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Abstract. We derive the empirical content of an instrumental variables model of

sectorial choice with binary outcomes. Assumptions on selection include the sim-

ple, extended and generalized Roy models. The derived bounds are nonparametric

intersection bounds and are simple enough to lend themselves to existing inference

methods. Identification implications of exclusion restrictions are also derived.

Keywords: treatment effect, discrete outcomes, sectorial choice, partial identification, intersec-
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Introduction

A large literature has developed since Heckman and Honoré (1990) on the empirical content of the

Roy model of sectorial choice with sector specific unobserved heterogeneity. Most of this literature,

however, concerns the case of continuous outcomes and many applications, where outcomes are

discrete, fall outside its scope. They include analysis of the effects of different training programs

on the probability of renewed employment, of competing medical treatments or surgical procedures

on the probability of survival, of higher education on the probability of migration and of competing
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policies on schooling decisions in developing countries among numerous others. The Roy model is

still highly relevant to those applications, but very little is known of its empirical content in such

cases. The case of discrete outcomes is considered in Chesher (2010) but the analysis doesn’t apply

to binary outcomes. Sharp bounds are derived in binary outcome models with a binary endogenous

regressor in Shaikh and Vytlacil (2011), Chiburis (2010), Jun, Pinkse, and Xu (2010) and Mourifié

(2011) under a variety of assumptions, which all rule out sector specific unobserved heterogeneity.

Finally, Heckman and Vytlacil (1999) derive identification conditions in a parametric version of the

binary Roy model.

We consider three distinct versions of the binary Roy model: the original model, where selection

is based solely on the probability of success; the extended Roy model, where selection depends on

the probability of success and a function of observable variables (sometimes called “nonpecuniary

component”); and the generalized Roy model, with selection specific unobservable heterogeneity.

When considering the generalized Roy model, we further distinguish restrictions on the selection

equation and restrictions on the joint distribution of sector specific unobserved heterogeneity. We

specifically consider the case, where selection variables are independent of sector specific unobserved

heterogeneity and the case, where sector specific unobserved heterogeneity follows a factor structure

proposed in Aakvik, Heckman, and Vytlacil (2005). Following Heckman, Smith, and Clements

(1997), we apply results from optimal transportation theory to derive sharp bounds on the structural

parameters, from which a range of treatment parameters can be derived. More specifically, we apply

Theorem 1 of (Galichon and Henry 2011) (equivalently Theorem 3.2 of Beresteanu, Molchanov,

and Molinari (2011)) to derive bounds for the generalized binary Roy model. The latter Theorem

was recently applied in a similar context by Chesher, Rosen, and Smolinski (2011) to derive sharp

bounds for instrumental variable models of discrete choice. We spell out the point identification

implications of the bounds under certain exclusion restrictions. The bounds are simple enough to
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lend themselves to existing inferential methods, specifically Chernozhukov, Lee, and Rosen (2009)

in the instrumental variables case.

The remainder of the paper is organized as follows. Section 1 clarifies the analytical framework.

In Section 2, sharp bounds are derived for the binary Roy model, when selection depends only on the

probability of success and possibly on observable variables. Identification implications are spelled

out under exclusion restrictions. Section 3 considers the generalized binary Roy model and the last

section concludes.

1. Analytical framework

We adopt the framework of the potential outcomes model Y = Y1D + Y0(1 − D), where Y is

an observed outcome, D is an observed selection indicator and Y1, Y0 are unobserved potential

outcomes. Heckman and Vytlacil (1999) trace the genealogy of this model and we refer to them for

terminology and attribution. Potential outcomes are as follows:

Yd = 1{Y ∗
d > 0} = 1{F (d,Xd, ud) > 0}, d = 1, 0, (1.1)

where 1{.} denotes the indicator function and F is an unknown function of the vector of observable

random variables Xd and unobserved random variable ud. We make the following assumptions

throughout the paper.

Assumption 1 (Weak separability). The functions F (d,Xd, ud), d=1,0, both have weakly separable

errors. As shown in Vytlacil (2002), potential outcomes can then be written Yd = 1{fd(Xd) > ud}

without loss of generality.

Assumption 2 (Regularity). The sector specific unobserved variables ud, d = 1, 0, are uniformly

continuous with respect to Lebesgue measure, so that they may be assumed without loss of generality

to be distributed uniformly on [0, 1].
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The normalization of Assumption 2 is very convenient, since it implies fd(xd) = E(Yd|xd, z) and

bounds on treatment effects parameters can be derived from bounds on the structural parameters

f1 and f0.

Assumption 3 (Instruments). Observable variables Xd, d = 1, 0, and instruments Z are inde-

pendent of (u1, u0). Common components of X1 and X0 will be dropped from the notation in the

remainder of the paper and by slight abuse of notation, Xd will refer only to the variables that are

excluded from the equation for Y1−d and Z to variables that are excluded from both outcome equations

(when the case arises).

As was the case in Aakvik, Heckman, and Vytlacil (2005), many of the results apply to the Tobit

version of the model, where Yd = Y ∗
d 1{Y ∗

d > 0}, but for clarity of exposition, we only report results

pertaining to the binary case.

2. Sharp bounds for the binary Roy and extended Roy models

2.1. Simple binary Roy model. In the original model proposed by Roy (1951), the sector yielding

the highest outcome is selected, i.e., D = 1{Y ∗
1 > Y ∗

0 }. In the binary case, this is equivalent to

selecting the sector with the highest probability of success. The empirical content of the model

under this selection rule is characterized in Figures 1 and 2.

For each value of the exogenous observable variables and each value of the pair (u1, u0), the

outcome is uniquely determined. If the joint distribution were known, the likelihood of each of the

potential outcomes (Y = 1, D = 1), (Y = 1, D = 0), (Y = 0, D = 1) and (Y = 0, D = 0) would be

determined. However, only the marginal distributions of u1 and u0 are fixed, not the copula, so that

only the probability of vertical and horizontal bands in Figures 1 and 2 are uniquely determined.

