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Abstract

This paper develops a general pricing method for multi-asset cross currency op-
tions, whose underlying asset consists of multiple different assets, and the evaluation
currency is different from the ones used in the most liquid market of each asset; the
examples include cross currency options, cross currency basket options and cross
currency average options. We also demonstrate that our scheme is able to eval-
uate options with high dimensional state variables such as 200 dimensions, which
is necessary for pricing basket options with 100 underlying assets under stochastic
volatility environment. Moreover, in practice, fast calibration is necessary in the
option markets relevant for the underlying assets and the currency, which is also
achieved in this paper. Furthermore, we investigate the implied correlations in the
cross currency markets on the dates before and after the events, Lehman Shock and
Tohoku Earthquake.

1 Introduction

This paper presents a general framework for pricing multi-asset cross currency options
under a broad class of multi-dimensional diffusion models. We notice that the underlying
assets of a multi-asset cross currency option are related with multiple underlying asset
markets as well as at least one currency market. Moreover, it is necessary for practical
use of a pricing model to take the information of each underlying asset’s option market
into account. Then, calibration to each option market needs a more complex model
than Black-Scholes model such as stochastic volatility models to reflect the skew/smile
and term structure of implied volatilities observed in the option market. Thus, a multi-
dimensional diffusion model should be applied to pricing a multi-asset cross currency
option and relevant calibrations, where an analytical valuation method is necessary
for fast computation. On the other hand, it is almost impossible to obtain a closed-
form option pricing formula under a multi-dimensional diffusion setting. An effective
method for overcoming this problem is an asymptotic expansion scheme which is a uni-
fied method in order to achieve accurate approximations of option prices and Greeks in
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multi-dimensional models. (For instance, please see [37], [28], [29], [21], [32], [33], [30],
[31] for the detail.) We also remark that the Mathematical foundation of this method
relies on Watanabe theory in Malliavin calculus. (For instance, please see [34], [36], [22]
for the detail.) Applying the scheme, this paper derives an approximation formula for
pricing multi-asset cross currency options, and presents several practical examples with
numerical analysis which takes actual option markets into consideration.

As the first example, we evaluate cross currency basket options in stochastic volatility
models based on the calibration to the relevant option markets of USD quoted currency
pairs. Moreover, for examination of the accuracy of our approximation method, we also
evaluate basket options whose underlying asset consists of 100 different assets under
Black-Scholes [3], Constant elasticity of variance (CEV) [8] and λ-SABR [23] models.
Particularly, we demonstrate that our scheme can be applied to pricing options with
high dimensional state variables such as 200 dimensions, which is necessary for pricing
basket options with 100 underlying assets under stochastic volatility environment. This
feature is an advantage of this method comparing to other analytical (approximation)
schemes.

There are several existing literatures (e.g. [5], [6], [18], [25] and [38]) that derive ap-
proximate formulas for pricing basket options where each underlying asset price follows
Black-Scholes model. [14] derives an approximation formula in jump-diffusion model,
and [35] provides an approximation formula in a local volatility and jump-diffusion
model. Also, [4] derives closed form formulas for the option price and the Greeks of
Asian(average) basket options in energy markets under log-normal (Black-Scholes) model
of each underlying asset price with moment-matching method. [10] shows the analytic
bounds for Asian basket options under Black-Scholes model with comonotonic approach.
[28] and [29] proposes a new pricing formula for basket options under general diffusion
setting by applying the asymptotic expansion scheme. Recently, [24] develops a new
symbolic algorithm for the asymptotic expansion scheme, and applies it to pricing op-
tions on VIX under the Gatheral double log-normal stochastic volatility models, where
the underlying asset is expressed as square-root of a linear combination of a stochastic
variance and its stochastic mean reversion level. [19] approximated basket option under
SABR model using Markovian projection. Moreover, [1] derives a very accurate formula
for pricing basket options under a general class of local volatility models including CEV
and Black-Scholes models, and demonstrates the accuracy using 100 underlying assets.
(For instance, see [2] and [15] for the related articles.) Our work is the first one which
derives an approximation formula and implements numerical experiments in stochastic
volatility environment for pricing basket options with 100 underlying assets, as well as
pricing currency basket options based on calibration to the real vanilla option markets.

The second example is cross currency average options. [20] proposes approximations
of average option prices under Black-Scholes model. However, it is almost impossible for
one parameter set under the Black-Scholes option pricing model to reproduce market
prices with various strikes for a given maturity. Then, [37] [28], [29], [27] apply an
asymptotic expansion method to pricing average options under the general diffusion
process of the underlying asset price; they consider a continuous average of an asset price,
which does not represent the underlying price of a contract in the real world precisely.
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Hence, the formula they derived can not be used directly for valuation of the options
traded in actual markets. Thus, [26] develops an approximation scheme with stochastic
volatility models that takes specific features of commodity average price options into
consideration. (See the paper for the detail.) [9], [11] and [13] derive approximation
formula for cross currency average basket options under Black-Scholes model.

This paper extends [26] to the cross currency correspondents which is very useful
for firms outside United States importing energies such as crude oils traded mainly
with the U.S. dollar. Especially, we evaluate average options on Japanese-yen based
West Texas Intermediate (WTI) futures, where SABR model is applied to WTI futures
price processes while an extended λ-SABR model is used for the JPYUSD spot foreign
exchange rate 1process. We show its numerical examples based on the calibration to the
WTI futures option market as well as to the USDJPY currency option market. To the
best of our knowledge, this is the first work for pricing cross currency average options
including numerical analysis which reflects the actual option markets.

Furthermore, we investigate the implied correlations in the various cross currency
markets. In particular, we apply SABR model to each USD quoted foreign exchange
rate, as opposed to models such as Double Heston model (e.g. [7], [16]), in which the
two volatility processes for the USD quoted currency pairs relevant with a cross currency
pair are perfectly correlated. Clearly, the performance of calibration by our model seems
much better, which is confirmed in our numerical analysis. As a related work, [12]
analyzes the currency option markets in fairly detail by applying his intrinsic currency
framework under stochastic volatility environment. As for the data of the numerical
analysis, we use the ones on the dates before and after the events such as Lehman Shock
and Tohoku Earthquake. Moreover, the sensitivities of implied volatilities with respect
to the correlation parameters are also examined.

The organization of the paper is as follows: Section 2 discusses a general diffusion
model used for pricing multi-asset cross currency options and shows several examples
included in this class of options. Section 3 derives an approximation formula for multi-
asset cross currency options under a multi-factor extension of the λ-SABR stochastic
volatility model. Section 4 presents pricing cross currency basket and cross currency
average options with numerical examples. Section 5 investigates the implied correlations
in the various cross currency option markets. Appendix shows the derivation of the
pricing formula and the calibration results associated with Section 5.

2 Multi-Asset Cross Currency Options

Let 0-th asset Sk,l
0 be a spot foreign exchange rate that stands for the price of the unit

amount of the currency k in terms of currency l. Without loss of generality, we assume
that k denotes Japanese yen (JPY) while l denotes US dollar (USD), and write S0 for

Sk,l
0 that is, 1 Japanese yen = S0 US dollars. Also, let Si (i = 1, · · · , n) denotes the price

of the asset i in terms of USD.

1price of Japanese yen in terms of U.S. dollars

3



Next, suppose that the dynamics of Si (i = 0, 1, · · · , n) are expressed under the USD
risk-neutral measure as follows:

dS0(t) = S0(t)[α0(t)dt+ σ̂0(t, S0)dZ(t)], (1)

dσ0(t) = f0(t, σ0)dt+ ν̄0(t, σ0)σ0(t)dZ(t), (2)

dSi(t) = Si(t)[αi(t)dt+ σ̂i(t, Si)]dZ(t), (3)

dσi(t) = fi(t, σi)dt+ ν̄i(t, σi)σi(t)dZ(t), (4)

where α0(t) = rUSD(t) − rJPY (t), αi(t) = rUSD(t) − δi(t)(i = 1, · · · , n), and Z denotes
the 2(n+ 1)-dimensional Brownian motion under the USD risk-neutral measure; rUSD,
rJPY and δi denote the risk-free interest rates of USD, that of JPY and the dividend
rate of i-th asset, respectively. Moreover, 2(n+1)-dimensional parameters, σ̂i(t, Si) and
ν̄i(t, σi)(i = 0, 1, · · · , n) are defined by

σ̂i(t, Si) := σi(t)gi(t, Si)(ci,0(t), ci,1(t), · · · , ci,i(t), 0, · · · , 0) (5)

ν̄i(t, σi) := (νi,0(t, σi), · · · , νi,2n+1(t, σi))

:= νi(t, σi)(cn+1+i,0(t), cn+1+i,1(t), · · · , cn+1+i,n+1+i(t), 0, · · · , 0), (6)

where fi(t, x), gi(t, x) and νi(t, x), (i = 0, · · · , n) are some [0, T ] ×R+ 7→ R functions.
ci,j(t), (0 ≤ j ≤ i ≤ 2n+1) are [0, T ] 7→ R functions which are obtained by the Cholesky
decompositions of the relevant correlation matrices.

Next, let Yi, (i = 1, · · · , n) denote the price of the asset i in terms of JPY:

Yi(t) =
Si(t)

S0(t)
. (7)

Then, the dynamics of Si, σi and Yi under JPY risk-neutral measure are given as follows:

dSi(t) = Si(t)[(αi(t) + σ̂0(t, S0)σ̂i(t, Si))dt+ σ̂i(t, Si)dW (t)] (8)

dσi(t) = [fi(t, σi) + σ̂0(t, S0)σi(t, Si)ν̄i(t, σi)]dt+ ν̄i(t, σ)dW (t), (9)

dYi(t) = Yi(t)[(αi(t)− α0(t)) dt+ (−σ̂0(t, S0) + σ̂i(t, Si)) dW (t)], (10)

where W denotes the 2(n+1)-dimensional Brownian motion under the JPY risk-neutral
measure.

Under this setting, in the following sections we will consider approximations for
pricing options whose underlying asset price process X defined by

X(t) =

n∑
i=1

wi(t)Yi(t), (11)

where wi(t) is a deterministic function of the time parameter t; for instance, the payoff
of a call option with strike price K and maturity T is expressed as max {X(T )−K, 0}.
Hereafter, we will call this type of options multi-asset cross currency options. We remark
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that setting S0 ≡ 1, we can treat USD denominated options as a special case. We are
also able to consider quanto-type products when the underlying asset is given by

X(t) =
n∑

i=1

wi(t)Si(t), (12)

under the JPY risk-neutral measure. We also assume that the interest rates rUSD, rJPY

and dividend rates δi are non-random just for simplicity, which implies that α0(t) and
αi(t) in the above equations become deterministic. 2

Next, let us see several well-known option products whose underlying asset prices are
described by (11) with specific wi(t).

1. Cross Currency Options

The simplest example may be cross currency options such as EUR/JPY options,
where S1 stands for the exchange rate USD/EUR. Then, we set the weights wi(t)
as w1(t) = 1 and wi(t) = 0 (i = 2, · · · , n).

2. Spread Options

The underlying asset prices of spread options are the difference of futures prices/interest
rates with different maturities, or the difference of the prices of different assets. In
this case, setting the weights as w1(t) = 1, w2(t) = −1 and wi(t) = 0 (i = 2, · · · , n),
we have

X(t) = Y1(t)− Y2(t). (13)

3. Basket Options

The underlying asset of a basket option is the weighted average of the prices of dif-
ferent assets, where the weights are typically some prespecified (positive) constants,
that is wi(t) ≡ wi > 0 for all i:

X(t) =
n∑

i=1

wiYi(t). (14)

4. Average Options

Average options are one of popular products especially in the commodity markets;
the futures contracts with several consecutive maturities may become the underly-
ing assets of an average option as in OTC oil market(e.g. WTI market). (See [26]
for the detail of the structure of products.)

More generally, let us introduce new processes Zi(t) defined by

Zi(t) =

mi∑
j=1

Yi

(
t
(i)
j

)
I
(
{t(i)j ≤ t}

)
,

2When the underlying asset is a futures contract (denominated by USD) with no dividends, the asset
price process is a martingale under the USD risk-neutral measure. Then, αi = 0 in (3).
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where 0 ≤ t
(i)
1 < · · · < t

(i)
mi ≤ T , mi denotes the number of the cross currency price

Yi to which the average option refers, and the dynamics of each Yi is described by
the stochastic differential equation (10) with (9). Then, we can deal with a cross
currency(e.g. Japanese yen-based) average option whose underlying asset price
X(t) is given by the following:

X(t) =
1

M

n∑
i=1

Zi(t) =

n∑
i=1

mi∑
j=1

1

M
I
(
{t(i)j ≤ t}

)
Yi

(
t
(i)
j

)
, (15)

where M =
∑n

i=1mi. Note that if each Yi

(
t
(i)
j

)
, i = 1, · · · , n, j = 1, · · · ,mi is

regarded as a different asset’s price, its weight function in (11) is given by

w
(j)
i (t) =

1

M
I
(
{t(i)j ≤ t}

)
.

3 Approximation formula

This section will derive an approximation formula which is useful for analysis of multi-
asset cross currency options. In particular, we take an extended λ-SABR model as the
underlying asset price dynamics, while the similar formula can be derived for the general
model, (1)-(4) in the same procedure.

First, we briefly explain the extended λ-SABR model that we apply to our analysis
in the following sections.

