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Abstract
This paper is concerned with estimation of a predictive density with parametric

constraints under Kullback-Leibler loss. When an invariance structure is embed-
ded in the problem, general and unified conditions for the minimaxity of the best
equivariant predictive density estimator are derived. These conditions are applied
to check minimaxity in various restricted parameter spaces in location and/or scale
families. Further, it is shown that the generalized Bayes estimator against the uni-
form prior over the restricted space is minimax and dominates the best equivariant
estimator in a location family when the parameter is restricted to an interval of the
form [a0,∞). Similar findings are obtained for scale parameter families. Finally,
the presentation is accompanied by various observations and illustrations, such as
normal, exponential location, and gamma model examples.
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1 Introduction

1.1 Preamble

We consider here predictive density estimation for continuous models with

X ∼ pθ(·) , Y ∼ qθ(·) , (1.1)
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§Département de mathématiques, Université de Sherbrooke, Sherbrooke, QC, CANADA, J1K 2R1

E-Mail: jean-philippe.turcotte2@usherbrooke.ca

1



where the parameter θ is restricted. We seek efficient estimators q̂(·|X) of qθ based on X
under Kullback-Leibler loss

LKL(qθ, q̂) =

∫
qθ(y) log

qθ(y)

q̂(y)
dy, (1.2)

and as measured by the Kullback-Leibler risk

RKL(θ, q̂) = EX,Y
θ LKL(qθ, q̂(Y |X)) . (1.3)

Such a framework includes normal models with, for instance, X ∼ Np(µ, νXIp), Y ∼
Np(µ, νY Ip) with µ restricted to a convex subset of Rp as studied recently by Fourdrinier
et al. (2011). Our findings will focus on two fundamental questions:

(A) whether the best equivariant procedure q̂BI is minimax for both the unrestricted
version and the restricted version of the problem;

(B) whether the Bayes estimator q̂U with respect to the truncated (onto the restricted
parameter space) right Haar invariant measure improves upon uniformly on q̂BI .

Part (A) requires an invariance structure which we will expand on in Section 2. Point es-
timation unrestricted parameter space versions of (A), with affirmative answers in many
situations, date back to Girshick and Savage (1951), Kiefer (1957), Hora and Buehler
(1966, 1967), among others. Point estimation restricted parameter versions of (A) and
(B), with affirmative answers, date back to Katz (1961) who showed under squared error
loss that the Bayes estimator with respect to the flat prior on [0,∞), for normal models
with mean µ and known variance, dominates the best equivariant estimator and is mini-
max for the restricted parameter space µ ∈ [0,∞). There are several related results in the
literature (e.g., Farrell, 1964; Kubokawa, 2004; Marchand and Strawderman, 2005A,B;
Tsukuma and Kubokawa, 2008) for restricted (unbounded) parameter spaces, with a
quite general minimax result given recently by Marchand and Strawderman (2011). As
further illustrated by the work of Casella and Strawderman (1981), Marchand and Perron
(2001), Hartigan (2004), Marchand and Strawderman (2004), Kubokawa (2005A,B), and
van Eeden (2006) among others, frequentist properties like minimaxity of best equivariant
estimators, restricted maximum likelihood estimators or Bayesian estimators depend on
the model, the loss, but also intimately on the nature of the parametric restriction.
Predictive density estimation addresses the challenging and ambitious problem of esti-
mating the whole distribution of a future observation Y . This has become a field of active
study with early findings due to Atichison (1975). In particular, for Gaussian models
under Kullback-Leibler loss, fascinating connections with Stein estimation have been de-
veloped, as recently reviewed by George, Liang, and Xu (2012), and as expanded upon
below in subsection 1.3.

1.2 Outline of Paper

In this paper, we investigate minimaxity of the best equivariant predictive density es-
timator in location and/or scale families with parametric constraints under Kullback-
Leibler loss. In Section 2, we treat a setup with a general invariance structure given
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by Hora and Buehler (1966, 67), where the parameter space is restricted to a subset of
multi-dimensional Euclidean space. Using similar arguments as in Girshick and Savage
(1951), we derive unified conditions under which the best equivariant estimator is mini-
max. These conditions are available for both restricted and non-restricted cases, and in
a sense, the minimaxity result is an extension of findings by Liang and Barron (2004),
who showed minimaxity when the parameter space is unrestricted. Minimaxity under
parametric constraints for a given type of problem can thus be tested by checking those
unified conditions.

Section 3 deals with a location or scale family. In Section 3.1, minimaxity of the best
location equivariant estimator is verified under a one-sided restriction of the location
parameter in a location family. In section 3.2, we make use of a novel variation of the IERD
method introduced by Kubokawa (1994a,b) and Kubokawa and Saleh (1998) to prove
that the generalized Bayes estimator against the uniform prior over the restricted space
dominates the best location equivariant estimator if the target density to be predicted
has a monotone likelihood ratio property. It is interesting to note that the density of
the observation does not have to have a monotone likelihood ratio and need not be of
the same family as the target density. Analogous findings for scale parameter families
are obtained in Section 3.3. Various other observations, detailed examples for normal,
exponential and gamma models, and a non-minimaxity result for a compact interval
restriction, complement the presentation.

In Section 4, we treat various restrictions in location-scale families and investigate min-
imaxity of the best location-scale equivariant estimator. Section 4.1 considers the cases
that the location and scale parameters are in one-sided open spaces, and Section 4.2 in-
vestigates cases with a compact interval restriction for the location parameter and an
unknown scale. Through several examples of parametric restrictions given in Sections 4.1
and 4.2, we demonstrate how to use the conditions given in Section 2. Minimaxity in the
cases of ordered location or scale parameters in multidimensional distributions is shown
in Section 4.3.

1.3 Brief review of previous findings for normal models

We conclude this introduction with a brief review on developments under a multivariate
normal distribution with unknown mean vector and known covariance matrices which
are multiples of identity, since most decision-theoretic results have been studied in this
model and since such a review is helpful for the overall presentation of our findings.
Let X and Y be mutually independent random vectors such that X ∼ Np(µ, vxI) and
Y ∼ Np(µ, vyI) for known constants vx and vy. The density functions of X and Y are
denoted by f(x−µ|vx) and f(y−µ|vy). The problem is to predict the density f(y−µ|vy)
based on X in terms of the following risk relative of the Kullback-Leibler (KL) divergence

RKL(µ, f̂) = EX

[∫
f(y − µ|vy) log

(
f(y − µ|vy)
f̂(y|X, vx, vy)

)
dy
]
,

where f̂(y|X, vx, vy) is a predictive density estimator of f(y −µ|vy). Since this model is
invariant under location transformations, the best equivariant estimator of f(y − µ|vy)

3



is the generalized Bayes estimator against the uniform prior with respect to Lebesgue
measure. As expressed in (2.3), the best equivariant estimator is given by

f̂BI(y − x|vx, vy) =

∫
f(s|vx)f(y − x+ s|vy)ds∫

f(s|vx)ds
= f(y − x|vx + vy).

Liang and Barron (2004) showed that f̂m(y − x|vx, vy) is minimax. Concerning the
admissibility of fBI(y − x|vx, vy), Komaki (2001) showed that it is inadmissible when
p ≥ 3, namely, it is improved on by a generalized Bayes estimator against a shrinkage prior.
Brown, et al . (2008) showed that it is admissible when p = 1, 2. These are noteworthy
results in the sense that the so called Stein inadmissibility result in point estimation is
inherited by the problem of estimation of a predictive normal density function. Liang and
Barron (2004) established the minimaxity of the best equivariant estimator, George, Liang
and Xu (2006) extended Komaki’s result, Brown, George and Xu (2008) not only derived
conditions for admissibility of the best equivariant estimator, but also showed that several
decision-theoretic results for point estimation of a multivariate normal mean with a known
variance still hold for the predictive density estimation problem. Kato (2009) succeeded
in deriving a minimax and improved generalized Bayes predictive density estimator in the
case of unknown variance.
Brown, et al . (2008) derived an interesting identity which expresses the relationship be-
tween point estimation and predictive density estimation. Let Rv

Q(µ, µ̂) be the risk func-
tion of a point estimator µ̂ = µ̂(z) under a normal distribution Np(µ, vI), namely,

Rv
Q(µ, µ̂) =

∫
‖µ̂(z)− µ‖2f(z − µ|v)dz,

for the Euclidean norm ‖ · ‖. Let µ̂πv be the Bayes point estimator of µ for a prior
distribution π(µ) in terms of the risk Rv

Q(µ, µ̂). Also, let f̂π(y|x, vx, vy) be the Bayes
estimator of the predictive density. Then, Brown, et al . (2008) showed that

RKL(µ, f̂BI)−RKL(µ, f̂π) =
1

2

∫ vx

vw

1

v2
[
Rv
Q(µ,X)−Rv

Q(µ, µ̂πv )
]

dv, (1.4)

for vw = vxvy/(vx+vy). This implies that dominance properties in point estimation can be
automatically inherited by predictive density estimation. An essential point in the above
identity is that in the normal distribution, the following representation due to George,
Liang and Xu (2006) holds:

f̂π(y|x, vx, vy) =
mπ(W ; vw)

mπ(X; vx)
f̂BI(y|x, vx, vy), (1.5)

where mπ(W ; vw) and mπ(X; vx) are marginal densities of W and X for W = (vyX +
vxY )/(vx + vy). Using this equality, Fourdrinier, et al . (2011) extended identity (1.4) to
plug-in estimators of the predictive density.