Thus we see for instance that f1 = P(Y = 1, D = 1) is identified when f0 = 0 (as in Figure 2)
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Figure 1. Characterization of the empirical content of the simple binary Roy model

in the unit square of the (u1, u0) space.
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Figure 2. Characterization of the empirical content of the simple binary Roy model

in the unit square of the (u1, u0) space in case f0 = 0.

1− f1

f1

f1

(Y = 1, D = 1)

(Y = 0, D = 0)

(Y = 0, D = 1)



6 MARC HENRY AND ISMAEL MOURIFIÉ

and f0 = P(Y = 1, D = 0) is identified when f1 = 0. But in other cases (as in Figure 1), we only

know P(Y = 1, D = 1) ≤ f1 ≤ P(Y = 1) and P(Y = 1, D = 0) ≤ f0 ≤ P(Y = 1). The following

proposition, proved in the Appendix, shows that these bounds are sharp. In all that follows, we

shall use the notation P(i, j|X) for P(Y = i, D = j|X) and W = (Z, X1, X0), ω = (z, x1, x0).

Proposition 1 (Roy model). Under Assumptions 1-3, the following inequalities characterize the

empirical content of the model.

sup
x0,z

P(1, 1|x1, x0, z) ≤ f1(x1) ≤ inf
x0,z

[
P(1, 1|ω) + P(1, 0|ω)1{f0(x0) > 0}

]
(2.1)

sup
x1,z

P(1, 0|ω) ≤ f0(x0) ≤ inf
x1,z

[
P(1, 0|ω) + P(1, 1|ω)1{f1(x1) > 0}

]
(2.2)

where the infima and suprema are taken over the domains of the excluded variables Z, X1 or X0 as

indicated and when they exist.

Since the bounds in Proposition 1 are obtained as intersections over the domains of the excluded

variables, they are called “intersection bounds”. They are also semiparametric in the non excluded

variables. Inference on such bounds can be conducted with existing methods described in Cher-

nozhukov, Lee, and Rosen (2009).

A simple implication of selection equation D = 1{Y ∗
1 > Y ∗

0 } is that actual success is more likely

than counterfactual success.

Assumption 4 (Roy model). E(Yd|D = d, Z, X1, X0) ≥ E(Y1−d|D = d, Z, X1, X0) for d = 1, 0.
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Under Assumption 4, omitting conditioning variables for ease of notation,

fd = E[Yd]

= E[Yd|D = d]P(D = d) + E[Yd|D = 1− d]P(D = 1− d)

≤ P[Y = 1, D = d] + E[Y1−d|D = 1− d]P(D = 1− d)

= P(Y = 1, D = d) + P(Y = 1, D = 1− d).

Moreover, if fd > 0 and f1−d = 0, P(D = 1− d) = 0. This implies that

P(1, d|ω) ≤ E[Yd|ω] ≤ P(1, d|ω) + P(1, 1− d|ω)1{E[Y1−d|ω] > 0}

(with ω = (z, x1, x0)) characterizes the empirical content of the potential outcomes model Y =

Y1D + Y0(1 − D) in all generality (i.e., without weak separability and without assumptions on

the dimension of unobservable heterogeneity). It also shows that the simple binary Roy model

has no empirical content beyond Assumption 4. Indeed, bounds (2.1) and (2.1) still hold under

Assumptions 1-4. They are also sharp, since D = 1{Y ∗
1 > Y ∗

0 } implies Assumption 4. Therefore,

the empirical content of the model defined by Assumption 4 is the same as the empirical content of

the model defined by the selection equation D = 1{Y ∗
1 > Y ∗

0 }.

Corollary 1. The empirical content of the model defined by Assumptions 1-4 is characterized by

inequalities (2.1) and (2.2).

In case of exclusion restrictions, an immediate corollary to Proposition 1 gives conditions for

identification of the outcome equations.

Corollary 2 (Identification). Under Assumptions 1-4, the following hold (writing ω = (z, x1, x0)

as before).

a. If there is x0 ∈ Dom(X0) such that f0(x0) = 0, then f1 is identified over Dom(X1).
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b. If there is x1 ∈ Dom(X1) such that f1(x1) = 0, then f0 is identified over Dom(X0).

a’. Take x1 ∈ Dom(X1). If there is x0 ∈ Dom(X0) or z ∈ Dom(Z) such that P(1, 0|ω) = 0,

then f1(x1) is identified.

b’. Take x0 ∈ Dom(X0). If there is x1 ∈ Dom(X1) or z ∈ Dom(Z) such that P(1, 1|ω) = 0,

then f0(x0) is identified.

The existence of valid instruments or exclusion restrictions is often problematic in applications of

discrete choice models. However, in the Roy model of sectorial choice with sector specific unobserved

heterogeneity, it is natural to expect some sector specific observed heterogeneity as well. Such sector

specific observed heterogeneity would provide exclusion restrictions in the form of variables affecting

outcome equation for Yd without affecting outcome equation for Y1−d. Such exclusion restrictions

would yield intersection bounds in Proposition 1. Of course, even if it exists, sector specific observed

heterogeneity may not satisfy a. or b. of Corollary 2. However, the availability of an exclusion

restriction as in a. or b. of Corollary 2 is consistent with the spirit of a model of sector specific

heterogeneity.

2.2. Extended binary Roy model. Assumption 4 is very restrictive and recent research by Hault-

foeuille and Maurel (2011) and Bayer, Khan, and Timmins (2011) on the Roy model with continuous

outcomes has focused on an extended version, where selection depends on Y ∗
1 −Y ∗

0 and a function of

observable variables g(Z, X1, X0) sometimes called “non pecuniary component”. We now investigate

the implications of this selection assumption in the binary case.

Assumption 5 (Observable heterogeneity in selection). D = 1{Y ∗
1 − Y ∗

0 > g(Z, X1, X0)} for some

unknown function g of the vector of the observable variables Z, X1 and X0.

