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ABSTRACT

In this article, we consider the problem of testing the equality of mean vec-
tors of dimension p of several groups with a common unknown non-singular
covariance matrix Σ, based on N independent observation vectors where
N may be less than the dimension p. This problem, known in the litera-
ture as the Multivariate Analysis of variance (MANOVA) in high-dimension
has recently been considered in the statistical literature by Srivastava and
Fujikoshi[7], Srivastava [5] and Schott[3]. All these tests are not invariant
under the change of units of measurements. On the lines of Srivastava and
Du[8] and Srivastava[6], we propose a test that has the above invariance
property. The null and the non-null distributions are derived under the as-
sumption that (N, p) → ∞ and N may be less than p and the observation
vectors follow a general non-normal model.

Keywords and phrases: Asymptotic distributions, high dimension, MANOVA,
multivariate linear model, non-normal model, sample size smaller than di-
mension.

AMS 1991 subject classification: primary 62H15, Secondary 62F05

1 Introduction

The problem of testing the equality of mean vectors of several groups with
common unknown nonsingular covariance matrix, the so called MANOVA
or multivariate analysis of variance has been considered many times in the
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statistical literature. For normally distributed observation vectors when the
total sample size N is considerably larger than the dimension p of the vector,
Wilks[9] likelihood ratio test is commonly used with Box’s[2] approximation
for the distribution of the test statistic. For dimension p larger than the
sample size N , this testing problem has also been recently considered in
the literature by Srivastava and Fujikoshi[7], Srivastava[5], and Schott[3] for
normally distributed observation vectors.

In this article, we consider a general model which includes normal dis-
tributions and propose a test that is invariant under the change of units of
measurements. That is, the test statistic is invariant under the transforma-
tion by non singular diagonal matrices. Thus, without any loss of generality,
we assume that the covariance matrix is a correlation matrix Λ = Λ1/2Λ1/2,
where Λ1/2 is the unique positive definite matrix. Since the MANOVA prob-
lem is a special case of the multivariate regression model, we assume that
the N × p matrix of observations follow the model

Y = XΘ+UΛ1/2 (1.1)

where X is an N × k matrix of known constants of rank k, Θ is a k × p
matrix of unknown parameters, k ≤ p,

U = (u1, . . . ,uN)
′,

and ui = (ui1, . . . , uip)
′ are independent and identically distributed with

E(ui) = 0, Cov (ui) = Ip, E(u4
ik) = K4 + 3, (1.2)

and for νk ≥ 0,
∑p

k=1 νk ≤ 4, i = 1, . . . , N ,

E
[ p∏
k=1

uνk
ik

]
=

p∏
k=1

E(uνk
ik ). (1.3)

Here Λ = (λij) = Λ1/2Λ1/2 is the non-singular correlation matrix. For nor-
mally distributed ui with zero mean vector and identity covariance matrix,
the conditions (1.2)-(1.3) are satisfied with K4 = 0.

The problem of testing in the model (1.1) is that of testing the hypothesis

H : CΘ = 0 vs A : CΘ ̸= 0,
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where C is a q × k known matrix of rank q ≤ k. For example, in testing the
equality of k = (q+1) mean vectors, the observation matrix Y is of the form
given by

Y = (y11, . . . ,y1N ; . . . ;yk1, . . . ,ykNk
)′, (1.4)

where Ni independent vectors are obtained from the ith group with mean
vector µi, i = 1, . . . , q + 1, and N = N1 + · · · + Nq+1. All the observation
vectors have the same covariance matrix which we have assumed in this
article as non singular correlation matrix Λ. To write the problem of testing
the equality of k = (q + 1) mean vectors as a regression model, we define a
vector 1r = (1, . . . , 1)′ as an r-vector with all the elements equal to one,

X =


1N1 0 0
0 1N2 0
...

...
...

0 0 1Nk

 : N × k (1.5)

and
Θ = (µ1, . . . ,µk)

′ : k × p, k = q + 1. (1.6)

Thus, the regression model representing the mean vectors of k = (q + 1)
groups is given by (1.1) with Y , X and Θ defined respectively in (1.4)-(1.6).
The problem of testing the equality of k = (q + 1) mean vectors is given by
H : CΘ = 0 against the alternative A : CΘ ̸= 0 where C is now given by
q × (q + 1) matrix.

