trades concerning a bargaining aspect of 

trading, such as those investigated by Myerson and Satterthwaite (1983), 3  and 

combinatorial auctions, which have been explored by several authors such as Rassenti, 

Bulfin, and Smith (1982), Kelso and Crawford (1982), and Ausubel and Milgrom 

(2002). In the same manner as combinatorial auctions, multiple heterogeneous 

commodities are traded altogether such as spectrums; these commodities are divided 

into multiple packages to be allocated to participants (players), according to a specified 

revelation mechanism with side payments, along with these participants’ 

announcements. 

Combinatorial auctions generally assume that the central planner (mediator or 

government) possesses all the commodities to be traded as his (or her) initial 

endowment. In realistic situations such as spectrum allocations, however, each 

participant’s valuations of these commodities is crucially dependent on his valuations of 

those commodities that are possessed by other participants or himself as their initial 

endowments, which are regarded as substitutes and complements. Hence, the central 

planner expects to improve welfare further by exchanging their initial endowments with 

each other and allocating the central planner’s initial endowment at the same time. 

The framework of combinatorial exchanges does allow tradable commodities to be 

possessed not only by the central planner but also by players as their initial 

endowments; each participant sells his initial endowment and purchases another 

package of commodities at the same time.4 However, each player has the outside 

opportunity not to participate in the collective decision problem and instead to consume 

his initial endowment by himself; he could thus have significant bargaining power over 

the central planner in this case. Consequently, in order to implement efficient allocations 

                                                  
3 For related studies, such as double auctions, see Chatterjee and Samuelson (1983), Wilson (1985), 
and Matsushima (2008), for instance. 
4 For the argument about the importance of combinatorial exchanges, see Milgrom (2007). See also 
Chapter 1 of Milgrom (2004). 
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in an incentive-compatible manner, the central planner has to make considerable 

subsidies that fulfill their informational rents. For instance, as Myerson and 

Satterthwaite (1983) pointed out, in the opposing case of combinatorial exchanges such 

as bilateral trades, where the central planner has no initial endowment to be traded, it 

might be inevitable for the central planner to have a deficit in expected revenue. This 

contrasts with the case of combinatorial auctions, which guarantees the positivity of the 

central planner’s expected revenue. 

 Based on these observations, the purpose of this paper is to clarify the degree of 

financial burden on the central planner when implementing efficient allocations in the 

context of combinatorial exchanges in a manner that is consistent not only with 

Bayesian Incentive Compatibility (BIC) but also with Interim Individual Rationality 

(IIR). IIR requires each player’s interim expected payoff to be at least the same as his 

type-dependent outside opportunity value. In particular, the main concern of this paper 

is to clarify what is the necessary and sufficient condition under which the central 

planner has a deficit in expected revenue. 

 This paper permits each player’s consumption to have an externality effect on other 

players’ welfare. We assume quasi-linearity, risk-neutrality, private values, and an 

independent distribution of types. We also assume the payoff/revenue equivalence 

property in terms of a Bayesian Nash equilibrium, according to which, along with 

efficiency, we can focus only on Groves mechanisms that are consistent with IIR. 

 We derive the least upper bound of the central planner’s expected revenue in 

general collective decision problems. We then show a full characterization of the case 

that the central planner has a deficit in expected revenue in the context of combinatorial 

exchanges from the viewpoint of stability. We introduce a new concept that is a weaker 

version of the core, namely the marginal core, which is defined as the collection of all 

efficient imputations that are unblocked by any coalition that consists of all players but 

a single player, i.e., are marginally unblocked. 

Besides the restriction on possible blocking coalitions, there is a substantial 

difference from the standard definition of the core in that the imputation for the central 

planner is assumed to be zero in our definition; it was assumed in our definition that 

each player’s initial endowment is protected by his private property right, while the 

central planner’s initial endowment is unprotected. This assumption excludes an aspect 
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of the functioning of the competition among players, making the non-emptiness of the 

marginal core difficult to be satisfied whenever the central planner possesses sufficient 

commodities. 

 Based on these observations, we introduce a key condition named Efficient 

Endowment (EE). This condition implies that for each player, there is a particular type 

with which the consumption of his initial endowment by himself is valuable to the point 

that the efficient allocation rule will assign it to him, irrespective of other players’ types. 

The condition of EE makes each player’s bargaining power over the central planner the 

strongest. Under EE, we show that the marginal core is non-empty if and only if the 

central planner has a deficit in expected revenue. 

 This characterization result unifies and generalizes the cases of combinatorial 

auctions and bilateral trades. In combinatorial auctions, where the central planner 

possesses all commodities, it is inevitable that the marginal core is empty, which 

automatically implies that the central planner can earn nonnegative expected revenue. 

By contrast, Myerson and Satterthwaite (1983) investigated bilateral trades between a 

single seller and a single buyer, where the seller possesses a single unit of an indivisible 

commodity, while the buyer and central planner have no initial endowments. They 

showed that no efficient mechanism satisfies BIC, IIR, or the balanced budgets across 

participants, implying that it is inevitable for the central planner to have a deficit in 

expected revenue. The model of Myerson and Satterthwaite could be regarded as an 

example of a special case of combinatorial exchanges in which the central planner 

possesses no initial endowment. Under the condition of EE, it is inevitable that the 

marginal core is non-empty, automatically implying that the central planner has a deficit 

in expected revenue in any efficient mechanism that is consistent with BIC and IIR. In 

this case, the central planner loses the amount of money equivalent to the maximal net 

expected surplus in the entire economy. 

Based on this characterization, it is shown to be generally impossible to make 

stability in terms of the marginal core compatible with BIC and IIR. Whenever a player 

possesses a sufficient initial endowment, the exclusion of him from the collective 

decision problem results in a decrease in other players’ welfare. By excluding this player, 

they consequently lose the valuable chance to win the commodities that this excluded 

player possessed. This makes the marginal core unlikely to be empty, but, at the same 
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time, allows players to have significant bargaining powers over the central planner, 

making his expected revenue negative. Our characterization implies that the 

non-emptiness of the marginal core is equivalent to the negativity in the central 

planner’s expected revenue. 

The standard definition of the coalitional game has been intensively considered in 

previous studies of combinatorial auctions such as Bernheim and Whinston (1986), 

Ausubel and Milgrom (2002), Milgrom (2007), Day and Raghavan (2007), and Day and 

Milgrom (2008). Day and Raghavan (2007) and Day and Milgrom (2008) investigated 

so-called core-selecting mechanisms that have the advantage of stability over a Groves 

mechanism; a core-selecting mechanism assigns to each type profile an imputation that 

is included in the core associated with the standard coalitional game. These works 

commonly defined the stability notion as the robustness of an imputation in terms of the 

possibility of any coalition persuading the central planner to allow its members to 

consume his endowment exclusively. Consequently, the requirement of this stability 

might make the central planner’s revenue greater than that for a Groves mechanism. 

