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Abstract

The empirical best linear unbiased predictor (EBLUP) in the linear mixed model
(LMM) is useful for the small area estimation in the sense of increasing the precision
of estimation of small area means. However, one potential difficulty of EBLUP
is that when aggregated, the overall estimate for a larger geographical area may
be quite different from the corresponding direct estimate like the overall sample
mean. One way to solve this problem is the benchmarking approach, and the
constrained EBLUP is a feasible solution which satisfies the constraints that the
aggregated mean and variance are identical to the requested values of mean and
variance. An interesting query is whether the constrained EBLUP may have a
larger estimation error than EBLUP. In this paper, we address this issue by deriving
asymptotic approximations of MSE of the constrained EBLUP. Also, we provide
asymptotic unbiased estimators of the MSE of the constrained EBLUP based on the
parametric bootstrap method, and establish their second-order justification. Finally,
the performances of the suggested MSE estimators are numerically investigated.

Key words and phrases: Benchmarking, best linear unbiased predictor, con-
strained Bayes, empirical Bayes, linear mixed model, mean squared error, paramet-
ric bootstrap, second-order approximation, small area estimation.

1 Introduction

The linear mixed models (LMM) and the model-based estimates including empirical best
linear unbiased predictor (EBLUP) or the empirical Bayes estimator (EB) have been
recognized useful in small area estimation. The typical models used for the small area
estimation are the Fay-Herriot model and the nested error regression model (NERM), and
the usefulness of EBLUP is illustrated by Fay and Herriot (1979) and Battese, Harter and
Fuller (1988). For a good review and account on this topic, see Ghosh and Rao (1994),
Rao (2003) and Pfeffermann (2002).
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One potential difficulty of EBLUP is that when aggregated, the overall estimate for a
larger geographical area may be quite different from the corresponding direct estimate like
the overall sample mean. One way to solve this problem is the benchmarking approach,
which modifies EBLUP so that one gets the same aggregate mean and/or variance for
the larger geographical area. Ghosh (1992) suggested the constrained Bayes estimator
or the constrained EBLUP which satisfy the constraints that the aggregated mean and
variance are identical to the mean and variance of the posterior distribution, and Datta,
Ghosh, Steorts and Maples (2011) gave some extensions. Since the sample variance of
EBLUP is smaller than the posterior variance, the constrained EBLUP modifies EBLUP
so that its sample variance is identical to the posterior variance. However, the usefulness
and purpose of EBLUP is that EBLUP gives stable estimates with higher precision of
estimation. We then have a concern whether the constrained EBLUP may be against this
purpose. Thus, it is quite interesting and important to assess the mean squared error
(MSE) of the constrained EBLUP. In this paper, we address this issue for the general
constrained EBLUP in the general linear mixed model.

In Section 2, we consider the general constraint on the mean and variance of estimators
and derive the general constrained estimators including the constrained EBLUP, which
is an extension of the constrained empirical Bayes estimators given by Ghosh (1992) and
Datta, et al . (2011). In Section 3, we derive the asymptotic approximations of MSE
of the constrained EBLUP. When the variance constraint is the posterior variance, it
is shown that MSE of the constrained EBLUP is larger than MSE of EBLUP in the
first order approximation. To modify this property, we suggest some modification of the
variance constraint. We also provide an asymptotically unbiased estimator of MSE of
the constrained EBLUP based on the parametric bootstrap method, and establish the
second-order justification. In Section 4, we investigate the performances of MSE of the
constrained EBLUP and the MSE estimators. Section 5 gives a concluding remark. The
proofs of the asymptotic approximations are given in the appendix.

2 Benchmarking EBLUP

2.1 Linear mixed model and constraints

Consider the general linear mixed model

y =Xβ +Zv + ϵ, (2.1)

where y is an N × 1 observation vector of the response variable, X and Z are N × p and
N ×M matrices, respectively, of the explanatory variables, β is a p× 1 unknown vector
of the regression coefficients, v is anM×1 vector of the random effects, and ϵ is an N×1
vector of the random errors. Here, v and ϵ are mutually independently distributed as
v ∼ NM(0,Q) and ϵ ∼ NN(0,R) where Q and R are positive definite matrices. Then, y
has a marginal distribution NN(Xβ,Σ) for Σ = R+ZQZ ′. It is assumed that Q and R
are functions of unknown parameters ψ = (ψ1, . . . , ψq)

′, namely, Q = Q(ψ), R = R(ψ)
and Σ = Σ(ψ). Denote unknown parameters by ω = (ψ′,β′)′.
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Let θ =Xβ +Zv and let θ̂ = θ̂(y) be a predictor of θ. Suppose that θ̂ is evaluated

relative to the quadratic loss function ∥θ̂ − θ∥2Ω = (θ̂ − θ)′Ω(θ̂ − θ) for known positive
definite matrixΩ. In the Bayesian framework, θ has a prior distributionNN(Xβ,ZQZ

′),
and the posterior distribution of θ given y is

θ|y ∼ NN

(
Xβ +ZQZ ′Σ−1(y −Xβ), (Q−1 +Z ′R−1Z)−1

)
, (2.2)

which gives the Bayes estimator

θ̂
B
= θ̂

B
(ω) =Xβ +ZQZ ′Σ−1(y −Xβ). (2.3)

As demonstrated by Louis (1984) and Ghosh (1992), the Bayes estimator is shrunken too
much and we need to consider the constrained Bayes estimators. In this paper, we treat
more general constraints on estimator θ̂.

(C)

{
(C1) W ′Ωθ̂ = t1(y) for N × L known matrix W and L-variate function t1(y),

(C2) ∥θ̂ −W (W ′ΩW )−1W ′Ωθ̂∥2Ω = t2(y) for function t2(y).

Datta, et al . (2011) dealt with the general linear constraint (C1), but a simple con-

straint for (C2). The estimatorW (W ′ΩW )−1W ′Ωθ̂ corresponds to the generalized least

square estimator of ξ under the loss ∥θ̂ −Wξ∥2Ω, and ∥θ̂ −W (W ′ΩW )−1W ′Ωθ̂∥2Ω is
the residual variance. It is noted that the constraint (C2) is also expressed as

∥θ̂ −W (W ′ΩW )−1W ′Ωθ̂∥2Ω = θ̂
′
PΩθ̂ = t2(y), (2.4)

where
PΩ = Ω−ΩW (W ′ΩW )−1W ′Ω.

For these general constraints, we derive the constrained Bayes estimators.

Example 2.1 A typical example of W is w = (w1, . . . , wN)
′ for nonnegative constants

wi’s, and in the case ofΩ = I, the linear combination in (C1) is the combined meanw′θ̂ =∑N
i=1wiθ̂i for θ̂ = (θ̂1, . . . , θ̂N)

′. For instance, let t1(y) =
∑N

i=1wiyi for y = (y1, . . . , yN)
′,

and the constraint (C1) is expressed as
∑N

i=1wiθ̂i =
∑N

i=1wiyi.
As another example, consider the case that the whole area is divided into G groups

and the i-th group consists of mi small areas. When we can consider the benchmarking
for each group, W is given by

W = block diag(w1, . . . ,wG), wi = (wi1, . . . , wimi
)′,

where wij’s are nonnegative constants. Also, θ̂ is decomposed as θ̂ = (θ̂
′
1, . . . , θ̂G)

′ for

θ̂i = (θ̂i1, . . . , θ̂imi
)′. Then the linear combination in the constraint (C1) is

W ′θ̂ = ((w′
1θ̂1)

′, . . . , (w′
Gθ̂G)

′)′.

For instance, let t1(y) = (w′
1y1, . . . ,w

′
GyG)

′, and the constraint (C1) is expressed as

w′
iθ̂i = w

′
iyi, i = 1, . . . , G, where y = (y′

1, . . . ,y
′
G)

′ is decomposed similarly to θ̂.
The above setup is applicable to a model for analysis of cross-sectional and time-series

data. Let yit be an observation at the i-th area and t time point for i = 1, . . . , K and
t = 1, . . . , T . Let y = (y′

1, . . . ,y
′
T )

′ for yt = (y1t, . . . , ykt)
′. Putting mi = K and G = T

in the above setup, we get the benchmarking at each time point.
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We here verify that the same phenomenon as demonstrated in Louis (1984) and Ghosh
(1992) holds for the above general situations.

Proposition 2.1 The following relationships hold between the Bayes estimator θ̂
B

and

the posterior distribution: For the linear transformation, E[W ′Ωθ|y] =W ′Ωθ̂
B
, but for

the residual variance,

E[∥θ −W (W ′ΩW )−1W ′Ωθ∥2Ω|y]

=∥θ̂
B
−W (W ′ΩW )−1W ′Ωθ̂

B
∥2Ω + tr

[
Z ′PΩZ{Q−1 +Z ′R−1Z}−1

]
≥∥θ̂

B
−W (W ′ΩW )−1W ′Ωθ̂

B
∥2Ω, (2.5)

where E[·|y] denotes a posterior expectation.

In fact, it is noted that

E[θθ′|y] = θ̂
B
(θ̂

B
)′ + E

[
Z(v − E[v|y])(v − E[v|y])′Z ′|y

]
,

since θ = θ̂
B
+ Z(v − E[v|y]). From the posterior distribution (2.2), it follows that

E
[
(v − E[v|y])(v − E[v|y])′|y

]
= (Q−1 + Z ′R−1Z)−1. Noting the expression (2.4), we

have

E[θ′PΩθ|y] = tr [PΩθθ
′|y] = tr [PΩθ̂

B
(θ̂

B
)′] + tr [PΩ(Q

−1 +Z ′R−1Z)−1], (2.6)

which implies the equality in (2.5).

Proposition 2.1 shows that

E[∥θ −W (W ′ΩW )−1W ′Ωθ∥2Ω] ≥ E[∥θ̂
B
−W (W ′ΩW )−1W ′Ωθ̂

B
∥2Ω],

namely, for any linear transformation matrix W , the expectation of the sample resid-
ual variance of the Bayes estimators is less than the expected residual variance of the
unobserved parameters. Louis (1984) and Ghosh (1992) showed this fact in the case of
W = jN = (1, . . . , 1)′, and pointed out that the Bayes estimator is shrunken too much
since the variance of the Bayes estimator is smaller than the variance of the prior distri-
bution. This gives a motivation of the constrained Bayes estimators under the constraints
(C1) and (C2).