Under Assumptions 1-3 and 5, we may still characterize the empirical content of the model

graphically, in Figures 3 and 4. We drop Z, X1 and X0 from the notation in the discussion below.
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Figure 3. Characterization of the empirical content of the extended binary Roy model

in the unit square of the (u1, u0) space in case 0 ≤ g < f1.

f0 − f1 + g

(Y = 0, D = 0)

(Y = 1, D = 0)

f0f0

f1

f1 1− f0 + f1 − g

(Y = 1, D = 1)

(Y = 0, D = 1)

Figure 4. Characterization of the empirical content of the extended binary Roy model

in the unit square of the (u1, u0) space in case g ≥ f1.
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For each value of (u1, u0), the outcome is uniquely determined by f1, f0 and g. Again, the missing

piece to compute the likelihood of outcomes P(i, j), i, j = 1, 0, is the copula for (u1, u0). From the

knowledge of the probabilities of horizontal and vertical bands in the (u1, u0) space, we can derive

the sharp bounds on structural parameters f1, f0 and g. Four cases are considered below to explain

the bounds, which are derived formally and shown to be sharp in Proposition 2.

a. Case where g ≥ f1 on Figure 4. The probability of outcome (Y = 1, D = 0) is seen to

be exactly equal to the area of the lower horizontal band. Hence f0 = P(1, 0) is identified.

Moreover, the area of the horizontal band (f0, f0 − f1 + g) is smaller than the probability

of outcome (Y = 1, D = 1). Hence g ≤ f1 +P(1, 1). Similar reasoning yields P(1, 1) ≤ f1 ≤

P(Y = 1) + P(0, 0).

b. Case where 0 ≤ g < f1 on Figure 3. The area of the lower horizontal band (0, f0 − f1 + g)

is smaller than the probability of outcome (Y = 1, D = 0). Hence g ≤ f1 − f0 + P(1, 0).

Moreover, the area of the horizontal band (0, f0) is larger than the probability of outcome

(Y = 1, D = 0) and smaller than the probability of outcome (Y = 1). Hence P(1, 0) ≤ f0 ≤

P(Y = 1). Finally, P(1, 1) ≤ f1 ≤ P(Y = 1) + P(0, 0) still holds.

c. Case where −f0 < g ≤ 0. Similarly to Case b., we obtain bounds g ≥ f1 − f0 + P(1, 1),

P(1, 0) ≤ f0 ≤ P(Y = 1) + P(0, 1) and P(1, 1) ≤ f1 ≤ P(Y = 1).

d. Case where g ≤ −f0. Similarly to Case a., f1 = P(1, 1) is identified and P(1, 0) ≤ f0 ≤

P(Y = 1) + P(0, 1) and g ≥ −f0 − P(0, 1).

It is shown formally in Proposition 2 that the bounds discussed above hold and cannot be improved

upon. The same arguments can be applied to derive the empirical content of the model where the

selection equation generalizes Assumption 5 with D = 1{u0 > h(u1,W )} and h strictly increasing

in u1, for all W . Assumption 5 is the special case, where h(u1,W ) = u1 + f0(X0)− f1(X1) + g(W ).
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Proposition 2 (Sharp bounds for the extended binary Roy model). Under Assumptions 1-3 and 5,

the empirical content of the model is characterized by the following (writing ω = (z, x1, x0) as before).

supz,x0
P(1, 1|ω) ≤ f1(x1) ≤ infz,x0

[
P(1, 1|ω) + P(1, 0|ω)1{g(ω) > −f0(x0)}

+P(0, 0|ω)1{g(ω) > 0}
]
,

supz,x1
P(1, 0|ω) ≤ f0(x0) ≤ infz,x1

[
P(1, 0|ω) + P(1, 1|ω)1{g(ω) < f1(x1)}

+P(0, 1|ω)1{g(ω) < 0}
]

(2.3)

and

g(ω) ∈
[
−f0(x0)− P(0, 1|ω),−f0(x0)

]
∪

[
f1(x1)− f0(x0)− P(1, 1|ω),

f1(x1)− f0(x0) + P(1, 0|ω)
]
∪

[
f1(x1), f1(x1) + P(0, 0|ω)

]
,

(2.4)

where the infima and suprema are taken over the domain of Z, X1 or X0 as indicated and when

they arise.

Simple identification conditions can be derived for f1 and f0 from the bounds of Proposition 2

under exclusion restrictions. However, it can be seen immediately that exclusion restrictions cannot

identify g( ).

Corollary 3 (Identification). Under Assumptions 1-3 and 5, the following hold (writing ω =

(z, x1, x0) as before).

a. If there is z ∈ Dom(Z) and x0 ∈ Dom(X0) such that g(ω) ≤ −f0(x0), then f1(x1) =

P(1, 1|ω) is identified.

b. If there is z ∈ Dom(Z) and x1 ∈ Dom(X1) such that g(ω) ≥ f1(x1), then f0(x0) = P(1, 0|ω)

is identified.

a’. Take x1 ∈ Dom(X1). If there is x0 ∈ Dom(X0) or z ∈ Dom(Z) such that P(1, 0|ω) =

P(0, 0|ω) = 0, then f1(x1) is identified.

b’. Take x0 ∈ Dom(X0). If there is x1 ∈ Dom(X1) or z ∈ Dom(Z) such that P(1, 1|ω) =

P(0, 1|ω) = 0, then f0(x0) is identified.
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As in the case of the simple Roy model, the sharp bounds of Proposition 2 take the form of

intersection bounds and inference can be conducted with existing methods. When there are no

instruments (or exclusion restrictions), however, the bounds are no longer intersection bounds. They

become:

P(1, 1) ≤ f1 ≤ P(1, 1) + P(1, 0)1{g > −f0}+ P(0, 0)1{g > 0},

P(1, 0) ≤ f0 ≤ P(1, 0) + P(1, 1)1{g < f1}+ P(0, 1)1{g < 0}

and

g ∈
[
−f0 − P(0, 1),−f0

]
∪

[
f1 − f0 − P(1, 1), f1 − f0 + P(1, 0)

]
∪

[
f1, f1 + P(0, 0)

]
.