By contrast, the present paper differently defines a stability notion as the existence 

of an imputation that is robust to the possibility of any size ( 1n  ) coalition conspiring 

to steal the central planner’s initial endowment without his allowance by removing the 

other player. The central planner’s initial endowment is assumed to be unprotected by 

his property right, and he has no means of retaliating for theft, implying that his 

imputation can never be positive. However, in terms of possible retaliation measures, 

the removed player can cancel his participation by withdrawing his initial endowment 

from the collective decision problem, removing the opportunity of its exchange from all 

members of the coalition. Hence, any imputation could be regarded as being stable if 

any size ( 1n  ) coalition hesitates to conspire to steal the central planner’s initial 

endowment because they are afraid of the removed player’s subsequent retaliation.5 

We further investigate a special case where a single player possesses all 

commodities as his initial endowment. With minor restrictions, the central planner’s 

expected deficit is the worst of all possible distributions of initial endowments; the loss 

of the central planner’s expected revenue in this single seller case, compared with in the 

                                                  
5 We note that in this case these players cannot enjoy the positive externality effect induced by the 
removed player’s consumption. 
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combinatorial auction case, could be equal to the gross surplus induced by efficient 

allocations. 

We further investigate mechanisms that are not of Groves’ type, and show an 

important result implying that with EE, the emptiness of the marginal core is a 

necessary and sufficient condition under which there exists a Bayesian incentive 

compatible mechanism with Interim Individual Rationality that makes the central 

planner’s ex post revenue nonnegative at all times. 

Several works in the mechanism design literature, such as Cremer and McLean 

(1985, 1988), Matsushima (1990a, 1990b, 2007), and Aoyagi (1999), have investigated 

the correlated types distribution. In particular, Matsushima (2007) showed a sufficient 

condition for the existence of efficient mechanisms that satisfy BIC, IIR, and the 

balanced budgets, implying that the central planner’s expected revenue can be 

nonnegative. In contrast to these works, the present paper assumes the independent 

types distribution rather than correlated types. 

Cramton, Gibbons, and Klemperer (1987) investigated the problem of dissolving 

partnerships as a special case of bilateral trades; players have nearly equal shares in 

their partnership and trade these shares with each other. They showed that the 

achievement of efficiency can be compatible with BIC, IIR, and the balanced budgets. 

Their case, however, does not satisfy EE; the efficient allocation rule always assigns the 

total share to the player who appreciates the value of their partnership more than does 

the other player, contradicting EE. 

Several works, such as Jehiel and Moldovanu (1996), Jehiel, Moldovanu, and 

Stacchetti (1999), and Figueroa and Skreta (2009), have investigated auctions that have 

externality. Figueroa and Skreta (2009) investigated a single-unit auction that has 

externality where each player’s outside opportunity depends on his type. They assumed 

that the central planner can make a binding commitment to make inefficient allocations 

as a device for threatening any player who considers not participating in this auction. In 

contrast to their work, the present paper does not allow any such commitment device; it 

is assumed that the central planner invariably implements efficient allocations for the 

members who actually participated, regardless of whether a particular player decided 

not to participate. 

 The organization of the remainder of this paper is as follows. Section 2 describes a 
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basic model for general collective decision problems and demonstrates a calculation 

method for the least upper bound of the central planner’s expected revenue. Section 3 

explains combinatorial exchanges and EE, and describes a tractable characterization of 

the least upper bound. Section 4 describes a main theorem that under EE, the 

non-emptiness of the marginal core is necessary and sufficient for the central planner’s 

deficit in expected revenue. Section 5 considers special cases such as bilateral trades, 

combinatorial auctions, and single seller cases. Section 6 gives several discussions 

about equal endowment distributions, incompatibility with stability, ex post revenue and 

deficit, and an issue concerning complexity and privacy. Section 7 concludes. 
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2. The Basic Model 

 

Let us consider a collective decision problem that has incomplete information in the 

following manner. Let },...,2,1{ nN   denote the finite set of players (traders or 

agents), where 2n  . Each player Ni  has a type i i   that is unknown to either 

other players or the central planner (mediator or government), where i  denotes the 

set of possible types for player i . Let 



Ni
i  and 


 

}/{iNj
ji . The types i  

are independently distributed across players according to a probability measure that 

have the full support of  . Let A  denote the set of all alternatives that have typical 

element a . Each player si  payoff function has a quasi-linear and risk-neutral form 

with private values, i.e., ( , )i i iv a t  , where Rti   denotes the monetary transfer 

from the central planner to him and :i iv A A   is his type-dependent valuation 

function for the alternatives. 

For every Ni  , let * :i iU R   denote player 'i s  outside opportunity function, 

where the outside opportunity for player i  that has type i  is given by RU ii )(*  , 

implying the interim expected payoff that he can receive when he does not participate in 

the collective decision problem. Let * *( )N i i NU U  . 

A direct mechanism is defined as ( , )f x , where :f A  is an allocation rule, 

: nx R   is a payment rule, ( )i i Nx x  , and :ix R . When each player i N  

announces i i  , the central planner selects the alternative ( )f A   and makes 

the transfer payment to each player i , i.e., ( )ix R  , where we denote 

( )i i N     and ( ) ( ( )) n
i i Nx x R    . We assume that the allocation rule f  is 

efficient in the sense that for every  , the corresponding allocation ( )f A   

maximizes the sum of players’ valuations in the ex-post term, i.e., 

    ( ( ), ) max ( , )i i i i
a A

i N i N

v f v a  


 

  . 

In order to make the collective decision problem non-trivial, we assume that 
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(1)    *[ ( ( ), )] [ ( )] 0i i i i
i N i N

E v f E U  
 

   .6 

This assumption implies that the efficient allocation rule f  induces a positive net 

expected surplus in the ex-ante term, which is expressed by the left-hand side of (1), 

implying the difference between the expected aggregate value induced by the allocation 

rule, i.e., [ ( ( ), )]i i
i N

E v f  

 , and the sum of players’ expected outside opportunities, 

i.e., *[ ( )]i i
i N

E U 

 . 

 

BIC (Bayesian Incentive Compatibility): A direct mechanism ( , )f x  satisfies BIC if 

for every Ni , every ii  , and every iim  , 

    [ ( ( ), ) ( ) | ] [ ( ( , ), ) ( , ) | ]i i i i i i i i i i i iE v f x E v f m x m           . 