C = (Iq,−1q) : q × k, k = q + 1. (1.7)

In general, for testing the hypothesis H : CΘ = 0 , we consider the variation
due to the hypothesis given by

B = Y ′GY , (1.8)

where
G = X(X ′X)−1C ′[C(X ′X)−1C ′]−1C(X ′X)−1X ′, (1.9)

is an N ×N matrix of rank q < N . The matrix G is an idempotent matrix
of rank q, Gm = G for a positive integer m. That is, there are q eigenvalues
that are equal to 1 and the remaining N − q eigenvalues are zero. Also G is
symmetric and positive semi-definite. That is, if G = (gij), then we have

gii ≥ 0,
N∑
i=1

gii = q,

N∑
i=1

g2ii +
N∑
i̸=j

g2ij = q.
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The last equality implies that
∑N

i=1 g
2
ii ≤ q and

∑N
i̸=j g

2
ij ≤ q. In fact for X

and C defined by (1.5) and (1.7) respectively in testing the equality of (q+1)
mean vectors, we have

N∑
i=1

g2ii =

q+1∑
i=1

N−1
i − (2q + 1)N−1 = O(N−1),

under the assumption that Ni = O(N), N = N1 + · · · + N(q+1). Thus, in
this article for the general multivariate regression model, we shall make the
following assumptions:

Assumption (A).

A(1)
∑N

i=1 g
2
ii/q = o(1), N = O(pδ), δ > 1/2,

A(2) limp→∞(tr [Λ2]/p) < ∞,

A(3) limp→∞(tr [Λ4]/p2) = 0,

A(4) limN→∞(tr [G4
+]/q

2) = a, 0 ≤ a < ∞,

A(5) lim(n,p)→∞{(pq)−1tr [ΛMM ′]} = 0,

where
M = Θ′C ′[C(X ′X)−1C ′]−1/2, G+ = (gij+), (1.10)

and gij+ = |gij|, i ̸= j, i, j = 1, . . . , N , gii ≥ 0.

The matrix G is a positive semi-definite matrix and hence gii ≥ 0. Also
tr [G4] = q. So the condition A(4) is not a strong condition. The Assumption
A(5) gives the local alternative under which the non-null distribution of the
statistic will be obtained.
The variation due to the error which can be used to estimate the correlation
matrix Λ with or without the hypothesis H being true is given by

S = n−1Y ′(IN −H)Y , H = X(X ′X)−1X ′, n = N − k, (1.11)

where IN −H is also an idempotent matrix of rank N − q− 1 = N − k = n,
(IN − H)G = 0, and hence, under normality assumption, it implies that
B and S are independently distributed but we do not have normality. The
sample correlation matrix R is defined by

R = D−1′2
S SD

−1/2
S , (1.12)

4



where DS = diag(S) is a diagonal matrix with the same diagonal elements
as the diagonal elements of S. In this paper, we propose the test statistic

T1 =
tr [BD−1

S ]− npq(n− 2)−1

[2cp,nq(tr [R
2]− n−1p2)]1/2

, n = N − k, (1.13)

where
cp,n = 1 + (tr [R2]/p3/2) (1.14)

is a correction factor to speed up the convergence of the statistic T1 to normal
which goes to one for n = O(pδ), δ > 1/2, as given in Srivastava and Du
[8]. Under the assumption of normality, Yamada and Srivastava[10] have
shown that as (n, p) → ∞, T1 is asymptotically normally distributed. In
this article we show that this result holds under the general distributions
described above in (1.2)-(1.3).

The organization of this paper is as follows. In Section 2, we derive
the asymptotic distribution of T1 under the general distribution described
in (1.2)-(1.3) when the hypothesis H holds. The asymptotic non-null dis-
tribution of this statistic under local alternative is given in Section 3. The
asymptotic distribution of another statistics proposed in the literature is
considered in Section 4. In Section 5, the power of the proposed test is com-
pared with some existing tests through simulation. The results on moments
are given in Sectionsec:moment. The paper concludes in Section 7.

2 Asymptotic Null Distribution of T1

We first note that the diagonal elements of the sample covariance matrix S
goes in probability to the corresponding diagonal elements of the covariance
matrix which in the case of this paper is Λ. Thus, DS → Ip in probability
as n → ∞. It also follows from Srivastava and Du [8] and Srivastava [6] that
for n = O(pδ), δ > 0, N = O(pδ), δ > 1/2

1

p
[tr [R2]− n−1p2] → (tr [Λ2]/p) (2.1)
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in probability. From the Assumption A(2), it is finite. Thus, we need only
to find the asymptotic distribution of

T1
p
=

1
√
pq

{
tr [B]− pq

}
/(2tr [Λ2]/p)1/2

=
1

√
pq

{
tr [Y ′GY ]− pq

}
/(2tr [Λ2]/p)1/2 (2.2)

Under the hypothesis H : CΘ = 0, and hence GXΘ = 0. Thus, under H,
T1 becomes

T1 =
1

√
pq

{
tr [ΛU ′GU ]− pq

}
/(2tr [Λ2]/p)1/2, (2.3)

where U = (u1, . . . ,uN)
′, and u1, . . . ,uN are independent and identically

distributed p-vectors with mean vector 0 and covariance matrix Ip. The
fourth moment of each component ui = (ui1, . . . , uip)