2.2 Unified constrained estimators

We now derive the constrained Bayes estimators under the constraints (C1) and (C2).

Theorem 2.1 The constrained Bayes estimator under the constraint (C1) is

θ̂
CB1

= θ̂
B
−W (W ′ΩW )−1

{
W ′Ωθ̂

B
− t1(y)

}
, (2.7)
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where θ̂
B
is the Bayes estimator given in (2.3). The constrained Bayes estimator under

the constraints (C1) and (C2) is

θ̂
CB2

= aB(y)
{
I −W (W ′ΩW )−1W ′Ω

}
θ̂
B
+W (W ′ΩW )−1t1(y), (2.8)

where

{aB(y)}2 = t2(y)

(θ̂
B
)′PΩθ̂

B
.

This theorem provides not only general constrained estimators, but also a unified
expression for the constrained estimators. For an estimator θ̂, we can treat constrained
estimators as the following unified form:

θ̂
CG

=
t2(y)

θ̂
′
PΩθ̂

{
I −W (W ′ΩW )−1W ′Ω

}
θ̂ +W (W ′ΩW )−1t1(y). (2.9)

In fact, this class of the estimators includes θ̂
CB1

and θ̂
CB2

. When t1(y) = W ′Ωθ̂ and

t2(y) = ∥θ̂ −W (W ′ΩW )−1W ′Ωθ̂∥2Ω = θ̂
′
PΩθ̂, it is seen that θ̂

CG
= θ̂. That is, the

constraints do not give any change if the least squares statistic and the residual variance of
the constrained estimator in (C1) and (C2) are the same to those of the original estimator.

Proof of Theorem 2.1. The constrained Bayes estimator θ̂
CB1

follows from Datta,

et al . (2011). We shall derive the constrained Bayes estimator θ̂
CB2

under the constraints
(C1) and (C2). Ghosh (1992) and Datta, et al . (2011) provided such a constrained Bayes

estimator where they treated a constraint simpler than (C2). We here obtain θ̂
CB2

directly
in a different way as well as in more general constraint (C2).

Note that E[∥θ− θ̂∥2Ω|y] = E[∥θ− θ̂
B
∥2Ω|y]+∥θ̂− θ̂

B
∥2Ω. Then, the constrained Bayes

estimator can be given as a solution on θ̂ which minimizes the Lagrangian multiplier

H(θ̂) = ∥θ̂ − θ̂
B
∥2Ω + λ′

1{W ′Ωθ̂ − t1(y)}+ λ2{θ̂
′
PΩθ̂ − t2(y)},

where λ1 is an L × 1 multiplier and λ2 is a scalar multiplier. Differentiating H(θ̂) with

respect to θ̂ gives Ω(θ̂ − θ̂
B
) + 1

2
ΩWλ1 + λ2PΩθ̂ = 0, which can be rewritten as θ̂ ={

(1 + λ2)Ω− λ2PΩ

}−1
Ω(θ̂

B
− 1

2
Wλ1). It is here noted that

{
(1 + λ2)Ω− λ2PΩ

}−1
=

Ω−1 − λ2(1 + λ2)
−1Ω−1PΩΩ

−1. Since W ′PΩ = 0, θ̂ can be expressed as

θ̂ =

(
I − λ2

1 + λ2
Ω−1PΩ

)
θ̂
B
− 1

2
Wλ1. (2.10)

Substituting θ̂ given in (2.10) into the constraint (C1) or W ′Ωθ̂ = t1(y), we get the

equality −0.5λ1 = (W ′ΩW )−1{t1(y)−W ′Ωθ̂
B
}, which is again substituted into (2.10)

to yield

θ̂ =

(
I − λ2

1 + λ2
Ω−1PΩ

)
θ̂
B
+W (W ′ΩW )−1{t1(y)−W ′Ωθ̂

B
}. (2.11)
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Substituting θ̂ given in (2.11) into the constraint (C2) or ∥θ̂−W (W ′ΩW )−1W ′Ωθ̂∥2Ω =
t2(y), we get{(

I − λ2
1 + λ2

Ω−1PΩ

)
θ̂
B
+W (W ′ΩW )−1{t1(y)−W ′Ωθ̂

B
}
}′
PΩ{(

I − λ2
1 + λ2

Ω−1PΩ

)
θ̂
B
+W (W ′ΩW )−1{t1(y)−W ′Ωθ̂

B
}
}
= t2(y).

Noting again that W ′PΩ = 0, this equality can be simplified as

(θ̂
B
)′
(
I − λ2

1 + λ2
PΩΩ

−1

)
PΩ

(
I − λ2

1 + λ2
Ω−1PΩ

)
θ̂
B
= t2(y),

or (1 + λ2)
2 = (θ̂

B
)′PΩθ̂

B
/t2(y), since (Ω−1/2PΩΩ

−1/2)2 = Ω−1/2PΩΩ
−1/2. Let

aB(y) =

√
t2(y)/(θ̂

B
)′PΩθ̂

B
.

Since θ̂ given in (2.11) can be rewritten as

θ̂ =
1

1 + λ2

{
I −W (W ′ΩW )−1W ′Ω

}
θ̂
B
+W (W ′ΩW )−1t1(y),

substituting aB(y) into this estimator gives the constrained Bayes estimator θ̂
CB2

.

2.3 Benchmarked EBLUP

We shall treat the problem of predicting µ = c′θ = c′Xβ + c′Zv where c is an N × 1
vector. Typical example of c is that components of c are constants for an area of interest
and zeros for other areas. Let ψ̂ = (ψ̂1, . . . , ψ̂q)

′ be a consistent estimator of ψ. Also,

let Q̂ = Q(ψ̂), R̂ = R(ψ̂) and Σ̂ = Σ(ψ̂) = R̂ + ZQ̂Z ′. The generalized least squares
estimator of β is

β̂(ψ̂) = (X ′Σ̂
−1
X)−1X ′Σ̂

−1
y. (2.12)

Since the EBLUP or empirical Bayes estimator of θ is

θ̂
EB

=Xβ̂(ψ̂) +ZQ̂Z ′Σ̂
−1
(y −Xβ̂(ψ̂)), (2.13)

the benchmarked EBLUP is given by

µ̂CEB = c′θ̂
CG

= a(y)c′Ω−1PΩθ̂
EB

+ c′wt1(y), (2.14)

where c′w = c′W (W ′ΩW )−1 and

{a(y)}2 = t2(y)

(θ̂
EB

)′PΩθ̂
EB
. (2.15)

The benchmarked EBLUP can be rewritten as

µ̂CEB = µ̂EB + {a(y)− 1}c′Ω−1PΩθ̂
EB

+ c′w
{
t1(y)−W ′Ωθ̂

EB}
, (2.16)
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for µ̂EB = c′θ̂
EB

.

It is noted from (2.2) and (2.6) that the regressed posterior mean E[W ′Ωθ|y] and the
residual variance E[∥θ −W ′Ωθ∥2Ω|y] of θ are estimated by

t
(0)
1 (y) =W ′Ωθ̂

EB
,

t
(0)
2 (y) =(θ̂

EB
)′PΩθ̂

EB
+ tr [PΩ(Q̂

−1
+Z ′R̂

−1
Z)−1].

(2.17)

Then, it may be reasonable to put t1(y) = t
(0)
1 (y) and t2(y) = t

(0)
2 (y) for the constraints

(C1) and (C2). The resulting constrained estimator µ̂CEB has more variability than µ̂EB.
On the other hand, the aim of EBLUP µ̂EB is to give an estimate with higher precision,
and there is a trade-off between the benchmarking and the aim of EBLUP. Thus, it is
important how to set up the variability t2(y) of µ̂

CEB. One of reasonable requirement for
variability is that the constrained estimator µ̂CEB satisfies the property

lim
N→∞

MSE(ω, µ̂CEB) = lim
N→∞

MSE(ψ, µ̂EB), (2.18)

namely, MSE of µ̂CEB is equal to that of µ̂EB in the first-order O(1). It is here noted
that MSE of µ̂EB does not depend on β from the assumption (A3). Unfortunately, the

constrained estimator with t2(y) = t
(0)
2 (y) does not satisfy the requirement (2.18), namely,

lim
N→∞

MSE(ω, µ̂CEB) > lim
N→∞

MSE(ψ, µ̂EB).

This fact is against the aim of EBLUP. For (C2), it is interesting to consider the constraint

t2(y) = t
(r)
2 (y) where

t
(r)
2 (y) = (θ̂

EB
)′PΩθ̂

EB
+

1

N r
tr [PΩ(Q̂

−1
+Z ′R̂

−1
Z)−1], (2.19)

for 0 ≤ r ≤ 1. As shown in the next section, the constrained EBLUP for (2.19) satisfies
the requirement (2.18) when r ≥ 1/2.

3 Approximation and Estimation of MSE

3.1 Approximation of MSE

Constrained Bayes estimators or benchmarked empirical Bayes estimators have been sug-
gested to modify the phenomena of shrinking the original data too much. However, this
raises a question about the cost that the benchmarking makes variability of EBLUP
higher. Thus, it is important to examine the mean squared error (MSE) of the bench-
marked estimators. However, it is difficult to investigate the MSE analytically for the
general constraint (C). In this section, we focus on the following constraint which in-
cludes typical constraints:

(C(r))

{
(C1) W ′Ωθ̂ =W ′Ωθ̂

EB
+m(y),

(C2) θ̂
′
PΩθ̂ = (θ̂

EB
)′PΩθ̂

EB
+ h(ψ̂),

(3.1)
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where m(y) = Op(N
1/2) and h(ψ) = O(N1−r) for 0 ≤ r ≤ 1. Since t1(y)−W ′Ωθ̂

EB
=

m(y), from (2.16), µ̂CEB is expressed as

µ̂CEB = µ̂EB + {a(y)− 1}c′Ω−1PΩθ̂
EB

+ c′wm(y), (3.2)

where c′w = c′W (W ′ΩW )−1 and

{a(y)}2 = h(ψ̂)

(θ̂
EB

)′PΩθ̂
EB

+ 1. (3.3)

Then, MSE of µ̂CEB is written as MSE(ω, µ̂CEB) = I1 + I2 + 2I3, where

I1 =E[(µ̂
EB − µ)2],

I2 =E
[{

{a(y)− 1}c′Ω−1PΩθ̂
EB

+ c′wm(y)
}2]

, (3.4)

I3 =E
[
(µ̂EB − µ̂B)

{
{a(y)− 1}c′Ω−1PΩθ̂

EB
+ c′wm(y)

}]
.