 

IIR (Interim Individual Rationality): A direct mechanism ( , )f x  and a profile of 

outside opportunity functions *
NU  satisfy IIR if for every Ni  and every ii  , 

*[ ( ( )), ) ( ) | ] ( )i i i i i iE v f x U      . 

 

BIC implies that truth-telling is a Bayesian Nash equilibrium in the collective 

decision problem. IIR implies that each player has the incentive to participate in the 

collective decision problem, irrespective of his type. 

The revenue for the central planner is defined as the sum of the transfers from all 

players to the central planner, i.e., ( )i
i N

x 


 . Given the efficient allocation rule f , 

the central planner’s purpose is to design a payment rule x  such that the associated 

direct mechanism ( , )f x  maximizes his ex-ante expected revenue [ ( )]i
i N

E x 


   

under the constraints of efficiency, BIC, and IIR. We implicitly assume that the central 

planner’s preference has a lexicographic order in the sense that the achievement of 

                                                  
6 [ ]E   denotes the ex-ante expectation operator in terms of  . [ | ]iE   denotes the 

interim expectation operator in terms of i i   conditional on i i  . 



10 
 

efficiency is the first aim and revenue maximization is the second aim. 

Let X  denote the set of all payment rules. A payment rule x X  is said to be a 

Groves payment rule for an efficient allocation rule f  if there exists a function 

:i ih R   for each i N  such that 

    
\{ }

( ) ( ( ), ) ( )i j j i i
j N i

x v f h   


   for all  . 

Let ( )X f X  denote the set of all Groves payment rules for f . In the mechanism 

design literature, a direct mechanism ( , )f x  is called a Groves mechanism if and only 

if ( )x X f . It is evident that any Groves mechanism ( , )f x  satisfies 

strategy-proofness in the sense that for every i N  and every  , 

    ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i i i iv f x v f m x m          for all i im  .7 

It is evident that strategy-proofness implies BIC. 

 This paper implicitly assumes the payoff equivalence property8 in that for every 

payment rule x X , if ( , )f x  satisfies BIC, then there exists a Groves payment rule 

( )y X f  that induces the same interim expected values of transfer payment, i.e., 

satisfies that for every i N , 

    [ ( ) | ] [ ( ) | ]i i i iE x E y     for all i i  . 

This also implies the revenue equivalence property in that 

    [ ( )] [ ( )]
ii i

i N i N

E x E y 


 

    . 

Hence, we confine our attention to the subset ( )X f . 

 Let us denote by *( , ) ( )NX f U X f  the set of all Groves payment rules 

( )x X f  such that ( , )f x  and *
NU  satisfy IIR. Let us denote by *

0 0( )Nr r U R   

the least upper bound of the expected revenue for the central planner under the 

                                                  
7 See Vickrey (1961), Clarke (1971), Groves (1973), Green and Laffont (1977), Holmstrom (1979), 
and Milgrom (2004). A Groves mechanism is sometimes called a VCG (Vickery–Clarke–Groves) 
mechanism. 
8  Krishna and Maenner (2001) showed mild conditions such as convexity and regular 
Lipschitzian that are sufficient for the payoff equivalence property in a broad class of 
environments that have multidimensional types. See also Krishna and Perry (2000), Milgrom 
and Segal (2002), and Bikhchandani et al. (2006). For works related to multidimensional types, 
see also Rochet and Stole (2003) and Pavan, Segal, and Toikka (2011). 
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constraints of *( , )Nx X f U ; 

    
*0

( , )
max [ ( )]

N
i

x X f U i N

r E x 
 

  . 

The following theorem characterizes this least upper bound. 

 

Theorem 1: It holds that 

(2)   *
0 ( 1) [ ( ( ), )] max{ ( ) [ ( ( ), ) | ]}

i i
i i i i j j i

i N i N j N

r n E v f U E v f


     
  

       . 

 

Proof: Let us consider an arbitrary Groves payment rule with IIR, *( , )Nx X f U . For 

every i N  and every i i  , 

    [ ( ( )), ) ( ) | ]i i i iE v f x     

    
\{ }

[ ( ( ), ) ( ( ), ) ( ) | ]i j j j i i i
j N i

E v f v f h     


    

     [ ( ( ), ) | ] [ ( )]j j i i i
j N

E v f E h   


  . 

Hence, IIR is equivalent to the inequalities given by 

    *[ ( )] max{ ( ) [ ( ( ), ) | ]}
i i

i i i i j j i
j N

E h U E v f


      

    for all i N . 

Hence, 

    
\{ }

[ ( ) | ] [ ( ( ), ) | ]i i j j i
j N i

E x E v f    


   

    *max{ ( ) [ ( ( ), ) | ]}
i i

i i j j i
j N

U E v f


   
 

    for all i N . 

This implies that for every *( , )Nx X f U , 

    [ ( )] ( 1) [ ( ( ), )]i i i
i N i N

E x n E v f  
 

    

    *max{ ( ) [ ( ( ), ) | ]}
i i

i i j j i
i N j N

U E v f


   
 

   . 

Hence, it follows that 

   *
0 ( 1) [ ( ( ), )] max{ ( ) [ ( ( ), ) | ]}

i i
i i i i j j i

i N i N j N

r n E v f U E v f


     
  

       . 

For every i N , let us specify ih  in a manner that 
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    *[ ( )] max{ ( ) [ ( ( ), ) | ]}
i i

i i i i j j i
j N

E h U E v f


      

   , 

that is, 

  
[ ( )]iE x  *

\{ }

[ ( ( ), ) | ] max{ ( ) [ ( ( ), ) | ]}
i i

j j i i i j j i
j N i j N

E v f U E v f


      
 

    . 

It is clear that the specified payment rule x  satisfies IIR, and 

 [ ( )]i
i N

E x 

 *( 1) [ ( ( ), )] max{ ( ) [ ( ( ), ) | ]}

i i
i i i i j j i

i N i N j N

n E v f U E v f


     
  

      , 

which implies (2).
 

Q.E.D. 

 

 From Theorem 1, it follows that for every i N  and every pair of profiles of 

outside opportunity functions * *( , )N NU U , if 

    * *( ) ( )i i i iU U   for all i N  and all i i  , 

then it holds that * *
0 0( ) ( )N Nr U r U ; the higher players’ outside opportunities are, the 

lesser the central planner’s expected revenue is. 

 The proof of Theorem 1 showed that whenever a Groves payment rule ( )x X f  

induces the least upper bound of the central planner’s expected revenue, the 

corresponding ex-ante expected payoff for each player i N , denoted by *( )i i Nr r U , 

is given by 

(3)     *[ ( ( ), )] max{ ( ) [ ( ( ), ) | ]}
i i

i i i i i j j i
i N j N

r E v f U E v f


     
 

    . 