Identity (1.4) can be applied to estimation when the parameter space θ is restricted to a
convex cone C, or more generally to a convex set. In the framework of point estimation
under a constraint and squared error loss, Hartigan (2004) proved that X is improved
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on by the generalized Bayes estimator against the uniform prior over C, and Tsukuma
and Kubokawa (2008) showed that X is minimax under the constraint. As developed in
Fourdrinier et al . (2011), combining these results and the identity (1.4) implies that these
properties hold for the estimation of the predictive density.

The inferences are valid for normal distributions where key property (1.4) can be derived
from the equality (1.5). The equality (1.5) holds under normality with known variances,
but it does not hold in the case of unknown variances. Thus, it is not clear whether a
decision-theoretic property in point estimation is inherited by estimation of the predictive
density under normality with unknown variances or for another distribution.

2 General conditions for minimaxity

In this section, we treat general parametric distributions in which an invariance struc-
ture is embedded, and derive general conditions for minimaxity of the best equivariant
estimator. The conditions will be used for checking minimaxity in location and/or scale
families.

Let X be an observable random variable and Y be a future random variable. Let (X ×
Y ,BX × BY ) be a measurable space of (X, Y ) and P = {Pθ : θ ∈ Θ} be a family
of identifiable probability measures with parameter space Θ. We assume the following
conditions.

(A1) There exist a group G = {g} and a measurable space (G,BG) on which there
exists a left invariant Haar measure γ satisfying

γ(gG) = γ(G) for all g ∈ G and all G ∈ BG.

Each g ∈ G induces a one-to-one transformation g from Θ onto itself defined by Pgθ(gA) =
Pθ(A) for any A ∈ BX × BY and any θ ∈ Θ. The induced space G = {g : g ∈ G} is
measurable.

(A2) There exists a one-to-one correspondence X ↔ (tx, ux) between X and G ×UX
such that gX corresponds to (gtx, ux) and UX is a measurable space. Also, there exists a
one-to-one correspondence Y ↔ (ty, uy) between Y and G ×UY such that gY corresponds
to (gty, uy) and UY is a measurable space. The statistics ux and uy are maximal invariant
under the transformation G.

(A3) There exists a one-to-one correspondence θ ↔ gθ between Θ and G such that
gθ corresponds to g gθ for all g ∈ G. The correspondence of gθ in G is denoted by gθ.

(A4) There exist conditional probability density functions p(g−1θ tx|ux) and q(g−1θ ty|uy)
given ux and uy such that for all A ∈ BX , B ∈ BY ,

Pθ[A] =

∫
A

p(g−1θ tx|ux)px(ux)γ(dtx)γx(dux),

Pθ[B] =

∫
B

q(g−1θ ty|uy)qy(uy)γ(dty)γy(duy),
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where px(·) is a marginal density function of ux with respect to a measure γx(·) on UX ,
and py(·) and γy(·) are defined similarly.

We define a measure ν(·) by
ν(dg) = γ(dg−1).

This is a right invariant Haar measure. Since γ(·) is left invariant, it is noted that
γ(hdg) = γ(dg) and γ((dg)h) = ∆(h)γ(dg) for h, g ∈ G, where ∆(·) is a modular function.

Now we can set up the problem of estimating the joint predictive density q(g−1θ ty|uy)py(uy)
based on (tx, ux). When we estimate qθ by a density q̂(ty|uy, tx, ux)qy(uy), we evaluate the
performance using the Kullback-Leibler (KL) divergence in (1.2) and we may write

LKL(θ, q̂(·|·, tx, ux)) =

∫
q(g−1θ ty|uy)qy(uy) log

(
q(g−1θ ty|uy)qy(uy)
q̂(ty|uy, tx, ux)qy(uy)

)
γ(dty)γy(duy)

=Euy
[∫

q(g−1θ ty|uy) log

(
q(g−1θ ty|uy)
q̂(ty|uy, tx, ux)

)
γ(dty)

]
.

Then, the risk function is

RKL(θ, q̂) = E[LKL(θ, q̂(·|·, tx, ux)] = Eux,uy [RKL(θ, q̂|ux, uy)], (2.1)

where Eux,uy [·] is the expectation with respect to the marginal distribution of (ux, uy),
and RKL(θ, q̂|ux, uy) is the conditional risk function given (ux, uy) equal to

RKL(θ, q̂|ux, uy) =

∫
p(g−1θ tx|ux)γ(dtx)

×
{∫

q(g−1θ ty|uy) log

(
q(g−1θ ty|uy)
q̂(ty|uy, tx, ux)

)
γ(dty)

}
. (2.2)

This demonstrates that estimation of the joint density function q(g−1θ ty|uy)qy(uy) can
be reduced to that of estimating the conditional density function q(g−1θ ty|uy) as long as
estimators of the form q̂(ty|uy, tx, ux)qy(uy) are considered.

Since the problem has an invariance structure, we can derive the best equivariant
estimator. Conditional predictive density equivariant estimators under the transformation
G satisfy

q̂(gty|uy, gtx, ux) = q̂(ty|uy, tx, ux) for all g ∈ G,
which implies that a class of (nonrandomized) equivariant estimators is given by

QI =

{
q̂I(t

−1
x ty|uy, ux)

∣∣∣ ∫ q̂I(s|uy, ux)γ(ds) = 1

}
.

The best equivariant estimator is given in the following proposition.

Proposition 2.1 Assume conditions (A1) to (A4). Then, the best equivariant estimator
of q(g−1θ ty|uy) is given by

q̂BI(t−1x ty|uy, ux) =

∫
p(t|ux) q(tt−1x ty|uy) γ(dt)

=

∫
p(g−1tx|ux) q(g−1ty|uy) ν(dg)∫

p(g−1tx|ux) ν(dg)
. (2.3)
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Proof. Note that the conditional risk function of q̂I(t
−1
x ty|uy, ux) is free from θ, and from

(2.2), it is expressed as

RKL(q̂I |ux, uy) =

∫ ∫
p(tx|ux)q(ty|uy) log

(
q(ty|uy)

q̂I(t−1x ty|uy, ux)

)
γ(dtx)γ(dty)

=

∫ ∫
p(tx|ux)q(txs|uy) log

(
q(txs|uy)
q̂I(s|uy, ux)

)
γ(dtx)γ(ds), (2.4)

where s = t−1x ty and γ(txds) = γ(ds) for the left invariant measure γ(·). With the
alternative rewriting

RKL(q̂I |ux, uy) =

∫ ∫
p(tx|ux)q(txs|uy)γ(dtx) log

(∫
p(tx|ux)q(txs|uy)γ(dtx)

q̂I(s|uy, ux)

)
γ(ds)

+

∫ ∫
p(tx|ux)q(txs|uy) log

(
q(txs|uy)∫

p(tx|ux)q(txs|uy)γ(dtx)

)
γ(dtx) γ(ds),

it is seen that the best equivariant predictive density estimator is

q̂BI(s|uy, ux) =

∫
p(t|ux)q(ts|uy)γ(dt). (2.5)

Making the transformation t = g−1tx, we see that

γ(d(g−1tx)) = γ((dg−1)tx) = ∆(tx)γ(g−1) = ∆(tx)ν(dg).

Since 1 =
∫
p(t|ux)γ(dt) =

∫
p(g−1tx|ux)∆(tx)ν(dg), it is seen that

∆(tx) = 1/

∫
p(g−1tx|ux)ν(dg).

Substituting s = t−1x ty into (2.5) and using the above arguments show that q̂BI(s|uy, ux)
is expressed as (2.3).