When the object of interest is treatment parameters only, the three dimensional identification region

defined by the sharp bounds on (f1, f0, g) is projected on the two-dimensional space (f1, f0). When

there are no exclusion restrictions, this projection yields the Manski (2000) nonparametric bounds.

If the object of interest is the non pecuniary component g, the three dimensional identification

region is projected on the one-dimensional space for g into the single interval [−P(1, 1) − P(1, 0) −

2P(0, 1),P(1, 1) + P(1, 0) + 2P(0, 0)]. In the presence of instruments (or exclusion restrictions), the

projections on (f1, f0) and g can be much tighter and the projection on (f1, f0) may even be reduced

to a point, as in Corollary 3.

Testing for the presence of a non pecuniary component. As we have just seen, in the absence of

exclusion restrictions, the projection of the identified region on the g space always contains zero, so

that it is impossible to test the hypothesis g = 0. However, in the presence of exclusion restrictions,

the hypothesis g = 0 may become testable. There is a non zero non pecuniary component in the

selection equation if and only if the projection of the sharp bounds does not contain 0 or equivalently,

if the hyperplane g = 0 does not intersect the three dimensional identification region for (f1, f0, g)

defined by the sharp bounds in Proposition 2. It is also equivalent to the crossing of the intersection
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bounds in Proposition 1, in the sense that

sup
x0,z

P(1, 1|x1, x0, z) > inf
x0,z

[
P(1, 1|ω) + P(1, 0|ω)1{f0(x0) > 0}

]

or

sup
x1,z

P(1, 0|ω) > inf
x1,z

[
P(1, 0|ω) + P(1, 1|ω)1{f1(x1) > 0}

]

so that by Proposition 1, the simple Roy model is rejected. In practice, the test for the existence of a

non pecuniary component would be carried out by constructing a confidence region according to the

methods proposed in Chernozhukov, Lee, and Rosen (2009) and checking, whether the hyperplane

g = 0 intersects the confidence region. If it does, we fail to reject the hypothesis of existence of a

non pecuniary component g and if it doesn’t, we reject the hypothesis at significance level equal to

1 minus the confidence level chosen for the confidence region. The hypotheses g ≥ 0 or g ≤ 0 may

be tested in the same way.

3. Sharp bounds for the generalized binary Roy model

So far, we have assumed that selection occurs on the basis of success probability and other

observable variables. We now turn to the general case, where unobservable heterogeneity, beyond

u0 − u1, may play a role in sectorial selection. Knowledge of (u1, u0) now no longer uniquely

determines the outcome (Y = i,D = j) as seen on Figure 5. Multiplicity of equilibria and lack of

coherence of the model can be dealt with, however, with the optimal transportation approach of

Galichon and Henry (2011), as shown in the proof of Theorem 1 below.

Theorem 1 (Sharp bounds for the generalized Roy model). Under Assumption 1-3, the empirical

content of the model is characterized by inequalities (3.1)-(3.3) below (writing ω = (z, x1, x0) as
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Figure 5. Characterization of the empirical content of the generalized binary Roy

model in the unit square of the (u1, u0) space.
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before).

sup
z,x0

P(1, 1|ω) ≤ f1(x1) ≤ 1− sup
z,x0

P(0, 1|ω), (3.1)

sup
z,x1

P(1, 0|ω) ≤ f0(x0) ≤ 1− sup
z,x1

P(0, 0|ω) (3.2)

and

sup
z

max
(
0, f0(x0)− P(1, 0|ω)− P(0, 1|ω), f1(x1)− P(1, 1|ω)− P(0, 0|ω)

)

≤ P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0) (3.3)

≤ inf
z

min
(
P(Y = 1|ω), f1(x1) + f0(x0)− P(Y = 1|ω)

)
.

Theorem 1 is not an operational characterization of the empirical content of the model since

the sharp bounds involve the unknown quantity P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0), which, by the

normalization of Assumption 2, is exactly the copula of (u1, u0). In the case of total ignorance
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about the copula of (u1, u0), after plugging Fréchet bounds max(f1(x1) + f0(x0) − 1, 0) ≤ P(u1 ≤

f1(x1), u0 ≤ f0(x0)|x1, x0) ≤ min(f1(x1), f0(x0)), inequalities (3.3) are shown to be redundant.

Hence we have the following.

Corollary 4. Sharp bounds for the generalized Roy model under Assumption 1-3 are given by

inequalities (3.1) and (3.2).

In order to sharpen those bounds, we may consider restrictions on the copula for (u1, u0) or

restrictions on the selection equation. We consider both strategies in turn.

3.1. Restrictions on selection. Consider the following selection model, where selection depends

on Y ∗
1 −Y ∗

0 and g(Z,X1, X0) and selection specific unobserved heterogeneity v, which is independent

of sector specific unobserved heterogeneity (u1, u0).

Assumption 6. D = 1{Y ∗
1 − Y ∗

0 > g(W ) + v}, with v ⊥⊥ (u1, u0) and v ⊥⊥ W , Ev = 0 (without

loss of generality) and W = (Z,X1, X0).

With v ⊥⊥ (u1, u0), we have P(ud ≤ g(z, x1, x0) + v + f1(x1) − f0(x0)|z, x1, x0) = EvE[1{ud ≤

g(z, x1, x0)+v−f1(x1)+f0(x0)}|z, x1, x0, v] = max(0, g(z, x1, x0)−f1(x1)+f0(x0)) and it is shown

in Corollary 5 that the bounds on g( ) derived in Section 2 remain valid.

Corollary 5. Under assumptions 1-3 and 6, (2.4) holds.

As for the bounds on (f1, f0), they remain valid under specific domain restrictions for v.