 

 

  



13 
 

3. Combinatorial Exchanges 

 

 From this section on, we focus on combinatorial exchanges as a special case of the 

collective decision problem, in which players (mobile phone companies, for instance) 

and the central planner (e.g., the government) possess multiple commodities 

(spectrums) as their initial endowments and trade these objects altogether with each 

other at the same time. 

 

3.1 The Model 

 

 There exist L  heterogeneous items. For each {1,..., }l L , the total amount of the 

l th  item to be traded is given by a positive integer 0le  . Let 1( )l L L
le e R   . We 

specify the set of all alternatives A  as the set of all nL  dimensional vectors of 

nonnegative integers ( )i i Na a   satisfying that for every {1,..., }l L , 

    l l
i

i N

a e


 , and 0l
ia   for all i N , 

where we denote 1( )l L
i i la a  .9 10 Let ( )i i Na a A   and 1( )l L

i i la a  , where l
ia R  

implies the amount of the l th  item that is allocated to player i . Let us denote 

( ) ( ( ))i i Nf f   . For every non-empty subset S N , we denote ( ) S
S i i Sa a R  . 

 Let an L  dimensional vector of nonnegative integers 1( ) 0l L
i i le e    denote the 

initial endowment for player i N . Let us denote by ( )N i i Ne e   the profile of their 

initial endowments, where we assume that 

    l l
i

i N

e e


  for all {1,..., }l L . 

Note that the central planner possesses 0l l
i

i N

e e


   amount of the l th  item for 

                                                  
9 It is an irrelevant assumption that the set of alternatives is discrete. We can make the same 
arguments even if we replace it with a subset of multidimensional Euclidean space. For the case of 
divisible commodities, see Wilson (1979) and Back and Zender (1993), for instance. 
10 We can make basically the same argument even if we specify A  as a non-empty proper subset of 
such nL  dimensional vectors. 
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each item {1,..., }l L  as his initial endowment; the initial endowments possessed by 

the players and central planner are traded altogether. 

 For every non-empty subset (coalition) S N , let us define a subset ( )A S A  

as the set of all alternatives a A  such that 

    i ia e  for all i S , 

implying that any player who belongs to the coalition S , i S , does not participate in 

the collective decision problem and consumes (or utilizes) his initial endowment ie  by 

himself. Let us specify a function \: ( )S
N Sf A S  , which is regarded as the efficient 

allocation rule for the difference coalition \N S , in a manner that for every 

\ \N S N S  , 

    \
( )

\ \

( ( ), ) max ( , )S
i N S i i i

a A S
i N S i N S

v f v a  
 

  , 

where we denote \
\

N S i
i N S

     and \ \ \( )N S i i N S N S    . According to Sf , the 

central planner implements efficient allocations for participants, i.e., players who belong 

to \N S , provided that non-participants, i.e., players who belong to S , consume their 

respective initial endowments. 

 We permit each player’s consumption to have an externality effect on other players’ 

welfare; ( , )i iv a   depends on ia .11 We also assume free disposal in that ( , )i iv a   is 

non-decreasing with respect to ia . 

 We assume that 

(4)    * { }( ) [ ( ( ), ) | ]i
i i i i i iU E v f     for all i N  and all i i  . 

Each player i  has the outside opportunity not to participate in the collective decision 

problem and instead to consume his initial endowment ie  by himself; in this case, the 

central planner allocates the remaining commodities ie e  in order to maximize the 

sum of other players’ (participants’) expected payoffs and his expected revenue. Under 

Assumption (4), we can rewrite 0 0 ( )Nr r e  and ( )i i Nr r e  instead of *
0 0 ( )Nr r U  

                                                  
11 It is implicit in this paper to assume that the market for the players after the combinatorial 
exchange is well regulated so that these players’ aggregate welfare is positively correlated to the total 
surplus including consumers’ welfare. Section 7 gives further discussions. 
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and *( )i i Nr r U . 

 

Theorem 2: It holds that 

(5)     { }
0

\{ }

( 1) [ ( ( ), )] [ ( ( ), )]i
i i j i j

i N i N j N i

r n E v f E v f   
  

      . 

and for each i N , 

(6)    { }

\{ }

[ ( ( ), )] [ ( ( ), )]i
i i i j i j

i N j N i

r E v f E v f   
 

   . 

 

Proof: From (4) and the definition of { }if , it follows that for every i i  , 

 
   

*( ) [ ( ( ), ) | ]i i j j i
j N

U E v f   


 
 

    

*( ) [max ( , ) | ]i i j j i
a A

j N

U E v a  
 

  
 

    

*

({ })
\

( ) [ max ( , ) | ]i i i i i
a A i

i N S

U E v a  




  
 

    

* { }( ) [ ( ( ), ) | ]i
i i j i j i

j N

U E v f   


  
 

    

{ }

\{ }

[ ( ( ), ) | ]i
j i j i

j N i

E v f   


   , 

which along with Theorem 1 and the arguments in Section 2 implies (5) and (6). 

Q.E.D. 

 

3.2. Efficient Endowment 

 

 A key condition for this paper, EE (Efficient Endowment), can be described as 

follows. 

 

EE (Efficient Endowment): For every i N , there exists i i   such that 

    ( , )i i i if e    for all i i  . 

 

 EE implies that for each player i N , there is a particular type i i   with 
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which the consumption of his initial endowment ie  by himself is valuable to the point 

that the efficient allocation rule f  assigns it to him, irrespective of other players’ types. 

EE excludes the case of the dissolution of partnerships investigated by Cramton, 

Gibbons, and Klemperer (1987); the achievement of efficiency was compatible with 

BIC, IIR, and the balanced budgets in their case. 

 Under EE, we can replace Theorem 1 and its related arguments with the following 

theorem, demonstrating a full characterization of the least upper bound of the central 

planner’s expected revenue and the corresponding ex-ante expected payoff for each 

player. 

 

Theorem 3: Under EE, it holds that 

(7)    { }
0

\{ }

( 1) [ ( ( ), )] [ ( ( ), )]i
i i j i j

i N i N j N i

r n E v f E v f   
  

      , 

and for each i N , 

(8)    { }

\{ }

[ ( ( ), )] [ ( ( ), )]i
i i i j i j

i N j N i

r E v f E v f   
 

   . 

 

Proof: EE, along with the efficiency of f , implies that 

    { }[ ( ( ), ) | ] [ ( ( ), )]i
j j i j i j

j N j N

E v f E v f    
 

  , 

which along with the proof of Theorem 2 implies that 

*max{ ( ) [ ( ( ), ) | ]}
i i

i i j j i
j N

U E v f


   
 

 
 

{ }

\{ }

[ ( ( ), )]i
j i j

j N i

E v f  


   . 