As seen from the form in (2.3), the best equivariant estimator is the generalized Bayes
predictive density estimator against the right invariant measure ν(dg). Liang and Barron
(2004) showed that the best equivariant estimator q̂BI(t−1x ty|uy, ux) is minimax if the group
G is amenable, namely, if there is a sequence of probability measures γj(·) on G that is
asymptotically invariant in the sense that limj→∞

∫
{ψ(ag) − ψ(a)}γj(da) = 0 for every

g ∈ G and every bounded measurable function ψ on G. However, the best equivariant
estimator is not necessarily minimax when the parameter space is restricted.

We now provide unified conditions for the minimaxity of the best equivariant predictive
density estimator. Although the conditions can be applied to both cases that parameters
are restricted and non-restricted, they lead to new findings in restricted cases only, since
minimaxity in non-restricted cases follows from the result of Liang and Barron (2004).

(A5) Θ is restricted, and this restriction is equivalently expressed as gθ ∈ P . Also, it
is assumed that P ⊂ G ⊂ Rr; namely, G is a subset of r dimensional Euclidean space and
P is a restricted space of G.
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(A6) There exist sequences of subsets Pk and one-to-one functions hk(·) between
G ↔ Ξ ⊂ Rr which satisfy the following conditions:

(A6-1) ∪∞k=k0Pk = G for some k0 ≥ 1.

(A6-2) Let V (Pk) =
∫
Pk
ν(dgθ). Let γk(·) be an induced measure defined by γk(A) =

ν(h−1k (A)) for A ∈ Ξ. Then, hk(Pk) =
∏r

i=1[−1 + ai,k, 1 + bi,k] and∫
hk(Pk)

f(ξk)γk(dξk)/V (Pk) ≥
1

2r + ck

∫
I
(
ξ ∈

r∏
i=1

[−1 + ai,k, 1 + bi,k]
)
f(ξ)dξ, (2.6)

where ξk = hk(gθ), I(·) is the indicator function, and limk→∞ ai,k = limk→∞ bi,k =
limk→∞ ck = 0 for i = 1, . . . , r.

(A6-3) For any small enough ε > 0 and any ξ ∈
∏r

i=1[−1 + ai,k + ε, 1 + bi,k− ε], there
exists a sequence of subsets P ∗k such that P ∗k does not depend on ξ, ∪∞k=k1P

∗
k = G for some

k1 ≥ 1 and
P ∗k ⊂ {[h−1k (ξ)]−1g; g ∈ Pk}.

Theorem 2.1 Assume conditions (A1) to (A6-3). Then, the best equivariant estimator
q̂BI(t−1x ty|uy, ux) is minimax in estimation of the conditional density q(g−1θ ty|uy) in terms
of the conditional risk (2.2).

Proof. We can show this theorem along the same lines as in Kubokawa (2004) who
modified the method of Girshick and Savage (1951). Consider the sequence of prior
distributions given by

πk(gθ)ν(dgθ) =

{
{V (Pk)}−1ν(dgθ) if gθ ∈ Pk

0 otherwise.

This yields the Bayesian predictive densities

q̂πk (ty|uy, tx, ux) =

∫
Pk

p(g−1tx|ux)q(g−1ty|uy)ν(dg)
/∫

Pk

p(g−1tx|ux)ν(dg)

with conditional Bayes risks

rk(πk, q̂
π
k |ux, uy) =

1

V (Pk)

∫
Pk

∫ ∫
p(g−1θ tx|ux)q(g−1θ ty|uy)

× log

(
q(g−1θ ty|uy)

q̂πk (ty|uy, tx, ux)

)
γ(dtx)γ(dty)ν(dgθ).

Since rk(πk, q̂
π
k |ux, uy) ≤ rk(πk, q̂

BI |ux, uy) = R0(ux, uy), it is sufficient to show that
lim infk→∞ rk(πk, q̂

π
k |ux, uy) ≥ R0(ux, uy). Making the transformations sx = g−1θ tx and

sy = g−1θ ty yields

rk(πk, q̂
π
k |ux, uy) =

1

V (Pk)

∫
Pk

∫ ∫
p(sx|ux)q(sy|uy) log

(
q(sy|uu)

q̂πk (gθsy|uy, gθsx, ux)

)
ν(dgθ)

× γ(dsx)γ(dsy)ν(dgθ), (2.7)
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where q̂πk (gθsy|uy, gθsx, ux) is expressed as

q̂πk (gθsy|uy, gθsx, ux) =

∫
Pk
p(g−1gθsx|ux)q(g−1gθsy|uy)ν(dg)∫

Pk
p(g−1gθsx|ux)ν(dg)

.

Now, make the transformation g1 = g−1θ g with ν(dg) = ∆(gθ)ν(dg1) in order to rewrite
q̂πk (gθsy|uy, gθsx, ux) as

q̂πk (gθsy|uy, gθsx, ux) =

∫
gθg1∈Pk

p(g−11 sx|ux)q(g−11 sy|uy)ν(dg1)∫
gθg1∈Pk

p(g−11 sx|ux)ν(dg1)
.

In view of the assumptions, there exists a transformation ξk = hk(gθ) satisfying the
condition (A6). Note that gθg1 ∈ Pk is equivalent to h−1k (ξk)g1 ∈ Pk, or

g1 ∈ {[h−1k (ξk)]
−1g; g ∈ Pk} ≡ P̃k(ξk).

Then, the Bayes estimator ĝπk (gθsy|uy, gθsx, ux) is rewritten as

q̂πk (h−1k (ξk)sy|uy, h−1k (ξk)sx, ux) =

∫
g1∈P̃k(ξk)

p(g−11 sx|ux)q(g−11 sy|uy)ν(dg1)∫
g1∈P̃k(ξk)

p(g−11 sx|ux)ν(dg1)
, (2.8)

and the conditional Bayes risk (2.7) is rewritten as

rk(πk, q̂
π
k |ux, uy) =

1

V (Pk)

∫
hk(Pk)

∫ ∫
p(sx|ux)q(sy|uy)

× log

(
q(sy|uu)

q̂πk (h−1k (ξk)sy|uy, h−1k (ξk)sx, ux)

)
γk(dξk)γ(dsx)γ(dsy).

It is noted that from (A6-2), for any small ε > 0,

hk(Pk) =
r∏
i=1

[−1 + ai,k, 1 + bi,k] ⊃
r∏
i=1

[−1 + ai,k + ε, 1 + bi,k − ε] ≡ Ik,ε.

Then from (2.6), the conditional Bayes risk is evaluated as

rk(πk, q̂
π
k |ux, uy) ≥

1

2r

∫
I(ξ ∈ Ik,ε)

∫ ∫
p(sx|ux)q(sy|uy)

× log

(
q(sy|uu)

q̂πk (h−1k (ξ)sy|uy, h−1k (ξ)sx, ux)

)
dξγ(dsx)γ(dsy).

For ξ ∈ Ik,ε, from (A6-3), it can be seen that q̂πk (h−1k (ξ)sy|uy, h−1k (ξ)sx, ux)→ q̂BI(t−1x ty|uy, ux)
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as k →∞. Hence, Fatou’s lemma is used to bound the Bayes risks as

lim inf
k→∞

rk(πk, q̂
π
k |ux, uy) ≥

1

2r

∫
lim inf
k→∞

I(ξ ∈ Ik,ε)
∫ ∫

p(sx|ux)q(sy|uy)

× lim inf
k→∞

log

(
q(sy|uy)

q̂πk (h−1k (ξ)sy|uy, h−1k (ξ)sx, ux)

)
γ(dsx)γ(dsy)dξ

=
1

2r

∫
|−1+ε,1−ε|r

dξ

×
∫ ∫

p(sx|ux)q(sy|uy) log

(
q(sy|uy)

q̂BI(t−1x ty|uy, ux)

)
γ(dsx)γ(dsy)

=(1− ε)rR(θ, q̂BI(t−1x ty|uy, ux)) = (1− ε)rR0(ux, uy)

From the arbitrariness of ε > 0, it follows that lim infk→∞ rk(πk, q̂
π
k |ux, uy) ≥ R0(ux, uy),

completing the proof of Theorem 2.1.

