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Abstract 
Forecasting welfare caseloads has grown in importance in Japan because of their recent 
rapid increase. Given that the forecasting literature on welfare caseloads only focuses on 
US cases and utilizes limited classes of forecasting models, this study employs multiple 
alternative methods in order to forecast Japanese welfare caseloads and compare 
forecasting performances. In pseudo real-time forecasting, VAR and forecast 
combinations tend to outperform the other methods investigated. In real-time 
forecasting, however, a simple version of forecast combinations seems to perform better 
than the remaining models, predicting that welfare caseloads in Japan will surpass 1.7 
million by the beginning of 2016, an approximately 20% increase in five years from the 
beginning of 2011. 
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1. Introduction 

The volume of Public Assistance (PA) caseloads has been increasing since the 

early 1990s in Japan.1 With its acceleration after 2008, caseload growth has been more 

rapid than ever, as shown in Figure 1. Indeed, the number of PA-receiving households 

has almost doubled in the 12 years since 2001, increasing from 767,000 to 1,528,000. 

This rapid growth highlights potential problems that make forecasting PA caseloads 

more important than before. For example, given the typical sluggish adjustments of 

personnel in the government sector, caseload growth builds up caseworkers’ workloads, 

exacerbating the logistical difficulties in delivering assistance to the poor. Accurate 

forecasts of welfare caseloads could thus help the public sector manage its personnel in 

order for it to meet future PA needs. In addition, growing caseloads may also cause 

appropriation problems among central and local governments.2 The proportion of PA 

expenditure in local budgets reached as high as 20% in some municipalities, which also 

expands central budgets since the central government shares a fixed proportion (75%) of 

PA benefits, thereby complicating the issue of inter-governmental cost sharing for PA 

programs. Hence, accurate forecasts of PA caseloads would also help design better 

central–local fiscal relations for administering PA programs. 

Figure 1 

The empirical literature on welfare caseloads has two strands. The first group of 

studies has explored the determinants of welfare caseloads. While the majority of them 

focus on US cases, analogous studies exist for Canada [40, 62], Sweden [30, 63], Spain 

                                                 
1 PA here refers to the comprehensive social assistance scheme in Japan that aims to guarantee that all 
citizens maintain their basic costs of living by providing benefits to those considered to be unable to earn 
incomes above the basic costs of living. 
2 The Japanese local government consists of two levels, with municipalities (cities, towns, and villages) 
as the first tier and prefectures as the second. Cities implement PA programs through their welfare offices. 
Towns and villages are not required to do so, but some of them do so with their own welfare offices. 
Prefectural welfare offices cover residents in towns and villages that do not implement PA programs. 
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[5], and Japan [67]. While most studies examine the effect of unemployment, some 

explore such economic factors as the industry composition [33, 43] and urbanization [16, 

43, 57] of local economies. Furthermore, the impact of personal income is examined by 

analyzing poverty rates [16, 56, 57, 66] or income quintiles [10, 35, 40] in addition to 

the traditional measure of per capita income. Other measures are population proportions 

of demographic characteristics, such as educational background [10, 12, 34, 35], gender 

[33, 43], single motherhood [5, 10, 48, 52, 57, 66], age [10, 24, 52], and race [10, 12, 33, 

35, 36, 46, 47, 52, 57]. Some researchers have also examined the political orientation of 

public sector [10, 16, 35, 36, 52, 62]. Finally, some works focus on the impacts of 

policy variables such as benefits levels [10, 11, 15, 3436, 40, 4649, 52, 56, 62, 64, 66, 

71], minimum wages [15, 36, 43, 52, 62], other assistance programs [5, 10, 15, 24, 30, 

34, 35, 36, 46, 48, 52, 63], and institutional changes.3 

However, these “determinant” studies do not help much forecast caseloads, since 

the forecasts require the future values of such determinants.4 In other words, to obtain 

forecasts from the determinant studies, one needs to either forecast the values of the 

determinants themselves or make a priori scenarios that predetermine the specific 

sequences of their future values. Doing so may be sensible for certain variables such as 

an intercept and a linear trend, but more difficult than forecasting the dependent variable 

(welfare caseloads) itself [53] or simply not justified [23]. 