This along with (2) and (3) implies (7) and (8). 

Q.E.D. 

 

 The gross surplus induced by the efficient allocation in the economy without player 

i , i.e., the value of { }

\{ }

( ( ), )i
j i j

j N i

v f  

 , can be regarded as player 'i s  bargaining 

power over the central planner; the larger his initial endowment is, the lesser the gross 

surplus without him is. 
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 Without EE, it might be the case that the least upper bound 0r  is greater than the 

right-hand side of (5). EE, i.e., the presence of a particular type i i   for each 

player i  with which the consumption of his initial endowment ie  by himself is 

sufficiently valuable, makes each player’s bargaining power over the central planner the 

strongest, i.e., makes the central planner’s financial burden caused by the informational 

incompleteness on players’ types the heaviest. 
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4. Unprotected Endowment and Marginal Core 

 

 This section demonstrates a full characterization of the case that the central planner 

has a deficit in expected revenue from the following viewpoint of stability. Let us define 

the coalitional game : 2 \{ }N R    as assigning to each proper coalition S N  

the maximal expected gross surplus in the economy without all players who belong to 

\N S , i.e., 

   \( ) [ ( ( ), )]N S
j S j

j S

S E v f  


   for all 2 \{ }NS  . 

where we must note that 

( ) [ ( ( ), )]j j
j N

N E v f  


  . 

 

Theorem 4: It holds that 

0 ( 1) ( ) ( \{ })
i N

r n N N i 


    , 

and for every i N , 

( ) ( \{ })ir N N i   . 

Under EE, it holds that 

0 ( 1) ( ) ( \{ })
i N

r n N N i 


    , 

and for every i N , 

( ) ( \{ })ir N N i   . 

 

Proof: From the definition of  , Theorem 2, and Theorem 3, it is clear that this 

theorem is correct. 

Q.E.D. 

 

 Let us call any n dimensional vector ( ) n
i i N R     an imputation, where i  

implies player 'i s  ex-ante expected payoff. It is implicitly assumed that any 

imputation assigns to the central planner zero expected revenue. We define the marginal 

core as the collection of all imputations   satisfying that 
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(9)    ( )i
i N

N 


 , 

and for every i N , 

(10)    ( \{ })i
i S

N i 


 . 

The marginal core implies the collection of all efficient imputations that are marginally 

unblocked, i.e., unblocked by any size ( 1n ) coalition. 

The given definition of a coalitional game is substantially different from the 

standard definition in related studies12 because the imputation for the central planner is 

assumed to be zero in our definition. This assumption excludes the effect of players 

competing with each other over the central planner’s initial endowment on the stability 

of allocation, threatening the non-emptiness of the marginal core. 

An interpretation of the coalitional game and marginal core follows. The initial 

endowment of each player i N , i.e., ie , is protected by this player’s private property 

right, while the initial endowment of the central planner, i.e., i
i N

e e


 , is unprotected; 

any size ( 1n ) coalition can conspire to steal the central planner’s initial endowment by 

removing the other player. In terms of possible retaliation measures, this removed 

player can cancel his participation by withdrawing his initial endowment from the 

collective decision problem, removing the opportunity of its exchange from all 

members of the coalition. Hence, any imputation can be regarded as being stable if any 

size ( 1n ) coalition hesitates to conspire to steal the central planner’s initial 

endowment because they are afraid of the removed player’s subsequent retaliation. The 

more the central planner possesses his initial endowment, the more likely the marginal 

core is to be empty. 

It is evident that the marginal core is empty whenever the central planner possesses 

all commodities as his initial endowment, as shown in the next section. By contrast, the 

marginal core can be non-empty if the central planner’s initial endowment is sufficiently 

small. 

 

                                                  
12 See Bernheim and Whinston (1986), Ausubel and Milgrom (2002), and Milgrom (2007). For a 
definition of core-selecting mechanisms, see Day and Raghavan (2007) and Day and Milgrom 
(2008). 
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Theorem 5: The marginal core is non-empty if and only if 

(11)    ( 1) ( ) ( \{ })
i N

n N N i 


  . 

 

Proof: Suppose that the marginal core is non-empty. Then, there exists nR   that 

satisfies (9) and (10). Then, 

    
\{ }

1
( )

1i j
i N i N j N i

N
n

  
  

 
   1

( \{ })
1 i N

N i
n





  , 

which implies (11). 

 Suppose that (11) holds. Then, there exists ( ) n
i i N R      satisfying that 

(12)    
\{ }

( \{ })j
j N i

N i 


   for all i N . 

Let us specify ( ) n
i i N R     by 

    

( ) j
j N

i i

N

n

 
  


 

 
  for all i N . 

It is evident that   satisfies (9). From (11) and (12), it follows that 

    ( ) 0j
j N

N 


   , 

and therefore, 

    i i    for all i N , 

which along with (12) implies (10). Hence, the marginal core is non-empty. 

Q.E.D. 

 

The following theorem demonstrates the full characterization as the main result of 

this paper; under EE, the non-emptiness of the marginal core is necessary and sufficient 

for the central planner to have a deficit in expected revenue. 

 

Theorem 6: If 0 0r  , then the marginal core is non-empty. Under EE, the marginal 

core is non-empty if and only if 0 0r  . 

 

Proof: From Theorem 4, it is evident that 0 0r   implies (11), and that under EE, 
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0 0r   is equivalent to (11). This observation along with Theorem 5 implies that this 

theorem is correct. 

Q.E.D. 
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5. Special Cases 

 

5.1. Bilateral Trades 

 

Let us consider an example of combinatorial exchanges, namely bilateral trades, in 

which we assume that 2n   and that the central planner possesses no initial 

endowment, i.e., 

    1 2e e e  . 

The model of Myerson and Satterthwaite (1983) is a special case. They additionally 

assumed a single object with a single unit; EE automatically holds when the type spaces are 

the same between the seller and buyer. 

 In this bilateral trades case, 

    *( \{ }) [ ( )]i iN i E U   for each {1,2}i , 

which along with Theorem 4 implies that under EE, 

    *
0

{1,2} {1,2}

[ ( ( ), )] [ ( )]i i i i
i i

r E v f E U  
 

    . 

Because of (1), under EE, it is inevitable that the central planner has a deficit in 

expected revenue; the central planner loses the amount of money equivalent to the 

maximal net expected surplus in the entire economy. 