The asymptotic property ofMSE(ω, µ̂CEB) depends on the value of r, so that we consider
the three cases of r below.

[Scenario 1] Case of r = 0. From Theorem A.1, it follows that the MSE of µ̂CEB

is approximated as

MSE(ω, µ̂CEB) =MSE(ψ, µ̂EB) + {A(ω)− 1}2B(ω) +O(N−1/2), (3.5)

where

{A(ω)}2 = h(ψ)

β′X ′PΩXβ + tr [Z ′PΩZQZ
′Σ−1Z]

+ 1, (3.6)

B(ω) =(c′Ω−1PΩXβ)
2 + c′Ω−1PΩZQZ

′Σ−1ZQZ ′PΩΩ
−1c. (3.7)

Concerning MSE(ψ, µ̂EB), it can be easily shown that MSE(ψ, µ̂EB) = g1(ψ) +
O(N−1/2), where

g1(ψ) = c
′ZZ(Q−1 +Z ′R−1Z)−1Z ′Z ′c = c′Qc− s′Σs. (3.8)

for s = s(ψ) = Σ−1ZQZ ′c. Hence, from (3.5),

lim
N→∞

MSE(ω, µ̂CEB) = lim
N→∞

g1(ψ) + lim
N→∞

{A(ω)− 1}2B(ω). (3.9)

Since limN→∞MSE(ψ, µ̂EB) = limN→∞ g1(ψ), it is seen that

lim
N→∞

MSE(ω, µ̂CEB) > lim
N→∞

MSE(ψ, µ̂EB),

that is, the constrained EBLUP µ̂CEB has a larger MSE than the EBLUP µ̂EB in the first
order approximation. Since a good property of EBLUP is that the MSE of the EBLUP
is small, the above fact gives a criticism for the constrained EBLUP.
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Although we give the first-order approximation of the MSE in the case of r = 0, it
may be possible to derive a second-order approximation. However, the second-order term
probably consists of many terms, it may be hard to describe. Also, the difference between
µ̂CEB and µ̂EB is recognized in the first-order as explained above. Thus, we do not give
any further study about the second-order approximation in the case of r = 0.

[Scenario 2] Case of r = 1/2. In this case, a second order approximation for the
MSE of µ̂CEB is given by Theorem A.2, and it is given by

MSE(ω, µ̂CEB) =MSE(ψ, µ̂EB) + I2(ω) + 2I3(ω) +O(N−3/2), (3.10)

where

I2(ω) =
1

4

[
{A(ω)}2 − 1

]2
B(ω) + E

[{
c′wm(y)

}2]
+
[
{A(ω)}2 − 1

]{
c′Ω−1PΩXβE[c

′
wm(y)] + c′Ω−1PΩZQZ

′E[∇yc
′
wm(y)]

}
,

(3.11)

I3(ω) =
1

2

[
{A(ω)}2 − 1

]
(c− s)′X(X ′Σ−1X)−1X ′Σ−1ZQZ ′PΩΩ

−1c

+ (c− s)′X(X ′Σ−1X)−1X ′E[∇yc
′
wm(y)] +

q∑
a=1

E[ψ̂†
as

′
(a)∇yc

′
wm(y)], (3.12)

for the differential operator ∇y = ∂/∂y = (∂/∂y1, . . . , ∂/∂yN)
′.

ConcerningMSE(ψ, µ̂EB), on the other hand, it follows from Prasad and Rao (1990),
Datta and Lahiri (2000) and Kubokawa (2011) that

MSE(ψ, µ̂EB) = g1(ψ) + g2(ψ) + g3(ψ) +O(N−3/2), (3.13)

where g1(ψ) is given in (3.8), and

g2(ψ) =(c− s)′X(X ′Σ−1X)−1X ′(c− s),

g3(ψ) =tr
[(∂s′
∂ψ

)
Σ
(∂s′
∂ψ

)′
Cov (ψ̂

†
)
]
,

(3.14)

for s = Σ−1ZQZ ′c and Cov (ψ̂
†
) = E[(ψ̂

†
− E[ψ̂

†
])(ψ̂

†
− E[ψ̂

†
])′], ψ̂

†
being given in

(A4) in the appendix. Hence, from (3.10), the MSE of the constrained EBLUP µ̂CEB is
approximated as

MSE(ω, µ̂CEB) = g1(ψ) + g2(ψ) + g3(ψ) + I2(ω) + 2I3(ω) +O(N−3/2), (3.15)

It is noted that g1(ψ) = O(1), g2(ψ) = O(N−1), g3(ψ) = O(N−1), I2(ω) = O(N−1) and
I3(ω) = O(N−1). This implies that in the case of r = 1/2,

lim
N→∞

MSE(ω, µ̂CEB) = lim
N→∞

MSE(ψ, µ̂EB),

that is, the MSE of µ̂CEB is equal to that of µ̂EB in the first order, and their difference
appears in the second order terms.
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[Scenario 3] Case of r = 1. From Theorem A.3, it follows that

MSE(ω, µ̂CEB) =MSE(ψ, µ̂EB) + E[{c′wm(y)}2] + 2I32(ω) +O(N−3/2), (3.16)

where

I32(ω) = (c− s)′X(X ′Σ−1X)−1X ′E[∇yc
′
wm(y)] +

q∑
a=1

E[ψ̂†
as

′
(a)∇yc

′
wm(y)]. (3.17)

In the case that m(y) = 0, it is simplified as

MSE(ω, µ̂CEB) =MSE(ψ, µ̂EB) +O(N−3/2),

that is, the constrained EBLUP has the same MSE to EBLUP up to O(N−1).

Example 3.1 (variance constraint) Consider the following variance constraint which
benchmarks the variance of estimates:

(V(r))

{
(V1) W ′Ωθ̂ =W ′Ωθ̂

EB
,

(V2) θ̂
′
PΩθ̂ = t

(r)
2 (y) for the function t

(r)
2 (y) given in (2.19).

(3.18)

This corresponds to the case that m(y) = 0 and

h(ψ) =
1

N r
tr [PΩ(Q

−1 +Z ′R−1Z)−1]. (3.19)

Then, the constrained EBLUP is

µ̂CEB = µ̂EB + {a(r)(y)− 1}c′Ω−1PΩθ̂
EB
, (3.20)

where

{a(r)(y)}2 = 1 +
1

N r

tr [PΩ(Q̂
−1

+Z ′R̂
−1
Z)−1]

(θ̂
EB

)′PΩθ̂
EB

. (3.21)

The corresponding approximations of MSE of the constrained EBLUP can be provided
from the above results.

Example 3.2 (mean constraint) Consider the following mean constraint which bench-
marks the mean of estimates:

(M)

{
(M1) W ′Ωθ̂ =W ′Ωy,

(M2) θ̂
′
PΩθ̂ = (θ̂

EB
)′PΩθ̂

EB
.

(3.22)

In this case, h(ψ) = 0 or a(y) = 1, and m(y) = W ′Ω(y − θ̂
EB

) = W ′ΩR̂Σ̂
−1
(y −

Xβ̂(ψ̂)) in (3.1). From Proposition A.1, it follows that

MSE(ω, µ̂CEB) =MSE(ψ, µ̂EB) + c′wW
′ΩRΣ−1RΩWcw

+ 2(c− s)′X(X ′Σ−1X)−1X ′Σ−1RΩWcw +O(N−3/2). (3.23)

It is easily seen that MSE of µ̂CEB is equal to MSE of µ̂EB in the first order.
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3.2 Approximated unbiased estimator of MSE

We here provide an asymptotically unbiased estimator of MSE(ω, µ̂CEB) with second-
order accuracy for µ̂CEB given in (3.2).

The parametric bootstrap method is useful for estimating second-order unbiased es-
timators. Based on Butar and Lahiri (2003), Hall and Maiti (2006) and Kubokawa and
Nagashima (2012) and others, we consider the following conditional linear mixed model
given y:

y∗ =Xβ̂(ψ̂) +Zv∗ + ϵ∗, (3.24)

where X and Z are the same matrices as given in (2.1), and given y, v∗ and ϵ∗ are

conditionally mutually independently distributed as v∗|y ∼ NM(0,Q(ψ̂)) and ϵ∗|y ∼
NN(0,R(ψ̂)). Then, Kubokawa and Nagashima (2012) suggested the second-order unbi-
ased estimator of MSE(ψ, µ̂EB), given by

mse∗EB = 2{g1(ψ̂) + g2(ψ̂)} − E∗[g1(ψ̂
∗
) + g2(ψ̂

∗
)|y] + g∗3(ψ̂), (3.25)

where
g∗3(ψ̂) = E∗[{s(ψ̂

∗
)− s(ψ̂)}′Σ̂(ψ̂){s(ψ̂

∗
)− s(ψ̂)}|y].

[1] General case of r ≥ 0. We can get a second-order unbiased estimator by
estimating I2 and I3 given in (3.4) directly. Based on the model (3.24), define I∗3 by

I∗3 = E∗
[
(µ̂EB∗ − µ̂B∗)

{
{a(y∗)− 1}c′Ω−1PΩθ̂

EB∗
+ c′wm(y∗)

}
|y
]
, (3.26)

where for β̂
∗
(ψ̂

∗
) = (X ′Σ̂(ψ̂

∗
)−1X)−1X ′Σ̂(ψ̂

∗
)−1y∗,

µ̂EB∗ =c′Xβ̂
∗
(ψ̂

∗
) +ZQ(ψ̂∗)Z ′Σ(ψ̂

∗
)−1(y∗ −Xβ̂

∗
(ψ̂

∗
)),

µ̂B∗ =c′Xβ̂(ψ̂) +ZQ(ψ̂)Z ′Σ(ψ̂)−1(y∗ −Xβ̂(ψ̂)),
(3.27)

Then, from Theorem A.4, a second-order unbiased estimator of MSE(ω, µ̂CEB) is given
by

mse∗CEB = mse∗EB + Î2 + 2I∗3 , (3.28)

where
Î2 =

{
{a(y)− 1}c′Ω−1PΩθ̂

EB
+ c′wm(y)

}2
. (3.29)