3.2. Restrictions on the joint distribution of sector specific heterogeneity.

3.2.1. Parametric restrictions on the copula. In case the copula for (u1, u2) is parameterized with

parameter vector θ, sharp bounds are obtained straightforwardly by replacing P(u1 ≤ f1(x1), u0 ≤

f0(x0)|x1, x0) with the parametric version F (f1(x1), f0(x0); θ) in (3.3).
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3.2.2. Perfect correlation. In the case of perfect correlation between the two sector specific unob-

served heterogeneity variables, P(u1 ≤ f1(x0), u0 ≤ f0(x0)) = min(f1(x1), f0(x0)) so that the sharp

bounds of Theorem 1 specialize to (3.1), (3.2), min(f1(x1), f0(x0)) ≤ infz P(Y = 1|z, x1, x0) and

supz P(Y = 1|z, x1, x0) ≤ max(f1(x1), f0(x0)), which are the bounds derived in Chiburis (2010).

3.2.3. Independence. In the special case, where the two sector specific errors are independent of each

other u1 ⊥⊥ u0, sharp bounds can be derived from Theorem 1 and P(u1 ≤ f1(x0), u0 ≤ f0(x0)) =

P(u1 ≤ f1(x1))P(u0 ≤ f0(x0)) = f1(x1)f0(x0).

3.2.4. Factor structure. Theorem 1 also allows us to characterize the empirical content of the factor

model for sector specific unobserved heterogeneity proposed in Aakvik, Heckman, and Vytlacil

(2005).

Assumption 7 (Factor model). Sector specific unobserved heterogeneity has factor structure ud =

αdu+ηd, d = 1, 0, with Eu = 0, Eu2 = 1 (without loss of generality) and η1 ⊥⊥ η0|u. ηd is uniformly

distributed on [0, 1] for d = 1, 0, conditionally on u.

This factor specification for sector specific unobserved heterogeneity is particularly appealing in

applications to the effects of employment programs. Success in securing a job depends on common

unobservable heterogeneity in talent and motivation and sector specific noise. Under Assumptions 1,

3 and 7, we still have E[Yd|z, x1, x0] = fd(xd) and

P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0) = EuP(η1 ≤ f1(x1)− α1u, η0 ≤ f0(x0)− α0u|x1, x0, u)

= EuP(η1 ≤ f1(x1)− α1u|x1, u)P(η0 ≤ f0(x0)− α0u|x1, x0, u)

= f1(x1)f0(x0) + α1α0.

Hence we can obtain sharp bounds on parameters f1, f0, α1 and α0 as follows.
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Corollary 6 (Sharp bounds for the factor model). Under Assumptions 1, 3 and 7, the empirical

content of the model is characterized by (3.1), (3.2) and (writing ω = (z, x1, x0) as before)

sup
z

max
(
0, f0(x0)− P(1, 0|ω)− P(0, 1|ω), f1(x1)− P(1, 1|ω)− P(0, 0|ω)

)

≤ f1(x1)f0(x0) + α1α0

≤ inf
z

min
(
P(Y = 1|ω), f1(x1) + f0(x0)− P(Y = 1|ω)

)

We recover the case of independent sector specific heterogeneity variables, when α1 = α0 = 0.

Conclusion

We have derived sharp bounds in the simple, extended and generalized binary Roy models, includ-

ing a factor specification proposed by Aakvik, Heckman, and Vytlacil (2005). The bounds are simple

enough to lend themselves to existing inference methods for intersection bounds as in Chernozhukov,

Lee, and Rosen (2009).

Appendix A. Proofs

In all the proofs, we use the notation ω = (z, x1, x0). When there is no ambiguity, we shall write

f1 = f1(x1), f0 = f0(x0) and g = g(ω).

A.1. Proof of Proposition 1.

A.1.1. Validity of the bounds. See main text.

A.1.2. Sharpness of the bounds. To show that these bounds are sharp for f1(x1) it is sufficient to

construct joint distributions for (u∗0, u
∗
1) such that f1(x1) equals P (Y = 1, D = 1|ω) or P (Y = 1|ω)

(and similarly for f0(x0)) and which is compatible with the observed data in the following sense:
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(1) P (u∗0 ≤ f0(x0), u∗1 ≥ u∗0 + f1(x1)− f0(x0)|x1, x0) = P (Y = 1, D = 0|ω),

(2) P (u∗1 ≤ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0)|x1, x0) = P (Y = 1, D = 1|ω),

(3) P (u∗0 ≥ f0(x0), u∗1 ≥ u∗0 + f1(x1)− f0(x0)|x1, x0) = P (Y = 0, D = 0|ω),

(4) P (u∗1 ≥ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0)|x1, x0) = P (Y = 0, D = 1|ω),

(5) P (u∗0 ≤ f0(x0)|x0) ∈ [P (Y = 1, D = 0|ω), P (Y = 1|ω)].

We assume in the following that f0(x0) ≥ f1(x1) (the opposite case can be treated similarly).

Consider the following function f(u∗0, u
∗
1) with values:

2P (Y =1,D=0|ω)
2f1(x1)f0(x0)−f1(x1)2

if u∗1 ≤ f1(x1), u∗1 ≥ u∗0 + f1(x1)− f0(x0),

0 if u∗1 ≥ f1(x1), u∗0 ≤ f0(x0),

2P (Y =1,D=1|ω)
(2−2f0(x0)+f1(x1))f1(x1)

if u∗1 ≤ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0),

2P (Y =0,D=1|ω)
(1−f0(x0))2

if u∗1 ≥ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0),

2P (Y =0,D=0|ω)
(1+f0(x0)−2f1(x1))(1−f0(x0))

if u∗0 ≥ f0(x0), u∗1 ≥ u∗0 + f1(x1)− f0(x0).