                                                 
3 US studies have examined the effects of changes in the Aid to Families with Dependent Children 
(AFDC) made by the Omnibus Budget Reconciliation Act [55], Deficit Reduction Act [55], Job 
Opportunities and Basic Skills Training Programs [43, 46, 47, 48], mandated AFDC-UP [10, 52], and 
“waivers” from AFDC programs [8, 10, 15, 24, 37, 46, 52, 56, 57, 71]. More recent US studies have 
considered the effect of the replacement of AFDC with the Temporary Assistance for Needy Families [8, 
34, 35, 43]. Some researchers have further allowed for the effects of the sub-elements (work requirements, 
time limits, incentives, diversion) of these welfare reforms [8, 12, 15, 36, 49, 71]. 
4 Some works have utilized dynamic models that have included the lagged values of the dependent 
variable in addition to these measures [5, 33, 39, 40, 43, 44, 71]. However, forecasting still requires the 
future values of unlagged measures [14, 51, 54]. 
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The second strand of the literature therefore aims to overcome these difficulties 

by estimating self-contained time series models. Some such studies are explicit in 

expressing the prospects of utilizing their analyses for budgeting and operation in 

practice [28, 29, 42]. However, two gaps must be bridged. First, previous studies have 

only focused on US cases. Since forecasting welfare caseloads is integral to 

administering social policy in all countries, analogous analysis for different countries 

would contribute not only to policy practice in that country but also to our general 

understanding of welfare policy. Second, previous authors have not exploited 

forecasting models that go beyond the autoregressive integrated moving average 

(ARIMA) [3, 13, 42] or vector autoregression (VAR) models [4, 42, 58, 61]. It would 

thus be interesting to explore alternative forecasting methods that analogous studies in 

other areas have utilized extensively [9, 20, 21, 50]. 

This study contributes to the literature and policy practices in this regard by 

applying several forecasting models to PA caseloads in Japan. The caseload data 

investigated herein have a monthly frequency and span from 2001 M01 to 2011 M02. 

The forecasting models used include ARIMA, exponential smoothing (ES), Markov 

forecasting (MF), two logistic smooth threshold autoregression (LSTAR) models, VAR, 

and variations of forecast combinations (FCs). In pseudo real-time forecasting, VAR and 

FC tend to outperform the other methods. In real-time forecasting, by contrast, a simple 

version of FC seems to perform the best among the alternative models, predicting that 

Japanese welfare caseloads will surpass 1.7 million by the beginning of 2016, an 

approximately 20% increase in five years from the beginning of 2011. 

The remainder of the paper is organized as follows. Section 2 introduces the 

forecasting methods employed in this study. Section 3 evaluates these methods. Section 
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4 conducts a real-time forecasting exercise for the period beyond 2011 M02. Finally, 

Section 5 concludes. 

 

2. Forecasting Models 

The monthly averages of PA caseloads Ct are forecasted herein.5 The sample 

spans from 2001 M01 to 2011 M02, which is then split into an in-sample period (2001 

M01 to 2010 M02) and an out-of-sample period (2010 M03 to 2011 M02). What 

follows describes the alternative forecasting models along with their estimates. 

 

2.1. Autoregressive Integrated Moving Average 

Autoregressive integrated moving average (ARIMA) is one of the most popular 

forecasting methods. ARIMA models can mimic the behavior of diverse types of series 

and do so adequately without usually requiring a number of parameter estimates in the 

final choice of the model [17]. Furthermore, they typically serve as a benchmark to 

evaluate other forecasting models. Indeed, many forecasters have applied ARIMA 

models to a number of time series in a variety of areas. Therefore, it is natural to start 

our discussion by applying ARIMA and the Box–Jenkins methodology to the analysis of 

PA caseloads here.6 

The ARIMA analysis here examines the natural logarithm of monthly series of PA 

caseloads: ct  lnCt. Since the series is potentially seasonal, it may be characterized as 

ARIMA(p,d,q)(ps,ds,qs)12 where p, d, and q respectively indicate AR lags, the degree 

of integration, and MA lags, and ps, ds, and qs respectively refer to seasonal AR lags, the 