We specify the coefficient functions for (1)-(6) in the previous section as follows:

f(t, σi) = λi(θi(t)− σi(t)), (16)

g(t, Si) = Sβi−1
i , (a constant βi ∈ [0, 1]), (17)

σ̂i(t, Si) = σi(t)g(t, Si)(ci,0, ci,1, · · · , ci,i, 0, · · · , 0) (18)

ν̄i(t, σi) = ν̄i(t) = (νi,0(t), · · · , νi,2n+1(t))

= νi(c(n+1+i),0(t), c(n+1+i),1(t), · · · , c(n+1+i),(n+1+i)(t), 0, · · · , 0), (19)

where λi and νi, i = 0, 1, · · · , n are some positive constants.
Also, ci,j(t), (0 ≤ j ≤ i ≤ 2n + 1) are [0, T ] 7→ R functions which are obtained by the
Cholesky decompositions of the relevant correlation matrices.

Then, in sum we obtain the dynamics of Si and σi for i = 0, 1, · · · , n as follows:

dSi(t) = αiSi(t)dt+ σ̂i(t)Si(t)dZ(t); Si(0) given, αi is a constant. (20)

dσi(t) = λi(θi(t)− σi(t))dt+ ν̄i(t)σi(t)dZ(t); σi(0) given, (21)

where σ̂i(t) and ν̄i(t) are defined by (18) and (19), respectively; λi is a positive con-
stant, and θ(t) is a deterministic function of the time parameter t; Z denotes 2(n+ 1)-
dimensional Brownian motion under the USD risk-neutral measure. Then, the dynamics
of Si, σi and Yi under the JPY risk-neutral measure are given by (8)-(10).
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Next, we will present the pricing formula under the λ-SABR model. For the SABR
model [17], it is enough to set λ = 0 in the λ-SABR model. In particular, the following
theorem shows a formula for a European-type call option whose payoff is given by

C(T ) = max {X(T )−K, 0} , (22)

where

X(t) =

n∑
i=1

wi(t)Yi(t).

Although the detail of the derivation of the formula is quite lengthy and hence is omitted,
let us briefly explain the idea. In the first place, in order to get perturbative random
processes of (8)-(10), we replace σ̂0, σ̂i and ν̄i in (8)-(10) by ϵσ̂0, ϵσ̂i and ϵν̄i, respectively

to obtain S
(ϵ)
i , σ

(ϵ)
i and Y

(ϵ)
i . As a result, we obtain X(ϵ)(T ), a perturbative random

variable ofX(T ), and then expandX(ϵ)(T ) aroundX(0)(T ) which isX(ϵ)(T ) evaluated at

ϵ = 0. (Due to the zero volatilities of S
(0)
i , σ

(0)
i and Y

(0)
i , the process {X(0)(t) : 0 ≤ t ≤ T}

has no volatility term, and hence X(0)(T ) corresponds to the initial price of the T -
maturity forward contract for the underlying asset.)

Next, we implement an asymptotic expansion of the density function for a normalized

random variable, X̂(ϵ)(T ) := X(ϵ)(T )−X(0)(T )
ϵ of which limiting density is Gaussian. For

example, the asymptotic expansion up to the ϵ2-order for the density function of X̂(ϵ)(T )
denoted by fX̂(ϵ)(x) is obtained as follows:

fX̂(ϵ)(x) = n[x; 0,Σ]

{
1 + ϵC1

H3(x; Σ)

Σ3

+ϵ2
(
C2

H6(x; Σ)

Σ6
+ C3

H4(x; Σ)

Σ4
+ C4

H2(x; Σ)

Σ2

)}
+ o(ϵ2), (23)

where n[x; 0,Σ] is the normal density function with mean 0 and variance Σ, that is

n[x; 0,Σ] = 1√
2πΣ

exp
(
−x2

2Σ

)
. The coefficients C1, · · · , C4 are some constants. Moreover,

Hk(x; Σ) denotes the k-th order Hermite polynomial,Hk(x; Σ) = (−Σ)kex
2/2Σ dk

dxk e
−x2/2Σ.

Also, notice that the call payoff on X(ϵ) with maturity T and strike K can be expressed
by

max
{
X(ϵ)(T )−K, 0

}
= ϵmax

{(
X̂(ϵ)(T ) + y

)
, 0
}
, (24)

where y = X(0)(T )−K
ϵ . Then, by using the expansion of the density and the call payoff’s

expression, we obtain an approximation of the call option price through an expansion of
the right hand side of the equation below:

e−rTE
[
max

{
X(ϵ)(T )−K, 0

}]
= ϵe−rTE

[
max

{(
X̂(ϵ)(T ) + y

)
, 0
}]

. (25)

Particularly, setting ϵ = 1 in this approximation, we are able to get an approximation
for the call option price with payoff (22), C(T ) = max {X(T )−K, 0}. Consequently, we
obtain the following theorem.
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Theorem 3.1. Let C(0) be the time-0 price of the European call option with payoff (22).
Then, an approximation formula of C(0) obtained by an asymptotic expansion up to the
ϵ3-order is given by setting ϵ = 1 in the following expression:

e−rT

{
ϵ

(
yN

(
y√
Σ

)
+Σn[y; 0,Σ]

)
− ϵ2C1

H1(y; Σ)

Σ
n[y; 0,Σ]

+ϵ3
(
C2

H4(y; Σ)

Σ4
+ C3

H2(y; Σ)

Σ2
+ C4

)
n[y; 0,Σ]

}
, (26)

where r is a constant risk-free rate, y = X(0)(T )−K
ϵ , X(0)(T ) stands for the initial price of

the T -maturity forward contract for the underlying asset, n[x; 0,Σ] is the normal density
function with mean 0 and variance Σ, and N(x) denotes the standard normal distribution
function. The coefficients C1, · · · , C4 are some constants. Moreover, Hk(x; Σ) denotes
the k-th order Hermite polynomial, and particularly, H1(x; Σ) = x, H2(x; Σ) = x2 − Σ
and H4(x; Σ) = x4 − 6Σx2 + 3Σ2.

The detail of the derivation as well as the coefficients C1, · · · , C4 are in Appendix A.

4 Numerical Examples

After showing an approximation result in a simple Black-Scholes model, this section
will describe numerical examples of basket options and cross currency average options.
We remark that in applying the approximation formula (26) in Theorem 3.1 to all the
numerical examples, the perturbation parameter ϵ in (26) is set to be 1.

Generally speaking, our expansion formula is able to approximate option prices very
well for all the examples. In particular, Subsection 4.2 will show that high dimension-
ality is not a big issue in a sense that the same formula (26) can be applied to pricing
options with high dimensional state variables such as 200 dimensions, which is necessary
for pricing basket options with 100 underlying assets under stochastic volatility envi-
ronment. This feature is an advantage of this method comparing to other analytical
(approximation) schemes.

On the other hand, because the expansion is made around ϵ = 0, that is zero volatility,
the approximation is expected to become less accurate as the underlying asset volatility
and the volatility on volatility are larger. Moreover, as we remark in the end of the
previous section, since the limiting density of the normalized random variable X̂(ϵ)(T )
is Gaussian, as the distribution of the underlying asset price is closer to a normal distri-
bution, the approximation is expected to be better and vice versa.

Furthermore, in option pricing, the difference of the underlying asset price distribu-
tion has the larger effect for pricing more OTM options because the shape of the tail
in the distribution becomes more important. Hence, an approximation for OTM option
prices is expected to become more difficult when the underlying distribution is less close
to normal.

8



These points will be shown or/and discussed in details with concrete numerical ex-
periments in the following subsections, which will indicate a robustness of our method
in terms of accuracy even under difficult situations for this approximation scheme.

4.1 Plain-Vanilla Option under Black-Scholes Model

The first example is on the Black-Scholes model with no drift:

dS(t) = σS(t)dW (t); S(0) = x > 0. (27)

In this simplest case, Σ = σ2x2T , and Ci, i = 1, · · · , 4 in (26) are easily obtained as
follows:

C1 =
σ4x3T 2

2
, C2 =

σ8x6T 4

8
, C3 =

2σ6x4T 3

3
, C4 =

σ4x2T 2

4
. (28)

The next table compares the approximation result for call options with the exact result
by Black-Scholes formula (BS in the table), where the parameters are set as r = 0,
x = 10, 000, σ = 0.15 and T = 1. We observe that the third order approximation
(denoted by AE 3rd in the table) is rather well.

Table 1: European Call Option (Black-Scholes model)
Strike 8000 9000 10000 11000 12000

AE 3rd 2,040.1 1,202.1 597.9 250.1 89.3
BS 2,040.4 1,202.2 597.9 250.0 89.1

Difference -0.2 -0.0 -0.0 0.0 0.2
Relative Difference (%) 0.0% 0.0% 0.0% 0.0% 0.2%

4.2 Basket Options with 100 Underlying Assets

First, we examine the accuracy of our method by pricing basket call options with 100 un-
derlying assets. Due to its high dimensionality (e.g. 200 dimensions under the stochastic
volatility model used for Table 4), this product is hard to be evaluated by other ex-
isting analytical methods especially under stochastic volatility models. Even numerical
methods such as Monte Carlo simulations are very time-consuming to obtain accurate
prices. We also note that our method is fast enough for practical usage. 3 For instance,
by using one core of Xeon X5675 3.07GHz, it takes 3.8 seconds by our approximation
formula (26) to obtain the result reported in Table 4 below while it does 7,300 seconds
by Monte Carlo simulation. That is, the computational speed of our method is around
1,900 times faster than that of Monte Carlo simulation. Moreover, we remark that when
the dimension of the underlying state variables is lower, our method has more advantage
than Monte Carlo simulation in terms of the computational speed. (For pricing a plain
vanilla call option under λ-SABR model, it takes only 4.2×10−5 seconds by the method
while 18.4 seconds by Monte Carlo simulation, that is 438, 000 times faster.)

3Please see for instance, [1] for other fast accurate analytical method for pricing basket options.
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Let us consider the payoff: for n = 100,

max

{(
n∑

i=1

Si(T )

)
−K, 0

}
,

where we do not consider cross currency options that is, S0 ≡ 1. As for the underly-
ing asset prices Si (i = 1, · · · , n), we take λ-SABR, CEV and Black-Scholes models.
Specifically, λ-SABR model is expressed in the following: for i = 1, 2, · · · , n,

dSi(t) = αiSi(t)dt+ σi(t)Si(t)
β c̄idZ(t); Si(0) given, αi is a constant. (29)

dσi(t) = λi(θi − σi(t))dt+ ν̄iσi(t)dZ(t); σi(0) given, (30)

where λi and θi are positive constants, and Z is a 2n-dimensional Brownian motion; ci
and ν̄i are defined by

c̄i = (ci,1, · · · , ci,i, 0, · · · , 0) (31)

ν̄i = νi(c(n+i),1, · · · , c(n+i),(n+i), 0, · · · , 0), (32)

where νi is a positive constant, and ci,j , (1 ≤ j ≤ i ≤ 2n) are obtained by the Cholesky
decomposition of the relevant correlation matrix. In λ-SABR model, the details for
parameters’ specification in the equations above are as follows.

1. The sum of the underlying asset’s initial price is 10000; Each initial asset price is
generated by the following procedure:

Firstly, we generate 99 random variables, aSi (i = 1, · · · , 99) from a uniform dis-
tribution in [0, 1], that is U [0, 1]. Then, we arrange them in ascending order and
relabel those by bSi so that bS1 < · · · < bS99. Next, we take the difference of the 100
ordered couples to define cSi = bSi − bSi−1 with setting bS0 = 0 and bS100 = 1. Finally,
we define Si(0) = 5000cSi + 50 to get Si(0) (i = 1, · · · , 100).

2. We set αi ≡ 0 without loss of generality, The average of initial volatility σi(0) and
that of the constant mean-reversion level θi(t) ≡ θi are 15%, and the average of
volatility on volatility νi is 30%. We define each initial volatility and volatility on
volatility by σi(0) = 50cσi + 1 and νi = 5cνi + 0.25,” where cσi and cνi are obtained
in the similar way as cSi above.

3. The parameters λi and βi are set as λi = 1 and βi = 0.5, respectively.

4. The correlation between two different asset prices is 0.8; the correlation between an
asset price and a volatility is -0.4; the correlation between two different volatilities
is 0.3.

CEV and Black-Scholes models have no stochastic volatility processes (21), of course.
Moreover, in Black-Scholes and CEV models the parameters are specified as those corre-
sponding ones in λ-SABR model, except that in Black-Scholes model, we set βi = 1, and
determine each asset price volatility as σBS

i = σi(0)
100 by using σi(0) in λ-SABR model.
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By applying the 3rd order expansion formula in Theorem 3.1, we evaluate the basket
call options with 1 year maturity and strike prices 8000, 9000, 10000, 11000 and 12000.
Then, we compare those with the prices calculated by Monte Carlo, where the random
number generator is Mersenne Twister, the number of trials is 3 million with the an-
tithetic variable method and time steps are 64/year. We remark that in Monte Carlo
simulations the convergence becomes very slow for this large number of the underlying
assets, and hence, we provide the standard errors in the tables. The results of Black-
Scholes, CEV and λ-SABR models are given in Table 2 - Table 4, respectively, where
“AE3” stands for the approximate price by the third order asymptotic expansion based
on the formula (26) in Theorem 3.1.