It is easy to verify that this function is a density of a joint distribution which is compatible with

the observed data (i.e respects conditions 1 to 5 above) and such as f1(x1) = P (u∗1 ≤ f1(x1)|x1) =

P (Y = 1|ω). This fact shows that P (Y = 1|ω) is the sharp upper bound for f1(x1). Now, we will

propose another joint distribution compatible with the observed data such that: f1(x1) = P (u∗1 ≤

f1(x1)|x1) = P (Y = 1, D = 1|ω). Consider now the function f(u∗0, u
∗
1) = with values:

0 if u∗1 ≤ f1(x1), u∗1 ≥ u∗0 + f1(x1)− f0(x0),

P (Y =1,D=0|ω)
f0(x0)(1−f1(x1))

if u∗1 ≥ f1(x1), u∗0 ≤ f0(x0),

2P (Y =1,D=1|ω)
(2−2f0(x0)+f1(x1))f1(x1)

if u∗1 ≤ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0),

2P (Y =0,D=1|ω)
(1−f0(x0))2

if u∗1 ≥ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0),

2P (Y =0,D=0|ω)
(1+f0(x0)−2f1(x1))(1−f0(x0))

if u∗0 ≥ f0(x0), u∗1 ≥ u∗0 + f1(x1)− f0(x0).

It is also easy to verify that this function is a density of a joint distribution which is compatible with

the observed data (i.e respects conditions 1 to 5) and such as f1(x1) = P (u∗1 ≤ f1(x1)|x1) = P (Y =
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1, D = 1|ω). This fact shows that P (Y = 1, D = 1|ω) is the sharp lower bound for f1(x1). With the

same strategy we can show that the bounds P (Y = 1, D = 0|ω) ≤ f0(x0) ≤ P (Y = 1|ω) are sharp.

This fact completes our Proof.

A.2. Proof of Proposition 2.

A.2.1. Validity of the bounds. To show validity of the bounds, we drop all the conditioning variables

ω = (z, x1, x0) from the notation. We have D = 1 ⇒ Y ∗
0 + g ≤ Y ∗

1 ⇒ 1{Y ∗
0 + g ≥ 0} ≤ 1{Y ∗

1 ≥

0} ⇒ 1{Y ∗
0 + g ≥ 0}1{D = 1} ≤ 1{Y ∗

1 ≥ 0}1{D = 1} ⇒ E[1{Y ∗
0 + g ≥ 0}|D = 1] ≤ E[1{Y ∗

1 ≥

0}|D = 1] ⇒ E[1{Y ∗
0 + g ≥ 0}|D = 1] ≤ E[Y1|D = 1]. We can easily derive equivalent inequalities

when D = 0. Hence, if D = 1{Y ∗
1 > Y ∗

0 + g} then E[1{Y ∗
0 + g ≥ 0}|D = 1] ≤ E[Y1|D = 1] and

E[Y1|D = 0] ≤ E[1{Y ∗
0 + g ≥ 0}|D = 0]. Hence, when g ≥ 0, E[Y0|D = 1] ≤ E[Y1|D = 1] and

when g ≤ 0, E[Y1|D = 0] ≤ E[Y0|D = 0]. Finally, if g = 0 we have E[Yd|D = d] ≥ E[Yd|D = 1 − d]

where d ∈ {0, 1}. Those inequalities allow us to construct the sharp bounds for f1 and f0 in the

case where D = 1{Y ∗
1 > Y ∗

0 + g}.Indeed, f1 = E[Y1] = E[Y1, D = 1] + E[Y1|D = 0]P (D = 0) and

f0 = E[Y0] = E[Y0, D = 0] + E[Y0|D = 1]P (D = 1). Now, if g ≥ 0, then P (Y = 1, D = 1) ≤ f1 ≤

P (Y = 1, D = 1) + P (D = 0) and P (Y = 1, D = 0) ≤ f0 ≤ P (Y = 1). On the other hand, if g ≤ 0,

P (Y = 1, D = 1) ≤ f1 ≤ P (Y = 1) and P (Y = 1, D = 0) ≤ f0 ≤ P (Y = 1, D = 0) + P (D = 1).

Finally, f0 = E[1{u0 ≤ f0}1{u1 ≥ u0 +f1−f0− g}]+E[1{u0 ≤ f0}1{u1 ≤ u0 +f1−f0− g}]. Hence,

if g ≥ f1, then {u1 ≤ u0 + f1 − f0 − g} ⇒ {u0 ≥ f0} and f0(X0) ≤ E[1{u0 ≤ f0}1{u1 ≥ u0 + f1 −

f0 − g}] + E[1{u0 ≤ f0}1{u0 ≥ f0}] ≤ E[1{u0 ≤ f0}1{u1 ≥ u0 + f1 − f0 − g}] = P (Y = 1, D = 0).

Now the bounds for g can be obtained as follows.

• If g + f0 − f1 ≥ 0 and g ≤ f1, then {u0 ≤ g + f0 − f1} ⇒ {u0 ≤ u1 + g + f0 − f1} and

{u0 ≤ g+f0−f1} ⇒ {u0 ≤ f0}. So {u0 ≤ g+f0−f1} ⇒ {u0 ≤ u1+g+f0−f1}∩{u0 ≤ f0}.
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Hence g +f0−f1 = P (u0 ≤ g +f0−f1) ≤ P ({u0 ≤ u1 +g +f0−f1}∩{u0 ≤ f0}) = P (Y =

1, D = 0).

• If g + f0 − f1 ≥ 0 and g ≥ f1, then {u0 ≤ g + f0 − f1} ⇒ {u0 ≤ u1 + g + f0 − f1},

hence g + f0 − f1 = P (u0 ≤ g + f0 − f1) ≤ P ({u0 ≤ u1 + g + f0 − f1}) = P (D = 0). As

f0 = P (Y = 1, D = 0) we have g − f1 ≤ P (Y = 0, D = 0).

• If g + f0 − f1 ≤ 0 and g ≥ −f0, then by similar arguments, we have g + f0 − f1 ≥ −P (Y =

1, D = 1).