[2] Case of r = 1/2. In this case, we can consider two other estimators using
the second-order approximation of MSE given in the previous section. One is a proce-
dure based on the Taylor series expansion. For the MSE MSE(ψ, µ̂EB) of the EBLUP
µ̂EB, Prasad and Rao (1990), Datta and Lahiri (2000) and Kubokawa (2010) derived a
second-order unbiased estimator, denoted by mseEB, based on Taylor series approxima-
tion. Together with Theorem A.2, we get the second order unbiased estimator

mseCEB = mseEB + I2(ψ̂) + 2I3(ψ̂), (3.30)

which satisfies that E[mseCEB] =MSE(ω, µ̂CEB) +O(N−3/2).
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Another second-order unbiased estimator for r = 1/2 can be derived from Theorem
A.5, and it is given by

mse∗∗CEB = mse∗EB + I
∗
2 + 2I

∗
3, (3.31)

where for ω̂ = (ψ̂, β̂(ψ̂)) and β̂ = β̂(ψ̂),

I
∗
2 =

1

4

[
{A(ω̂)}2 − 1

]2
B(ω̂) +

{
c′wm(y)

}2

+
[
{A(ω̂)}2 − 1

]
c′Ω−1PΩ

{
Xβ̂c′wm(y) +ZQ̂Z ′Σ̂

−1
E∗

[
(y∗ −Xβ̂)}c′wm(y∗)|y

]}
,

(3.32)

I
∗
3 =

1

2

[
{A(ω̂)}2 − 1

]
E∗

[
(µ̂EB∗ − µ̂B∗)c′Ω−1PΩθ̂

B∗
|y
]
+ E∗

[
(µ̂EB∗ − µ̂B∗)c′wm(y∗)|y

]
,

(3.33)

[3] Case of r = 1. The estimator given in (3.31) is applicable to the case of r = 1, and
the second order unbiased estimator can be provided by putting A(ω̂) = 1 in mse∗∗CEB. It
can be seen that the resulting estimator is identical to mse∗CEB given by

mse∗CEB = mse∗EB +
{
c′wm(y)

}2
+ 2E∗

[
(µ̂EB∗ − µ̂B∗)c′wm(y∗)|y

]
, (3.34)

which is identical to mse(µ̂CEB) given in (3.28) for a(y) = 1.

4 Simulation and Empirical Studies in the Fay-Herriot

model

In this section, we apply the proposed estimator to the Fay-Herriot model, and investigate
the performances by simulation and an empirical example.

4.1 Constrained EBLUP and MSE estimation in the Fay-Herriot
model

The basic area level model proposed by Fay and Herriot (1979) is described by

yi = x
′
iβ + vi + εi, i = 1, . . . , k, (4.1)

where k is the number of small areas, xi is a p × 1 vector of explanatory variables, β is
a p× 1 unknown common vector of regression coefficients, and vi’s and εi’s are mutually
independently distributed random errors such that vi ∼ N (0, ψ) and εi ∼ N (0, di) for
known di’s. LetX = (x1, . . . ,xk)

′, y = (y1, . . . , yk)
′, and let v and ϵ be similarly defined.

Then, the model is expressed in vector notations as y =Xβ+v+ϵ and y ∼ N (Xβ,Σ),
where Σ = Σ(ψ) = ψIk +D for D = diag (d1, . . . , dk). In this model, Z = Ik, R = D
and Q = ψIk.

As estimators of ψ, we here use the truncated Prasad-Rao estimator and the truncated
Fay-Herriot estimator. The truncated Prasad-Rao estimator is ψ̂PR = {(k−p)−1(y′E0y−
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tr [DE0]), k
−1/2} for E0 = Ik − X(X ′X)−1X ′. Then, Bias(ψ̂PR) = E[ψ̂PR − ψ] =

O(k−3/2) and V ar(ψ̂PR) = E[(ψ̂PR − ψ)2] = 2k−2trΣ2 + O(k−3/2). The truncated Fay-

Herriot estimator is ψ̂FH = max{ψ0, k
−1/2}, where ψ0 is the solution of the equation

LFH(ψ0) = 0, where

LFH(ψ0) = y
′ {Σ(ψ0)

−1 −Σ(ψ0)
−1X(X ′Σ(ψ0)

−1X)−1X ′Σ(ψ0)
−1
}
y − (k − p).

Then, Bias(ψ̂FH) = 2{ktr [Σ−2] − (tr [Σ−1])2}/(tr [Σ−1])3 + O(k−3/2) and V ar(ψ̂FH) =
2k/(tr [Σ−1])2 +O(k−3/2).

As the constrained EBLUP, we consider the case that L = 1, W = j = (1, . . . , 1)′ ∈
Rk, Ω = D−1 and c = ei, where the i-th element of ei is one and the other elements
are zeros. Note that PΩ = D−1 − (j ′d∗)

−1d∗d
′
∗ and Ω−1PΩ = Ik − (j ′d∗)

−1jd′
∗ for

d∗ = Ωj = (d−1
1 , . . . , d−1

k )′. Then from (3.2), the constrained EBLUP under the constraint
(3.1) is written as

θ̂CEB
i = θ̂EB

i + {a(y)− 1}
{
θ̂EB
i − (j ′d∗)

−1d′
∗θ̂

EB
}
+ (j ′d∗)

−1m(y), (4.2)

where θ̂
EB

=Xβ̂(ψ̂) + ψ̂Σ̂
−1
(y −Xβ̂(ψ̂)) and a(y) is given in (3.3).

As derived by Prasad and Rao (1990) and Datta, Rao and Smith (2005), EBLUP θ̂EB
i

is θ̂EB
i = x′

iβ̂(ψ̂)+ {1− γi(ψ̂)}(yi−x′
iβ̂(ψ̂)) for γi(ψ) = di/(ψ+ di), and the second-order

approximation of the MSE is MSE(ψ, θ̂EB
i ) = g1(ψ) + g2(ψ) + g3(ψ) + O(k−3/2) where

g1(ψ) = di{1 − γi(ψ)}, g2(ψ) = γi(ψ)
2x′

i(X
′Σ−1X)−1xi and g3(ψ) = d−1

i γi(ψ)
3V ar(ψ̂)

for s(ψ) = {1 − γi(ψ)}ei. Also, the second-order unbiased estimators of MSE(ψ, θ̂EB
i )

are given by

mseEB =g1(ψ̂) + g2(ψ̂) + 2g3(ψ̂)− g11(ψ̂), (4.3)

mse∗EB =2{g1(ψ̂) + g2(ψ̂)} − E∗
[
g1(ψ̂

∗) + g2(ψ̂
∗)
∣∣y]+ g3

∗(ψ̂), (4.4)

where g11(ψ) = γi(ψ)
2Bias(ψ̂) and g3

∗(ψ̂) = E∗
[
{γi(ψ̂∗)− γi(ψ̂)}2(ψ̂ + di)|y

]
. It is noted

that mseEB is based on the Taylor series approximation and mse∗EB is the parametric
bootstrap procedure given in (3.25).

In this section, we treat the variance constraint (3.18) and the mean constraint (3.22)
explained in Examples 3.1 and 3.2. For the variance constraint (3.18), m(y) and h(ψ)
are given by m(y) = 0 and h(ψ) = N−rtr [PΩψD(ψIk + D)−1]. For simplicity, the
constrained EBLUP θ̂CEB

i under the variance constraint for r = 0, 0.5, 1 are denoted by
cEBV 0, cEBV 0.5 and cEBV 1, respectively. For the mean constraint (3.22), m(y) and h(ψ)

are given by m(y) = j ′Σ̂
−1
(y−Xβ̂(ψ̂)) and h(ψ) = 0, and the constrained EBLUP θ̂CEB

i

under the mean constraint is denoted by cEBM .

For the constrained EBLUP cEBV 0, cEBV 0.5, cEBV 1 and cEBM , the second-order
unbiased estimator of MSE is given in (3.28), which is expressed in this model as

m∗
CEB = mse∗EB + Î2 + 2I∗3 , (4.5)
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where Î2 =
{
{a(r)(y)− 1}{θ̂EB

i − (j ′d∗)
−1d′

∗θ̂
EB

}+ (j ′d∗)
−1m(y)

}2
and

I∗3 = E∗
[
(θ̂EB∗

i − θ̂B∗
i )

{
{a(r)(y∗)− 1}{θ̂EB∗

i − (j ′d∗)
−1d′

∗θ̂
EB

}+ (j ′d∗)
−1mEB(y∗)

}]
,

for θ̂EB∗
i = x′

iβ̂
∗
(ψ̂∗)+{1−γi(ψ̂∗)}(y∗i −x′

iβ̂
∗
(ψ̂∗)), θ̂B∗

i = x′
iβ̂(ψ̂)+{1−γi(ψ̂)}(y∗i −x′

iβ̂(ψ̂))
and a(r)(y) given in (3.21).

For the estimator cEBV 0.5, we can provide two other second order unbiased estimators
given in (3.30) and (3.31). Thus, we have three estimators m∗

CEB,

mV 0.5 =mseEB + I2(ω̂) + 2I3(ω̂), (4.6)

m∗∗
V 05 =mse

∗
EB + I2(ω̂) + 2I

∗
3, (4.7)

where

I2(ω) =4−1
[
{A(ω)}2 − 1

]2
B(ω),

I3(ω) =2−1
[
{A(ω)}2 − 1

]
γi(ψ)x

′
i(X

′Σ−1X)−1X ′Σ−1ψ(Ik − (j ′d∗)
−1jd′

∗)ei,

I
∗
3 =2−1

[
{A(ψ̂)}2 − 1

]
E∗

[
(θ̂EB∗

i − θ̂B∗
i ){θ̂B∗

i − (j ′d∗)
−1d′

∗θ̂
B∗
}
]
.

Here, A(ω) and B(ω) are given by

A(ω)2 =
h(ψ)

β′X ′PΩXβ + ψtr [PΩΣ
−1]

+ 1,

B(ω) ={x′
iβ − (j ′d∗)

−1d′
∗Xβ}2 + ψ2{ei − (j ′d∗)

−1d∗}′Σ−1{ei − (j ′d∗)
−1d∗}.

For the estimator cEBV 1, we have three types of second-order unbiased estimators,
given by m∗

CEB, mV 1 = mseEB and m∗
V 1 = mse∗EB.