′ is the same, namely
E(u4

ik) = K4+3, k = 1, . . . , p as the model satisfies the conditions (1.2)-(1.3).
Alternatively, we may assume that ui1, . . . , uip are independently distributed
as is done in Srivastava [6] which results in somewhat simpler algebraic ma-
nipulations. But we will continue with the assumptions (1.2) - (1.3). Writing
G = (gij), we find that the numerator of T1 in (2.3) is given by

qn,p =
1

√
pq

{
tr [GUΛU ′]− pq

}
=

1
√
pq

[
N∑
i=1

N∑
j=1

giju
′
iΛuj − pq]

=
1

√
pq

[
N∑
i=1

giiu
′
iΛui − pq] +

1
√
pq

N∑
i̸=j

giju
′
iΛuj

= J1 + J2. (2.4)

We note that

E(J1) =
1

√
pq

{ N∑
i=1

gii(trΛ)− pq
}
= 0,
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since tr (Λ) = p and
∑N

i=1 gii = q. Using Lemma 6.1 given in Section 6, we
find that the variance of J1 is given by

V ar(J1) =
1

pq

N∑
i=1

g2ii(K4p+ 2tr [Λ2])

= [K4 + (2tr [Λ2]/p)](
N∑
i=1

g2ii/q)

= o(1). (2.5)

Hence, the first term goes to zero in probability. Thus, in probability

qn,p
p
=

1
√
pq

N∑
i̸=j

giju
′
iΛuj =

2
√
pq

N∑
j=2

j−1∑
i=1

giju
′
iΛuj (2.6)

with E(qn,p) = 0, and

V ar(qn,p) =
4

pq

N∑
j=2

j−1∑
i=1

g2ijtr [Λ
2] =

2

pq

N∑
i̸=j

g2ijtr [Λ
2]

∼= 2tr [Λ2]/p < ∞, (2.7)

from the Assumption (A). Let

ηj =
2

√
pq

j−1∑
i=1

giju
′
iΛuj, (2.8)

and let ℑj be the σ- algebra generated by the random vectors u1, . . . ,uj.
Letting u0 = 0, and ℑ0 = (ϕ,Ω) = ℑ−1, where ϕ is the empty set and Ω the
whole space, we find that ℑ0 ⊂ ℑ1 ⊂ · · · ⊂ ℑN ⊂ ℑ1, and

E(ηj|ℑj−1) = 0, E(ηj) = 0,

E(η2j |ℑj−1) =
4

pq

j−1∑
i=1

g2ijE[u′
iΛuju

′
jΛui|ℑj−1]

+
4

pq

j−1∑
i̸=k

gijgkjE[u′
iΛuju

′
jΛuk|ℑj−1]

=
4

pq

j−1∑
i=1

g2iju
′
iΛ

2ui +
4

pq

j−1∑
i̸=k

gijgkju
′
iΛ

2uk, (2.9)
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E(η2j ) = 4(

j−1∑
i=1

g2ij)(tr [Λ
2]/pq) < ∞. (2.10)

Hence, the sequence {ηk,ℑk} is a sequence of integrable martingale differ-
ence. Thus, to establish the asymptotic normality of the random variable qn,p
given in (2.5), we may use the Theorem 4 from Shirayev[4]. This requires
establishing the Lindberg condition.

For ε > 0,

(I) L =
N∑
k=2

E[η2kI(|ηk| > ε)]|ℑk−1]
p→ 0 in probability.

And showing that

(II) C =
N∑
k=2

E(η2k|ℑk−1)
p→ σ2

0 for some constant σ2
0.

We first show (II). From (2.10) we find that

N∑
j=2

E(η2j ) = 4(
N∑
j=2

j−1∑
i=1

g2ij)(tr [Λ
2]/pq)

= 2(
N∑
i̸=j

g2ij)(tr [Λ
2]/pq)

→ 2(tr [Λ2]/p) = σ2
0 < ∞.

Thus, to show that the convergence condition (II) is satisfied, we need to
show that the variance of the random variable C goes to zero. The variance
of C is given by

V ar(C) =
4

q2p2
V ar

[ N∑
j=2

(

j−1∑
i=1

g2iju
′
iΛ

2ui + 2

j−1∑
i<k

gijgkju
′
iΛ

2uk)
]
.