• If g + f0 − f1 ≤ 0 and g ≤ −f0, then g + f0 ≥ −P (Y = 0, D = 1).

A.2.2. Sharpness of the bounds. As previously our method consist in constructing joint distributions

compatible with the observed data such that:

• if g(ω) > 0, f1(x1) equals P (Y = 1, D = 1|ω) or P (Y = 1, D = 1|ω) + P (D = 0|ω),

• if g(ω) < 0, f1(x1) equals P (Y = 1, D = 1|ω) or P (Y = 1|ω),

and similarly for f0(x0). The compatibility between the joint distribution and the observed data

can be expressed as follows:

(1) P (u∗0 ≤ f0(x0), u∗1 ≥ u∗0 + f1(x1)− f0(x0)− g(ω)|ω) = P (Y = 1, D = 0|ω),

(2) P (u∗1 ≤ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0)− g(ω)|ω) = P (Y = 1, D = 1|ω),

(3) P (u∗0 ≥ f0(x0), u∗1 ≥ u∗0 + f1(x1)− f0(x0)− g(ω)|ω) = P (Y = 0, D = 0|ω),

(4) P (u∗1 ≥ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0)− g(ω)|ω) = P (Y = 0, D = 1|ω),

(5) (a) if g > 0, P (u∗0 ≤ f0(x0)|x0) ∈ [P (Y = 1, D = 0|ω), P (Y = 1|ω)],

(b) if g < 0, P (u∗0 ≤ f0(x0)|x0) ∈ [P (Y = 1, D = 0|ω), P (Y = 1, D = 0|ω) + P (D = 1|ω)].

Assume that f0(x0) > f1(x1), 0 < g(ω) < f1(x1) and f0(x0) + g(ω) < 1 as in Figure 6. Other cases
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Figure 6. Characterization of the empirical content of the extended binary Roy model

in the unit square of the (u1, u0) space in case f0(x0) > f1(x1), 0 < g(ω) < f1(x1) and

f0(x0) + g(ω) < 1.

(Y = 0, D = 1)

f0 f0

f1

f1

1− f0 + f1 − g

(Y = 0, D = 0)

(Y = 1, D = 0)

f0 + gf0 + g

f1 − g

f1 − g

f0 − f1 + g

(Y = 1, D = 1)

can be treated similarly. Consider the function f(u∗0, u
∗
1) with values:

0 if u∗0 ≤ g(ω) + f0(x0)− f1(x1), u∗1 ≥ f1(x1),

P (Y =1,D=0|ω)
f1(x1)(g(ω)+f0(x0)−f1(x1))

if u∗0 ≤ g(ω) + f0(x0)− f1(x1), u∗1 ≤ f1(x1),

0 if u∗0 ≥ g(ω) + f0(x0)− f1(x1), u∗0 ≤ f0(x0)
and u∗1 ≤ u∗0 + f1(x1)− f0(x0)− g(ω),

2P (Y =0,D=0|ω)
g(ω)g(ω) if u∗0 ≥ f0(x0), u∗1 ≤ f1(x1), u∗1 ≥ u∗0 + f1(x1)− f0(x0)− g(ω),

0 if u∗0 ≥ f0(x0), u∗1 ≥ f1(x1), u∗1 ≥ u∗0 + f1(x1)− f0(x0)− g(ω),

2P (Y =1,D=1|ω)
(2−2(f0(x0)+g(ω))+f1(x1))f1(x1)

if u∗1 ≤ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0)− g(ω),

2P (Y =0,D=1|ω)
(1−f0(x0)−g(ω))2 if u∗1 ≤ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0)− g(ω).
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It is easy to verify that this function is a density of a joint distribution which is compatible with the

observed data (i.e respects conditions 1 to 5a) and such that f1(x1) = P (u∗1 ≤ f1(x1)|x1) = P (Y =

1, D = 1|ω) + P (D = 0|ω) and g(ω) + f0(x0)− f1(x1) = P (u∗0 ≤ g(ω) + f0(x0)− f1(x1)|ω) = P (Y =

1, D = 0|ω). In the previous section, we showed that P (Y = 1, D = 0|ω) is an upper bound for

g(ω) + f0(x) − f1(x) in case g(ω) < f1(x1). Here we construct a joint distribution which hits this

upper bound. This fact shows that P (Y = 1, D = 1|ω) + P (D = 0|ω) is the sharp upper bound for

f1(x1) and that P (Y = 1, D = 0|ω) is the sharp upper bound for g(ω) + f0(x)− f1(x).

We now propose a joint distribution such that f1(x1) = P (u∗1 ≤ f1(x1)|x1) = P (Y = 1, D = 1|ω)

and g(ω) + f0(x0)− f1(x1) = P (u∗0 ≤ g(ω) + f0(x0)− f1(x1)|ω) = P (Y = 1, D = 0|ω). Consider the

function f(u∗0, u
∗
1) with values:

P (Y =1,D=0|ω)
(1−f1(x1))(g(ω)+f0(x0)−f1(x1))

if u∗0 ≤ g(ω) + f0(x0)− f1(x1), u∗1 ≥ f1(x1),

0 if u∗0 ≤ g(ω) + f0(x0)− f1(x1), u∗1 ≤ f1(x1),

0 if u∗0 ≥ g(ω) + f0(x0)− f1(x1), u∗0 ≤ f0(x0)
and u∗1 ≤ u∗0 + f1(x1)− f0(x0)− g(ω),

0 if u∗0 ≥ f0(x0), u∗1 ≤ f1(x1)
and u∗1 ≥ u∗0 + f1(x1)− f0(x0)− g(ω),

P (Y =0,D=0|ω)

(1−f1(x1))(1−f0(x0))− 1
2 (1−f0(x0)−g(ω))2

if u∗0 ≥ f0(x0), u∗1 ≥ f1(x1)
and u∗1 ≥ u∗0 + f1(x1)− f0(x0)− g(ω),

2P (Y =1,D=1|ω)
(2−2(f0(x0)+g(ω))+f1(x1))f1(x1)

if u∗1 ≤ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0)− g(ω),

2P (Y =0,D=1|ω)
(1−f0(x0)−g(ω))2 if u∗1 ≥ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0)− g(ω).