Table 2: Basket Option (Black-Scholes model)
Strike 8000 9000 10000 11000 12000

AE 3rd 2,006.4 1,089.1 433.2 121.2 24.4
Monte Carlo 2,006.6 1,089.3 433.1 120.8 24.2

Difference -0.2 -0.2 0.2 0.4 0.3
Relative Difference (%) 0.0% 0.0% 0.0% 0.3% 1.1%
MC Std Error 0.8 0.7 0.5 0.3 0.2

Table 3: Basket Option (CEV model)
Strike 8000 9000 10000 11000 12000

AE 3rd 2,007.0 1,084.5 413.2 99.5 14.5
Monte Carlo 2,007.1 1,084.6 413.0 99.3 14.4

Difference -0.1 -0.0 0.2 0.2 0.1
Relative Difference (%) 0.0% 0.0% 0.0% 0.2% 0.5%
MC Std Error 0.7 0.6 0.5 0.3 0.1

Table 4: Basket Option (λ-SABR model)
Strike 8000 9000 10000 11000 12000

AE 3rd 2,038.0 1,169.6 520.5 162.6 32.2
Monte Carlo 2,037.7 1,169.2 520.4 162.7 32.4

Difference 0.4 0.3 0.1 -0.1 -0.2
Relative Difference (%) 0.0% 0.0% 0.0% -0.1% -0.7%
MC Std Error 0.7 0.6 0.4 0.2 0.1

From these results, we observe that the 3rd order expansion can approximate basket
option prices rather well.
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4.3 Currency Basket Options

This subsection will examine currency basket options using actual data. In particular,
we evaluate basket options with three month maturity, whose underlying assets consist of
five currency pairs; JPYUSD, EURUSD, AUDUSD, GBPUSD and CADUSD, where the
quote currencies are USD. Moreover, the model parameters are obtained by the calibra-
tion to plain-vanilla option prices with three month maturity as of the first business day
of Nov. 2011; particularly, we remark that the correlation parameters among currency
pairs should be estimated through the relevant 10 cross currency option markets whose
procedure will be described below.

Also, for pricing vanilla and basket options we apply our formula in Theorem 3.1 to
(the extended) SABR model with β = 1: for i = 0, 1, 2, 3, 4,

dSi(t) = αiSi(t)dt+ σi(t)Si(t)c̄idZ(t); Si(0) given, αi is a constant. (33)

dσi(t) = ν̄iσi(t)dZ(t); σi(0) given, (34)

where ci and ν̄i are defined by

c̄i = (ci,0, ci,1, · · · , ci,i, 0, · · · , 0) (35)

ν̄i = νi(c(n+1+i),0, c(n+1+i),1, · · · , c(n+1+i),(n+1+i), 0, · · · , 0), (36)

where νi is a positive constant, and ci,j , (0 ≤ j ≤ i ≤ 2n + 1) are obtained by the
Cholesky decomposition of the relevant correlation matrix.

In the following, let us briefly describe the calibration procedure:

(Calibration Procedure)

• (Step 1) Suppose that each USD quoted exchange rate follows (33)-(34) under the
USD risk-neutral measure. Then, given αi and Si(0) by observation of the market,
through the calibration to each European plain-vanilla currency option market as
of the first business day of Nov. 2011, we estimate σi(0), νi and the correlation
between the exchange rate and its volatility, that is (c̄i · ν̄i).

• (Step 2) Each exchange rate of 10 cross currency pairs4 follows the stochastic
differential equation for Si/Sj(i ̸= j) which is obtained through (10) with (9), where
we replace Sj with S0 for the definition of Yi in (7) and specify the parameters by
using (33)-(34) instead of (1)-(4). By calibration to each European plain-vanilla
cross currency option market, we estimate the remaining 4 correlations that is,
(c̄i · c̄j) (c̄i · ν̄j), (c̄j · ν̄i), (ν̄i · ν̄j), while (c̄i · ν̄i) and (c̄j · ν̄j) are already obtained
in (Step 1) above; note that the estimation is subject to satisfying the positive
definite of the relevant 4× 4 correlation matrix.

The results are listed in Table 5 and 6. However, we find that the 10 × 10 correlation
matrix in Table 6 does not satisfy the positive definite condition. In order to fix it,

4EURJPY, GBPJPY, AUDJPY, CADJPY, EURCAD, GBPCAD, AUDCAD, EURAUD, GBPAUD,
EURGBP.
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through simultaneous calibration to five cross currency option markets, we re-estimate
the correlation parameters subject to satisfying the positive definiteness of the 10 × 10
correlation matrix. The result is given in Table 7. We note that the fitting to the market
prices based on the correlation matrix in Table 7 becomes worse than before.

Table 5: Volatility Parameters
σi(0) νi

JPYUSD 0.098 1.703
EURUSD 0.155 1.232
GBPUSD 0.102 1.333
AUDUSD 0.174 1.586
CADUSD 0.124 1.286

Table 6: Correlation Matrix I.
JPY EUR GBP AUD CAD JPY Vol EUR Vol GBP Vol AUD Vol CAD Vol

JPY 1 0.198 0.060 0.280 0.175 0.256 0.479 0.379 0.238 0.014
EUR 0.198 1 0.796 0.734 0.746 -0.007 -0.570 -0.277 -0.393 -0.294
GBP 0.060 0.796 1 0.683 0.571 -0.269 -0.617 -0.451 -0.547 -0.733
AUD 0.280 0.734 0.683 1 0.801 0.176 -0.870 -0.803 -0.568 -0.597
CAD 0.175 0.746 0.571 0.801 1 -0.394 -0.481 -0.552 -0.531 -0.499
JPY Vol 0.256 -0.007 -0.269 0.176 -0.394 1 0.701 0.966 0.083 0.738
EUR Vol 0.479 -0.570 -0.617 -0.870 -0.481 0.701 1 0.664 0.895 0.489
GBP Vol 0.379 -0.277 -0.451 -0.803 -0.552 0.966 0.664 1 0.889 0.734
AUD Vol 0.238 -0.393 -0.547 -0.568 -0.531 0.083 0.895 0.889 1 0.995
CAD Vol 0.014 -0.294 -0.733 -0.597 -0.499 0.738 0.489 0.734 0.995 1

Table 7: Correlation Matrix II.
JPY EUR GBP AUD CAD JPY Vol EUR Vol GBP Vol AUD Vol CAD Vol

JPY 1 0.206 0.053 0.249 0.190 0.256 0.419 0.357 0.044 0.124
EUR 0.206 1 0.827 0.767 0.736 -0.083 -0.570 -0.272 -0.731 -0.381
GBP 0.053 0.827 1 0.750 0.628 -0.318 -0.604 -0.451 -0.720 -0.570
AUD 0.249 0.767 0.750 1 0.848 -0.354 -0.309 -0.487 -0.568 -0.495
CAD 0.190 0.736 0.628 0.848 1 -0.320 -0.480 -0.290 -0.544 -0.499
JPY Vol 0.256 -0.083 -0.318 -0.354 -0.320 1 0.562 0.823 0.371 0.436
EUR Vol 0.419 -0.570 -0.604 -0.309 -0.480 0.562 1 0.462 0.692 0.556
GBP Vol 0.357 -0.272 -0.451 -0.487 -0.290 0.823 0.462 1 0.473 0.285
AUD Vol 0.044 -0.731 -0.720 -0.568 -0.544 0.371 0.692 0.473 1 0.749
CAD Vol 0.124 -0.381 -0.570 -0.495 -0.499 0.436 0.556 0.285 0.749 1

Next, we evaluate the 5 currency basket option with three month maturity, where
the weights of the exchange rates other than JPYUSD are equal to 1, while the weight
of JPYUSD is 100 so as to be of the same order. The weighted average of the initial
forward prices of five currencies as of the first business day of Nov. 2011 is 6.2541. We
compute the prices of put options with strikes 6.00 and 6.15, as well as of call options
with strikes 6.25, 6.35 and 6.50. We use the parameters given in Table 5 and Table 7.
For comparison, the benchmark prices are calculated by Monte Carlo simulations, where
the random number generator is Mersenne Twister, the number of trials is 5 millions
with the antithetic variable method and time steps are 250 per year.
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The result is given in Table 8, where “AE 3rd” stands for the approximate price
by the third order asymptotic expansion based on the formula (26) in Theorem 3.1: we
observe that the approximations are less accurate than those for λ-SABR model in Table
4, which is partly because the calibrated volatility parameters on the volatilities in Table
5 are much higher than 30 % for Table 4. Also, we set β = 1 in (33), while β = 0.5 in
(29), from which we recall the following observation: because the asymptotic expansion
method is based on an expansion around a normal distribution and the distribution of
the underlying asset price is closer to a normal when β is closer to zero, the smaller is
β, the approximation becomes more accurate in general.

Table 8: Currency Basket Option
Strike 6 6.15 6.25 6.35 6.5

Monte Carlo 0.0522 0.0909 0.1335 0.0847 0.0367
AE 3rd 0.0534 0.0913 0.1334 0.0842 0.0354

Difference 0.0012 0.0004 -0.0001 -0.0006 -0.0014
Relative Difference (%) 2.3% 0.4% -0.1% -0.7% -3.7%

4.4 Cross Currency Average Options

This subsection describes the evaluation of cross currency average options. In particular,
we evaluate average options on Japanese yen(JPY)-based WTI future prices, which refers
to a JPY-based WTI futures price every business day.

Let us briefly describe the specific features of the WTI average price option: the
underlying price of an average option is the average of the settlement prices of the first
nearby WTI futures contract during the last one month prior to the maturity of the
average option. Note also that the expiration of an average option is the last business
day of a calendar month, while trading of a WTI futures contract usually ceases on the
third business day prior to the twenty-fifth calendar day. Hence, as the expiration of
trading a futures contract is about a week before the end of a calendar month, the futures
contracts with two consecutive maturities become the underlying assets of an average
option.

More precisely, let the reference dates t
(1)
1 , · · · , t(1)m1 for the first contract and t

(2)
1 , · · · , t(2)m2

for the subsequent contract (t
(1)
1 < · · · < t

(1)
m1 < t

(2)
1 < · · · < t

(2)
m2 = T ).

Also, denote the relevant two underlying futures prices as Si(i = 1, 2), and the spot
(USD quoted) JPYUSD exchange rate as S0. Then, the JPY-based average price at
option’s maturity T is expressed as follows:

X(T ) =
1

M

m1∑
j=1

Y1

(
t
(1)
j

)
+

m2∑
j=1

Y2

(
t
(2)
j

) , (37)

where M = m1 +m2 and Yi = Si/S0(i = 1, 2).
Thus, the payoff functions of average call and put options with strike price Kand

maturity T are given by max {X(T )−K, 0} and max {K −X(T ), 0}, respectively.
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We take the following specifications for our numerical examples with the data on
July 1, 2009.

• The maturities of average options: two month and four month.

• The relevant WTI futures traded on the NYMEX division of the CME Group:
SEP09(until August 18) and OCT09(from August 19) for the two month maturity,
and NOV09(until October 19) and DEC09(from October 20) for the four month
maturity.

• The maturities of the relevant currency options: one month, two month, three
month and six month.

As for the JPYUSD exchange rate process S0, we apply the λ-SABR model with β = 1
because we implement simultaneous calibration to currency options with 1,2,3,6 month
maturities, in which we need to take the term structure of the JPYUSD exchange rate
volatility process into account.

For the WTI futures price processes Si(i = 1, 2), We take SABR model with β =
0.5, 1, since our previous analysis in [26] has found that SABR model can achieve good
calibration to the WTI futures option market. (See [26] for the detail.)

In sum, the relevant stochastic processes are described by the solutions to the fol-
lowing stochastic differential equations:

dS0(t) = α0S0(t)dt+ σ0(t)S0(t)c̄0dZ(t); S0(0) given, α0 is a constant. (38)

dσ0(t) = λ0(θ0 − σ0(t))dt+ ν̄0σ0(t)dZ(t); σ0(0) given, (39)

λ0 and θ0 are positive constants.

For i = 1, 2,

dSi(t) = σi(t)Si(t)
β c̄idZ(t); Si(0) given, (40)

dσi(t) = ν̄iσi(t)dZ(t); σi(0) given. (41)

Here, ci(i = 0, 1, 2) and ν̄i(i = 0, 1, 2) are defined by

c̄i = (ci,0, ci,1, · · · , ci,i, 0, · · · , 0) (42)

ν̄i = νi(c(n+1+i),0, c(n+1+i),1, · · · , c(n+1+i),(n+1+i), 0, · · · , 0), (43)

where νi is a positive constant, and ci,j , (0 ≤ j ≤ i ≤ 2n + 1) are obtained by the
Cholesky decomposition of the relevant correlation matrix. Note also that the futures
price processes have no drifts in (40).

Each JPY-based WTI price Yi = Si/S0(i = 1 or 2) follows the stochastic differential
equation for Yi which is obtained through (10) with (9), where we specify the parameters
by using (38)-(41) instead of (1)-(4).