We will show that the variance of each term in the right side goes to zero
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which will imply that V ar(C) goes to zero. The variance of the first term is

4

q2p2
V ar

[ N∑
j=2

(

j−1∑
i=1

g2iju
′
iΛ

2ui)
]

=
4

q2p2
V ar

[N−1∑
i=1

(u′
iΛ

2ui)(
N∑

j=i+1

g2ij)
2
]

=
4

p2q2

{
K4

p∑
i=1

(Λ2)2ii + 2tr [Λ4]
}
(
∑
i̸=j

g2ij)
2

where (Λ2)ii is the (i, i)th term of Λ2, i = 1, . . . , p. Since(
p∑

i=1

(Λ2)2ii/p
2

)
≤ (tr [Λ4]/p2) → 0,

and (
∑

i̸=j g
2
ij)

2/q2 ≤ 1, the variance of the first term goes to zero. Next, we
show that under the Assumption (A), the variance of the second term goes
to zero. That is

4

p2q2
V ar

[
2

N∑
j=2

j−1∑
i<k

gijgkju
′
iΛ

2uk

]
=

16

p2q2
V ar

[ N−1∑
i≤k<l

(
N∑

j=l+1

gjkgjl)u
′
kΛ

2ul

]

=
16

p2q2
(tr [Λ4])

N−1∑
i≤k<l

(
N∑

j=l+1

gjkgjl

)2

≤16(tr [Λ4]/p2)
N−1∑
i≤k<l

(
N∑

j=l+1

|gjk| |gjl|

)2

≤16(tr [Λ4]/p2)(tr [G4
+]/q

2),

which goes to zero under Assumptions A(3) and A(4). Then,

N∑
k=2

E(η2k|ℑk−1)
p→ σ2

0 = 2(tr [Λ2]/p).
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To show that Lindberg’s condition (L) is satisfied, we need to only show that

N∑
j=2

E(η4j ) → 0 as N → ∞,

See Srivastava [6]. That is,

16

p2q2

N∑
j=2

E(

j−1∑
i=1

giju
′
iΛuj)

4

=
16

p2q2

N∑
j=2

E[

j−1∑
i=1

g2ij(u
′
iΛuj)

2 + 2

j−1∑
i<l

gijglj(u
′
iΛuj)(u

′
lΛuj)]

2

≤ 16

p2q2

N∑
j=2

[
(K4 + 3)2(tr [Λ4])

j−1∑
i=1

g4ij + 4E
{ j−1∑

i<l

gijglj(u
′
iΛuj)(u

′
lΛuj)

}2]
+

16

p2q2

N∑
j=2

[
2E
{ j−1∑

i<l

g2ijg
2
lj(u

′
iΛuj)

2(u′
lΛuj)

2
}]

=
16

p2q2

N∑
j=2

(K4 + 3)2
{ j−1∑

i=1

g4ij + 6(K4 + 3)

j−1∑
i<l

g2ijg
2
lj

}
(tr [Λ4])

≤ 16

p2q2
(K4 + 3)2

N∑
j=2

[ j−1∑
i<1

g4ij + 2

j−1∑
i<l

g2ijg
2
lj

]
(tr [Λ4])

=
16

p2q2
(K4 + 3)2

N∑
j=2

(

j−1∑
i<1

g2ij)
2(tr [Λ4])

≤ 16

p2q2
(K4 + 3)2(tr [G4])(tr [Λ4])

=
16

q
(K4 + 3)2(tr [Λ4]/p2) → 0,

from Assumption A(3). Thus, we have proved the following theorem.

Theorem 2.1 Consider the model (1.1) satisfying (1.2) and (1.3). Then un-
der the hypothesis H : CΘ = 0, the statistic T1 defined in (1.12) is asymp-
totically normally distributed with mean 0 and variance 1, namely

lim
(N,p)→∞

P0 {T1 < z1−α} = Φ(z1−α)
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where Φ denotes a standard normal distribution function, and P0 denotes
that the probability has been computed under the hypothesis H

Corollary 2.1 As (N, p) → ∞,

T1
p
=

N∑
i̸=j

gijy
′
iyj/

{
2cp,nq(tr [R

2]− n−1p2)
}1/2

,

where G = (gij) = X(X ′X)−1C ′[C(X ′X)−1C ′]−1C(XX)−1X ′.

3 Asymptotic Non-Null Distribution of T1

In this section, we derive the asymptotic distribution of the statistic T1 under
local alternative given by the Assumption A(5), namely

lim
(N,p)→∞

(pq)−1tr [ΛMM ′] = 0, (3.1)

where
M = Θ′C ′[C(X ′X)−1C ′]−1/2 (3.2)

From Theorem 2.1, it follows that in probability the statistic

T1
p
= (pq)−1/2

{
trY ′GY − pq

}
/(2tr [Λ2]/p)1/2

goes to N (0, 1) under the hypothesis H. This implies that irrespective of
any hypothesis, the random variable

T ∗
1 = (pq)−1/2

{
tr [(Y −XΘ)′G(Y −XΘ)]− pq

}
/(2tr [Λ2]/p)1/2

=
(pq)−1/2

(2tr [Λ2]/p)1/2

{
tr [Y ′GY ]− 2tr [Θ′X ′GY ] + tr [Θ′X ′GXΘ]− pq

}
= T1 +

(pq)−1/2

(2tr [Λ2]/p)1/2

{
−2tr [Θ′X ′GY ] + tr [Θ′X ′GXΘ]

}
→ N (0, 1) as (N, p) → ∞

It may be noted that the random variable T ∗
1 depends on unknown parame-

ters Θ. We now show that under the assumption A(5)

(pq)−1/2tr [Θ′X ′GY ] → (pq)−1/2tr [Θ′X ′GXΘ].
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Let
A = Θ′X ′G = (a1, . . . ,an), Y = (y1, ....yN)

′.