 

5.2. Combinatorial Auctions 

 

 Let us specify a profile of initial endowments ( )N N i i Ne e e     by 

    0ie   for all i N , 

which corresponds to combinatorial auctions in which the central planner possesses all 

commodities as his initial endowment. This subsection makes an assumption that 

restricts the positivity of the externality effect in such a weak manner that for every 

i N , 

     { }

\{ } \{ }

( ( ), ) ( ( ), )i
j j j i j

j N i j N i

v f v f   
 

  , where 0ie  . 

This assumption implies that players prefer to exclude a single player and consume all 
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commodities by themselves. We show that the central planner can earn a positive 

expected revenue as follows. Since 

( )A S A  for all S N , 

it follows that 

    
:

\{ }0

( \{ }) max ( , )
i

i j
a A

j N ia

N i v a 




   for all i N , 

which implies that under EE, 

(13)   
 

0 0
:

\{ } \{ }0

( ) [ ( ( ), ) max ( , )]
i

N j j i j
a A

i N j N i j N ia

r r e E v f v a  


  

      . 

The assumption of this subsection implies that the right-hand side of (13) is positive. 

 

5.3. Single Seller 

 

 Let us specify another profile of initial endowments ˆ ˆ( )N N i i Ne e e    by 

    1̂e e , and ˆ 0ie   for all \{1}i N , 

which implies that player 1 possesses the entire commodities as his initial endowment. 

This subsection makes an assumption that restricts the externality effect in such a weak 

manner that for every i N , every i i  , and every a A , player i ’s valuation of 

the null package equals zero at all times, i.e., 

    ( , ) 0i iv a    if 0ia  . 

We show that under EE, it is inevitable that the central planner has a deficit in expected 

revenue as follows. Since 

( \{1})A N  , and ( \{ })A N i A  for all \{1}i N , 

it follows from the assumption of this subsection that 

    {1}
1( ( ), ) 0i iv f     for all \{1}i N . 

Hence, 

( \{1}) 0N  , 

and for every \{1}i N , 

:
\{ }0

( \{ }) max ( , )
i

i j
a A

j N ia

N i v a 




  , 
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implying that under EE, 

(14)    0 0
:

\{1} \{ }0

ˆ( ) [ ( ( ), ) max ( , )]
i

N j j i j
a A

i N j N j N ia

r r e E v f v a  
  

      , 

\{1}

( 1) ( ) ( \{ })
i N

n N N i 


     , 

which is negative because f  is efficient. The interim expected payoff for player 1 with 

each type 1  can be given by 

(15)    1 1 1 1 1[ ( ( ), ) ( ) | ] [ ( ( ), ) | ]j j
j N

E v f x E v f      


   , 

and the interim expected payoff for each player \{1}i N  with each type i  can be 

given by 

(16)    [ ( ( ), ) ( ) | ]i i i iE v f x     

    
:

\{ }0

[ ( ( ), ) max ( , ) | ]
i

j j i j i
a A

j N j N ia

E v f v a   
 

   . 

From (15), the interim expected payoff for player 1 is equivalent to the maximal gross 

expected surplus in the entire economy. Hence, player 1 prefers to invite potential 

buyers to the collective decision problem as many times as is possible. From (14) and 

(16), it follows that the least upper bound of the central planner’s expected revenue is 

equivalent to the sum of the expected payoffs for the players other than player 1. The 

central planner’s expected revenue does not necessarily increase as the number of 

players who participate in the collective decision problem increases. The central planner 

might not think positively about inviting new traders to the collective decision problem. 

 With the assumptions made in this and previous subsections, it follows from (13) 

and (14) that under EE, 

    
\{1}

ˆ( ) ( ) [max ( , )]N N j j
a A

j N

r e r e E v a 
 

   , 

implying that by giving all commodities to player 1 gratis, the central planner must 

suffer a decrease of 
\{1}

[max ( , )]j j
a A

j N

E v a 
 

  in expected revenue; the central planner 

loses the amount of money equivalent to the maximal gross surplus in the combinatorial 

auction that does not have player 1. 
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6. Discussions 

 

6.1. Equal Endowment Distribution 

 

 This subsection assumes that the sum of the maximal gross surpluses in economies 

without any single players, given by 

{ }

\{ }

( ) ( \{ }) [ ( ( ), )]i
N j i j

i N i N j N i

W e N i E v f  
  

    , 

is convex with respect to Ne . This assumption can be implied by the concavity of 

( , )i iv a   with respect to ia , provided that there is no externality effect. 

 It is evident from this assumption that 

    
( ) ( )

( )
2 2

N N N Nr e r e e e
r

  
 , 

indicating that in symmetric models of combinatorial exchanges, the central planner’s 

deficit can be suppressed when players’ initial endowments are equally distributed 

compared with the case that the distribution of the initial endowment is divided between 

few people such as the single-seller case. The central planner’s expected deficit in the 

single seller case might be the worst of all possible distributions of initial endowments. 

 

6.2. Incompatibility with Stability 

 

 We can show that irrespective of the profile of initial endowments, the central 

planner cannot earn nonnegative revenue in expectation in a compatible manner with 

stability. 

 

Theorem 7: Under EE, there exists no payment rule *( , )Nx X f U  such that 

(17)    [ ( )] 0i
i N

E x 


  , 

and 

(18)    
\{ }

[ { ( ( ), ) ( )}] ( \{ })j j j
j N i

E v f x N i   


   for all i N . 
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Proof: From Theorem 6, it follows that under EE, whenever the marginal core is 

non-empty, then there is no *( , )Nx X f U  that satisfies (17). This implies that if a 

payment rule *( , )Nx X f U  satisfies (17), then it never satisfies (18), implying that 

Theorem 7 is correct. 

Q.E.D. 

 

 Theorem 7 implies the general impossibility in that under EE, irrespective of the 

profile of initial endowments, no marginally unblocked imputation is induced by any 

Groves mechanism that satisfies IIR and the nonnegativity of the central planner’s 

expected revenue. This supports the statement that participants cannot generally 

accomplish efficiency in voluntary manners. 

 

6.3. Ex-Ante Reallocation 

 

 This subsection describes an aspect of the relationship between an arbitrary pair of 

profiles of initial endowments, Ne  and Ne . Let us denote by *( )i iU   and *( )i iU   

the outside opportunities for player i  with type i  associated with his initial 

endowments Ne  and Ne , respectively. 

 Suppose that a payment scheme *( , )Nx X f U  induces the least upper bound 

0 ( )Nr e . For every i N , let us specify a real number ( , )i i N Nd d e e R   by 

    *max{ ( ) [ ( ( ), ) | ]}
i i

i i i j j i
j N

d U E v f


   
 

  
 

    

*max{ ( ) [ ( ( ), ) | ]}
i i

i i j j i
j N

U E v f


   
 

   . 