It is also easy to verify that this function is a density of a joint distribution which is compatible

with the observed data (i.e respects conditions 1 to 5a) and such that f1(x1) = P (u∗1 ≤ f1(x1)|x1) =

P (Y = 1, D = 1|ω) and g(ω)+ f0(x0)− f1(x1) = P (u∗0 ≤ g(ω)+ f0(x0)− f1(x1)|ω) = P (Y = 1, D =

0|ω). This fact shows that P (Y = 1, D = 1|ω) is the sharp lower bound for f1(x1). With the same
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strategy we can show that P (Y = 1, D = 0|ω) ≤ f0(x0) ≤ P (Y = 1|ω)] is sharp. This fact completes

our Proof.

A.3. Proof of Theorem 1. Under Assumptions 1-3, the model can be equivalently written (Y, D) ∈

G((u1, u0)|W ) almost surely conditionally on W = (Z, X1, X0), where G is a multi-valued mapping,

which to (u1, u0) associates (y, d) = G((u1, u0)|W ) = {(1, 1), (1, 0)} if u1 ≤ f1(x1) and u0 ≤ f0(x0),

{(0, 1), (1, 0)} if u1 > f1(x1) and u0 ≤ f0(x0), {(1, 1), (0, 0)} if u1 ≤ f1(x1) and u0 > f0(x0) and

{(0, 1), (0, 0)} if u1 > f1(x1) and u0 > f0(x0). Hence Theorem 1 of Galichon and Henry (2011)

applies and the empirical content of the model is characterized by the collection of inequalities

P (A|W ) ≤ P ((u1, u0) : G((u1, u0)|W ) hits A|W ) for each subset A of {(0, 0), (0, 1), (1, 0), (1, 1)}

(i.e., 16 inequalities). The only non redundant inequalities are P (1, 1|W ) ≤ f1(X1), P (1, 0|W ) ≤

f0(X0), P (0, 1|W ) ≤ 1− f1(X1), P (0, 0|W ) ≤ 1− f0(X0), P (Y = 0|W ) ≤ 1− P (u1 ≤ f1(X1), u0 ≤

f0(X0)|X1, X0), P (Y = 1|W ) ≤ 1− P (u1 > f1(X1), u0 > f0(X0)|X1, X0), P (0, 0|W ) + P (1, 1|W ) ≤

P (u1 ≤ f1(X1), u0 ≤ f0(X0)|X1, X0) + P (u0 > f0(X0)|X0) and P (0, 1|W ) + P (1, 0|W ) ≤ P (u1 ≤

f1(X1), u0 ≤ f0(X0)|X1, X0) + P (u1 > f1(X1)|X1). After some manipulation, the result follows.

A.4. Proof of Corollary 5. We only need to show that the bounds (2.4) for g remain valid. We

drop conditioning variables from the notation throughout this section.

• If g+v+f0−f1 ≥ 0 and g+v ≤ f1, then {u0 ≤ g+v+f0−f1} ⇒ {u0 ≤ u1+g+v+f0−f1}

and {u0 ≤ g+v+f0−f1} ⇒ {u0 ≤ f0}. So {u0 ≤ g+v+f0−f1} ⇒ {u0 ≤ u1 +g+v+f0−

f1}∩{u0 ≤ f0}. Therefore P (u0− v ≤ g + f0− f1) ≤ P ({u0 ≤ u1 + g + v + f0− f1}∩{u0 ≤

f0}) = P (Y = 1, D = 0).

• If g+v+f0−f1 ≥ 0 and g+v ≥ f1, then {u0 ≤ g+v+f0−f1} ⇒ {u0 ≤ u1+g+v+f0−f1}.

Therefore P (u0 − v ≤ g + f0 − f1) ≤ P ({u0 ≤ u1 + g + v + f0 − f1}) = P (D = 0).
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• If g+v+f0−f1 ≤ 0 and g+v ≥ −f0, then {u1 ≤ f1−f0−g−v} ⇒ {u1 ≤ u0+f1−f0−g−v}

and {u1 ≤ f1− f0− g− v} ⇒ {u1 ≤ f1}. So {u1 ≤ f1− f0− g− v} ⇒ {u1 ≤ u0 + f1− f0−

g−v}∩{u1 ≤ f1}. Therefore P (u1+v ≤ f1−f0−g) ≤ P ({u1 ≤ u0+f1−f0−g−v}∩{u1 ≤

f1}) = P (Y = 1, D = 1).

• If g+v+f0−f1 ≤ 0 and g+v ≤ −f0, then {u1 ≤ f1−f0−g−v} ⇒ {u1 ≤ u0+f1−f0−g−v}.

Hence P (u1 + v ≤ f1 − f0 − g) ≤ P (u1 ≤ u0 + f1 − f0 − g − v) = P (D = 1).

Now, since v ⊥⊥ (u0, u1), we have: P (u0 ≤ g + v + f0 − f1) = Ev[E[1{u0 ≤ g + v + f0 − f1}|v]] =

Ev[g + v + f0 − f1] = g + f0 − f1. Then, we get the following:

• If g + v + f0 − f1 ≥ 0 and g + v ≤ f1, then g + f0 − f1 ≤ P (Y = 1, D = 0).

• If g + v + f0 − f1 ≥ 0 and g + v ≥ f1, then g − f1 ≤ P (Y = 0, D = 0).

• If g + v + f0 − f1 ≤ 0 and g + v ≥ −f0, then g + f0 − f1 ≥ −P (Y = 1, D = 1).

• If g + v + f0 − f1 ≤ 0 and g + v ≤ −f0, then g + f0 ≥ −P (Y = 0, D = 1).

which completes the proof.
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