Then

E[(pq)−1/2tr [AY ]] = (pq)−1/2tr [AΘX] = (pq)−1/2tr [Θ′X ′GXΘ]

and since G2 = G,

V ar[(pq)−1/2tr [AY ]]

=(pq)−1V ar[tr
N∑
i=1

aiy
′
i] = (pq)−1V ar[

N∑
i=1

a′
iyi]

=(pq)−1

N∑
i=1

a′
iΛai = (pq)−1tr [Λ(

N∑
i=1

aia
′
i)]

=(pq)−1tr [ΛAA′] = (pq)−1tr [ΛΘ′X ′GXΘ′]

=(pq)−1tr [ΛMM ′],

which goes to zero under the Assumption A(5). Thus,

(pq)−1/2tr [Θ′X ′GY ]
p→(pq)−1/2tr [Θ′X ′GXΘ]

=(pq)−1/2trMM ′

and

T ∗
1

p
= T1 − (pq)−1/2tr [MM ′]/

√
2trΛ2/p

Hence,

P1

{
T1 > z1−α| under A(5)

}
=P1

{
T1 −

tr [MM ′]√
2qtr [Λ2]

> z1−α − tr [MM ′]√
2qtr [Λ2]

}
=P1

{
T ∗
1 > z1−α +

tr [MM ′]√
2qtr [Λ2]

}
=Φ
(
−z1−α +

tr [MM ′]√
2qtr [Λ2]

)
,

where P1 denotes that the probability has been computed under the local
alternative hypothesis given in A(5). It may be noted that if the assumption
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that DΣ = Ip, where DΣ = diag(σ11, ...., σpp), Σ = (σij) is dropped, then
the power can be written as

P1 {T1 > zα| under A(5)} = Φ

(
−zα +

tr [D−1
Σ MM ′]√
2qtr [Λ2]

)
,

for the model Y = XΘ+Σ1/2Λ1/2U . Hence, we get the following theorem.

Theorem 3.1 Under the model Y = XΘ+UΛ1/2D
1/2
Σ , where the elements

of U satisfies conditions (1.2) - (1.3)

P1 {T1 > zα} = Φ

(
−zα +

tr [D−1
Σ MM ′]√
2qtr [Λ2]

)
.

The Assumption A(5) becomes lim(N,p)→∞(pq)−1tr [ΛD
−1/2
Σ MM ′D

−1/2
Σ ] =

0.

4 Other Tests

Bai and Saranadasa [1] proposed a two-sample test for testing the equality
of two mean vectors. A generalized version of this test for the MANOVA
problem was given by Srivastava and Fujikoshi [7] for normally distributed
observation vectors. It is given by

T2 = [2pqâ2(1 + n−1q)]−1/2
{
tr [B]− qtr [S]

}
,

where

â2 =
1

p

{
tr [S2]− 1

n
(tr [S])2

}
Under the hypothesis H : CΘ = 0, T2 is asymptotically normally distributed
as N (0, 1). That is,

lim
(N,p)→∞

P0 {T2 < zα} = Φ(zα).

By following the methods given in Section 2 of this article, it can be shown
that the asymptotic normality of T2 under the hypothesis still holds for the
non-normal model considered in this paper under the corresponding modified
assumptions on the covariance matrix Σ in place of the correlation matrix
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Λ. Similarly it can be shown that under the alternative hypothesis A(5), the
asymptotic distribution is given by

lim
(n,p)→∞

P1 {T2 > zα} = Φ
(
−zα +

tr [MM ′]√
2qtr [Σ2]

)
.

The test T2 for normally distributed observation vectors was also considered
by Schott [3] who obtained its distribution under the condition that (n/p)
goes to a constant as (n, p) → ∞. It has been shown in Srivastava and Du [8]
that T1 performs better than T2. The test proposed by Srivastava [5], which
has been shown to perform better than T2 in Srivastava and Fujikoshi [7] is
not considered in this paper as its distribution under non-normal model has
yet to be derived.

5 Power and Attained Significance Level

In this section we compare the power of the statistics T1 and T2 in finite
samples by simulation. We first examine the attained significance level to
the nominal value α = 0.05.