By using this specified vector ( ) n
i i Nd R  , let us specify another payment rule x X  

in a manner that for every i N  and every i i  , 

    ( ) ( )i i ix x d    . 

It is evident that x  belongs to *( , )NX f U   and induces the least upper bound ( )Nr e . 
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 We can interpret the above observations as follows. Suppose that each player i N

possesses ie  as his initial endowment. At the pre-play stage, the central planner 

collects all commodities possessed by players and then reallocates these collected 

commodities as well as the commodities that the central planner possesses to each 

player i  by giving ie  and the fixed amount of money id . After reallocating in this 

manner, the central planner enforces the Groves mechanism ( , )f x . The Groves 

mechanism ( , )f x  associated with the profiles of players’ initial endowments Ne  is 

the payoff/revenue equivalent to the Groves mechanism ( , )f x  that follows the 

replacement of ie  with ie  accompanied with a type-independent payment id  to each 

player i N . 

 

6.4. Ex Post Revenue and Deficit 

 

We must note that even if the central planner’s expected revenue is nonnegative, it 

might be the case that there exists a type profile at which the central planner has a 

deficit in the ex post term. We, however, can easily suppress this trouble by allowing the 

central planner to make an option contract with a risk-neutral third party in a manner 

that whenever players announce any type profile  , then the central planner gives 

this third party an amount of money given by 

    [ ( )] ( )i i
i N i N

E x x 
 

  . 

According to this contract, the central planner’s revenue is kept constant across possible 

type profiles, i.e., equal to [ ( )]i
i N

E x 


  at all times. Hence, with the availability of 

option contracting, Theorem 6 also implies a characterization of the case that the central 

planner’s ex-post revenue is nonnegative at all times. The central planner can earn 

nonnegative revenue in the ex post term at all times if the marginal core is empty. Under 

EE, the central planner can earn nonnegative revenue in the ex post term at all times if 

and only if the marginal core is empty. 

 It would be more important to note that with the assumption of payoff/revenue 

equivalence property, we can construct a non-Groves-type mechanism that is Bayesian 
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incentive compatible, is interim individually rational, and makes the central planner’s 

revenue nonnegative at all times if and only if the least upper bound of the central 

planner’s expected revenue is nonnegative. 

 

Theorem 8: There exists a payment rule x X  such that ( , )f x  satisfies BIC, 

( , )f x  and *
NU  satisfy IIR, and 

    ( ) 0i
i N

x 


   for all  . 

if and only if 0 0r  . 

 

Proof13: It is evident from the revenue/payoff equivalence property that the “only if” 

part is correct. All we have to do is to prove the “if” part. Suppose that 0 0r  . Hence, 

there exists a Grove payment rule with IIR, *( , )Nx X f U , such that 

    0 [ ( )]i
i N

r E x 


  . 

From Arrow (1979) and d’Aspremont and Gérard-Varet (1979), it is evident that there 

exists a payment rule x X  such that ( , )f x  satisfies BIC and the balanced budgets, 

i.e., 

    ( ) 0i
i N

x 


   for all  . 

From the payoff/revenue equivalence property, it is evident that there exists a 

n-dimensional vector ( ) n
i i Nb R   such that 

    [ ( ) | ] [ ( ) | ]i i i i iE x E x b      for all i N  and all i i  . 

Note that 

    0i
i N

b r


 . 

We specify another payment rule x X  by 

    ( ) ( )i i ix x b     for all i N  and all  . 

It is evident from this specification that ( , )f x  satisfies BIC, ( , )f x  and *
NU  

                                                  
13 The proof of Theorem 8 is closely related to Krishna and Perry (1998). See also Chapter 5 of 
Krishna (2010). 
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satisfy IIR, and 

    0( ) 0i i
i N i N

x b r
 

      for all  . 

Q.E.D. 

 

 Even without the availability of option contracting, it follows from Theorems 6 and 

8 that the central planner can earn nonnegative revenue in the ex post term at all times 

if the marginal core is empty. Under EE, the central planner can earn nonnegative 

revenue in the ex post term at all times if and only if the marginal core is empty. 

 

6.5. Complexity and Privacy 
 
 The present paper has investigated direct mechanisms in which each player reveals 

full information about his entire valuations. However, direct mechanisms have been 

criticized from the practical viewpoints concerning complexity and privacy. 14  In 

combinatorial auctions that have no externality, several authors have attempted to 

replace the standard practice of such direct revelations with less complicated and more 

privacy-preserved dynamical protocols such as simultaneous ascending/descending 

clock (Japanese) auctions.15 In such auctions, the auctioneer continues to ask and adjust 

non-anonymous and non-linear price vectors to each player (buyer), and each player 

continues to make his demand correspondences as a price taker. Such protocols must 

collect sufficient information in order to achieve the allocations of the original direct 

mechanism while preserving players’ privacy. 

In combinatorial auctions that have no externality, Lahaie and Parkes (2004), 

Parkes (2006), and Mishra and Parkes (2007) have introduced the concept of a universal 

competitive equilibrium, which implies the competitive equilibrium properties not only 

in the entire economy but also in economies without a single buyer. These studies 

showed that a pivot mechanism, which is defined as a special version of a Groves 

                                                  
14 See Rothkopf, Teisberg, and Kahn (1990), Segal (2006), Ausubel and Milgrom (2006), and 
Parkes (2006), for instance. 
15 See Kelso and Crawford (1982), Bikhchandani and Mamer (1997), Gul and Stacchetti (1999, 
2000), Parkes and Ungar (2002), Ausubel and Milgrom (2002), Ausubel and Cramton (2004), Lahaie 
and Parkes (2004), Ausubel (2004, 2006), Hatfield and Milgrom (2005), Ausubel, Cramton, and 
Milgrom (2006), Parkes (2006), Mishra and Parkes (2007), and Matsushima (2011), for instance. 
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mechanism, can be implemented by an arbitrary dynamical protocol that always collects 

sufficient information in order to discover a universal competitive equilibrium. 

Subsequently, Matsushima (2011) showed a tractable method for explaining whether an 

arbitrary dynamical protocol can implement a pivot mechanism and clarifying its degree 

of privacy preservation. 

This subsection briefly shows that the above arguments can be extended to 

combinatorial exchanges that have no externality, where ( , )i iv a   is assumed to be 

independent of ia ; thus, we write ( , )i i iv a   instead of ( , )i iv a  . Let us specify a 

Groves payment rule ( )x x X f   by 

   
({ })

\{ }

( ) [ max ( , )]i i j j j
a A i

i N j N i

h E v a   

     for all i N  and i i  . 