For second-order unbiased estimator of MSE of the estimator cEBM , from (3.34) and
(3.23), we have

m∗
CEB =mse∗EB +

{
(j ′d∗)

−1m(y)
}2

+ 2E∗

[
(θ̂EB∗

i − θ̂B∗
i )(j ′d∗)

−1m(y∗)
]
, (4.8)

mM =mseEB + (j ′d∗)
−2j ′Σ̂

−1
j + 2(j ′d∗)

−1γi(ψ̂)x
′
i(X

′Σ̂
−1
X)−1X ′Σ̂

−1
j, (4.9)

for m(y∗) = j ′Σ̂(ψ̂∗)−1(y∗ −Xβ̂
∗
(ψ̂∗)).

4.2 Simulation results

We now investigate the performances of MSE of the constrained EBLUP and the per-
formances of the MSE estimators. For the purpose, we adopt a part of the simulation
framework of Datta, et al . (2005) for our study. We consider the Fay-Herriot model (4.1)
with k = 15, ψ = 1 and two di-patterns: (a) 0.7, 0.6, 0.5, 0.4, 0.3; (b) 4.0, 0.6, 0.5, 0.4, 0.1,
which correspond to patterns (a) and (c) of Datta, et al . (2005). Pattern (a) is less variable
in di-values, while pattern (b) has larger variability. There are five groups G1, . . . , G5 and
three small areas in each group. The sampling variances di are the same for area within
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the same group. Let us consider the case that X ′β = 0 for simplicity as handled in
Chatterjee, et al . (2008). Then, θi = vi, θ̂

EB
i = {1− γi(ψ̂)}yi for γi(ψ) = di/(ψ + di).

We first investigate the values of MSE of the EBLUP and the constrained EBLUP
by simulation based on 100,000 replications. We compare the EBLUP θ̂EB

i , the variance
constrained EBLUPs cEBV 0, cEBV 0.5 and cEBV 1 for r = 0, 0.5 and 1, and the mean
constrained EBLUP cEBM , whose MSEs are denoted by MEB, MV 0, MV 0.5, MV 1 and
MM . Those numerical values are reported in Table 1. From this table, it is seen that
MV 0 is slightly larger than MEB, while MSEs of the other constrained EBLUPs are close
to MEB, the MSE of EBLUP. The relative fluctuations of MSE M over MEB, defined by

100× (M −MEB)/MEB,

are also given in parentheses in the table. The relative fluctuations of MV 0 range from
1.4% ∼ 6.3% and they are about 5% for the Prasad-Rao estimator in the pattern (a).
Although the variance constrained EBLUP cEBV 0.5 is made so as to increase the sampling
variance, the resulting MSEs are close to MEB and are smaller than MEB in some cases.
The relative fluctuations of MM range from 0.4% ∼ 3.4%.

We next investigate the performances of the proposed estimators of the MSE. We treat
the estimator m∗

CEB for the MSE MV 0, the estimators m∗
CEB, m

∗
V 0.5 and mV 0.5 for MV 0.5,

the estimators m∗
CEB, m

∗
V 1 and mV 1 for MV 1, and the estimators m∗

CEB and mM for MM .

The relative bias and the risk functions of MSE estimator msei for MSE MSE(ω, θ̂i) are
given by

Bi(ω,msei) =100× E
[
msei −MSE(ω, θ̂i)

]
/MSE(ω, θ̂i),

Ri(ω,msei) =100× E
[{
msei −MSE(ω, θ̂i)

}2
]
/{MSE(ω, θ̂i)}2.

These values are computed as average values based on 10,000 simulation runs where the
size of the bootstrap sample is 1,000. Further, those values are averaged over areas within
groups Gi, i = 1, . . . , 5, and they are reported in Tables 2 and 3, respectively, for the
Prasad-Rao and the Fay-Herriot estimators. Through these tables, it is seen that the
estimators m∗

CEB, m
∗
V 0.5 and m∗

V 1 have smaller biases but larger risks in the pattern (a)
than the estimators mV 0.5, mV 1 and mM based on the Taylor series expansion. For the
pattern (b), the MSE estimators with the Prasad-Rao estimator are not good in terms of
biases and risks, but the MSE estimators with the Fay-Herriot estimator give appropriate
biases and risks except G1. The MSE estimator m∗

CEB with the Fay-Herriot estimator is
recommendable as a simple and useful procedure.

4.3 An example

We apply the benchmarked estimates and the estimates of the MSE to the data in the
Survey of Family Income and Expenditure (SFIE) in Japan.

In this study, we use the data of the disbursement item ‘Education’ in the survey in
November, 2011. The average disbursement (scaled by 1,000 Yen) at each capital city of
47 prefectures in Japan is denoted by yi for i = 1, . . . , 47, and each variance di is calculated
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Table 1: Values of MSE MEB of EBLUP and MSEs MV 0, MV 0.5, MV 1 and MM of the
constrained EBLUPs in patterns (a) and (b) for the Prasad-Rao estimator ψ̂PR and Fay-

Herriot estimator ψ̂FH and ψ = 1 where the values in the parentheses denote the relative
fluctuations over MEB in percentage

pattern (a) pattern (b)

di MEB MV 0 MV 0.5 MV 1 MM di MEB MV 0 MV 0.5 MV 1 MM

Prasad-Rao estimator ψ̂PR

G1 0.7 0.438 0.460 0.438 0.437 0.447 4.0 0.909 0.963 0.921 0.912 0.917

(5.1) (0.0) (−0.1) (2.1) (6.0) (1.3) (0.3) (1.0)

G2 0.6 0.398 0.418 0.397 0.397 0.407 0.6 0.425 0.435 0.424 0.424 0.427

(5.0) (−0.2) (−0.2) (2.2) (2.4) (−0.1) (−0.1) (0.6)

G3 0.5 0.354 0.371 0.352 0.353 0.362 0.5 0.378 0.386 0.377 0.378 0.380

(5.0) (−0.4) (−0.2) (2.3) (2.0) (−0.3) (−0.2) (0.5)

G4 0.4 0.303 0.318 0.301 0.302 0.310 0.4 0.325 0.329 0.323 0.324 0.326

(5.1) (−0.6) (−0.3) (2.6) (1.5) (−0.6) (−0.2) (0.4)

G5 0.3 0.244 0.257 0.242 0.243 0.251 0.1 0.100 0.101 0.098 0.099 0.101

(5.5) (−0.8) (−0.4) (3.1) (1.4) (−1.4) (−0.5) (1.9)

Fay-Herriot estimator ψ̂FH

G1 0.7 0.438 0.457 0.437 0.437 0.446 4.0 0.853 0.875 0.857 0.854 0.858

(4.4) (−0.2) (−0.2) (2.0) (2.5) (0.5) (0.1) (0.6)

G2 0.6 0.398 0.417 0.397 0.397 0.406 0.6 0.401 0.413 0.401 0.400 0.404

(4.6) (−0.3) (−0.2) (2.1) (3.0) (0.0) −0.1) (0.8)

G3 0.5 0.353 0.371 0.352 0.352 0.361 0.5 0.355 0.366 0.355 0.355 0.358

(5.0) (−0.4) (−0.2) (2.3) (3.1) (−0.1) (−0.1) (0.8)

G4 0.4 0.302 0.318 0.300 0.301 0.310 0.4 0.303 0.313 0.303 0.303 0.306

(5.5) (−0.5) (−0.3) (2.6) (3.3) (−0.2) (−0.1) (0.9)

G5 0.3 0.242 0.258 0.241 0.242 0.250 0.1 0.093 0.099 0.093 0.093 0.097

(6.3) (−0.6) (−0.4) (3.2) (5.8) (−0.4) (−0.2) (3.4)
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Table 2: Values of relative biases and risks of the MSE estimators where ψ = 1 and it is
estimated by the Prasad-Rao estimator ψ̂PR

MV 0 MV 0.5 MV 1 MM

di m∗
CEB m∗

CEB m∗
V 0.5 mV 0.5 m∗

CEB m∗
V 1 mV 1 m∗

CEB mM

bias in pattern (a)

G1 0.7 −0.85 −1.86 −1.39 2.66 −2.15 −2.14 2.31 −1.95 2.49

G2 0.6 −0.49 −1.59 −1.02 3.10 −1.92 −1.87 2.56 −1.71 2.81

G3 0.5 −0.11 −1.31 −0.60 3.57 −1.67 −1.57 2.81 −1.42 3.16

G4 0.4 0.36 −0.97 −0.10 4.10 −1.38 −1.21 3.07 −1.08 3.58

G5 0.3 0.81 −0.60 0.45 4.67 −1.06 −0.82 3.31 −0.67 4.07

risk in pattern (a)

G1 0.7 6.44 7.17 7.67 3.69 7.51 7.62 3.56 6.78 3.11

G2 0.6 5.55 6.26 6.76 2.87 6.60 6.71 2.72 5.89 2.32

G3 0.5 4.68 5.28 5.77 2.06 5.61 5.71 1.90 4.94 1.56

G4 0.4 3.78 4.20 4.69 1.31 4.53 4.63 1.13 3.93 0.88

G5 0.3 2.73 3.03 3.51 0.70 3.35 3.44 0.51 2.89 0.38

bias in pattern (b)

G1 4.0 −9.91 −10.93 −11.99 7.43 −11.23 −11.63 8.46 −11.18 8.32

G2 0.6 −5.81 −8.10 −8.76 44.07 −8.73 −8.87 43.76 −8.25 43.95

G3 0.5 −5.35 −7.88 −8.49 48.66 −8.59 −8.69 48.14 −7.99 48.47

G4 0.4 −4.63 −7.53 −8.07 54.16 −8.32 −8.39 53.30 −7.57 53.82

G5 0.1 −0.00 −3.98 −4.07 63.09 −5.06 −4.97 60.83 −2.59 61.98

risk in pattern (b)

G1 4.0 39.67 43.74 45.15 27.39 45.19 45.51 28.02 44.04 27.39

G2 0.6 12.61 14.69 15.52 25.76 15.42 15.68 25.60 14.09 25.97

G3 0.5 10.70 12.69 13.48 36.35 13.39 13.65 35.93 12.03 36.53

G4 0.4 8.66 10.49 11.23 52.54 11.17 11.41 51.67 9.75 52.62

G5 0.1 1.62 2.17 2.52 111.05 2.58 2.70 107.88 2.15 109.80
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Table 3: Values of relative biases and risks of the MSE estimators where ψ = 1 and it is
estimated by the Fay-Herriot estimator ψ̂FH

MV 0 MV 0.5 MV 1 MM

di m∗
CEB m∗

CEB m∗
V 0.5 mV 0.5 m∗

CEB m∗
V 1 mV 1 m∗

CEB mM

bias in pattern (a)