The correlations between the JPYUSD rate and WTI futures prices, as well as those
between different futures contracts’ prices are estimated from the Historical estimation
data of the previous two month(four month) for the two-month(four-month) maturity
options, which are reported in Table 9 and Table 10 below.
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Table 9: Correlation I (2M)
JPYUSD Sep09 Oct09

JPYUSD 1 -0.234 -0.243
Sep09 -0.234 1 0.999
Oct09 -0.243 0.999 1

Table 10: Correlation I (4M)
JPYUSD Nov09 Dec09

JPYUSD 1 -0.227 -0.224
Nov09 -0.227 1 0.999
Dec09 -0.224 0.999 1

The other correlations necessary for the evaluation of cross currency average options
are given in Table 11 - Table 14, which are determined in the following way:

• The correlation between the NOV09 price and the DEC09 volatility is set to be the
same as the one between the DEC09 price and DEC09 volatility which is obtained
by the calibration and is reported in Table 15 and Table 16 below.

The same rule is applied to the correlation between the DEC09 price and the
NOV09 volatility, the correlation between the SEP09 price and the OCT09 volatil-
ity, and the correlation between the OCT09 price and the SEP09 volatility.

• The following correlations are set as 0:

the JPYUSD rate’s volatility and the futures prices’ volatilities;

the JPYUSD rate’s volatility and the futures prices;

the JPYUSD rate’s volatility and the futures prices’ volatilities.

• All the correlations between the futures prices’ volatilities with different contracts
are set as 0.999.

Table 11: Correlation II (β = 1, 2M)
JPYUSD Sep09 Oct09 vol of JPYUSD vol of Sep09 vol of Oct09

JPYUSD 1 -0.234 -0.243 0.525 0 0
Sep09 -0.234 1 0.999 0 -0.369 -0.369
Oct09 -0.243 0.999 1 0 -0.363 -0.363
vol of JPYUSD 0.525 0 0 1 0 0
vol of Sep09 0 -0.369 -0.363 0 1 0.9999
vol of Oct09 0 -0.369 -0.363 0 0.9999 1
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Table 12: Correlation II (β = 0.5, 2M)
JPYUSD Sep09 Oct09 vol of JPYUSD vol of’ Sep09 vol of’ Oct09

JPYUSD 1 -0.234 -0.243 0.525 0 0
Sep09 -0.234 1 0.999 0 -0.225 -0.225
Oct09 -0.243 0.999 1 0 -0.188 -0.188
vol of JPYUSD 0.525 0 0 1 0 0
vol of Sep09 0 -0.225 -0.188 0 1 0.9999
vol of Oct09 0 -0.225 -0.188 0 0.9999 1

Table 13: Correlation II (β = 1, 4M)
JPYUSD Nov09 Dec09 vol of JPYUSD vol of Nov09 vol of Dec09

JPYUSD 1 -0.227 -0.224 0.525 0 0
Nov09 -0.227 1 0.999 0 -0.383 -0.383
Dec09 -0.224 0.999 1 0 -0.365 -0.365
vol of JPYUSD 0.525 0 0 1 0 0
vol of Nov09 0 -0.383 -0.365 0 1 0.9999
vol of Dec09 0 -0.383 -0.365 0 0.9999 1

Table 14: Correlation II (β = 0.5, 4M)
JPYUSD Nov09 Dec09 vol of JPYUSD vol of Nov09 vol of Dec09

JPYUSD 1 -0.227 -0.224 0.525 0 0
Nov09 -0.227 1 0.999 0 -0.190 -0.190
Dec09 -0.224 0.999 1 0 -0.172 -0.172
vol of JPYUSD 0.525 0 0 1 0 0
vol of Nov09 0 -0.190 -0.172 0 1 0.9999
vol of Dec09 0 -0.190 -0.172 0 0.9999 1

The results of calibration are reported in Table 15 and Table 16.

Table 15: Calibrated Parameters (β = 0.5)
S(0) α0 σ(0) λ θ ν ρ

JPYUSD 0.010319 0.004 0.132 1.170 0.121 1.295 0.525
SEP 09 70.27 - 3.607 - - 1.427 -0.225
OCT 09 71.08 - 3.623 - - 1.140 -0.188
NOV 09 71.78 - 3.606 - - 1.000 -0.190
DEC 09 72.36 - 3.519 - - 0.993 -0.172
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Table 16: Calibrated Parameters (β = 1.0)
S(0) α0 σ(0) λ θ ν ρ

JPYUSD 0.010319 0.004 0.132 1.170 0.121 1.295 0.525
SEP 09 70.27 - 0.433 - - 1.519 -0.369
OCT 09 71.08 - 0.433 - - 1.252 -0.363
NOV 09 71.78 - 0.430 - - 1.109 -0.383
DEC 09 72.36 - 0.419 - - 1.098 -0.365

Given the parameters above, we finally evaluate cross currency average options that
is, put options with strikes 6000 and 6500, and call options with strikes 7000, 7500 and
8000; also, the ATM prices for the two-month maturity and for the four-month maturity
are given by 6832.4 and 6969.0, respectively.

In addition, in order for investigation of the accuracy of our approximations, bench-
mark prices are computed by Monte Carlo simulations, where the random number gen-
erator is Mersenne Twister, and the number of trials is 2.5 million with the antithetic
variable method and with 256 time-steps for calculation of each price.

The results of the third order approximate prices are reported in Table 17 - Table 20,
where “AE 3rd” stands for the approximate price by the third order asymptotic expan-
sion based on the formula (26) in Theorem 3.1. We observe that our third-order formula
(26) provides very accurate approximations. Also, we remark that the approximations
with β = 0.5 are more accurate than those with β = 1 especially for OTM options, since
as noted at the end of the previous subsection, our asymptotic expansion is made around
the normal distribution, and the underlying price’s distribution under β = 0.5 is closer
to a normal distribution than the one under β = 1.

Moreover, we would like to stress that the computational speed in calibration and
pricing is very fast 5, which implies our formula is so useful in practice especially for high
dimensional pricing models.

Table 17: Third-order Approximate Prices (β = 0.5, 2M)
Strike 6000 6500 7000 7500 8000

Monte Carlo 148.1 297.6 366.8 193.8 94.1
AE 3rd 149.2 298.2 367.3 194.0 94.0

Difference 1.1 0.6 0.5 0.2 -0.1
Relative Difference (%) 0.7% 0.2% 0.1% 0.1% -0.1%

5The advantage of our method in computational speed is demonstrated for pricing basket options with
100 underlying assets. in Subsection 4.2
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Table 18: Third-order Approximate Prices (β = 1.0, 2M)
Strike 6000 6500 7000 7500 8000

Monte Carlo 148.8 299.0 368.5 195.4 95.5
AE 3rd 150.5 299.8 368.8 195.1 94.7

Difference 1.8 0.8 0.3 -0.2 -0.8
Relative Difference (%) 1.2% 0.3% 0.1% -0.1% -0.8%

Table 19: Third-order Approximate Prices (β = 0.5, 4M)
Strike 6000 6500 7000 7500 8000

Monte Carlo 315.3 487.9 686.8 477.4 322.4
AE 3rd 316.9 488.6 687.6 477.8 322.5

Difference 1.5 0.7 0.8 0.4 0.1
Relative Difference (%) 0.5% 0.2% 0.1% 0.1% 0.0%

Table 20: Third-order Approximate Prices (β = 1.0, 4M)
Strike 6000 6500 7000 7500 8000

Monte Carlo 314.4 488.0 688.0 479.1 324.5
AE 3rd 318.4 490.2 689.3 479.3 323.8

Difference 4.0 2.2 1.3 0.2 -0.7
Relative Difference (%) 1.3% 0.5% 0.2% 0.0% -0.2%

5 Correlations in the Currency Option Market

This section investigates the correlations implied in the currency option market. A
correlation between different currency pairs is widely traded as a correlation swap in
the current Over-the-counter(OTC) market. On the other hand, the correlations such
as between currency pairs’ volatilities are not explicitly observable in the market. In
this section, through calibration to the currency option market, we extract the implied
correlations including the directly unobservable ones in the market.

In calibration, we use SABR model with β = 1 for the dynamics of each USD
quoted currency pair and apply the same method as in Section 4.3 to obtain that of a
cross currency pair. For empirical investigation, we use the currency pairs, EURUSD,
USDJPY and EURJPY for highly liquid ones and USDKRW, JPYKRW, USDSGD,
SGDJPY for relatively illiquid ones. Moreover, we take the dates before and after the
events such as Lehman Shock and Tohoku Earthquake in Japan. In particular, as for
Lehman Shock, we use the data on September 8th and 22nd 2008 while we use the data
on March 3rd and 17th 2011 for Tohoku Earthquake; For JPYKRW, as the smile data
of its option market in 2008 is not available, we implement the analysis only for the data
in 2011. On the other hand, as the smile data for the SGDJPY option market is not
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available for the period around the March 11th, 2011 was not available, we take the data
of March 1st and 29th, 2011, instead. In addition, we use the data for currency options
with maturities 1M, 2M, 3M and 6M for our analysis.

Furthermore, although we mainly apply SABR model with its own volatility process
for each USD quoted pair as in (33)-(34), we also test the model, in which the volatility
processes for the USD quoted currency pairs relevant with a cross currency pair are
perfectly correlated as in Double Heston model(e.g. Gauthier-Possamaire (2010)). In the
following tables, the former model is denoted by (4f) while the latter one is denoted by
(3f).

For (4f), the way of calibration is exactly the same as (Calibration Procedure)
described in Section 4.3. As for (3f), while (Step 1) in the calibration procedure is the
same, the only remaining correlation used for the calibration to a cross currency option
market is the one between two relevant USD quoted foreign exchange rates.

Table 21 - Table 23 show the calibration results for cross currency option markets,
from which we observe that the calibration by (4f) is much more accurate than that by
(3f) as expected. We also report the results for the calibration to the 3 month option
markets of the USD quoted currency pairs in Table 31 - Table 33 of Appendix, which
shows fairly good performance in general; the results for the calibration to the other
maturities’ options are quite similar, and thus they are omitted.

Table 21: Volatility Smile (%)
2008/9/8 2008/9/22

-10D -25D ATM 25D 10D -10D -25D ATM 25D 10D

EURJPY Calibrated Vol (4f) 17.59 14.94 12.81 11.40 10.87 19.86 16.83 14.50 13.00 12.47
Calibrated Vol (3f) 17.76 14.96 12.88 11.43 10.64 19.46 16.50 14.37 13.20 12.97
Market Vol 17.59 14.92 12.84 11.38 10.88 19.86 16.81 14.53 12.97 12.48
Difference (4f) 0.00 0.02 -0.03 0.03 -0.01 0.00 0.02 -0.03 0.03 -0.01
Difference (3f) 0.17 0.04 0.04 0.06 -0.24 -0.40 -0.30 -0.16 0.23 0.49

SGDJPY Calibration Vol (4f) 12.90 10.85 9.15 15.86 13.44 11.76
Calibrated Vol (3f) 13.20 10.78 9.00 16.43 13.49 11.31
Market Vol 12.90 10.85 9.15 15.82 13.50 11.73
Difference (4f) 0.00 0.00 0.00 0.04 -0.06 0.03
Difference (3f) 0.31 -0.07 -0.16 0.61 -0.01 -0.41

Table 22: Volatility Smile (%)
2011/3/3 2011/3/17

-10D -25D ATM 25D 10D -10D -25D ATM 25D 10D

EURJPY Calibration Vol (4f) 14.71 13.05 11.78 11.14 11.16 22.60 19.57 17.28 15.90 15.65
Calibrated Vol (3f) 15.29 13.38 11.91 10.92 10.53 23.52 20.04 17.41 15.58 14.84
Market Vol 14.71 13.06 11.76 11.15 11.15 22.60 19.58 17.26 15.91 15.65
Difference (4f) 0.00 -0.01 0.02 -0.02 0.01 0.00 -0.01 0.02 -0.01 0.00
Difference (3f) 0.58 0.32 0.15 -0.24 -0.62 0.92 0.46 0.15 -0.33 -0.81

JPYKRW Calibration Vol (4f) 11.92 12.14 13.41 16.37 19.36 15.86 16.20 17.76 21.45 25.15
Calibrated Vol (3f) 11.05 11.88 13.54 16.81 20.39 14.40 15.69 17.92 22.22 26.91
Market Vol 11.94 12.09 13.46 16.34 19.37 15.90 16.09 17.86 21.39 25.17
Difference (4f) -0.02 0.05 -0.05 0.03 -0.01 -0.04 0.10 -0.11 0.06 -0.02
Difference (3f) -0.89 -0.21 0.08 0.47 1.01 -1.50 -0.40 0.05 0.84 1.75
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Table 23: Volatility Smile (%)
2011/3/1 2011/3/29

-10D -25D ATM 25D 10D -10D -25D ATM 25D 10D

SGDJPY Calibrated Vol (4f) 10.60 9.51 9.05 11.71 10.55 10.06
Calibrated Vol (3f) 11.04 9.60 8.62 12.32 10.67 9.49
Market Vol 10.61 9.50 9.06 11.72 10.55 10.07
Difference (4f) -0.01 0.01 -0.01 0.00 0.00 0.00
Difference (3f) 0.44 0.10 -0.43 0.60 0.12 -0.58

Table 24 and Table 25 show the correlation sensitivities associated with EURJPY
and JPYKRW options as examples, where each correlation sensitivity is defined by the
change in the implied volatility(%) caused by 0.01 change of a correlation inside our
model(4f).