In the above proof, the Bayes risk is given by rk(πk, q̂
π
k ) = Eux,uy [rk(πk, q̂

π
k |ux, uy)]. It

is easy to see that rk(πk, q̂
π
k ) ≤ Eux,uy [rk(πk, q̂

BI |ux, uy)] = Eux,uy [R0(ux, uy)]. On the
other hand, Fatou’s lemma is used to evaluate the Bayes risk as lim infk→∞ rk(πk, q̂

π
k ) ≥

Eux,uy [lim infk→∞ rk(πk, q̂
π
k |ux, uy)] ≥ Eux,uy [R0(ux, uy)]. Thus, we get the following corol-

lary.

Corollary 2.1 Assume conditions (A1) to (A6-3). Then, the best equivariant estimator
q̂BI(t−1x ty|uy, ux)qy(uy) is minimax for the estimation of the joint density q(g−1θ ty|uy)qy(uy)
in terms of the Kullback-Leibler risk (2.1).

As we will show in various situations, Theorem 2.1 includes both non-restricted and re-
stricted cases and thus provides a unified result for the minimaxity of the best equivariant
estimator.

3 Location and scale families: minimaxity and im-

provements on q̂BI

3.1 Minimaxity for location families

We first deal with the estimation of a density with a restricted location parameter. Let
X = (X1, . . . , Xn1) be a random variable having a density f(x − µ) for x − µ = (x1 −
µ, . . . , xn1−µ), and let Y = (Y1, . . . , Yn2) be a random variable having a density g(y−µ)
for y−µ = (y1−µ, . . . , yn2−µ), where the location parameter is restricted to the one-sided
parameter space

A = {µ | µ ≥ a0} for known a0.

Let ux = (x2−x1, . . . , xn1−x1) and uy = (y2−y1, . . . , yn2−y1) be the maximal invariants.
The location models are expressed as p(x1 − µ|ux) = f(x1 − µ, ux + x1 − µ)/px(ux) and
q(y1 − µ|uy) = g(y1 − µ, uy + y1 − µ)/qy(uy) for px(ux) =

∫
f(t, ux + t)dt and qy(uy) =∫

g(t, uy + t)dt, where ux + a means ux + a = (x2−x1 + a, . . . , xn1 −x1 + a) for a scalar a.
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When the parameter µ is not restricted, it follows from (2.3) that the best equivariant esti-
mator for predicting the density q(y1−µ|uy)qy(uy) is q̂BI(y|x) = q̂BI(y1−x1|uy, ux)qy(uy),
where

q̂BI(y1 − x1|uy, ux) =

∫∞
−∞ p(x1 − a|ux)q(y1 − a|uy)da∫∞

−∞ p(x1 − a|ux)da
, (3.1)

which is minimax without the restriction A. When µ is restricted to A, we can show the
minimaxity of q̂BI(y|x).

Theorem 3.1 The best equivariant estimator q̂BI(y|x) in the location problem is mini-
max for estimation of the predictive density under the restricted parameter space A relative
to LKL-loss; and the minimax risk is given by R0 = R(µ, q̂BI).

Proof. It is sufficient to check conditions (A6)-(A6-3) in Theorem 2.1. In this case,
P = {µ ≥ a0}, G = R, γ(dµ) = ν(dµ) = dµ, Pk = {µ|a0 < µ < a0 + k} and V (Pk) = k.
Take ξk = hk(µ) = (2/k)(µ − a0) − 1. Then, hk(Pk) = [−1, 1], γk(dξk) = (k/2)dξk
and

∫
hk(Pk)

f(ξk)γk(dξk)/V (Pk) = (1/2)
∫
[−1,1] f(ξ)dξ, which satisfies condition (A6-2).

For any ξ ∈ [−1 + ε, 1 − ε], it is noted that µ = h−1k (ξ) = a0 + (k/2)(ξ + 1), so that
{[h−1k (ξ)]−1g; g ∈ Pk} = {µ − a0 − (k/2)(ξ + 1); a0 < µ < a0 + k} = (−(k/2)(ξ +
1), (k/2)(1 − ξ)) ⊃ (−(k/2)ε, (k/2)ε) ≡ P ∗k . Since limk→∞ P

∗
k = R, condition (A6-3) is

satisfied, and the minimaxity of q̂BI is established.

3.2 Improvements on the best equivariant estimator q̂BI

Although the best equivariant predictive density is minimax, it is not reasonable from a
Bayesian or optimization perspective because the prior distribution is taken over whole the
space of µ. This suggests that the unrestricted uniform prior Bayes predictive density is
likely to be inadmissible and may be improved upon by other (necessarily minimax) predic-
tive densities. A reasonable alternative is the generalized Bayes predictive density against
the uniform prior over the restricted space A, given by q̂U(y|x) = q̂U(y1, |x1, uy, ux)qy(uy),
where

q̂U(y1|x1, uy, ux) =

∫∞
a0
p(x1 − a|ux)q(y1 − a|uy)da∫∞

a0
p(x1 − a|ux)da

. (3.2)

We will indeed establish the minimaxity of the uniform prior Bayes predictive density
q̂U(y|x) under the following logconcavity or increasing monotone likelihood ratio property:

(C1) The density q(y1 − µ|uy) is a continuously differentiable function such that
q(y1 − µ|uy)/q(y1 − a0|uy) is nondecreasing in y1 for µ > a0.

Lemma 3.1 Assume that q(y1−µ|uy) satisfies condition (C1). Define A(y1|x1, ux, uy, µ)
by

A(y1|x1, ux, uy, µ) =

∫ 0

−∞ p(x1 + w − µ|ux)q(y1 + w − µ|uy)dw∫ 0

−∞ p(x1 + w|ux)q(y1 + w|uy)dw
. (3.3)

Then, the following properties hold:

(i) q′(y1|uy)/q(y1|uy) is nonincreasing in y1, where q′(y1|uy) = ∇y1q(y1|uy) for ∇y1 =
∂/∂y1 ;
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(ii) For µ > 0, A(y1|x1, ux, uy, µ) is nondecreasing in y1.

Proof. Property (i) follows from the fact that ∇y1{q(y1 − µ|uy)/q(y1|uy)} ≥ 0. For
establishing (ii), we shall show that ∇y1A(y1|x1, ux, uy, µ) ≥ 0 under assumption (C1).
Carrying out the differentiation, we see that this inequality is equivalent to∫ 0

−∞ p(x1 + w − µ|ux)q′(y1 + w − µ|uy)dw∫ 0

−∞ p(x1 + w − µ|ux)q(y1 + w − µ|uy)dw

≥
∫ 0

−∞ p(x1 + w|ux)q′(y1 + w|uy)dw∫ 0

−∞ p(x1 + w|ux)q(y1 + w|uy)dw
,

or ∫ −µ
−∞ p(x1 + w|ux)q′(y1 + w|uy)dw∫ −µ
−∞ p(x1 + w|ux)q(y1 + w|uy)dw

≥
∫ 0

−∞ p(x1 + w|ux)q′(y1 + w|uy)dw∫ 0

−∞ p(x1 + w|ux)q(y1 + w|uy)dw
. (3.4)

Hence from (3.4), it is sufficient to show that

∂

∂µ

∫ −µ
−∞ p(x1 + w|ux)q′(y1 + w|uy)dw∫ −µ
−∞ p(x1 + w|ux)q(y1 + w|uy)dw

≥ 0 . (3.5)

In fact, this derivative is proportional to

−p(x1 − µ|ux)q′(y1 − µ|uy)
∫ −µ
−∞

p(x1 + w|ux)q(y1 + w|uy)dw

+ p(x1 − µ|ux)q(y1 − µ|uy)
∫ −µ
−∞

p(x1 + w|ux)q′(y1 + w|uy)dw,

which is rewritten as

p(x1 − µ|ux)q(y1 − µ|uy)
∫ −µ
−∞

p(x1 + w|ux)q(y1 + w|uy)

×
{q′(y1 + w|uy)
q(y1 + w|uy)

− q′(y1 − µ|uy)
q(y1 − µ|uy)

}
dw. (3.6)

From property (i), note that ∇y1q(y1|uy)/q(y1|uy) is nonincreasing in y1. Hence, the
integrand in (3.6) is not negative, and the inequality (3.5) holds. This proves Lemma 3.1.

Using this lemma, we prove the following theorem.

Theorem 3.2 Assume condition (C1). Then, the uniform prior Bayes predictive density
q̂U(y|x) is minimax under the restriction µ ≥ a0. The risks of q̂U(·) and q̂BI(·) coincide
if and only if µ = a0.
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Proof. Let a0 = 0 without any loss generality. Since q̂BI(y|x) is a minimax estimator
with a constant risk, we shall show that q̂U(y|x) improves on q̂BI(y|x). From (2.1), it
is sufficient to show the improvement in terms of the conditional risk (2.2). The IERD
method developed by Kubokawa (1994a,b) is useful for the purpose. The conditional risk
difference of the two predictive densities q̂BI(y|x) and q̂U(y|x) is written by

∆(µ) =RKL(µ, q̂BI |ux, uy)−RKL(µ, q̂U |ux, uy)

=

∫ ∫
p(x1 − µ|ux)q(y1 − µ|uy)

{
log q̂U(y|x)− log q̂BI(y|x)

}
dx1dy1.