G1 0.7 −0.96 −1.93 −1.38 2.20 −2.21 −2.15 1.72 −2.02 1.96

G2 0.6 −0.55 −1.61 −0.97 2.59 −1.93 −1.84 1.98 −1.72 2.27

G3 0.5 −0.08 −1.23 −0.47 3.05 −1.58 −1.46 2.28 −1.34 2.65

G4 0.4 0.50 −0.75 0.14 3.60 −1.15 −0.99 2.64 −0.87 3.11

G5 0.3 1.08 −0.20 0.88 4.23 −0.63 −0.43 3.01 −0.29 3.66

risk in pattern (a)

G1 0.7 6.17 6.95 7.42 3.83 7.26 7.36 3.70 6.58 3.24

G2 0.6 5.32 6.05 6.53 3.02 6.38 6.47 2.87 5.72 2.46

G3 0.5 4.51 5.09 5.58 2.21 5.41 5.51 2.05 4.80 1.69

G4 0.4 3.68 4.05 4.53 1.44 4.37 4.46 1.27 3.82 0.98

G5 0.3 2.73 2.92 3.40 0.79 3.23 3.32 0.62 2.81 0.43

bias in pattern (b)

G1 4.0 −3.62 −3.70 −3.89 −1.33 −3.71 −3.82 −1.02 −3.68 −1.00

G2 0.6 −1.25 −2.02 −1.91 1.55 −2.23 −2.24 1.40 −2.08 1.65

G3 0.5 −0.80 −1.64 −1.46 1.97 −1.88 −1.86 1.72 −1.71 2.02

G4 0.4 −0.20 −1.16 −0.90 2.46 −1.43 −1.39 2.09 −1.23 2.47

G5 0.1 1.72 0.68 1.38 3.80 0.36 0.48 2.86 0.83 3.86

risk in pattern (b)

G1 4.0 22.51 23.21 23.45 21.19 23.43 23.46 21.29 22.97 20.89

G2 0.6 6.14 6.79 7.12 3.67 7.03 7.10 3.61 6.61 3.39

G3 0.5 5.16 5.72 6.04 2.70 5.95 6.03 2.63 5.54 2.43

G4 0.4 4.15 4.57 4.88 1.76 4.79 4.86 1.68 4.38 1.52

G5 0.1 0.96 0.73 0.93 0.16 0.85 0.89 0.09 0.89 0.20
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Table 4: Values of the EBLUP and the variance constrained EBLUPs with their estimates
of the MSE (the MSE estimates are given in parenthesis)

Prefecture di yi x′
iβ̂ EB cEBV 0 cEBV 0.5 cEBV 1

Ibaraki 12.49 8.10 9.45 8.77 8.72 8.76 8.77

(5.34) (5.90) (5.45) (5.38)

Tochigi 62.56 10.03 9.48 9.57 9.71 9.59 9.58

(7.05) (7.76) (7.18) (7.09)

Gunma 5.38 5.21 9.99 6.63 6.08 6.54 6.61

(3.48) (4.20) (3.57) (3.51)

Saitama 9.01 12.33 14.30 13.14 14.12 13.30 13.17

(5.31) (6.81) (5.43) (5.34)

Chiba 91.77 30.71 12.17 14.43 15.71 14.63 14.46

(7.73) (9.96) (7.87) (7.75)

Tokyo 3.65 15.45 13.16 14.94 16.34 15.17 14.98

(2.79) (5.01) (2.90) (2.81)

Kanagawa 27.48 23.25 12.54 15.93 17.56 16.19 15.97

(7.21) (10.62) (7.42) (7.25)

based on data of the disbursement ‘Education’ at the same city every November in the
past ten years. Although the average disbursements in SFIE are reported every month,
the sample sizes are around 100 for most prefectures, and data of the item ‘Education’
have high variability. On the other hand, we have data in the National Survey of Family
Income and Expenditure (NSFIE) for 47 prefectures. Since NSFIE is based on much
larger sample than SFIE, the average disbursements in NSEDI are more reliable, but this
survey has been implemented every five years. In this study, we use the data of the item
‘Education’ of NSFIE in 2009, which is denoted by Xi for i = 1, . . . , 47. Thus, we apply
the Fay-Herriot model (4.1) or

yi = x
′
iβ + vi + εi, i = 1, . . . , k,

where x′
i = (1, Xi), β = (β1, β2)

′ and k = 47.

The Fay-Herriot estimate of ψ is 12.752, and the GLS estimates of β1 and β2 are 2.209
and 0.580, respectively. The EBLUP and the constrained EBLUP are given around (4.2).
We provide the values of the EBLUP EB and the variance constrained EBLUPs cEBV 0,
cEBV 0.5 and cEBV 1 for r = 0, 0.5 and 1. It is noted that the mean constrained EBLUP is
identical to the EBLUP EB in this case. These values in seven prefectures around Tokyo
are reported in Table 4 with the estimates of their MSEs based on m∗

CEB given in (4.5).

As seen from the table, the EBLUP EB shrinks yi more toward x′
iβ̂ for larger di. It is

seen that cEBV 0 is more variable than cEBV 0.5 and cEBV 1, and that the value of cEBV 0

in Tokyo is beyond the range between yi and x
′
iβ̂, while the values of the EBLUP and the

other constrained EBLUPs are between those values. Also, the MSE estimate of cEBV 0
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over that of EB is about 1.8 for Tokyo. Compared with cEBV 0, the estimates of cEBV 0.5

and cEBV 1 and the estimates of their MSEs are close to those of EB.

5 Concluding Remarks

In this paper, we have obtained the unified constrained estimator for the general mean-
variance constraints based on the constrained Bayes estimator, and have derived asymp-
totic approximations of MSE of the constrained EBLUP. Using this result, we have shown
that when the variance of estimates is constrained to be equal to the variance of prior
distribution, the resulting constrained EBLUP has a larger MSE than EBLUP in the
first order. This may be against the aim of EBLUP, since EBLUP is suggested to in-
crease the precision of the estimates. Thus, we have considered to modify the variance
constraints so that MSE of the constrained EBLUP is equal to MSE of EBLUP in the
first order, and then we have derived a second order approximation of the MSE. Also, we
have suggested an estimator of MSE of the constrained EBLUP based on the parametric
bootstrap method, and have shown that it is a second order unbiased estimator of MSE.
The performances of MSEs of the constrained EBLUPs and their estimators have been
investigated by simulation and empirical studies.
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A Appendix

A.1 Assumptions and lemmas

We here give analytical results and their proofs for asymptotic approximation of MSE of
µ̂CEB.

We begin by introducing the notations used here. Let C[k]
ψ denote a set of k times con-

tinuously differentiable functions with respect to ψ. For partial derivatives with respect
to ψ, we utilize the notations

A(i)(ψ) =
∂A(ψ)

∂ψi

, A(ij)(ψ) = ∂ijA(ψ) =
∂2A(ψ)

∂ψi∂ψj

,
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and

A(ijk)(ψ) = ∂ijkA(ψ) =
∂3A(ψ)

∂ψi∂ψj∂ψk

,

where A(ψ) is a scalar, vector or matrix.

For 0 ≤ i, j, k ≤ q, let λ1(Σ) ≤ · · · ≤ λN(Σ) be the eigenvalues of Σ and let those of
Σ(i), Σ(ij) and Σ(ijk) be λ

i
a(Σ), λija (Σ) and λijka (Σ) for a = 1, . . . , N respectively, where

|λi1(Σ)| ≤ · · · ≤ |λiN(Σ)|, |λij1 (Σ)| ≤ · · · ≤ |λijN(Σ)| and |λijk1 (Σ)| ≤ · · · ≤ |λijkN (Σ)|.

Throughout the paper, we assume the following conditions for large N and 1 ≤ i, j, k ≤
q:

(A1) The elements ofX, Z, Q, R and c are uniformly bounded, p and q are bounded,
and Z ′Z = [O(1)]M×M , ZZ ′ = [O(1)]N×N , where [O(1)]M×M means that every element
of the matrix is of O(1). The matrices X ′Σ−1X and W ′ΩW are positive definite and
X ′Σ−1X/N and W ′ΩW /N converge to positive definite matrices;

(A2) (i) Σ(ψ) ∈ C [2]
ψ , and limN→∞ λ1 > 0, limN→∞ λN < ∞, limN→∞ |λiN | < ∞ and

limN→∞ |λijN | < ∞. (ii) s = s(ψ) ∈ C [2]
ψ , and (y −Xβ)′s(ψ) = Op(1), (y −Xβ)′s(i) =

Op(1), (y −Xβ)′s(ij) = Op(1) and s
′
(i)s(j) = O(1).

(A3) ψ̂ = ψ̂(y) = (ψ̂1, . . . , ψ̂q)
′ is an estimator of ψ which satisfies that ψ̂(−y) = ψ̂(y)

and ψ̂(y +Xα) = ψ̂(y) for any p-dimensional vector α.

(A4) ψ̂ −ψ is expanded as

ψ̂ −ψ = ψ̂
†
+ ψ̂

††
+Op(N

−3/2), (A.1)

where ψ̂
†
= Op(N

−1/2) and ψ̂
††
= Op(N

−1). For ψ̂
†
= (ψ̂†

1, . . . , ψ̂
†
q)

′, it is assumed that ψ̂†
i

satisfies that (i) E[ψ̂†
i ] = O(N−1), (ii) s′(j)Σ∇yψ̂

†
i = Op(N

−1) and (iii) c′∇y∇′
yψ̂

†
as(a) =

Op(N
−1).

(A5) The functions t1(y) and t2(y) in the constraints (C1) and (C2) are expressed as

t1(y) =W
′Ωθ̂

EB
+m(y), m(y) = Op(N

1/2),

t2(y) =(θ̂
EB

)′PΩθ̂
EB

+ h(ψ̂), h(ψ) = O(N1−r),
(A.2)

for 0 ≤ r ≤ 1.