Firstly, we first observe that the correlation between two foreign exchange rates has
the largest impact as expected, and the direction of the impact is the same for each
moneyness. On the other hand, the correlations between an exchange rate and the
volatility of another exchange rate have impacts mainly for the skewness of the implied
volatility curve. Although the correlation between volatilities has the smallest impact,
it has a reasonable effect on the smile shape of the implied volatility curve since its
(absolute) sensitivity at ATM is the largest among the different moneynesses. Note also
that those observations are unchanged between the dates before and after the events.

Table 24: Correlation Sensitivities (EURJPY)
2011/3/3 2011/3/17

S1-S2 S1-V2 V1-S2 V1-V2 S1-S2 S1-V2 V1-S2 V1-V2

1M -10D -0.0747% -0.0176% 0.0093% -0.0019% -0.0935% -0.0251% 0.0087% -0.0003%
-25D -0.0830% -0.0035% 0.0089% -0.0062% -0.0974% -0.0128% 0.0050% -0.0058%
ATM -0.0919% 0.0076% 0.0030% -0.0078% -0.1085% 0.0030% -0.0003% -0.0077%
25D -0.0876% 0.0130% -0.0086% -0.0066% -0.1160% 0.0231% -0.0074% -0.0063%
10D -0.0706% 0.0113% -0.0205% -0.0037% -0.1141% 0.0407% -0.0137% -0.0033%

2M -10D -0.0767% -0.0187% 0.0108% -0.0017% -0.0618% -0.0273% 0.0043% 0.0007%
-25D -0.0823% -0.0041% 0.0096% -0.0073% -0.0782% -0.0105% 0.0086% -0.0063%
ATM -0.0911% 0.0078% 0.0028% -0.0092% -0.1026% 0.0068% 0.0060% -0.0090%
25D -0.0889% 0.0145% -0.0102% -0.0077% -0.1170% 0.0262% -0.0065% -0.0071%
10D -0.0744% 0.0139% -0.0230% -0.0040% -0.1100% 0.0397% -0.0220% -0.0027%

3M -10D -0.0757% -0.0206% 0.0110% -0.0017% -0.0662% -0.0285% 0.0059% 0.0014%
-25D -0.0831% -0.0038% 0.0110% -0.0083% -0.0795% -0.0102% 0.0096% -0.0071%
ATM -0.0945% 0.0093% 0.0040% -0.0106% -0.1021% 0.0080% 0.0060% -0.0103%
25D -0.0912% 0.0162% -0.0114% -0.0088% -0.1154% 0.0283% -0.0084% -0.0079%
10D -0.0718% 0.0141% -0.0267% -0.0044% -0.1071% 0.0415% -0.0254% -0.0024%

6M -10D -0.0719% -0.0239% 0.0105% -0.0010% -0.0445% -0.0344% 0.0004% 0.0006%
-25D -0.0830% -0.0040% 0.0126% -0.0096% -0.0702% -0.0084% 0.0126% -0.0104%
ATM -0.0992% 0.0111% 0.0060% -0.0126% -0.1076% 0.0139% 0.0125% -0.0145%
25D -0.0976% 0.0204% -0.0127% -0.0102% -0.1193% 0.0346% -0.0078% -0.0112%
10D -0.0743% 0.0189% -0.0321% -0.0041% -0.0881% 0.0395% -0.0333% -0.0031%
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Table 25: Correlation Sensitivities (JPYKRW)
2011/3/3 2011/3/17

S1-S2 S1-V2 V1-S2 V1-V2 S1-S2 S1-V2 V1-S2 V1-V2

1M -10D -0.0688% -0.0383% 0.0257% -0.0056% -0.1035% -0.0259% 0.0493% -0.0196%
-25D -0.1084% -0.0368% 0.0051% -0.0093% -0.1164% -0.0192% 0.0237% -0.0309%
ATM -0.1042% -0.0248% -0.0079% -0.0105% -0.1123% -0.0096% 0.0030% -0.0354%
25D -0.0625% 0.0002% -0.0069% -0.0065% -0.1005% 0.0060% -0.0122% -0.0215%
10D -0.0479% 0.0345% -0.0032% 0.0015% -0.1119% 0.0235% -0.0299% 0.0062%

2M -10D -0.0975% -0.0500% 0.0263% -0.0072% -0.0788% -0.0359% 0.0520% -0.0264%
-25D -0.1162% -0.0408% 0.0078% -0.0113% -0.1117% -0.0321% 0.0232% -0.0418%
ATM -0.1062% -0.0248% -0.0048% -0.0127% -0.1131% -0.0202% 0.0005% -0.0477%
25D -0.0742% 0.0018% -0.0065% -0.0075% -0.0917% 0.0068% -0.0113% -0.0262%
10D -0.0697% 0.0375% -0.0073% 0.0022% -0.1111% 0.0400% -0.0250% 0.0110%

3M -10D -0.1083% -0.0560% 0.0270% -0.0074% -0.1287% -0.0463% 0.0519% -0.0244%
-25D -0.1176% -0.0413% 0.0110% -0.0116% -0.1305% -0.0277% 0.0266% -0.0442%
ATM -0.1069% -0.0232% -0.0009% -0.0131% -0.1181% -0.0093% 0.0057% -0.0512%
25D -0.0815% 0.0038% -0.0060% -0.0073% -0.1017% 0.0114% -0.0109% -0.0259%
10D -0.0843% 0.0393% -0.0120% 0.0029% -0.1224% 0.0352% -0.0302% 0.0158%

6M -10D -0.1093% -0.0469% 0.0316% -0.0072% -0.1272% -0.0541% 0.0573% -0.0098%
-25D -0.1210% -0.0174% 0.0169% -0.0126% -0.1360% -0.0329% 0.0295% -0.0180%
ATM -0.1128% 0.0067% 0.0044% -0.0144% -0.1238% -0.0117% 0.0072% -0.0206%
25D -0.0897% 0.0209% -0.0063% -0.0071% -0.1049% 0.0136% -0.0110% -0.0097%
10D -0.1024% 0.0342% -0.0190% 0.0041% -0.1412% 0.0419% -0.0330% 0.0058%

Finally, the calibrated correlation parameters for cross currency option data are given
in the rows, “Calibration(4f)” and “Calibration(3f)” of Table 26 - Table 30. Also, the
calibrated parameters associated with option markets of the USD quoted currency pairs
are reported in Table 34 - Table 36 of Appendix. In addition, historically estimated
correlations are shown in Table 26 - Table 30 for comparative purpose. In order to
estimate historical correlations, we use the spot prices and ATM options’ volatilities,
where the reference period is the same as the corresponding option’s maturity.

Generally speaking, it is observed that a correlation between two foreign exchange
rates(S1-S2) moves similarly for the implied and historically estimated ones, while a
correlation between a exchange rate and another exchange rate’s volatility(S1-V2 or V1-
S2) does not.

For EURJPY, the implied correlations between the foreign exchange rates(S1-S2)
after Lehman Shock went up; it was consistent with the historically estimated ones,
which was caused by the rise of both EUR and JPY against USD after the shock. After
Tohoku Earthquake, the implied and historically estimated correlations between two
foreign exchange rates(S1-S2) fell down, which is consistent to the rise of both EUR and
USD against JPY after the earthquake.

On the other hand, the implied correlations between two volatilities(V1-V2) for the one
month(1M) rose up to 90%, while the corresponding historically estimated correlations
fell down: this difference may be caused by the serious accidents of the Fukushima nuclear
plant right after the earthquake, which leads to the substantial rise in the short-term
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implied volatility much quicker than in the historically estimated one. For the correlation
between a exchange rate and another exchange rate’s volatility(S1-V2 or V1-S2), there
seems little relation in size and behavior between the implied and historically estimated
ones.

As for SGDJPY, with no data of 10 delta, we have to calibrate four parameters
based on three volatility points( for ATM and +25 delta/-25delta), whose results are
not stable except the correlations between two exchange rates(S1-S2). The correlations
between two foreign exchange rates(S1-S2) do not move similarly for the implied and
historically estimated ones; also, the levels of the correlations are rather different among
the implied and historical ones. Note also that we need to care about the low liquidity
of the currency pair SGDJPY, especially after big events, which makes the option prices
move quickly with few trades.

JPYKRW volatility’s data is not available for the period around the Lehman Shock,
so that we examine the data in March 2011. The implied correlations between two
exchange rates rose after the earthquake, that is JPY rose up and KRW fell down
against USD, which was consistent with the behavior of the historically estimated ones.
However, the levels were different among the implied and historical correlations.

Finally, we remark that for the case of the model (3f), the correlations between two
exchange rates(S1-S2) are lower than those for the case of the model (4f).

Table 26: S1 = EUR,S2 = JPY
2008/9/8 2008/9/22

S1-S2 S1-V2 V1-S2 V1-V2 S1-S2 S1-V2 V1-S2 V1-V2

1M Calibration(4f) 0.339 -0.553 0.017 -0.062 0.419 -0.093 0.516 0.743
Calibration(3f) 0.297 0.416
Historical estimation -0.086 -0.295 -0.154 0.234 0.254 0.161 0.304 0.666

2M Calibration(4f) 0.334 -0.525 0.016 -0.116 0.441 -0.058 0.581 0.763
Calibration(3f) 0.281 0.435
Historical estimation 0.122 0.007 0.227 0.441 0.274 0.179 0.366 0.631

3M Calibration(4f) 0.409 -0.459 0.187 0.080 0.442 -0.063 0.585 0.772
Calibration(3f) 0.345 0.434
Historical estimation 0.244 0.112 0.156 0.428 0.314 0.227 0.318 0.571

6M Calibration(4f) 0.437 -0.292 0.396 0.466 0.479 -0.001 0.724 0.893
Calibration(3f) 0.379 0.478
Historical estimation 0.422 0.227 0.335 0.249 0.391 0.296 0.321 0.521
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Table 27: S1 = EUR,S2 = JPY
2011/3/3 2011/3/17

S1-S2 S1-V2 V1-S2 V1-V2 S1-S2 S1-V2 V1-S2 V1-V2

1M Calibration(4f) 0.466 -0.634 -0.264 0.239 0.304 -0.157 0.202 0.900
Calibration(3f) 0.422 0.278
Historical estimation 0.539 0.159 0.227 0.650 0.289 -0.029 0.288 0.440

2M Calibration(4f) 0.435 -0.531 -0.212 0.438 0.280 -0.546 -0.534 0.154
Calibration(3f) 0.391 0.227
Historical estimation 0.268 0.045 0.066 0.474 0.286 -0.001 0.205 0.407

3M Calibration(4f) 0.436 -0.593 -0.254 0.315 0.263 -0.521 -0.430 0.272
Calibration(3f) 0.376 0.207
Historical estimation 0.501 -0.016 -0.033 0.542 0.279 -0.014 0.211 0.356

6M Calibration(4f) 0.392 -0.668 -0.285 0.317 0.330 -0.633 -0.623 -0.215
Calibration(3f) 0.331 0.231
Historical estimation 0.419 -0.086 -0.031 0.379 0.482 -0.013 0.001 0.301

Table 28: S1 = SGD,S2 = JPY
2008/9/8 2008/9/22

S1-S2 S1-V2 V1-S2 V1-V2 S1-S2 S1-V2 V1-S2 V1-V2

1M Calibration(4f) 0.463 -0.168 0.417 0.311 0.389 -0.043 0.379 0.022
Calibration(3f) 0.388 0.298
Historical estimation 0.367 0.312 -0.180 0.055 0.039 0.122 0.391 0.529

2M Calibration(4f) 0.486 -0.155 0.340 0.119 0.443 0.034 0.364 -0.326
Calibration(3f) 0.371 0.276
Historical estimation 0.347 0.293 0.208 0.299 0.214 0.232 0.201 0.275

3M Calibration(4f) 0.507 -0.132 0.253 -0.104 0.516 0.110 0.351 -0.312
Calibration(3f) 0.337 0.287
Historical estimation 0.334 0.246 0.087 0.176 0.220 0.250 0.279 0.314

6M Calibration(4f) 0.578 0.001 0.369 0.009 0.618 0.177 0.387 -0.123
Calibration(3f) 0.356 0.618
Historical estimation 0.323 0.408 0.198 0.151 0.290 0.368 0.171 0.166
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Table 29: S1 = SGD,S2 = JPY
2011/3/1 2011/3/29

S1-S2 S1-V2 V1-S2 V1-V2 S1-S2 S1-V2 V1-S2 V1-V2

1M Calibration(4f) 0.580 -0.050 -0.017 -0.307 0.629 0.167 0.105 0.086
Calibration(3f) 0.422 0.516
Historical estimation 0.325 -0.365 0.168 0.444 0.196 -0.355 0.586 0.766

2M Calibration(4f) 0.505 -0.045 0.175 0.669 0.645 0.001 0.007 0.120
Calibration(3f) 0.450 0.514
Historical estimation 0.197 -0.149 -0.135 0.189 0.150 -0.321 0.392 0.521

3M Calibration(4f) 0.414 0.070 0.369 0.854 0.492 -0.049 -0.084 0.901
Calibration(3f) 0.378 0.453
Historical estimation 0.329 -0.003 -0.249 0.299 0.182 -0.310 0.442 0.491

6M Calibration(4f) 0.470 0.036 0.147 0.552 0.563 0.041 0.039 0.308
Calibration(3f) 0.376 0.428
Historical estimation 0.298 -0.029 -0.122 0.320 0.265 -0.177 0.071 0.343