Observe that

logq̂U(y|x)− log q̂BI(y|x)

= log

∫∞
0
q(y1 − a|uy)p(x1 − a|ux)da∫∞

0
p(x1 − a|ux)da

− log

∫∞
−∞ q(y1 − a|uy)p(x1 − a|ux)da∫∞

−∞ p(x1 − a|ux)da

=

∫ 0

−∞

d

dt

(
log

∫∞
t
q(y1 − a|uy)p(x1 − a|ux)da∫∞

t
p(x1 − a|ux)da

)
dt

=

∫ 0

−∞

{
p(x1 − t|ux)∫∞

t
p(x1 − a|ux)da

− q(y1 − t|uy)p(x1 − t|ux)∫∞
t
q(y1 − a|uy)p(x1 − a|ux)da

}
dt,

which permits us to write

∆(µ) =

∫ ∫
p(x1 − µ|ux)q(y1 − µ|uy) dx1 dy1

×
∫ 0

−∞

{
p(x1 − t|ux)∫∞

t
p(x1 − a|ux)da

− q(y1 − t|uy)p(x1 − t|ux)∫∞
t
q(y1 − a|uy)p(x1 − a|ux)da

}
dt .

Making the transformation w = −a + t with dw = −da gives that
∫∞
t
p(x1 − a|ux)da =∫ 0

−∞ p(x1 − t+w|ux)dw and
∫∞
t
q(y1 − a|uy)p(x1 − a|ux)da =

∫ 0

−∞ q(y1 − t+w|uy)p(x1 −
t+ w|ux)dw. Then, making the transformations x = x1 − t and y = y1 − t yields

∆(µ) =

∫ ∫ ∫ 0

−∞
p(x+ t− µ|ux)q(y + t− µ|uy) dt

×
{ p(x|ux)∫ 0

−∞ p(x+ w|ux)dw
− q(y|uy)p(x|ux)∫ 0

−∞ q(y + w|uy)p(x+ w|ux)dw

}
dx dy.

Replacing t with w, we can get the expression

∆(µ) =

∫ ∫
p(x|ux)

∫ 0

−∞ p(x+ w − µ|ux)q(y + w − µ|uy)dw∫ 0

−∞ p(x+ w|ux)q(y + w|uy)dw

×
{∫ 0

−∞ p(x+ w|ux)q(y + w|uy)dw∫ 0

−∞ p(x+ w|ux)dw
− q(y|uy)

}
dxdy

=

∫ ∫
p(x|ux)

∫
A(y|x, ux, uy, µ)

×
{∫ 0

−∞ p(x+ w|ux)q(y + w|uy)dw∫ 0

−∞ p(x+ w|ux)dwq(y|uy)
− 1
}
q(y|uy) dy dx.
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From Lemma 3.1, it follows that A(y|x, ux, uy, µ) is nondecreasing in y for µ > 0. Since
q(y + w|uy)/q(y|uy) is nondecreasing in y, it is seen that for µ > 0∫

A(y|x, ux, uy, µ)
{∫ 0

−∞ p(x+ w|ux)q(y + w|uy)dw∫ 0

−∞ p(x+ w|ux)dwq(y|uy)
− 1
}
q(y|uy)dy

>

∫
A(y|x, ux, uy, µ)q(y|uy)dy (3.7)

×
∫ {∫ 0

−∞ p(x+ w|ux)q(y + w|uy)dw∫ 0

−∞ p(x+ w|ux)dwq(y|uy)
− 1
}
q(y|uy)dy

=

∫
A(y|x, ux, uy, µ)q(y|uy)dy

×
{∫ 0

−∞ p(x+ w|ux)
∫
q(y + w|uy)dydw∫ 0

−∞ p(x+ w|ux)dw
−
∫
q(y|uy)dy

}
.

Since
∫
q(y + w|uy)dy =

∫
q(y|uy)dy, it follows that∫ 0

−∞ p(x+ w|ux)
∫
q(y + w|uy)dydw∫ 0

−∞ p(x+ w|ux)dw
− 1

=

∫ 0

−∞ p(x+ w|ux)dw∫ 0

−∞ p(x+ w|ux)dw

∫
q(y|uy)dy − 1,

which is zero. Finally, observe that A(y|x, ux, uy, 0) is constant(= 1) in y, so that ∆(0) = 0
as seen with the above expansion with an equality replacing the inequality in (3.7). There-
fore, the proof of Theorem 3.2 is complete.

Other improvements on q̂BI

Theorem 3.2 establishes a general comparison between the generalized Bayes estimator
q̂U and the best equivariant estimator q̂BI , with the former dominating the latter under
the simple condition that q be logconcave. It is of interest to seek classes of other domi-
nating procedures. Although we will not explore this issue in depth here, it is nevertheless
pertinent to make the following observation which generates many other dominating pro-
cedures. The next result follows from the strict concavity of the log function on (0,∞),
or alternatively from the strict convexity with respect to q̂ of the loss LKL(qθ, q̂).

Lemma 3.2 Let α ∈ (0, 1). Let q̂i, i = 0, 1, 2 be estimators such that q̂1 6= q̂2. If
RKL(θ, q̂i) ≤ RKL(θ, q̂0) for i = 1, 2 and for all θ ∈ Θ, then RKL(θ, αq̂1 + (1 − α)q̂2) ≤
RKL(θ, q̂0), with equality at a given θ0 if and only if RKL(θ0, q̂i) = RKL(θ0, q̂0) for i = 1, 2.

The above result implies directly that convex linear combinations of q̂BI and q̂U dom-
inate q̂BI in the context of Theorem 3.2 by taking q̂0 = q̂1 = q̂BI and q̂2 = q̂U . Fi-
nally, since Theorem 3.2 applies for the conditional risks, the weights can be made
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to depend on the maximal invariants ux and uy and it thus follows that estimators
α(ux, uy)q̂

U(y|x1, uy, ux)qy(uy) + (1− α(ux, uy))q̂
BI(y|x1, uy, ux)qy(uy) with α(·, ·) ∈ (0, 1)

are also minimax estimators.

Examples

We proceed with instructive examples and illustrations.

Example 3.1 (normal models) The results above apply to the particular setup:

X|µ ∼ N(µ, νX), Y |µ ∼ N(µ, νY ), (3.8)

with the restriction µ ≥ a0. Namely, Theorem 3.1 tells us that q̂BI(·|X) ∼ N(X, νX +
νY ) remains minimax under the restriction µ ≥ a0, while Theorem 3.2 implies that the
generalized Bayes estimator q̂U is also minimax, and dominates q̂BI under the restriction
µ ≥ a0. Figure 1 compares the risks of these two estimators for a0 = 0, νX = 1, νY = 1.

The curve measures the relative difference in risks (i.e., RKl(µ,q̂
BI)−RKl(µ,q̂U )

RKl(µ,q̂BI)
). Observe that

the risks coincide indeed at the lower boundary of the parameter space and at µ = ∞
and that the gains are appreciable, particularly around one standard deviation from the
boundary where they fluctuate around 40%.
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Figure 1: Relative difference in risks between q̂BI and q̂U (normal model with µ ≥ 0, νX =
νY = 1)

For the specific normal case illustrated here, the above dominance and minimax results
are not new and were previously obtained through a different route by Fourdrinier et al.
(2011) by methods which are also applicable for the multivariate case. Interestingly, yet
another proof of the dominance result can be derived by a more direct and instructive
approach. We now expand on this, considering the more general problem µ ∈ [a0, a0+m),
with m = “∞′′ corresponding to the lower bounded case and setting hereafter a0 = 0
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without loss of generality. Making use of (1.5), the uniform Bayes estimator q̂U with
respect to the flat prior on [0,m) is given by

q̂U(Y |X) =
mU(W ; νW )

mU(X; νX)
q̂BI(Y |X)

=

=

{
Φ( W

σW
)− Φ(W−m

σW
)

Φ( X
σX

)− Φ(X−m
σX

)

}
q̂BI(Y |X) ,

with W =d νYX+νXY
νX+νY

∼ N(µ, σ2
W = νXνY

νx+νY
). Consequently, the difference in risks may be

expressed as

∆(µ) = RKL(µ, q̂BI)−RKL(µ, q̂U) = EX,Y log

(
q̂U(Y |X)

q̂BI(Y |X)

)
= EX,Y

{
log

(
Φ(

W

σW
)− Φ(

W −m
σW

)

)
− log

(
Φ(

X

σX
)− Φ(

X −m
σX

)

)}
.