We shall derive approximations of MSE of the constrained EBLUP µ̂CEB given in (3.2)
under the general constraints given in (A5). It is noted thatMSE(ω, µ̂CEB) = I1+I2+3I3,
where

I1 =E[(µ̂
EB − µ)2],

I2 =E
[{

{a(y)− 1}c′Ω−1PΩθ̂
EB

+ c′wm(y)
}2]

,

I3 =E
[
(µ̂EB − µ)

{
{a(y)− 1}c′Ω−1PΩθ̂

EB
+ c′wm(y)

}]
,

(A.3)
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for θ̂
EB

=Xβ̂(ψ̂)+ZQ̂Z ′Σ̂
−1
(y−Xβ̂(ψ̂)) and µ̂EB = c′θ̂

EB
. Since µ̂B = E[µ|y] = c′θ̂

B

for θ̂
B
=Xβ +ZQZ ′Σ−1(y −Xβ), I3 is rewritten as

I3 = E
[
(µ̂EB − µ̂B)

{
{a(y)− 1}c′Ω−1PΩθ̂

EB
+ c′wm(y)

}]
. (A.4)

The following lemmas are useful for the purpose.

Lemma A.1 (Stein identity) Let y ∼ NN(Xβ,Σ). Then,

E[(y −Xβ)′g(y)] = E[∇′
y{Σg(y)}], (A.5)

where g(y) = (g1(y), . . . , gN(y))
′ is an absolutely continuous function and ∇y is the

differential operator defined by ∇y = ∂/∂y. Let A be an N × N matrix independent of
y, and let f(y) be a scalar function which is twice-differentiable with respect to y. Then,

E[u′Auf(y)] = tr [ΣA]E[f(y)] + tr [ΣAΣE[∇y∇′
yf(y)]]. (A.6)

The identity (A.5) is from Stein (1973), and the equation (A.6) can be derived by
using the Stein identity.

Lemma A.2 Assume the conditions (A1)-(A6). Then,

(θ̂
EB

)′PΩθ̂
EB
/N = ν0 + ν1, (A.7)

where
ν0 = {β′X ′PΩXβ + tr [Z ′PΩZQZ

′Σ−1Z]}/N,
and ν1 is a function with Op(N

−1/2). Also,

a(y)− 1 = A(ω)− 1 +Op(N
−1/2−r), (A.8)

where A(ω)− 1 = O(N−r) for A(ω) defined in (3.6).

Proof. To verify (A.7), note that θ̂
EB

is rewritten as θ̂
EB

= θ̂
B
+ (θ̂

EB
− θ̂

B
), where

θ̂
EB

− θ̂
B
= θ̂

B
+ R̂Σ̂

−1
{β̂(ψ̂)− β}+ (ZQ̂Z ′Σ̂

−1
−ZQZ ′Σ−1)(y −Xβ),

and it is seen that θ̂
EB

− θ̂
B

= [Op(N
−1/2)]N×N . Also note that E[(θ̂

B
)′PΩθ̂

B
] =

β′X ′PΩXβ + tr [Z ′PΩZQZ
′Σ−1Z]. Then,

(θ̂
EB

)′PΩθ̂
EB

=(θ̂
B
)′PΩθ̂

B
+ 2(θ̂

EB
− θ̂

B
)′PΩθ̂

B
+ (θ̂

EB
− θ̂

B
)′PΩ(θ̂

EB
− θ̂

B
)

=(θ̂
B
)′PΩθ̂

B
+Op(N

1/2),

since (θ̂
EB

− θ̂
B
)′PΩθ̂

B
= Op(N

1/2) and (θ̂
EB

− θ̂
B
)′PΩ(θ̂

EB
− θ̂

B
) = Op(1). Thus, it is

sufficient to verify that (θ̂
B
)′PΩθ̂

B
= E[(θ̂

B
)′PΩθ̂

B
] +Op(N

1/2). Since

1

N
E
[{

(θ̂
B
)′PΩθ̂

B
− E[(θ̂

B
)′PΩθ̂

B
]
}2]

=
2

N
tr
[{
Z ′PΩZQZ

′Σ−1Z
}2]

,
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which is of O(1) from (A1). This proves the approximation (A.7).

To verify (A.8), note that a(y)− 1 is rewritten as

a(y)− 1 =
{a(y)}2 − 1

a(y) + 1
=

h(ψ̂)

(θ̂
EB

)′PΩθ̂
EB

{a(y) + 1}
.

It is here noted that

h(ψ̂)

N
=
h(ψ)

N
+
∑
a

h(a)(ψ)

N
(ψ̂a − ψa) +Op(N

−1−r),

N

(θ̂
EB

)′PΩθ̂
EB

=
1

ν0
− ν1
ν0

+Op(N
−1).

Since 1/{1 + a(y)} can be similarly approximated as

{1 + a(y)}−1 = {1 +
√

1 + h(ψ)/(Nν0)}−1 +Op(N
−1/2−r),

we can see that

h(ψ̂)

(θ̂
EB

)′PΩθ̂
EB

{a(y) + 1}
=

h(ψ)

Nν0{1 +
√
1 + h(ψ)/(Nν0)}

+Op(N
−1/2−r),

={A(ω)− 1}+Op(N
−1/2−r).

Clearly, A(ω)− 1 = O(N−r) and we get Lemma A.2.

Lemma A.3 Assume the conditions (A1)-(A6). Then, I3 = O(N−1) for r ≥ 0.

Proof. Note that I3 = I31 + I32, where

I31 =E
[
(µ̂EB − µ̂B){a(y)− 1}c′Ω−1PΩθ̂

EB]
,

I32 =E
[
(µ̂EB − µ̂B)c′wm(y)

]
.

Since µ̂B = c′Xβ + s′(y −Xβ) for s = s(ψ) = Σ−1ZQZ ′c, it is seen that

µ̂EB − µ̂B = (c− ŝ)′X(β̂ − β) + (ŝ− s)′(y −Xβ), (A.9)

for ŝ = s(ψ̂) = Σ̂
−1
ZQ̂Z ′c. Clearly, µ̂EB − µ̂B = Op(N

−1/2). Since c′wm(y) =
Op(N

−1/2), it is observed that I32 = O(N−1).

To evaluate I31, we approximate µ̂EB − µ̂B as

µ̂EB − µ̂B =(c− s)′X(β̂(ψ̂)− β) + (ŝ− s)′(y −Xβ) +Op(N
−1)

=(c− s)′X(β̂(ψ̂)− β) +
q∑

a=1

s′(a)(ψ̂a − ψa)(y −Xβ) +Op(N
−1),
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where s(a) = ∂s(ψ)/∂ψa. Since β̂(a)(ψ) = ∂β̂(ψ)/∂ψa = Op(N
−1/2), it is noted that

β̂(ψ̂) = β̂(ψ) +
∑q

a=1 β̂(a)(ψ)(ψ̂a − ψa) + Op(N
−3/2), namely, β̂(ψ̂)− β̂(ψ) = Op(N

−1).

Then, µ̂EB − µ̂B can be further approximated as

µ̂EB − µ̂B =(c− s)′X(β̂(ψ)− β) +
q∑

a=1

s′(a)(ψ̂a − ψa)(y −Xβ) +Op(N
−1)

=(c− s)′X(X ′Σ−1X)−1X ′Σ−1(y −Xβ)

+

q∑
a=1

(y −Xβ)′s(a)ψ̂†
a +Op(N

−1), (A.10)

From Lemma A.2, it follows that a(y)−1 = A(ω)−1+Op(N
−1/2−r). Since c′Ω−1PΩθ̂

EB
=

c′Ω−1PΩθ̂
B
+c′Ω−1PΩ(θ̂

EB
− θ̂

B
) = c′Ω−1PΩθ̂

B
+Op(N

−1/2), I31 can be approximated
as

I31 =E
[
(µ̂EB − µ̂B)

{
{A(ω)− 1}+Op(N

−1/2−r)
}{
c′Ω−1PΩθ̂

B
+Op(N

−1/2)
}]

=E
[
(µ̂EB − µ̂B){A(ω)− 1}c′Ω−1PΩθ̂

B
]
+O(N−1) +O(N−1−r).

Using the approximation (A.10), we can evaluate I31 as

I31 =E
[{

(c− s)′X(X ′Σ−1X)−1X ′Σ−1(y −Xβ) +
q∑

a=1

(y −Xβ)′s(a)ψ̂†
a

}
× {A(ω)− 1}c′Ω−1PΩ{Xβ +ZQZ ′Σ−1(y −Xβ)}

]
+O(N−1).

It is easy to see that

E
[
(c− s)′X(X ′Σ−1X)−1X ′Σ−1(y −Xβ)c′Ω−1PΩ{Xβ +ZQZ ′Σ−1(y −Xβ)}

]
= (c− s)′X(X ′Σ−1X)−1X ′Σ−1ZQZ ′PΩc,

which is of O(N−1). The Stein identity (A.5) and the equation (A.6) are applied to get
that

E
[
(y −Xβ)′s(a)ψ̂†

ac
′Ω−1PΩ{Xβ +ZQZ ′Σ−1(y −Xβ)}

]
= c′Ω−1PΩXβE[s

′
(a)∇yψ̂

†
a] + c

′Ω−1PΩZQZ
′{s(a)E[ψ̂†

a] +ΣE[∇y∇′
yψ̂

†
a]s(a)

}
,

which can be verified to be of O(N−1) from the condition (A4). These show that I31 =
O(N−1) and the proof is complete.

A.2 Approximation of MSE

We now asymptotic approximations of MSE of the constrained EBLUP in the cases of
r = 0, r = 1/2 and r = 1.

[Scenario 1] Case of r = 0. Note that h(ψ) = O(N) for t2(y) in (3.1). From
Lemma A.3, it follows that

I3 = O(N−1/2). (A.11)

We can obtain the limiting value of I2 and get the following theorem.
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Theorem A.1 Assume the conditions (A1)-(A6) and r = 0. Then, MSE of µ̂CEB is
approximated as

MSE(ω, µ̂CEB) =MSE(ψ, µ̂EB) + {A(ω)− 1}2B(ω) +O(N−1/2), (A.12)

where A(ω) and B(ω) are defined in (3.6) and (3.7).

Proof. Note that I2 is expressed as

I2 = E
[{ h(ψ̂)

(θ̂
EB

)′PΩθ̂
EB

{a(y) + 1}
c′Ω−1PΩθ̂

EB
+ c′wm(y)

}2]
. (A.13)

From (A.7), it is noted that

{a(y)}2 = h(ψ̂)

(θ̂
EB

)′PΩθ̂
EB

+ 1 = {A(ω)}2 +Op(N
−1/2),

where Since c′wm(y) = Op(N
−1/2), it is seen that

I2 =E
[
{a(y)− 1}2c′Ω−1PΩθ̂

EB
(θ̂

EB
)′PΩΩ

−1c
]
+O(N−1/2)

={A(ω)− 1}2E
[
c′Ω−1PΩθ̂

B
(θ̂

B
)′PΩΩ

−1c
]
+O(N−1/2)

={A(ω)− 1}2B(ω) +O(N−1/2), (A.14)

which proves the theorem.