Table 30: S1 = JPY, S2 = KRW
2011/3/3 2011/3/17

S1-S2 S1-V2 V1-S2 V1-V2 S1-S2 S1-V2 V1-S2 V1-V2

1M Calibration(4f) 0.353 0.579 0.381 -0.001 0.292 0.426 0.055 0.413
Calibration(3f) 0.276 0.119
Historical estimation 0.134 0.076 -0.540 0.610 -0.288 0.483 -0.492 0.752

2M Calibration(4f) 0.327 0.339 0.103 0.638 0.284 0.656 -0.006 0.294
Calibration(3f) 0.271 0.204
Historical estimation 0.041 0.052 -0.326 0.492 0.001 0.245 -0.305 0.616

3M Calibration(4f) 0.293 0.212 -0.181 0.853 0.235 0.170 -0.297 0.946
Calibration(3f) 0.251 0.189
Historical estimation 0.353 -0.102 -0.171 0.393 0.006 0.281 -0.267 0.531

6M Calibration(4f) 0.242 0.013 -0.492 0.950 0.234 0.211 -0.163 0.945
Calibration(3f) 0.199 0.160
Historical estimation 0.262 -0.025 -0.122 0.280 0.215 0.070 -0.169 0.329

6 Conclusion

This paper has developed a general pricing method for multi-asset cross currency options
under high-dimensional diffusion models, and presented a series of practical examples
with numerical analysis; pricing cross currency options, cross currency basket options
and cross currency average options under multiple (λ-)SABR models. We have also
demonstrated that our scheme is capable of evaluating options with high dimensional
state variables such as 200 dimensions, which is necessary for pricing basket options with
100 underlying assets under stochastic volatility environment.
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Moreover, we have examined the correlations implied in the cross currency option
markets by using data on the dates before and after Lehman Shock and Tohoku Earth-
quake in Japan. In order to find a model which is able to explain the currency option
markets historically well, we need to implement more thorough empirical analysis, where
we will make use of our general analytical method for option pricing. This is one of the
next topics for our research.
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A Asymptotic Expansion Approach

For given ϵ ∈ (0, 1], the extended λ-SABR model in an asymptotic expansion approach
is described as follows:
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i (t)

)
Y

(ϵ)
i (t)dW

=

∫ T

0
(αi(t)− α0(t))Y

(ϵ)
i dt+ ϵ

∫ T

0
Y

(ϵ)
i

−σ
(ϵ)
0 S

(ϵ)β−1
0 dW0 +

i∑
j=0

ci,jσ
(ϵ)
i S

(ϵ)β−1
i dWj

 .

(46)

S
(ϵ)
i (T ) is expanded around 0 as

S
(ϵ)
i = S

(0)
i + ϵS

(1)
i + ϵ2

S
(2)
i

2
+ · · · . (47)

The coefficients S
(m)
i =

∂mS
(ϵ)
i

∂ϵm |ϵ=0(m = 0, 1, 2, 3, ...) are derived by substitution (44) for
(45)，and m-times differentiation by ϵ around 0. The results of calculations are follows:

Y
(0)
i (T ) = Yi(0)e

∫ T
0 (αi(t)−α0(t))dt =

Si(0)

S0(0)
e
∫ T
0 (αi(t)−α0(t))dt. (48)

S
(0)
i (T ) = Si(0)e

∫ T
0 αi(s)dt (49)

σ
(0)
i (T ) = e

∫ T
0 λi(t)dt

(
σi(0) +

∫ T

0
e
∫ t
0 λi(s)dsλi(t)θi(t)dt

)
. (50)
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Hereafter, we omit the time parameter t for simplicity:

Y
(1)
i (T ) = −

∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(0)
i σ

(0)
0 S

(0)β0−1
0 dW0

+

i∑
j=0

∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(0)
i ci,jσ

(0)
i S

(0)βi−1
i dWj (51)

S
(1)
i (T ) =

i∑
j=0

ci,j

∫ T

0
e
∫ T
t αi(s)dsS

(0)βi

i σ
(0)
i dWj (52)

σ
(1)
i (T ) =

n+1+i∑
j=0

∫ T

0
νi,je

−
∫ T
t λi(s)dsσ

(0)
i dWj (53)

Y
(2)
i (T ) = 2

{
−
∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(1)
i σ

(0)
0 S

(0)β0−1
0 dW0

+

i∑
j=0

∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(1)
i ci,jσ

(0)
i S

(0)βi−1
i dWj

−
∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(0)
i

(
σ
(1)
0 S

(0)β0−1
0 + (β0 − 1)σ

(0)
0 S

(1)
0 S

(0)β0−2
0

)
dW0

+

i∑
j=0

∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(0)
i

(
ci,jσ

(1)
i S

(0)βi−1
i + ci,j(βi − 1)σ

(0)
i S

(1)
i S

(0)βi−2
i

)
dWj

 ,

(54)

S
(2)
i (T ) = 2

{
ci,0

∫ T

0
e
∫ T
t αi(s)dsσ

(0)
0 σ

(0)
i S

(0)β0−1
0 S

(0)β0

i dt

+2
i∑

j=0

ci,j

∫ T

0
e
∫ T
t αi(s)ds

(
σ
(1)
i S

(0)βi

i + σ
(0)
i βiS

(0)βi−1
i S

(1)
i

)
dWj

 , (55)

σ
(2)
i (T ) = 2

{
ci,0

∫ T

0
e−

∫ T
t λi(s)dsσ

(0)
0 νiσ

(0)
i S

(0)β0−1
0 dt

+

n+1+i∑
j=0

∫ T

0
νi,je

−
∫ T
t λi(s)dsσ

(1)
i dWj

 , (56)
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Y
(3)
i (T ) = 3

{
−
∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(2)
i σ

(0)
0 S

(0)β0−1
0 dW0

+

i∑
j=0

∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(2)
i ci,jσ

(0)
i S

(0)βi−1
i dWj

−2

∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(1)
i

(
σ
(1)
0 S

(0)β0−1
0 + σ

(0)
0 (β0 − 1)S

(0)β0−2
0 S

(1)
0

)
dW0

+2

i∑
j=0

∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(1)
i ci,j

(
σ
(1)
i S

(0)βi−1
i + σ

(0)
i (βi − 1)S

(0)βi−2
i S

(1)
i

)
dWj

−
∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(0)
i

(
σ
(2)
0 S

(0)β0−1
0 + σ

(1)
0 2(β0 − 1)S

(0)β0−2
0 S

(1)
0

+σ
(0)
0 (β0 − 1)(β0 − 2)S

(0)β0−3
0 S

(1)2
0 + σ

(0)
0 (β0 − 1)S

(0)β0−2
0 S

(2)
0

)
dW0

+
i∑

j=0

∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(0)
i ci,j

(
σ
(2)
i S

(0)βi−1
i + σ

(1)
i 2(βi − 1)S

(0)βi−2
i S

(1)
i

+σ
(0)
i (βi − 1)(βi − 2)S

(0)βi−3
i S

(1)2
i + σ

(0)
i (βi − 1)S

(0)βi−2
i S

(2)
i

)
dWi

}
. (57)

Let X represent the underlying asset price of a multi-asset cross currency option as

X =

n∑
i=1

wiYi. (58)

Then, the expansion of X for the option pricing is given as follows:

Proposition A.1. Let W = (W1, · · · ,Wn)
′. Then, X(m)(T ), m = 0, 1, 2, 3 which stand

for the m-th order asymptotic expansion of X are derived as follows:

X(0) =

n∑
i=1

wiYi(0), (59)

X(1) =
n∑

i=1

∫ T

0
f1,i(s)

′dW (s), (60)

X(2) = 2

5n∑
i=1

∫ T

0

∫ s

0
f2,i(u)

′dW (u)g2,i(s)
′dW (s), (61)

X(3) = 6

11n∑
i=1

∫ T

0

∫ s

0

∫ u

0
f3,i(v)

′dW (v)g3,i(u)
′dW (u)h3,i(s)

′dW (s)

+6
8n∑
i=1

∫ T

0

(∫ s

0
g4,i(u)

′dW (u)

)(∫ s

0
f4,i(u)

′dW (u)

)
h4,i(s)

′dW (s)

+6

4n∑
i=1

∫ T

0

∫ s

0
f5,i(u)

′dug5,i(s)
′dW (s). (62)
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f1,1(t), f2,i(t), g2,i(t) (i = 1, · · · , 5n), f3,i(t) , g3,i(t), h3,i(t) (i = 1, · · · , 11n), f4,i,
g4,i, h4,i (i = 1, · · · , 8n), f5,i, g5,i, (i = 1, · · · , 4n), are expressed as follows:

f1,i(t) = wie
∫ T
0 (αi(t)−α0(t))dt



e−
∫ t
0 (αi(t)−α0(t))dsY

(0)
i

(
−σ

(0)
0 S

(0)β0−1
0 + ci,0σ

(0)
i S

(0)βi−1
i

)
...

e−
∫ t
0 (αi(t)−α0(t))dsY

(0)
i ci,iσ

(0)
i S

(0)βi−1
i

0
...
0


,

g2,i = wie
∫ T
0 (αi(t)−α0(t))dt e

∫ t
0 (αi(t)−α0(t))ds

Y
(0)
i

f1,i(t),

g2,n+i(t) = wie
∫ T
0 (αi(t)−α0(t))dt


−e−

∫ t
0 (−α0(s)+αi(s)+λi(s))dsc0,0Y

(0)
i S

(0)β0

0

0
...
0

 ,

g2,2n+i(t) = wie
∫ T
0 (αi(t)−α0(t))dt



e−
∫ t
0 (−α0(s)+αi(s)+λi(s))dsci,0Y

(0)
i S

(0)βi

i
...

e−
∫ t
0 (−α0(s)+αi(s)+λi(s))dsci,iY

(0)
i S

(0)βi

i

0
...
0


,

f2,n+i(t) =



ν0,0e
∫ t
0 λ0(s)dsσ

(0)
0

...

νi,n+1e
∫ t
0 λ0(s)dsσ

(0)
0

0
...
0


, f2,2n+i(t) =



νi,0e
∫ t
0 λi(s)dsσ

(0)
i

...

νi,n+1+ie
∫ t
0 λi(s)dsσ

(0)
i

0
...
0


,

g2,3n+i(t) = wie
∫ T
0 (αi(t)−α0(t))dt


−e

∫ t
0 α0(s)dsc0,0Y

(0)
i (β0 − 1)σ

(0)
0 S

(0)β0−2
0

0
...
0

 ,
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g2,4n+i(t) = wie
∫ T
0 (αi(t)−α0(t))dt



e−
∫ t
0 αi(s)dsci,0Y

(0)
i (βi − 1)σ

(0)
i S

(0)βi−2
i

...

e−
∫ t
0 αi(s)dsci,iY

(0)
i (βi − 1)σ

(0)
i S

(0)βi−2
i

0
...
0


,

f2,3n+i(t) =


c0,0e

∫ t
0 α0(s)dsS

(0)β0

0 σ
(0)
0

0
...
0

 , f2,4n+i(t) =



ci,0e
−

∫ t
0 αi(s)dsS

(0)βi

i σ
(0)
i

...

ci,ie
−

∫ t
0 αi(s)dsS

(0)βi

i σ
(0)
i

0
...
0


,

g3,7n+i(t) =


c0,0e

−
∫ t
0 (−α0(s)+λ0(s))dsS

(0)β
0

0
...
0

 , g3,8n+i(t) =



ci,0e
−

∫ t
0 (αi(s)+λi(s))dsS

(0)β
i

...

ci,ie
−

∫ t
0 (αi(s)+λi(s))dsS

(0)β
i

0
...
0


,

g3,9n+i(t) =


c0,0βS

(0)β0−1
0 σ

(0)
0

0
...
0

 , g3,10n+i(t) =



ci,0βS
(0)βi−1
i σ

(0)
i

...

ci,iβS
(0)βi−1
i σ

(0)
i

0
...
0


,

h4,6n+i(t) = wie
∫ T
0 (αi(t)−α0(t))dt


−e

∫ t
0 (α0(s)−αi(s))dsc0,0Y

(0)
i (β0 − 1)(β0 − 2)σ

(0)
0 Sβ0−3

0

0
...
0

 ,

h4,7n+i(t) = wie
∫ T
0 (αi(t)−α0(t))dt



e−
∫ t
0 (−α0(s)+αi(s))dsci,0Y

(0)
i (β − 1)(β − 2)σ

(0)
i Sβi−3

i
...

e−
∫ t
0 (−α0(s)+αi(s))dsci,iY

(0)
i (β − 1)(β − 2)σ

(0)
i Sβi−3

i

0
...
0


,
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f5,i(t) = e
∫ t
0 λ0(s)dsνn+1,0σ