Here, set W ′ = W
σW
∼ N( µ

σW
, 1), X ′ = X

σX
∼ N( µ

σX
, 1) and observe that W ′ =d X ′ + δ,

with δ = µ( 1
σW
− 1

σX
) ≥ 0 for µ ≥ 0 with equality iff µ = 0, given that σW < σX . Hence,

∆(µ) = EX′
{

log

(
Φ(X ′ + δ)− Φ(X ′ + δ − m

σW
)

)
− log

(
Φ(X ′)− Φ(X ′ − m

σX
)

)}
≥ 0 ,

for all µ ∈ [0,m], since Φ(·) is strictly increasing on R and x′ + δ ≥ x′ and x′ + δ − m
σW
≤

x′ − m
σX

for all x′ ∈ R, and with equality occurring only if µ = 0 and m = ∞. We

have thus shown directly that the uniform Bayes procedure q̂U dominates q̂BI for the
normal model in (3.8) with the restriction µ ∈ [a0, a0 + m). This offers an alternative
to Fourdrinier et al.’s proof. Notwithstanding this development (as well as the next
Remark), the search for efficient Bayesian procedures under a compact interval constraint
which merits further study will not be pursued here. Recent advances for point estimation
versions of this problem were obtained by Kubokawa (2005B), as well as Marchand and
Payandeh (2011).

Remark 3.1 (non-minimaxity of q̂BI in the compact interval case)
In the previous example for the compact interval case with m <∞, observe that ∆(µ) > 0
for all µ ∈ [a0, a0 +m], which implies in turn that infµ∈[a0,a0+m] ∆(µ) > 0 and that q̂BI is
not minimax, in contrast to the unbounded lower bounded case. This provides an analog
of a familiar point estimation version of this argument (e.g., Lehmann and Casella, 1998,
page 327). Moreover, the non-minimaxity argument is more general under condition (C1)
in the context of Theorem 3.2 as seen by the following elements of proof:

• Theorem 3.4 implies that q̂U1 dominates q̂BI for the restriction µ ∈ [a0, a0 + m]
where q̂U1 is the generalized Bayes predictive density with respect to the flat prior
on [a0,∞) with equality in risks iff µ = a0;

• Theorem 3.4 implies that q̂U2 dominates q̂BI for the restriction µ ∈ [a0, a0 + m]
where q̂U2 is the generalized Bayes predictive density with respect to the flat prior
on [−∞, a0 +m] with equality in risks iff µ = a0 +m;
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• Paired with the above, Lemma 3.2 implies that the predictive density estimator
1
2
q̂U1 + 1

2
q̂U2 dominates q̂BI strictly for µ ∈ [a0, a0 +m];

• Consequently, as in the first paragraph of this Remark, q̂BI cannot be minimax for
µ ∈ [a0, a0 +m] when q satisfies condition (C1).

Example 3.2 The results of this section also apply to Exponential location models with

X1, . . . , Xn1 , Y1, . . . , Yn2 i.i.d. Exp(µ, σ), µ ≥ 0 and known σ, with density 1
σ
e−

(t−µ)
σ 1(µ,∞)(t).

Here the order statistics X(1) and Y(1) are sufficient statistics, and we can take σ = 1 with-
out loss of generality, so that it suffices to consider the setup

X ∼ Exp(µ,
1

n1

), Y ∼ Exp(µ,
1

n2

) . (3.9)

Evaluating (3.1) and (3.2), we obtain with a little bit of manipulation

q̂BI(y|x) =
n1n2

n1 + n2

{
e−n2|x−y|1[x,∞)(y) + e−n1|x−y|1(−∞,x)(y)

}
,

and

q̂U(y|x) = q̂BI(y|x)

{
e(n1+n2)x − 1

e(n1+n2)x − en2x
1[x,∞)(y) +

1− e−(n1+n2)y

1− e−(n1)x
1(−∞,x)(y)

}
,

Observe that q̂BI is an asymmetric Laplace distribution (and symmetric Laplace for n1 =
n2), while q̂U is a skewed version of q̂BI . Theorems 3.1 and 3.2 apply and tell us that
both q̂BI and q̂U are minimax under the restriction µ ≥ 0, with q̂U dominating q̂BI .

3.3 Case of a scale family

We next consider estimation of the predictive density with a restricted scale parameter.
Let X = (X1, . . . , Xn1) be a positive random variable having a density σ−n1f(σ−1x) for
σ−1x = (σ−1x1, . . . , σ

−1xn1), and let Y = (Y1, . . . , Yn2) be a random variable having a
density σ−n2g(σ−1y) for σ−1y = (σ−1y1, . . . , σ

−1yn2), where the scale parameter is lower
bounded belonging to the restricted parameter space

B = {σ | σ ≥ b0} , for known positive b0.

Let tx = |x1|, ux = (x1/|x1|, x2/|x1|, . . . , xn1/|x1|) and ty and uy are defined similarly.
The joint densities σ−n1f(σ−1x)dx and σ−n2g(σ−1y)dy are expressed as, respectively,
p(σ−1tx|ux)px(ux)γ(dtx)γx(dux) and q(σ−1ty|uy)qy(uy)γ(dty)γy(duy), where γ(dσ) = ν(dσ) =
dσ/σ, and px(ux) and qy(uy) are marginal densities of ux and uy.

Note that σ−1tx = exp{log tx − log σ} and d log tx = dtx/tx. Since the restriction B
is written as log σ > log b0, all the results given in the previous subsection hold for the
restricted scale problem. The results corresponding to Theorems 3.1 and 3.2 are described
below.
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When the parameter σ is not restricted, it follows from (2.3) that the best equivariant
estimator for predicting the density q(σ−1ty|uy)qy(uy) is q̂BI(y|x) = q̂BI(t−1x ty|uy, ux)qy(u),
where

q̂BI(t−1x ty|uy, ux) =

∫∞
0
p(b−1tx|ux)q(b−1ty|uy)b−1db∫∞

0
p(b−1tx|ux)b−1db

, (3.10)

which is minimax without the restriction B. Even if σ is restricted on B, the minimaxity
of q̂BI(y|x) still holds.

Theorem 3.3 The best equivariant estimator q̂BI(y|x) is minimax for estimation of the
predictive density under the restricted parameter space B relative to the LKL-loss, and the
minimax risk is given by R0 = R(σ, q̂BI).

Although the best equivariant predictive density is minimax, it is not reasonable because
the prior distribution is taken over whole the space of σ. This suggests that q̂BI is likely
to be inadmissible and to be improved upon by other (minimax) predictive densities. A
reasonable choice is the generalized Bayes predictive density against the invariant prior
over the restricted space B, given by q̂U(y|x) = q̂U(ty|tx, uy, ux)qy(uy), where

q̂U(ty|tx, uy, ux) =

∫∞
b0
p(b−1tx|ux)q(b−1ty|uy)b−1db∫∞

b0
p(b−1tx|ux)b−1db

. (3.11)

To establish the minimaxity of the invariant prior Bayes predictive density qU(y|x), we
assume the following condition analogous to (C1):

(C2) The density q(σ−1ty|uy) is a continuously differentiable function such that the
ratio of the densities q(σ−1ty|uy)/q(b−10 ty|uy) is nondecreasing in ty for σ > b0.

Theorem 3.4 Assume condition (C2). Then, the Bayes predictive density q̂U(y|x) is
minimax under the restriction σ ≥ b0, and the risks of q̂U and q̂BI coincide if and only if
σ = b0.

Lemma 3.1 used for proving Theorem 3.2 is expressed in the scale case as follows:

Lemma 3.3 Assume that q(σ−1ty|uy) satisfies the condition (C2). Then, the following
properties hold:

(i) ty{∇tyq(ty|uy)}/q(ty|uy) is nonincreasing in ty, where ∇ty = ∂/∂ty.

(ii) Define B(ty|tx, ux, uy, σ) by

B(ty|tx, ux, uy, σ) =

∫ 1

0
w−1p(σ−1wtx|ux)q(σ−1wty|uy)dw∫ 1

0
w−1p(wtx|ux)q(wty|uy)dw

. (3.12)

Then for σ > b0, B(ty|tx, ux, uy, µ) is nondecreasing in ty.