The attained significance level (ASL) is α̂T = #(T1H > z1−α)/r where
T1H are values of the test statistic T1 ( or T2) computed from data simulated
under H, r is the number of replications and z1−α is the 100(1− α)% point
of the standard normal distribution. The ASL assesses how close the null
distribution of T1 (or T2) is to its limiting null distribution. From the same
simulation, we also obtain ẑ1−α as the 100(1 − α)% point of the empirical
null distribution, and define the attained power by β̂T = #(T1A > ẑ1−α)/r,
where T1A are values of the T1 (or T2) computed from data simulated under
A.

Through the simulation, we compare the proposed test T1 with T2. It may
be noted that irrespective of the ASL of any statistic, the power has been
computed when all the statistics in the comparison have the same specified
significance level as the cut off points have been obtained by simulation. The
ASL gives an idea as to how close it is to the specified significance level.
If it is not close, the only choice left is to obtain it from simulation, not
from the asymptotic distribution. It is common in practice, although not
recommended, to depend on the asymptotic distribution, rather than relying
on simulations to determine the ASL.
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For simulation, we consider the problem of testing the equality of 3 mean
vectors, that is, k = q + 1 = 3 and q = 2, where N1 = N2 = N3 = N∗, and
the cases of (N∗, p) = (10, 40), (20, 80), (30, 120) and (40, 200) are treated..
Note that n = N1 + N2 + N3 − k = 3(N∗ − 1). For the three mean vectors
will

Θ = (µ1,µ2,µ3)
′ : 3× p,

C =

(
1 0 −1
0 1 −1

)
, CΘ =

(
µ′

1 −µ′
3

µ2 −µ′
3

)
.

The observation matrix is

Y = (y
(1)
1 , . . . ,y

(1)
N∗ ;y

(2)
1 , . . . ,y

(2)
N∗ ;y

(3)
1 , . . . ,y

(3)
N∗)′

X
N×3

=

1N∗ 0 0
0 1N∗ 0
0 0 1N∗

 ,

where 1N∗ = (1, . . . , 1)′ : N∗ × 1 for N = 3N∗. For the hypothesis, with-
out loss of generality we choose µ1 = µ2 = µ3 = 0. For the alternative
hypothesis, we choose µ1 = 0, µ2 = 3n−1/2p−1/41′

p, µ3 = −µ2.

To generate the Y matrix from a non-normal distribution, we generate
3N∗p i.i.d. random variables uij from three kinds of chi-square distributions,
namely, χ2

2, χ
2
8 and χ2

32 with 2, 8 and 32 degrees of freedom, respectively, and
centre them and scale them as

νij = (uij −m)/
√
2m,

for uij ∼ χ2
m, m = 2, 8, 32. Since the skewness and kurtosis (K4+3) of χ2

m is,
repectively, (8/m)1/2 and 3 + 12/m, it is noted that χ2

2 has higher skewness
and kurtosis than χ2

8 and χ2
32. Write them as

V = (ν
(1)
1 , . . . ,ν

(1)
N∗ ;ν

(2)
1 , . . . ,ν

(2)
N∗ ;ν

(3)
1 , . . . ,ν

(3)
N∗)′

where ν
(i)
j vectors are p-vectors, j = 1, . . . , N∗, i = 1, 2, 3. For the covariance

matrix, we consider two cases

(Case 1) Σ = Ip,

(Case 2) Σ = Da = diag (a21, . . . , a
2
p), where ai are i.i.d. as chi-square

with 3 degrees of freedom.
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For the first case, we define

(Case 1) Y = V +X(0,µ2,µ3)
′,

where under the hypothesis, Y = V , and under the alternative, µ2 and µ3

are replaced by the vectors mentioned above.

For the second case

(Case 2) Y = V D1/2
a +X(0,µ2,µ3)

′,

where under the hypothesis, Y = V D1/2
a , and in the alternative, µ2 and µ3

are replaced by the vectors mentioned above.

The simulation results under the χ2
m distributions for m = 2, 8 and 32 are

presented in Tables 1, 2 and 3, respectively. The critical values are computed
based on 100,000 replications and the ASL and the powers are obtained based
on 10,000 replications. It is noted that the 95% point of the standard normal
distribution is 1.64485. Three tables report the critical values and the power
in the hypothesis of the two tests, and it is seen that the values of the ASL are
appropriate. As reported in the tables, the powers of the two tests perform
similarly in Case 1, but the proposed test T1 has much higher powers than T2

in Case 2. For the χ2
2-distribution, which has higher skewness and kurtosis,

T1 has slightly higher power than T2 in Case 1. Clearly, when Σ = Ip, all
the components have the same unit of measurements and hence both tests
perform equally well but when the unit of measurements are not the same,
as in Case 2, the proposed test performs much better than the test based on
T2.

6 Results on moments

We here provide results on moments.