(0)2
0 , f5,n+i(t) = e

∫ t
0 λi(s)dsνn+1+i,0σ

(0)
0 σ

(0)
i ,

f5,2n+i(t) = σ
(0)2
0 S

(0)2βi−1
0 ,

f5,3n+i(t) = ci,0σ
(0)
0 σ

(0)
i S

(0)β0−1
0 S

(0)βi

i ,

f3,i = f4,i = f4,n+i = f4,2n+i = f4,3n+i = f1,i,

−g3,i = e−
∫ T
0 (αi(t)−α0(t))dtg2,i,

h3,i = h3,n+i = h3,2n+i = h3,3n+i = h3,4n+i = g2,i,

f3,n+i = f3,5n+i = f3,7n+i = g4,i = f4,4n+i = f2,n+i,

f3,2n+i = f3,6n+i = f3,8n+i = g4,2n+i = f4,5n+i = f2,2n+i,

f3,3n+i = f3,9n+i = g4,2n+i = g4,4n+i = f4,6n+i = g4,6n+i = f2,3n+i,

f3,4n+i = f3,10n+i = g4,3n+i = g4,5n+i = f4,7n+i = g4,7n+i = f2,4n+i,

−g3,n+i = g5,i = e−
∫ T
0 (αi(t)−α0(t))dtg2,n+i,

h3,5n+i = g2,n+i,

−g3,2n+i = g5,n+i = e−
∫ T
0 (αi(t)−α0(t))dtg2,2n+i,

h3,6n+i = g2,2n+i,

−h4,i = wie
∫ T
0 (αi(t)−α0(t))dt2f2,n+ie

∫ t
0 (−α0+αi)ds/Y

(0)
i ,

−h4,n+i = wie
∫ T
0 (αi(t)−α0(t))dt2f2,2n+ie

∫ t
0 (−α0+αi)ds/Y

(0)
i ,

−g3,3n+i = g5,2n+i = e−
∫ T
0 (αi(t)−α0(t))dtg2,3n+i,

h3,7n+i = h3,9n+i = g2,3n+i,

−g3,4n+i = g5,3n+i = e−
∫ T
0 (αi(t)−α0(t))dtg2,4n+i,

h3,8n+i = h3,10n+i = g2,4n+i,

h4,2n+i = 2g2,3n+ie
∫ t
0 (−α0+αi)ds/Y

(0)
i , h4,3n+i = 2g2,4n+ie

∫ t
0 (−α0+αi)ds/Y

(0)
i ,

h4,4n+i = 2g2,3n+ie
−

∫ t
0 λ0ds/σ

(0)
0 , h4,5n+i = 2g2,4n+ie

−
∫ t
0 λids/σ

(0)
i ,

g3,5n+i = f2,n+ie
−

∫ t
0 λ0ds/σ

(0)
0 ,

g3,6n+i = f2,2n+ie
−

∫ t
0 λids/σ

(0)
i .

Proof. First, Note that

X(0) =
n∑

i=1

wiY
(0)
i (t),
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Y
(0)
i (t) =

∫ t

0
(−α0(s) + αi(s))(Y

(0)
0 (s) + ϵY

(1)
0 (s) + · · · )ds

+ϵ

(
−
∫ t

0
(Y

(0)
i (s) + ϵY

(1)
i (s) + · · · )(σ(0)

0 (s) + ϵσ
(1)
0 (s) + · · · )(S(0)

0 (s) + ϵS
(1)
0 (s) + · · · )β0−1dW0(s)

+

∫ t

0

i∑
j=0

ci,j(Y
(0)
i (s) + ϵY

(1)
i (s) + · · · )(σ(0)

i (s) + ϵσ
(1)
i (s) + · · · )

(S
(0)
i (s) + ϵS

(1)
i (s) + · · · )βi−1dWj(s) +O(ϵ)

)∣∣∣∣∣
ϵ=0

=

∫ t

0
(−α0(s) + αi(s))Y

(0)
i (s)ds.

Here, Y
(0)
i (t) is easily solved as Y

(0)
i (t) = e

∫ t
0 −α0(s)+αi(s)dsYi(0) = e

∫ t
0 −α0(s)+αi(s)dsS0(0)Si(0).

Then substitute Y
(0)
i (t) for X(0).

Next, X(1) is calculated:

X(1) =
∂X(ϵ)

∂ϵ

∣∣∣
ϵ=0

=

n∑
i=1

∂Y
(ϵ)
i (t)

∂ϵ

∣∣∣
ϵ=0

=

n∑
i=1

Y
(1)
i (t),

Y
(1)
i (t) =

∂Y
(ϵ)
i (t)

∂ϵ

∣∣∣
ϵ=0
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=

∫ t

0
(−α0(s) + αi(s))(Y

(1)
i (s) + ϵY

(2)
i (s) + · · · )ds

−
∫ t

0
(Y

(0)
i (s) + ϵY

(1)
i (s) + · · · )(σ(0)

0 (s) + ϵσ
(1)
0 (s) + · · · )

(S
(0)
0 (s) + ϵS

(1)
0 (s) + · · · )β0−1dW0(s)

+

∫ t

0

i∑
j=0

ci,j(Y
(0)
i (s) + ϵY

(1)
i (s) + · · · )(σ(0)

i (s) + ϵσ
(1)
i (s) + · · · )

(S
(0)
i (s) + ϵS

(1)
i (s) + · · · )βi−1dWj(s)

+ϵ

(
−
∫ t

0
(Y

(1)
i (s) + ϵY

(2)
i (s) + · · · )(σ(0)

0 (s) + ϵσ
(1)
0 (s) + · · · )

(S
(0)
0 (s) + ϵS

(1)
0 (s) + · · · )β0dW0(s)

+

∫ t

0

i∑
j=0

ci,j(Y
(1)
i (s) + ϵY

(2)
i (s) + · · · )(σ(0)

i (s) + ϵσ
(1)
i (s) + · · · )

(S
(0)
i (s) + ϵS

(1)
i (s) + · · · )βi−1dWj(s)

−
∫ t

0
(Y

(0)
i (s) + ϵY

(1)
i (s) + · · · )(σ(1)

0 (s) + ϵσ
(2)
0 (s) + · · · )

(S
(0)
0 (s) + ϵS

(1)
0 (s) + · · · )β0−1dW0(s)

+

∫ t

0

i∑
j=0

ci,j(Y
(0)
i (s) + ϵY

(1)
i (s) + · · · )(σ(1)

i (s) + ϵσ
(2)
i (s) + · · · )

(S
(0)
i (s) + ϵS

(1)
i (s) + · · · )βi−1dWj(s)

−
∫ t

0
(Y

(0)
i (s) + ϵY

(1)
i (s) + · · · )(σ(0)

0 (s) + ϵσ
(1)
0 (s) + · · · )(β0 − 1)

(S
(0)
0 (s) + ϵS

(1)
0 (s) + · · · )β0−2(S

(2)
0 (s) + ϵS

(2)
0 (s) + · · · )dW0(s)

+

∫ t

0

i∑
j=0

ci,j(Y
(0)
i (s) + ϵY

(1)
i (s) + · · · )(σ(0)

i (s) + ϵσ
(1)
i (s) + · · · )

(βi − 1)(S
(0)
i (s) + ϵS

(1)
i (s) + · · · )βi−2(S

(1)
0 (s) + ϵS

(2)
0 (s) + · · · )dWj(s)

))∣∣∣
ϵ=0

=

∫ t

0
(−α0(s) + αi(s))Y

(1)
i (s)ds−

∫ t

0
Y

(0)
i (s)σ

(0)
0 (s)S

(0)
0 (s)β0−1dW0(s)

+

∫ t

0

i∑
j=0

ci,jY
(0)
i (s)σ

(0)
i (s)S

(0)
i (s)βi−1dWj(s).
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S
(0)
i (t) =

(∫ t

0
αi(s)(S

(0)
i (s) + ϵS

(1)
i (s) + · · · )ds

+ϵ

∫ t

0

i∑
j=0

ci,j(σ
(0)
i (s) + ϵσ

(1)
i (s) + · · · )(S(0)

i (s) + ϵS
(1)
i (s) + · · · )βidWj(s) +O(ϵ2)

)∣∣∣
ϵ=0

=

∫ t

0
αi(s)S

(0)
i (s)ds,

σ
(0)
i (t) =

(
σi(0) +

∫ t

0
λi(θi − (σ

(0)
i (s) + ϵσ

(1)
i (s) + · · · ))ds

+ϵ

n+1+i∑
j=0

∫ t

0
νi,j(σ

(0)
i (s) + ϵσ

(1)
i (s) + · · · )dWj(t) +O(ϵ2)

)∣∣∣∣∣
ϵ=0

= σi(0) +

∫ t

0
λi(θi − σ

(0)
i (s))ds.

Here, in order to calculate Y
(m)
i (t), S

(m)
i (t) and σ

(m)
i (t) (m = 0, 1, · · · ), it is sufficient to

solve the equation:

dA(t) = (a(t)A(t) + b(t))dt+ c(t)dW (t). (63)

This stochastic differential equation can be easily solved. Apply the Ito’s lemma to

f(A(t), t) = A(t)e−
∫ t
0 a(s)ds,

df(A(t), t) = −a(t)A(t)e−
∫ t
0 a(s)dsdt+ e−

∫ t
0 a(s)dsdA(t)

= b(t)e−
∫ t
0 a(s)dsdt+ c(t)e−

∫ t
0 a(s)dsdW (t).

Integrate it from 0 to t, we obtain

A(t)e−
∫ t
0 a(s)ds = A(0) +

∫ t

0
b(s)e−

∫ s
0 a(u)duds+

∫ t

0
c(s)e−

∫ s
0 a(u)dudW (s).

Multiplying e
∫ t
0 α(s)ds to the both sides, it is shown that the stochastic differential equa-

tion (63) has the solution as follows:

A(t) = A(0)e−
∫ t
0 a(s)ds +

∫ t

0
b(s)e

∫ t
s a(u)duds+

∫ t

0
c(s)e

∫ t
s a(u)dudW (s).

The dynamics of Y
(1)
i (t), S

(0)
i (t) and σ

(0)
i (t) have the same form as (63). Thus, those

equations can be easily solved by the method of variation of constants as:

σ
(0)
i (t) = e

∫ t
0 λ(s)ds

(
σi(0) +

∫ t

0
e
∫ s
0 λ(u)duλ(s)θ(s)ds

)
.
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Y
(1)
i (T ) =

∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(0)
i σ

(0)
0 S

(0)β−1
0 dW0

+

i∑
j=0

∫ T

0
e
∫ T
t (αi(s)−α0(s))dsY

(0)
i ci,jσ

(0)
i S

(0)β−1
i dWj ,

gives the expressions of f1,i.
The remaining coefficients can be easily derived in the same way, and hence the

details of the derivation are omitted.

Thus, the price of multi-asset cross currency call option is expressed as follows:

C(0) = e−rT

(
ϵ

(
y

∫ ∞

−y
n[x; 0,Σ]dx+

∫ ∞

−y
x n[x; 0,Σ]dx

)
+ϵ2

1

2

∫ ∞

−y
E
[
X(2)(T )

∣∣X(1)(T ) = x
]
n[x; 0,Σ]dx

+ϵ3
(
1

6

∫ ∞

−y
E
[
X(3)(T )

∣∣X(1)(T ) = x
]
n[x; 0,Σ]dx

+
1

8
E

[(
X(2)(T )

)2 ∣∣X(1)(T ) = y

]
n[y; 0,Σ]

))
+ o(ϵ3).

Where, y = X(0)−K
ϵ , Σ =

∫ T
0 F11(s)

′F11(s)ds, F11 =
∑n

i=1 f1,i, n[x; 0,Σ] =
1√
2πΣ

exp
(
−x2

2Σ

)
.

A more concrete approximation of the price is obtained by the application of conditional
expectation formulas shown in Appendix B.

The result of pricing formula is shown in Theorem 3.1 when the coefficients C1, · · · , C4

are defined as follows:

C1 =

5n∑
i=1

∫ T

0
F11(s)

′g2,i(s)

∫ s

0
F11(u)

′f2,i(u)duds,

C2 =
1

2

5n∑
i=1

5n∑
j=1

(∫ T

0
F11(s)

′g2,i(s)

∫ s

0
F11(s)

′f2,i(u)duds

)

×
(∫ T

0
F11(s)

′g2,j(s)

∫ s

0
F11(s)

′f2,j(u)duds

)
,
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C3 =

11n∑
i=1

∫ T

0
F11(s)

′h3,i(s)

∫ s

0
F11(u)

′g3,i(u)

∫ u

0
F11(v)

′f3,i(v)dvduds

+
8n∑
i=1

∫ T

0
F11(s)

′h4,i(s)

∫ s

0
F11(u)

′g4,i(u)du

∫ s

0
F11(u)

′f4,i(u)duds,

+
1

2

5n∑
i=1

5n∑
j=1

(∫ T

0
F11(s)

′g2,j(s)

∫ s

0
F11(u)

′g2,i(u)

∫ u

0
f2,i(v)

′f2,j(v)dvduds

+

∫ T

0
F11(s)

′g2,i(s)

∫ s

0
F11(u)

′g2,j(u)

∫ u

0
f2,i(v)

′f2,j(v)dvduds

+

∫ T

0
F11(s)

′g2,i(s)

∫ s

0
f2,i(u)

′g2,j(u)

∫ u

0
F11(v)

′f2,j(v)dvduds

+

∫ T

0
g2,i(s)

′g2,j(s)

∫ s

0
F11(u)

′f2,j(u)du

∫ s

0
F11(u)

′f2,i(u)duds

+

∫ T

0
F11(s)

′g2,j(s)

∫ s

0
g2,i(u)

′f2,j(u)

∫ u

0
F11(v)

′f2,i(v)dvduds

)
,

C4 =
8n∑
i=1

∫ T

0
F11(s)

′h4,i(s)

∫ s

0
g4,i(u)

′f4,i(u)duds,

+

4n∑
i=1

∫ T

0
g5,i(s)

∫ s

0
f5,i(u)duds,

+
1

2

5n∑
i=1

5n∑
j=1

∫ T

0
g2,i(s)

′g2,j(s)

∫ s

0
f2,i(u)

′f2,j(u)duds.