We can show Theorem 3.4 directly using Lemma 3.3, though we have here applied The-
orem 3.2 to the scale case. We conclude this section with an application to Gamma
models.
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Example 3.3 An interesting application consists of Gamma distributions for X and Y
with

X|σ ∼ Gamma(α1, σ), Y |σ ∼ Gamma(α2, σ), (3.13)

with α1, α2 known, and the lower bound restriction σ ≥ b0(> 0). We have assumed
without loss of generality that the samples for X and Y are of size one by completeness
and sufficiency of the sums in such Gamma models. Evaluating (3.10) and (3.11), we
obtain the elegant representations

q̂BI(y|x) =
Γ(α1 + α2)

Γ(α1) Γ(α2)

1

x
(
y

x
)α2−1 (1 +

y

x
)−(α1+α2) 1(0,∞)(y) ,

and

q̂U(y|x) = q̂BI(y|x)
F̄α1+α2(

x+y
b0

)

F̄α1(
x
b0

)
,

where F̄γ(·) is the survival function of a Gamma(γ, 1) distribution. Observe that q̂BI is
the density of a Fisher distribution with scale parameter α2

α1
x, and shape parameters 2α2

(d.f. numerator) and 2α1 (d.f. denominator), while q̂U is a skewed version of q̂BI .
The findings of this section apply. First, q̂BI is minimax for the unrestricted parameter

space and remains minimax in presence of the lower bound b0 on the scale parameter.
Second, since Gamma densities form a family with an increasing monotone likelihood
ratio, condition (C2) is satisfied and the Bayes procedure q̂U dominates q̂BI by virtue of
Theorem 3.4. Finally, we point out that analogous results hold here for the case where
the scale parameter σ is upper bounded, say σ ∈ (0, c0). In such cases, we consider the
transformed problem with X ′ = X and Y ′ = 1

Y
and consider the setup of Theorem 3.4

with b0 = 1
c0

, pθ being the density of X ′ and qθ being the density of Y ′. Since inverse
Gamma distributions have logconcave densities as well, and the Kullback-Leibler loss is
intrinsic, Theorem 3.4 indeed applies.

4 Estimation in location-scale families

In this section, we treat location-scale families with location and/or scale parameters
constrained, and investigate minimaxity of the best equivariant estimators using Theorem
2.1.

4.1 Non-bounded case

We begin with the univariate case. Let X = (X1, . . . , Xn1) be a random variable having
a density σ−n1f((x− µ)/σ) for (x− µ)/σ = ((x1 − µ)/σ, . . . , (xn1 − µ)/σ), and let Y =
(Y1, . . . , Yn2) be a random variable having a density σ−n2g((y − µ)/σ) for (y − µ)/σ =
((y1 − µ)/σ, . . . , (yn2 − µ)/σ), where the location and scale parameters are restricted to
the space

C = {(µ, σ)|µ > c0σ + a0, σ > b0}, (4.1)

where a0, b0 and c0 are constants such that b0 ≥ 0 and−∞ ≤ a0, c0 <∞. The unrestricted
case is described by b0 = c0 = 0 and a0 = −∞. Let tx = (|x2 − x1|, x1), ux = ((x2 −
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x1)/|x2 − x1|, . . . , (xn1 − x1)/|x2 − x1|) and let ty and uy be defined similarly. Let G =
R+×R and define the product by (a, b)(σ, µ) = (aσ, aµ+b). This implies that (σ, µ)−1 =
(1/σ,−µ/σ) and (σ, µ)−1(|x2 − x1|, x1) = (|x2 − x1|/σ, (x1 − µ)/σ). Then, σ−n1f((x −
µ)/σ)dx and σ−n2g((y − µ)/σ)dy are expressed as p((σ, µ)−1tx|ux)px(ux)γ(dtx)γx(dux)
and q((σ, µ)−1ty|uy)qy(uy)γ(dty)γy(duy), respectively, where γ(d(σ, µ)) = (dµdσ)/σ2.

When the parameters are not restricted, it follows from (2.3) that the best equivariant
predictive density estimator of q((σ, µ)−1tx|uy)qy(uy) is given by q̂BI(t−1x ty, uy|ux) =
q̂BI(t−1x ty|uy, ux)qy(uy), where

q̂BI(t−1x ty|uy, ux) =

∫
p((b, a)−1tx|ux)q((b, a)−1ty|uy)ν(d(b, a))∫

p((b, a)−1tx|ux)ν(d(b, a)
, (4.2)

and where ν(d(b, a)) = (dadb)/b2. Using Theorem 2.1, we analyze the question of mini-
maxity of the best equivariant estimator under the restriction C.

[1] Case of a0 > −∞ and b0 > 0. This case implies that both µ and σ are restricted
from one side.

Theorem 4.1 Assume that a0 and b0 satisfy that a0 > −∞ and b0 > 0. Then, the
best equivariant estimator q̂BI(t−1x ty, uy|ux) is minimax in the estimation of the predictive
density under the restricted parameter space C relative to the LKL-loss, and the minimax
risk is given by R0 = R((σ, µ), q̂BI).

Proof. For c0 = 0, we define the sequence dk = k, while for c0 6= 0 we take dk = log k.
Such a sequence admits the following behaviour when k →∞,

(a) (k/dk)d
ε/2
k →∞ for any ε > 0 when c0 = 0,

(b) dk/k → 0 and dk →∞ when c0 6= 0.
We proceed by verifying conditions (A6)-(A6-3) in Theorem 2.1. In this case, P =

{(σ, µ)|a0 + c0σ < µ, b0 < σ}, G = R+ × R, we set Pk = {(σ, µ)|a0 + c0σ < µ <
a0 + c0σ + k, b0 < σ < b0dk} and V (Pk) = k log dk where dk is defined above. Take ξ1 =
(2/ log dk) log(σ/b0)−1 and ξ2 = (2/k)(µ−a0−c0σ)−1. Letting ξ = (ξ1, ξ2) = hk((σ, µ)),
we see that hk(Pk) = [−1, 1]2, γk(dξ) = {(k log dk)/4}dξ and

∫
hk(Pk)

f(ξk)γk(dξ)/V (Pk) =

(1/4)
∫
[−1,1]2 f(ξ)dξ, which satisfies condition (A6-2). For any ξ ∈ [−1 + ε, 1 − ε]2, let

(b, a) = h−1k (ξ). Then, b = b0d
(1+ξ1)/2
k and a = (k/2)(1 + ξ2) + a0 + c0b0d

(1+ξ1)/2
k so that

{[h−1k (ξ)]−1(σ, µ); (σ, µ) ∈ Pk} = {(σ/b, (µ− a)/b); (σ, µ) ∈ Pk} and σ/b, (µ− a)/b satisfy
the inequalities

d
−(1+ξ1)/2
k <

σ

b
< d

(1−ξ1)/2
k ,

c0
σ

b
− d

−(1+ξ1)/2
k

b0
{k

2
(1 + ξ2) + c0b0d

(1+ξ1)/2
k }

<
µ− a
b

< c0
σ

b
+
d
−(1+ξ1)/2
k

b0
{k

2
(1− ξ2)− c0b0d(1+ξ1)/2k }.

Note that 1 − ξi > ε and 1 + ξi > ε for i = 1, 2. The first inequality is satisfied by
d
−ε/2
k < σ/b < d

ε/2
k , which can be expanded to (0,∞) as k → ∞ if dk → ∞ as k → ∞.
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Also, the second inequality is satisfied by

k

d
(1+ξ1)/2
k

{
c0
σ

b

d
(1+ξ1)/2
k

k
− ε

2b0
− c0
k

}
<
µ− a
b

<
k

d
(1+ξ1)/2
k

{
c0
σ

b

d
(1+ξ1)/2
k

k
+

ε

2b0
− c0
k

}
.

Here, it is noted that

σ

b

d
(1+ξ1)/2
k

k
<d

(1−ξ1)/2
k

d
(1+ξ1)/2
k

k
<
dk
k
,

and
k

d
(1+ξ1)/2
k

=
k

dk
d
(1−ξ1)/2
k >

k

dk
d
ε/2
k .

Since dk satisfies the condition (a) or (b), it can be seen that the lower end point of
(µ − a)/b goes to −∞, and the upper point goes to ∞. This verifies condition (A6-3),
and the minimaxity of q̂BI is established.