Lemma 6.1 Let u = (u1, . . . , up)
′ be a p-dimensional random vector such

that E[u] = 0, Cov [u] = Ip, E[u4
i ] = K4 + 3, i = 1, . . . , p, and

E[ua
i u

b
ju

c
ku

d
l ] = E[ua

i ]E[ub
j]E[uc

k]E[ud
l ], (6.1)

0 ≤ a+ b+ c+ d ≤ 4 for all i, j, k, l. Then for any p× p symmetric matrices
A = (aij) and B = (bij) of constants, we have
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Table 1: Critical values, ASL and powers of the tests T1 and T2 in the case
of χ2

2-distribution with skewness 2 and kurtosis 9

Critical Value ASL in H Power in A

N∗ p T1 T2 T1 T2 T1 T2

Case 1

10 40 1.6061 1.5966 4.72 4.37 92.04 85.02

20 80 1.5632 1.6225 4.18 4.81 90.46 85.65

30 120 1.5622 1.6440 4.54 5.28 89.94 86.21

40 200 1.5564 1.6386 4.05 4.76 90.43 87.40

Case 2

10 40 1.6061 1.6865 4.72 5.57 99.96 24.71

20 80 1.5632 1.6784 4.18 5.21 99.63 18.20

30 120 1.5622 1.6919 4.54 5.73 97.82 15.20

40 200 1.5564 1.6852 4.05 5.36 96.26 16.97

Table 2: Critical values, ASL and powers of the tests T1 and T2 in the case
of χ2

8-distribution with skewness 1 and kurtosis 4.5

Critical Value ASL in H Power in A

N∗ p T1 T2 T1 T2 T1 T2

Case 1

10 40 1.7339 1.7029 5.95 5.64 84.92 84.48

20 80 1.6175 1.6810 4.69 5.36 86.92 86.19

30 120 1.6119 1.6812 4.42 5.07 87.04 86.49

40 200 1.5967 1.6714 4.29 5.03 87.80 87.26

Case 2

10 40 1.7339 1.7903 5.95 6.21 99.93 23.56

20 80 1.6175 1.7276 4.69 6.19 99.27 18.89

30 120 1.6119 1.7344 4.42 5.60 97.06 15.56

40 200 1.5967 1.7291 4.29 5.83 94.70 16.38
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Table 3: Critical values, ASL and powers of the tests T1 and T2 in the case
of χ2

32-distribution with skewness 0.5 and kurtosis 3.375

Critical Value ASL in H Power in A

N∗ p T1 T2 T1 T2 T1 T2

Case 1

10 40 1.7688 1.7184 5.99 5.56 82.13 84.72

20 80 1.6457 1.6930 4.92 5.16 84.12 84.89

30 120 1.6155 1.6812 4.83 5.29 86.09 86.20

40 200 1.6090 1.6831 4.29 5.01 86.84 87.08

Case 2

10 40 1.7688 1.8157 5.99 6.28 99.97 23.15

20 80 1.6457 1.7409 4.92 5.34 98.93 16.80

30 120 1.6155 1.7476 4.83 6.33 96.46 15.85

40 200 1.6090 1.7223 4.29 5.59 94.55 16.61

(a) E[(u′Au)2] = K4

p∑
i=1

a2ii + 2tr [A2] + (tr [A])2,

(b) V ar[u′Au] = K4

p∑
i=1

a2ii + 2tr [A2],

(c) E[u′Auu′Bu] = K4

p∑
i=1

aiibii + 2tr [AB] + tr [A]tr [B].
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Proof. For (a), note that aij = aji. Then under condition (6.1),

E[(u′Au)2] =E
[( p∑

i=1

aiiu
2
i + 2

p∑
j<k

ajkujuk

)2]
=E
[ p∑
i=1

a2iiu
4
i +

p∑
i̸=j

aiiajju
2
iu

2
j + 4

( p∑
j<k

ajkujuk

)2
+ 8

∑
j<k

ajjajku
3
juk + 8

∑
i ̸=j,j<k

aiiajku
2
iujuk

]
=(K4 + 3)

p∑
i=1

a2ii +

p∑
i ̸=j

aiiajj + 4

p∑
j<k

(ajk)
2

=K4

p∑
i=1

a2ii + (

p∑
i=1

a2ii +

p∑
i̸=j

aiiajj) + 2

p∑
i=1

a2ii + 2

p∑
i̸=j

(aij)
2

=K4

p∑
i=1

a2ii + (tr [A])2 + 2tr [A2].

For (b), from condition (6.1), it follows that

E[u′Au] = E
[ p∑
i=1

aiiu
2
i +

∑
i ̸=j

aiiajjuiuj

]
=

p∑
i=1

aii = trA,

which, together with the equality in (a), yields the equality in (b).
For (c), it is seen that

E[u′Auu′Bu] =E
[( p∑

i=1

aiiu
2
i + 2

p∑
i<j

aijuiuj

)( p∑
i=1

biiu
2
i + 2

p∑
i<j

bijuiuj

)]
=γ

p∑
i=1

aiibii +
∑
i̸=j

aiibjj + 4
∑
i<j

aijbij,

for γ = K4 + 3. Noting that tr [AB] =
∑p

i=1 aiibii + 2
∑p

i<j aijbij and
tr [A]tr [B] =

∑p
i=1 aiibii +

∑p
i ̸=j aiibjj, we can get the equality in (c).