Remark . The integrals on the right hand side of (26) are evaluated by the following
relation:∫ ∞

−y

1

Σk
Hk(x; Σ)n[x; 0,Σ]dx =

1

Σk−1
Hk−1(−y; Σ)n[y; 0,Σ] (k ≥ 1).

B Formulas for the Conditional Expectations of theWiener-
Itô Integrals

This appendix summarizes conditional expectation formulas for explicit computation of
the asymptotic expansions up to the third order.

In the following, W is a d-dimensional Brownian motion and qi = (q̂i1, · · · , q̂id)
′

where q̂i ∈ L2[0, T ], i = 1, 2, ..., 5 and x
′
denotes the transpose of x. Hn(x; Σ) denotes

the Hermite polynomial of degree n and Σ =
∫ T
0 |q1t|2dt. For the derivation and more

general results, see Section 3 in Takahashi, Takehara and Toda [30].
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1.

E

[∫ T

0

q
′
2tdWt|

∫ T

0

q
′
1vdWv = x

]
=

(∫ T

0

q
′
2tq1tdt

)
H1(x; Σ)

Σ

2.

E

[∫ T

0

∫ t

0

q
′
2udWuq

′
3tdWt|

∫ T

0

q
′
1vdWv = x

]
=(∫ T

0

∫ t

0

q
′
2uq1uduq

′
3tq1tdt

)
H2(x; Σ)

Σ2

3.

E

[(∫ T

0

q
′
2udWu

)(∫ T

0

q
′
3sdWs

)
|
∫ T

0

q
′
1vdWv = x

]
=(∫ T

0

q
′
2uq1udu

)(∫ T

0

q
′
3sq1sds

)
H2(x; Σ)

Σ2

+

∫ T

0

q
′
2tq3tdt

4.

E

[∫ T

0

∫ t

0

∫ s

0

q
′
2udWuq

′
3sdWsq

′
4tdWt|

∫ T

0

q
′
1vdWv = x

]
=(∫ T

0

q
′
4tq1t

∫ t

0

q
′
3sq1s

∫ s

0

q
′
2uq1ududsdt

)
H3(x; Σ)

Σ3

5.

E

[∫ T

0

(∫ t

0

q
′
2udWu

)(∫ t

0

q
′
3sdWs

)
q
′
4tdWt|

∫ T

0

q
′
1vdWv = x

]
={∫ T

0

(∫ t

0

q
′
2uq1udu

)(∫ t

0

q
′
3sq1sds

)
q
′
4tq1tdt

}
H3(x; Σ)

Σ3

+

(∫ T

0

∫ t

0

q
′
2uq3uduq

′
4tq1tdt

)
H1(x; Σ)

Σ

6.

E

[(∫ T

0

∫ t

0

q
′
2sdWsq

′
3tdWt

)(∫ T

0

∫ r

0

q
′
4udWuq

′
5rdWr

)
|
∫ T

0

q
′
1vdWv = x

]
=(∫ T

0

q
′
3tq1t

∫ t

0

q
′
2sq1sdsdt

)(∫ T

0

q
′
5rq1r

∫ r

0

q
′
4uq1ududr

)
H4(x; Σ)

Σ4

+

{∫ T

0

q
′
3tq1t

∫ t

0

q
′
5rq1r

∫ r

0

q
′
2uq4ududrdt+

∫ T

0

q
′
5tq1t

∫ t

0

q
′
3rq1r

∫ r

0

q
′
2uq4ududrdt

+

∫ T

0

q
′
3tq1t

∫ t

0

q
′
2rq5r

∫ r

0

q
′
4uq1ududrdt+

∫ T

0

q
′
3tq5t

(∫ t

0

q
′
2sq1sds

)(∫ t

0

q
′
4uq1udu

)
dt

+

∫ T

0

q
′
5rq1r

∫ r

0

q
′
3uq4u

∫ u

0

q
′
2sq1sdsdudr

}
H2(x; Σ)

Σ2

+

∫ T

0

∫ t

0

q
′
2uq4uduq

′
3tq5tdt
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C Calibration Results for USD quoted Option Markets

Table 31: Volatility Smile I
2008/9/8 2008/9/22

-10D -25D ATM 25D 10D -10D -25D ATM 25D 10D

EURUSD Calibrated Vol 13.40 12.34 11.70 11.55 11.85 13.87 13.16 13.06 13.60 14.52
Market Vol 13.39 12.38 11.69 11.53 11.87 13.86 13.18 13.05 13.59 14.53
Difference 0.02 -0.04 0.01 0.02 -0.01 0.01 -0.02 0.01 0.01 -0.01

SGDUSD Calibrated Vol 7.69 7.40 7.58 8.33 9.52 7.76 7.43 7.62 8.43 9.66
Market Vol 7.70 7.37 7.58 8.35 9.51 7.77 7.40 7.63 8.45 9.65
Difference -0.02 0.03 0.00 -0.03 0.02 -0.02 0.04 -0.01 -0.03 0.02

JPYUSD Calibrated Vol 15.48 12.95 10.85 9.58 9.06 19.56 16.41 13.73 12.12 11.59
Market Vol 15.52 12.87 10.91 9.55 9.08 19.64 16.26 13.81 12.09 11.61
Difference -0.04 0.08 -0.05 0.03 -0.02 -0.07 0.15 -0.07 0.04 -0.03

KRWUSD Calibrated Vol 14.54 14.91 16.39 19.21 22.88 14.97 16.33 18.68 22.60 27.56
Market Vol 14.56 14.88 16.39 19.27 22.85 15.08 16.16 18.67 22.78 27.48
Difference -0.02 0.03 0.01 -0.05 0.03 -0.10 0.17 0.01 -0.18 0.08

Table 32: Volatility Smile II
2011/3/3 2011/3/17

-10D -25D ATM 25D 10D -10D -25D ATM 25D 10D

EURUSD Calibrated Vol 13.48 12.15 11.25 10.89 10.99 14.45 12.83 11.68 11.11 11.07
Market Vol 13.45 12.21 11.22 10.88 11.01 14.41 12.87 11.67 11.11 11.07
Difference 0.03 -0.06 0.03 0.01 -0.01 0.04 -0.04 0.01 -0.01 0.00

JPYUSD Calibrated Vol 12.33 10.99 10.06 9.74 10.10 19.82 17.50 15.64 14.86 15.46
Market Vol 12.36 10.96 10.04 9.78 10.09 19.94 17.33 15.61 14.96 15.42
Difference -0.02 0.03 0.02 -0.04 0.02 -0.11 0.17 0.03 -0.10 0.04

KRWUSD Calibrated Vol 11.44 11.54 12.48 15.58 18.66 12.10 12.37 13.19 16.42 20.62
Market Vol 11.58 11.39 12.51 15.19 18.97 12.19 12.11 13.41 16.38 20.60
Difference -0.14 0.15 -0.03 0.39 -0.31 -0.09 0.27 -0.22 0.04 0.02

Table 33: Volatility Smile III
2011/3/1 2011/3/29

-10D -25D ATM 25D 10D -10D -25D ATM 25D 10D

JPYUSD Calibrated Vol 12.16 10.85 9.86 9.50 9.85 14.66 13.14 12.00 11.65 12.18
Market Vol 12.21 10.80 9.85 9.55 9.83 14.71 13.07 11.98 11.72 12.15
Difference -0.04 0.05 0.01 -0.04 0.02 -0.05 0.07 0.02 -0.07 0.03

SGDUSD Calibrated Vol 6.73 6.64 6.96 7.81 8.95 6.08 6.20 6.65 7.57 8.73
Market Vol 6.73 6.64 6.94 7.86 8.93 6.09 6.18 6.64 7.63 8.70
Difference -0.01 0.00 0.03 -0.05 0.03 -0.01 0.02 0.02 -0.06 0.03
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Table 34: Parameters before/after Lehman Shock
2008/9/8 2008/9/22

S(0) α σ(0) ν ρ S(0) α σ(0) ν ρ

1M EURUSD 1.4222 -0.0204 0.127 1.41 -0.205 1.4575 -0.0035 0.145 1.53 0.094
SGDUSD 0.6979 0.0144 0.085 2.05 -0.302 0.7101 0.0177 0.083 2.14 -0.258
JPYUSD 0.009188 0.0210 0.119 2.04 0.559 0.009406 0.0429 0.162 2.01 0.531
KRWUSD 0.0009249 -0.0034 0.216 1.50 -0.593 0.0008762 0.0749 0.241 1.54 -0.704

2M EURUSD 1.4222 -0.0194 0.114 1.07 -0.197 1.4575 -0.0063 0.135 1.19 0.083
SGDUSD 0.6979 0.0144 0.078 1.50 -0.288 0.7101 0.0167 0.077 1.56 -0.272
JPYUSD 0.009188 0.0198 0.110 1.62 0.577 0.009406 0.0371 0.144 1.65 0.549
KRWUSD 0.0009249 -0.0037 0.181 1.37 -0.531 0.0008762 0.0372 0.213 1.40 -0.638

3M EURUSD 1.4222 -0.0199 0.115 1.00 -0.179 1.4575 -0.0087 0.127 1.11 0.076
SGDUSD 0.6979 0.0152 0.074 1.34 -0.274 0.7101 0.0168 0.074 1.39 -0.257
JPYUSD 0.009188 0.0205 0.105 1.50 0.588 0.009406 0.0329 0.132 1.55 0.571
KRWUSD 0.0009249 -0.0041 0.165 1.14 -0.687 0.0008762 0.0243 0.192 1.11 -0.867

4M EURUSD 1.4222 -0.0188 0.109 0.87 -0.139 1.4575 -0.0128 0.119 0.91 0.070
SGDUSD 0.6979 0.0147 0.071 0.96 -0.269 0.7101 0.0172 0.071 0.99 -0.252
JPYUSD 0.009188 0.0214 0.098 1.27 0.613 0.009406 0.0297 0.114 1.34 0.604
KRWUSD 0.0009249 -0.0076 0.130 1.15 -0.592 0.0008762 0.0141 0.157 1.07 -0.763

Table 35: Parameters before/after Tohoku Earthquake I
2011/3/3 2011/3/17

S(0) α σ(0) ν ρ S(0) α σ(0) ν ρ

1M EURUSD 1.3864 -0.0044 0.104 1.53 -0.243 1.4025 -0.0050 0.110 1.58 -0.371
JPYUSD 0.012223 0.0021 0.091 1.93 0.175 0.012724 0.0018 0.164 2.10 0.297
KRWUSD 0.0008929 -0.0224 0.108 2.55 -0.540 0.0 -0.0211 0.124 2.17 -0.726

2M EURUSD 1.3864 -0.0046 0.106 1.24 -0.277 1.4025 -0.0057 0.112 1.27 -0.376
JPYUSD 0.012223 0.0026 0.093 1.55 0.237 0.012724 0.0025 0.154 1.60 0.327
KRWUSD 0.0008929 -0.0232 0.114 2.08 -0.497 0.0 -0.0221 0.124 2.04 -0.535

3M EURUSD 1.3864 -0.0048 0.111 1.10 -0.296 1.4025 -0.0058 0.115 1.12 -0.378
JPYUSD 0.012223 0.0027 0.097 1.27 0.275 0.012724 0.0027 0.150 1.41 0.339
KRWUSD 0.0008929 -0.0230 0.119 1.77 -0.478 0.0 -0.0218 0.128 1.78 -0.495

4M EURUSD 1.3864 -0.0062 0.116 0.87 -0.310 1.4025 -0.0067 0.123 0.86 -0.355
JPYUSD 0.012223 0.0032 0.107 0.94 0.298 0.012724 0.0036 0.151 1.05 0.356
KRWUSD 0.0008929 -0.0211 0.128 1.31 -0.481 0.0 -0.0198 0.135 1.36 -0.464

Table 36: Parameters before/after Tohoku Earthquake II
2011/3/1 2011/3/29

S(0) α σ(0) ν ρ S(0) α σ(0) ν ρ

1M JPYUSD 0.01218 0.0023 0.090 1.95 0.210 0.01220 0.0018 0.105 2.13 0.151
SGDUSD 0.7852 0.0022 0.057 2.24 -0.312 0.7930 0.0087 0.0623 2.0133 -0.3551

2M JPYUSD 0.01218 0.0026 0.092 1.55 0.259 0.01220 0.0023 0.1119 1.5379 0.2281
SGDUSD 0.7852 0.0023 0.067 1.66 -0.293 0.7930 0.0004 0.0623 1.5998 -0.3964

3M JPYUSD 0.01218 0.0027 0.095 1.30 0.294 0.01220 0.0025 0.1154 1.3192 0.2565
SGDUSD 0.7852 0.0023 0.068 1.30 -0.349 0.7930 0.0007 0.0654 1.2393 -0.4572

4M JPYUSD 0.01218 0.0034 0.106 0.96 0.306 0.01220 0.0033 0.1229 0.9926 0.2809
SGDUSD 0.7852 0.0024 0.072 1.10 -0.352 0.7930 0.0010 0.0697 1.0287 -0.4119
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