The corresponding direct mechanism ( , )f x , which can be called a pivot mechanism, 

satisfies strategy-proofness as well as ex-post individual rationality in the sense that for 

every i N  and every  , 

     *( ( ), ) ( ) ( )i i i i i iv f x U     . 

This inequality holds with equality whenever ( )i if e  . Let us denote :ip A R  

and ( )i i Np p  , the latter of which is called a price vector. A price vector p  is said 

to be a universal competitive equilibrium for   if there exist *a A , and 

* ({ })ja A j  for each j N , such that for every a A , 

     *( ) ( )i i i i
i N i N

p a p a
 

  , 

     * *( , ) ( ) ( , ) ( )i i i i i i i iv a p a v a p a     for all i N , 

for every j N  and every ({ })a A j , 

     *

\{ } \{ }

( ) ( )j
i i i i

i N j i N j

p a p a
 

  , 

and 

     * *( , ) ( ) ( , ) ( )j j
i i i i i i i iv a p a v a p a     for all \ { }i N j . 

Note that 

     *( , ) ( , )i i i i i i
i N i N

v a v a 
 

   for all a A , 
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and for every j N , 

     *

\{ } \{ }

( , ) ( , )j
i i i i i i

i N j i N j

v a v a 
 

   for all ({ })a A i , 

implying that *a A  is an efficient allocation in the entire economy and * ja A  is 

an efficient allocation in the economy that does not have player j . In the same manner 

as described by Lahaie and Parkes (2004), Parkes (2006), and Mishra and Parkes (2007), 

it can thus be shown that without externality, the pivot mechanism can be implemented 

using an arbitrary dynamical protocol if and only if this protocol always discovers a 

universal competitive equilibrium. 

 We can also extend the argument of Matsushima (2011) to combinatorial 

exchanges. Matsushima (2011) introduced the concept of the representative valuation 

function for each player, which assigns the minimal relative valuation to each package 

that has been revealed during the history of play. This representative valuation function 

can easily be calculated from the history of play by making minor assumptions such as 

revealed preference activity rules and connectedness and by describing the degree of 

players’ privacy preservation. In the same manner as shown in Matsushima (2011), in 

combinatorial exchanges that do not have externality, the pivot mechanism can be 

implemented by an arbitrary dynamical protocol if and only if (i) there always exist 

efficient allocations in the entire economy and in economies that do not have single 

players associated with the calculated representative valuation function profile and (ii) 

the packages that compose these allocations have all been revealed during the history of 

play. We can also show that whenever the dynamical protocol implements the pivot 

mechanism, the resulting representative valuation function profile can be the universal 

competitive equilibrium for their true types. 
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7. Conclusion and Future Researches 
 

 The present paper investigated combinatorial exchanges that have incomplete 

information, in which, in contrast to standard combinatorial auctions, the multiple 

heterogeneous commodities to be traded are possessed not only by the central planner 

but also by players as their initial endowments. Each player thus has the outside 

opportunity not to participate in the collective decision problem and instead to consume 

his initial endowment by himself. According to the payoff/revenue equivalences 

assumption, we focused on Groves mechanisms that are compatible with IIR. 

 Compared with standard combinatorial auctions, players in combinatorial 

exchanges that possess non-negligible initial endowments can have significant 

bargaining powers over the central planner, making it difficult for the central planner to 

earn nonnegative expected revenue. We introduced the key condition of EE, which 

implies that for each player, there is a particular type with which the consumption of his 

initial endowment by himself is valuable to the point that the efficient allocation rule 

will assign it to him, irrespective of other players’ types. Under EE, each player’s 

bargaining power over the central planner is at its strongest. According to the standard 

calculation for Groves mechanisms, we characterized the least upper bound of the 

central planner’s expected revenue. Subsequently, from the viewpoint of stability, we 

showed a full characterization of the case that the central planner had a deficit in 

expected revenue. The marginal core, which was defined as the collection of all efficient 

imputations across players that are marginally unblocked by any size ( 1n ) coalition, is 

empty if and only if the central planner can earn nonnegative expected revenue. 

 Based on this characterization, it was shown to be generally impossible to make 

stability in terms of the marginal core compatible with BIC and IIR. Whenever a player 

possesses a sufficient initial endowment, the exclusion of this player from the collective 

decision problem results in a decrease in other players’ welfare; by excluding this player, 

they consequently lose the valuable chance to win the commodities that this excluded 

player possessed. This makes the marginal core unlikely to be empty, but, at the same 

time, allows players to have significant bargaining powers over the central planner, 

making his expected revenue negative. Our characterization implies that the 
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non-emptiness of the marginal core is equivalent to the negativity in the central 

planner’s expected revenue. 

 This paper assumed that the central planner’s preference followed a lexicographic 

order in that the achievement of efficiency is the first aim and revenue enhancement is 

the second aim. Future research might wish to eliminate this assumption and instead 

investigate the possibility that the central planner can increase his expected revenue 

further by employing inefficient mechanisms. This research avenue is needed in order to 

provide an insight into designing protocols for combinatorial exchanges that are optimal 

in terms of the central planner’s expected revenue (see also Myerson (1981) and Riley 

and Samuelson (1981)). In realistic situations, the central planner should be constrained 

by the fact that all commodities are sold out to third parties. It might be also practically 

important to consider the manner in which the central planner collects the proportion of 

the initial endowments possessed by players in the pre-play stage in order to reduce the 

deficit at the expense of efficiency. 

 As footnote 10 pointed out, this paper has implicitly assumed that the market for 

players after the combinatorial exchange is well regulated so that these players’ 

aggregate welfare is positively correlated with total surplus including consumer welfare. 

Without this assumption, we would need to be more cautious about the central planner’s 

objective function concerning both the central planner’s revenue and total surplus (i.e., 

consumer surplus as well as player welfare). This is another reason why future research 

should investigate inefficient allocation rules. 

 This paper has investigated only static models of combinatorial exchanges. Thus, a 

highly promising future research avenue would be to extend our model to dynamical 

contexts where players receive private information over time, where the population of 

participants could change over time, and where commodities could be resold. For 

related works, see Parkes and Singh (2003), Bergemann and Välimäki (2010), and 

Bergemann and Said (2010), for instance. 

 Finally, it must be noted that this paper assumed that players are fully rational and 

require direct mechanisms to satisfy BIC so that truth-telling is exactly the best response 

for any player. According to the seminal works of Parkes, Kalagnanam, and Eso (2002), 

Day and Milgrom (2008), and Erdil and Klemperer (2010), future research might aim to 

weaken this rationality assumption and instead investigate the case that the central 
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planner attempts to design efficient mechanisms that do not satisfy BIC but keep any 

player’s gain from lying to a sufficiently small degree. 
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