[Scenario 2] Case of r = 1/2. In this case, it is noted that h(ψ) = O(N1/2), and
we get the following theorem.

Theorem A.2 Assume the conditions (A1)-(A6) and r = 1/2. Then, MSE of µ̂CEB is
approximated as

MSE(ω, µ̂CEB) =MSE(ψ, µ̂EB) + I2(ω) + 2I3(ω) +O(N−3/2). (A.15)

for I2(ω) and I3(ω) given in (3.11) and (3.12).

Proof. Since h(ψ) = O(N1/2), it is seen that {a(y)}2 − 1 is equal to

h(ψ̂)

(θ̂
EB

)′PΩθ̂
EB

=
h(ψ)

β′X ′PΩXβ + tr [Z ′PΩZQZ
′Σ−1Z]

+Op(N
−1)

={A(ω)}2 − 1 +Op(N
−1),

for A(ω) given in (3.6). Note that {a(y)}2−1 = Op(N
−1/2) and {A(ω)}2−1 = O(N−1/2).

Since c′wm(y) = Op(N
−1/2), it is observed from (A.13) that I2 = O(N−1) and

I2 =E
[{ h(ψ̂)

(θ̂
EB

)′PΩθ̂
EB

{a(y) + 1}

}2{
c′Ω−1PΩθ̂

EB}2
]
+ E

[{
c′wm(y)

}2]
+ 2E

[ h(ψ̂)

(θ̂
EB

)′PΩθ̂
EB

{a(y) + 1}
c′Ω−1PΩθ̂

EB
c′wm(y)

]
=I21 + I22 + I23. (say)
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Noting that a(y) = {1 + [{a(y)}2 − 1]}1/2 = 1 +Op(N
−1/2), we can evaluate I21 as

I21 =E
[{ h(ψ̂)

2(θ̂
EB

)′PΩθ̂
EB

}2{
c′Ω−1PΩθ̂

EB}2
]
+O(N−3/2)

=
1

4

[
{A(ω)}2 − 1

]2
B(ω) +O(N−3/2).

Similarly,

I23 =E
[ h(ψ̂)

2(θ̂
EB

)′PΩθ̂
EB
c′Ω−1PΩθ̂

EB
c′wm(y)

]
+O(N−3/2)

=
1

2

[
{A(ω)}2 − 1

]
E
[
c′Ω−1PΩθ̂

EB
c′wm(y)

]
+O(N−3/2).

Since θ̂
EB

= θ̂
B
+ [Op(N

−1/2)]N×1, it is seen that

I23 =2−1
[
{A(ω)}2 − 1

]
E
[
c′Ω−1PΩ{Xβ +ZQZ ′Σ−1(y −Xβ)}c′wm(y)

]
+O(N−3/2). (A.16)

The Stein identity given in (A.5) gives the expression

I23 =2−1
[
{A(ω)}2 − 1

]{
c′Ω−1PΩXβE[c

′
wm(y)] + c′Ω−1PΩZQZ

′E[∇yc
′
wm(y)]

}
+O(N−3/2).

Hence, I2 is approximated as I2 = I2(ω) +O(N−3/2) for I2(ω) given in (3.11).
For I3, it is noted that I3 = O(N−1) and I3 is expressed as

I3 =E
[
(µ̂EB − µ̂B)

{ h(ψ̂)

(θ̂
EB

)′PΩθ̂
EB

{a(y) + 1}
c′Ω−1PΩθ̂

EB
+ c′wm(y)

}]
=E

[
(µ̂EB − µ̂B)

{ h(ψ̂)

2(θ̂
EB

)′PΩθ̂
EB
c′Ω−1PΩθ̂

EB
+ c′wm(y)

}]
+O(N−3/2),

Using the same argument as in the evaluation of I23, we can see that I3 = I31 + I32 +
O(N−3/2), where

I31 =
1

2

[
{A(ω)}2 − 1

]
E
[
(µ̂EB − µ̂B)c′Ω−1PΩθ̂

B
]
,

I32 =E
[
(µ̂EB − µ̂B)c′wm(y)

]
.

(A.17)
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Since µ̂EB − µ̂B = (c− s)′X(X ′Σ−1X)−1X ′Σ−1(y−Xβ) +
∑q

a=1(y−Xβ)′s(a)ψ̂†
a from

(A.9), it is seen that

I31 =
1

2

[
{A(ω)}2 − 1

]{
c′Ω−1PΩXβ

q∑
a=1

E[s′(a)Σ∇yψ̂
†
a]

+ (c− s)′X(X ′Σ−1)−1X ′Σ−1ZQZ ′PΩΩ
−1c

+

q∑
a=1

c′Ω−1PΩZQZ
′{s(a)E[ψ̂†

a] + E[∇y∇′
yψ̂

†
a]Σs(a)

}}
, (A.18)

I32 =(c− s)′X(X ′Σ−1X)−1X ′E[∇yc
′
wm(y)]

+

q∑
a=1

E[s′(a)Σ{∇yψ̂
†
a}c′wm(y)] +

q∑
a=1

E[ψ̂†
as

′
(a)∇yc

′
wm(y)]. (A.19)

From the condition (A4), it follows that E[s′(a)Σ∇yψ̂
†
a] = O(N−1), E[ψ̂†

a] = O(N−1),

c′E[∇y∇′
yψ̂

†
a]Σs(a) = O(N−1) and s′(a)Σ{∇yψ̂

†
a} = Op(N

−1). Thus, I3 is approximated

as I3 = I3(ω) +O(N−3/2) for I3(ω) given in (3.12). Therefore, the proof is complete.

[Scenario 3] Case of r = 1. In this case, from Theorem A.2, it follows that I2 =
E[{c′wm(y)}2] +O(N−3/2) and I3 = E[(µ̂EB − µ̂B)c′wm(y)] = I32 +O(N−3/2). Thus, we
get the following theorem.

Theorem A.3 Assume the conditions (A1)-(A6) and r = 1. Then, MSE of µ̂CEB is
approximated as

MSE(ω, µ̂CEB) =MSE(ψ, µ̂EB) + E[{c′wm(y)}2] + 2I32(ω) +O(N−3/2), (A.20)

for I32 given in (3.17).

Consider the case that m(y) = W ′Ω(y − θ̂
EB

) = W ′ΩR̂Σ̂
−1
(y −Xβ̂(ψ̂)). Then,

c′wm(y) is approximated as

c′wm(y) =c′wW
′ΩRΣ−1(y −Xβ) + c′wW ′Ω(R̂Σ̂

−1
−RΣ−1)(y −Xβ)

− c′wW ′ΩR̂Σ̂
−1
X(β̂(ψ̂)− β)

=c′wW
′ΩRΣ−1(y −Xβ) +Op(N

−1).

This implies that E[{c′wm(y)}2] = c′wW ′ΩRΣ−1RΩWcw +O(N−3/2). Also,

(c− s)′X(X ′Σ−1X)−1X ′E[∇yc
′
wm(y)]

=(c− s)′X(X ′Σ−1X)−1X ′Σ−1RΩWcw +O(N−3/2),

E[ψ̂†
as

′
(a)∇yc

′
wm(y)] =E[ψ̂†

a]s
′
(a)Σ

−1RΩWcw +O(N−3/2).

Since E[ψ̂†
a] = O(N−1) and s′(a)Σ

−1RΩWcw = O(N−1), it is seen that

E[ψ̂†
as

′
(a)∇yc

′
wm(y)] = O(N−3/2).

Hence, we get the following proposition.
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Proposition A.1 Assume the conditions (A1)-(A6) and r = 1. In the case that m(y) =

W ′Ω(y − θ̂
EB

), MSE of µ̂CEB is approximated as

MSE(ω, µ̂CEB) =MSE(ψ, µ̂EB) + c′wW
′ΩRΣ−1RΩWcw

+ 2(c− s)′X(X ′Σ−1X)−1X ′Σ−1RΩWcw +O(N−3/2). (A.21)

A.3 Estimation of MSE

We next provide a second-order unbiased estimator of the MSE(ω, µ̂CEB). It is noted
that I3 = O(N−1) from Lemma A.2. This implies that E[I∗3 ] = I3+O(N

−3/2) for I∗3 given

in (3.26). Also, note that Î2 given in (3.29) is an unbiased estimator of I2. Hence, we get
the following theorem.

Theorem A.4 Assume the conditions (A1)-(A6). Let mse(µ̂EB) be a second-order un-
biased estimator of MSE(ψ, µ̂EB), namely, E[mse(µ̂EB)] = MSE(ψ, µ̂EB) + O(N−3/2).
Then, the estimator given by

mse∗(µ̂CEB) = mse(µ̂EB) + Î2 + 2I∗3 (A.22)

satisfies that E[mse∗(µ̂CEB)] =MSE(ψ, µ̂CEB) +O(N−3/2).

This theorem holds for all r ≥ 0. In the case of r = 1/2, we can obtain another
second-order unbiased estimator based on the second-order approximation of MSE. It is
noted that I23 given in (A.16) is expressed as

I23 =2−1
[
{A(ω)}2 − 1

]{
c′Ω−1PΩXβ + c′Ω−1PΩZQZ

′Σ−1E
[
(y −Xβ)}c′wm(y)

]}
+O(N−3/2).

Since E
[
(y−Xβ)}c′wm(y)

]
can be estimated based on the parametric bootstrap method

as
E∗

[
(y∗ −Xβ̂(ψ̂))}c′wm(y∗)|y

]
.

Using the same argument, we can estimate I2(ψ) and I3(ψ) by I
∗
2 and I

∗
3, respectively,

given in (3.32) and (3.33).

Theorem A.5 Assume the conditions (A1)-(A6) and r = 1/2. Let mse(µ̂EB) be a
second-order unbiased estimator of MSE(ψ, µ̂EB). Define mse∗∗(µ̂CEB) by

mse∗∗(µ̂CEB) = mse(µ̂EB) + I
∗
2 + 2I

∗
3.

Then, mse∗∗(µ̂CEB) is a second-order unbiased estimator of MSE(ω, µ̂CEB), namely,

E[mse∗∗(µ̂CEB)] =MSE(ω, µ̂CEB) +O(N−3/2).
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