[2] Case of a0 = −∞ and b0 > 0. Although we can show the minimaxity directly
by the same arguments as in the proof of Theorem 4.1, we here give a simple proof based
on Theorem 3.3. Since µ is not restricted and the problem is invariant under a location
transformation, we can consider location equivariant estimators, which depend on x1 and
y1 through y1−x1. Thus, the risk function of the location equivariant estimator does not
depend on µ. Then, the problem can be reduced to the estimation in the scale family
with the restriction σ > b0. Hence from Theorem 3.3, it follows that best equivariant
estimator is minimax. This is summarized as follows.

Theorem 4.2 Assume that µ is not restricted, but σ is restricted to σ > b0. Then, the
best equivariant estimator q̂BI(t−1x ty, uy|ux) is minimax in the estimation of the predictive
density under the restricted parameter space.

[3] Case of a0 > −∞ and b0 = 0. This case implies that µ is restricted as µ > a0
and σ is not restricted. By considering x′ = x − a0, we can set a0 = 0 without loss
of generality and the problem becomes invariant (as in the previous case) under a scale
transformation. We are thus led to the following.

Theorem 4.3 Assume that σ is not restricted, but µ is such that µ ≥ a0. Then, the
best equivariant estimator q̂BI(t−1x ty, uy|ux) is minimax in the estimation of the predictive
density under the restricted parameter space.

4.2 Bounded case

Concerning the estimation of the predictive density, we have already seen that the best
location equivariant estimator q̂BI (Example 3.1 and Remark 3.1) is generally not minimax
for estimating a location parameter bounded to a compact interval. However, the result of
Kubokawa (2005) suggests minimaxity in the case of an unknown scale, and the following
theorem shows that this suggestion is correct.
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Let us consider the following restriction under the same location-scale families as
treated in the previous subsection:

D = {(σ, µ)|a1 < µ < a2, 0 < σ < b0},

where a1 and a2 are bounded constants and b0 is a positive constant.

Theorem 4.4 Assume that (µ, σ) is restricted to D. Then, the best equivariant esti-
mator q̂BI(t−1x ty, uy|ux) is minimax for the estimation of the predictive density under the
restricted parameter space.

Proof. We shall check conditions (A6)-(A6-3) in Theorem 2.1. In this case, P =
{(σ, µ)|a1 < µ < a2, 0 < σ < b0}, Pk = {(σ, µ)|a1 < µ < a2, b0/k < σ < b0} for
kb0 > 1, and V (Pk) = (a2−a1) log k. Take ξ1 = (2/ log k) log(σ/b0) + 1 and ξ2 = {2/(a2−
a1)}{µ − (a1 + a2)/2}. Letting ξ = (ξ1, ξ2) = hk((σ, µ)), we see that hk(Pk) = [−1, 1]2,
γk(dξ) = {(a2 − a1) log k)/4}dξ and

∫
hk(Pk)

f(ξk)γk(dξ)/V (Pk) = (1/4)
∫
[−1,1]2 f(ξ)dξ,

which satisfies condition (A7-2). For any ξ ∈ [−1 + ε, 1 − ε]2, let (b, a) = h−1k (ξ). Then,
b = b0k

(ξ1−1)/2 and a = {(a2 − a1)/2}ξ2 + (a1 + a2)/2 so that {[h−1k (ξ)]−1(σ, µ); (σ, µ) ∈
Pk} = {(σ/b, (µ− a)/b); (σ, µ) ∈ Pk} and σ/b, (µ− a)/b satisfy the inequalities

k−(1+ξ1)/2 <
σ

b
< k(1−ξ1)/2,

−a2 − a1
2b0

(1 + ξ2)k
−(ξ1−1)/2 <

µ− a
b

<
a2 − a1

2b0
(1− ξ2)k−(ξ1−1)/2,

both of which are satisfied by k−ε/2 < σ/b < kε/2 and

−a2 − a1
2b0

εk−ε/2 <
µ− a
b

<
a2 − a1

2b0
εk−ε/2.

Hence, condition (A6-3) is satisfied and the minimaxity of q̂BI is established.

Note that minimaxity still holds under the restriction D0 = {(σ, µ)|a1 < µ < a2, 0 < σ}.
However, we could not show minimaxity for the restriction D1 = {(σ, µ)|a1 < µ < a2, b0 <
σ}, since we cannot take a sequence so that the lower and upper bounds of (µ− a)/b can
be expanded to the whole real line in the proof of Theorem 4.4. We conjecture that
the best equivariant estimator is not minimax under the restriction D1. From Kubokawa
(2005), we also guess that the best equivariant estimator is not minimax for the restriction
{(σ, µ)|a1 < µ

σ
< a2, σ > 0}.

4.3 Multidimensional case

As an extension to a multidimensional model, we consider density functions of the forms
p(σ−1(tx−µ),σ−1sx|ux)px(ux) and q(σ−1(ty−µ),σ−1sy|uy)qy(uy) where ux and uy are
location-scale invariant statistics,

σ−1(tx − µ) =
(tx,1 − µ1

σ1
, . . . ,

tx,p − µp
σp

)
and σ−1sx =

(sx,1
σ1

, . . . ,
sx,p
σp

)
,
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and σ−1(ty − µ) and σ−1sy are defined similarly.

[1] Ordered restriction of locations. We first treat the constraint given by

M1 = {(σ,µ)|Bµ ≤ α, σ1 = · · · = σp = σ},

where B = (b1, . . . , bq)
′ is a q × p known matrix for q ≤ p, α = (α1, . . . , αq)

′ is a known
vector, and the inequality Bµ ≤ α means that b′iµ ≤ αi for i = 1, . . . , q. This restriction
means that the location parameters are restricted to the polyhedral convex cone and
includes the positive orthant restriction µi ≥ 0, i = 1, . . . , p, the simple order restriction
µ1 ≤ µ2 ≤ · · · ≤ µp, and the tree order restriction µ1 ≤ µi, i = 2, . . . , k.

Combining the arguments as in the proof of theorem 2.1 in Tsukuma and Kubokawa
(2008) and the proof of Theorem 4.3, we can show the minimaxity of the best equivariant
estimator.

Theorem 4.5 Assume that (σ,µ) is restricted to the polyhedral convex cone M1 with
unrestricted unknown scale σ. Then, the best equivariant estimator is minimax in the
estimation of the predictive density under the restricted parameter space.

[2] Ordered restriction of scales. We next consider the constraint given by

M2 = {(σ,µ)|µ ∈ Rp,Bη ≤ α},

where η = (η1, . . . , ηp)
′ for ηi = log σ, and B and α are the same as defined in M1. This

restriction means that η is restricted on the polyhedral convex cone and includes the
positive orthant restriction σi ≥ 1, i = 1, . . . , p, the simple order restriction σ1 ≤ σ2 ≤
· · · ≤ σp and the tree order restriction σ1 ≤ σi, i = 2, . . . , k.

Since µ is not restricted and the problem is invariant under location transformations, we
can consider location equivariant estimators, which depend on tx and ty through ty − tx.
Thus, the risk function of the location equivariant estimator does not depend on µ. Then,
the problem can be reduced to estimation in the scale family with the restrictionBη ≤ α.
Hence from the arguments as in the proof of Tsukuma and Kubokawa (2008), it follows
that the best equivariant estimator is minimax.

Theorem 4.6 Assume that (σ,µ) is restricted into the polyhedral convex cone M2 with
unrestricted location parameters µ. Then, the best equivariant estimator is minimax in
the estimation of the predictive density under the restricted parameter space.

5 Concluding remarks

We have demonstrated that, for many restricted parameter space problems, the best
equivariant predictive density q̂BI under Kullback-Leibler loss remains minimax, with
constant risk matching the minimax risk. We point out that versions of Theorem 2.1, 3.1,
3.3, and 4.1 also follow from the results of Marchand and Strawderman (2011).
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For lower (or upper) bounded location or scale parameter problems, we have introduced
a novel adaptation of Kubokawa’s IERD technique to show that the generalized Bayes
procedure q̂U with respect to the truncation of the right Haar invariant measure onto
the restricted parameter space dominates q̂BI and is thus minimax. These findings are
analogous to various point estimation results previously established. It seems plausible,
but more research is required, that similar minimax results and q̂BI-q̂U comparisons hold
for other choices of loss, such as for α-divergence losses (e.g., Csiszár, 1967; Corcuera and
Guummole, 1999). Finally, further analysis of the efficiency of Bayes estimators for other
restricted parameter spaces, such as for univariate compact interval restrictions, represent
challenging and interesting problems for further research.
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