Corollary 6.1 Let ū = N−1
∑N

i=1 ui, where u1, . . . ,uN are independently
and identically distributed. Then

V ar(ū′Aū) =
K4

N3

p∑
i=1

a2ii +
2

N2
tr [A2].
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Proof. This corrolary is shown as follows:

N2V ar(ū′Aū) =
1

N2
V ar

[( N∑
i=1

ui

)′
A
( N∑

i=1

ui

)]
=

1

N2
V ar

[ N∑
i=1

u′
iAui + 2

N∑
i<k

u′
jAuk

]
=

1

N2
V ar

[ N∑
i=1

u′
iAui

]
+

4

N2
V ar

[ N∑
j<k

u′
jAuk

]
+

4

N2
Cov

[ N∑
i=1

u′
iAui,

N∑
j<k

u′
jAuk

]
=

1

N
V ar[u′

1Au1] +
2N(N − 1)

N2
tr [A2]

=
1

N

{
K4

p∑
j=1

a2jj + 2tr [A2]
}
+

2(N − 1)

N
tr [A2]

=
1

N
K4

p∑
j=1

a2jj + 2tr [A2].

Lemma 6.2 Let u and v be independently and identically distributed ran-
dom vectors with zero mean vector and covariance matrix Ip. Then under
condition (6.1) for any p× p symmetric matrix A = (aij),

V ar[(u′Av)2] = K2
4

p∑
i,j

a4ij + 6K4

p∑
i,j,k

a2ija
2
ik + 6tr [A4] + 2(tr [A2])2.

Proof. SinceE[(u′Av)2] = E[u′Avv′Au] = tr [A2], we have V ar[(u′Av)2] =
E[(u′Av)4] − (tr [A2])2. Let C = (cij) = Avv′A. Then, tr [C] = v′A2v
and tr [C2] = tr [Avv′AAvv′A] = (v′A2v)2 = (tr [C])2. Since (u′Av)4 =
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(u′Cu)2, from (a) and (c) in Lemma 6.1, it follows that

E[(u′Av)4] =E[(u′Cu)2] = E
[
E[(u′Cu)2|C]

]
=E
[
K4

p∑
i=1

c2ii + 2tr [C2] + (tr [C])2
]

=E
[
K4

p∑
i=1

c2ii + 3(v′A2v)2
]

=K4

p∑
i=1

E[c2ii] + 3
{
K4

p∑
i=1

{(A2)ii}2 + 2tr [A4] + (tr [A2])2
}
.

Let A′ = (a1, . . . ,ap) for column vectors ai’s. Since C = Avv′A′ and
v′A′ = (v′a1, . . . ,v

′ap), it is seen that cii = a′
ivv

′ai = v′aia
′
iv and c2ii =

(v′aia
′
iv)

2 = (v′Giv)
2 for Gi = aia

′
i. Hence, from (a) in Lemma 6.1,

E[c2ii] =E[(v′Giv)
2]

=K4

p∑
j=1

{(Gi)jj}2 + 2tr [G2
i ] + (tr [Gi])

2

=K4

p∑
j=1

{(Gi)jj}2 + 3(a′
iai)

2.

Since Gi = aia
′
i, it is noted that (Gi)jj = a2ij. Since A2 = AA′ =

(a1, . . . ,ap)
′(a1, . . . ,ap), it is seen that (A2)ii = a′

iai =
∑p

j=1 a
2
ij. Hence, we

get

E[(u′Av)4] =K2
4

p∑
i=1

p∑
j=1

a4ij + 3K4

p∑
i=1

(a′
iai)

2

+ 3K4

p∑
i=1

(a′
iai)

2 + 6tr [A4] + 3(tr [A2])2.

Thus,

V ar[(u′Av)2] = K2
4

p∑
i=1

p∑
j=1

a4ij + 6K4

p∑
i=1

(a′
iai)

2 + 6tr [A4] + 2(tr [A2])2.

Noting that
∑p

i=1(a
′
iai)

2 =
∑p

i=1(
∑p

j=1 a
2
ij)

2 =
∑p

i,j,k a
2
ija

2
ik, we get the equal-

ity in Lemma 6.2.
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7 Concluding Remarks

In this article, we have proposed a test which is invariant under the change
of unit of measurements. It has been shown to perform better than the test
proposed by Srivastava and Fujikoshi[7] and Schott[3] unless Σ = σ2Ip in
which case both tests are equally good. Our simulation results show that
both tests are robust and the assumptions of normality is not needed to
carry out any of the two tests.
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