                                                 
5 While MF directly forecasts Ct, the other methods forecast the natural logarithm of Ct, ct  lnCt, and 
then retrieve Ct as Ct = exp(ct) when evaluating the forecast methods. 
6 In fact, several studies have modeled the sequence of welfare caseloads as an ARIMA process, although 
only one has used it for forecasting [42]. Others have used it to conduct intervention analyses [3, 13, 38]. 
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seasonal degree of integration, and seasonal MA lags. The identification of the ARIMA 

model here follows the standard Box–Jenkins methodology, which does not need further 

elaboration here. Figure 2 shows the correlogram for the seasonally differenced 

first-order differences of the natural logarithm of PA caseloads (ct  ct12), which 

implies that d = ds = 1. Given that d = ds = 1, a grid search over p and q shows that p = 3 

and q = 0 minimize the values of both the Akaike and Bayesian information criterions 

(AIC and BIC), yielding ARIMA(3,1,0)(0,1,0)12. Indeed, the autocorrelation and 

partial autocorrelation in Figure 2 respectively verify the stationarity and third-order 

autoregression of the series. The model is estimated by maximum likelihood as 

12 1 13

2 14 3 15

(.001) (.090)

(.088) (.078)

.001 .224 ( )

.258 ( ) .391 ( ) .

t t t t

t t t t t

c c c c

c c c c 

  

   

      

        
  (ARIMA) 

The correlogram of the residuals shows little sign of autocorrelation in Figure 3. 

Figures 2 and 3 
 

2.2. Exponential Smoothing 

Exponential smoothing (ES) focuses on the trend and seasonality of a time series. 

The literature identifies 15 ES models, which are derived as combinations of the five 

types of trend (none, additive, damped additive, multiplicative, damped multiplicative) 

and three types of seasonality (none, additive, multiplicative) [52]. Table 1 lists the 

basic specifications, excluding the other six models with damped elements. Among 

them, the popular specifications are simple ES (no trend, no seasonality), Holt’s linear 

method (additive trend, no seasonality), Holt–Winters’ additive method (additive trend, 

additive seasonality), and Holt–Winters’ multiplicative method (additive trend, 

multiplicative seasonality) [17]. 

Table 1 



6 
 

The three main advantages of utilizing ES techniques are as follows [25, 26]. First, 

an ES model is easy to interpret, as it generates forecasts as a linear combination of the 

relevant components (see the models in Table 1). Second, if properly chosen, ES models 

perform rather well despite their simplicity, since the two main elements (i.e., trend and 

seasonality) tend to dominate the variance of the series. Third, data requirements and 

computational effort are not demanding. Despite these benefits, however, other methods 

are likely to outperform ES if the available data are rich enough to support the use of 

more elaborate models [17, 25, 26]. 

Since ES forecasts are linear combinations of the relevant components, the first 

task is to estimate those weights for a given specification among the nine models in 

Table 1. This exercise estimates the weight parameters by minimizing the sum of the 

squared errors. The second task is to select a specification among the nine models. The 

exercise here selects the model that minimizes the value of BIC. The selected model is 

the following linear-trend model without seasonality: 

1 1 1.897 ,  and (.897) (.205)t t t t t t tS S T u T T u            (ES) 

where St is the smoothed level of ct; Tt is the trend rate; and ut = ct  ct1 is the one-step 

ahead forecast error. 

 

2.3. Logistic Smooth Threshold Autoregression 

Threshold autoregression (TAR) allows for the existence of multiple regimes by 

nesting different linear autoregressive processes in a single time series. For example, a 

two-regime TAR picks up as the data-generating process (DGP) one such regime after a 

trigger variable st hits a threshold level  [41]. Typically, but not necessarily, a TAR 

model uses the lag of the series it explains as the trigger (st = ctd), meaning that the 

model becomes self-contained. In addition, TAR may allow for a smooth transition from 
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one regime to another by using a transition function G(ctd )[0, 1]. Such a process is 

termed smooth TAR (STAR) [68]. Thus, a two-regime STAR model for ct is 

 0 01 1
( )

P P

t p t p t d p t p tp p
c c G c c        
          . 

If the transition function is logistic 

  1
( ) 1 exp[ ( )]t d t dG c c   

      , 

the STAR is called logistic STAR (LSTAR), which is one of the standard specifications 

of a TAR process. Since two-regime LSTAR processes are well suited to characterizing 

asymmetric cyclical behavior, studies often use LSTAR models to describe cyclical 

macroeconomic time series [45, 69]. For example, LSTAR models perform well in 

forecasting unemployment rates [18, 59, 65]. This fact implies that LSTAR models are 

better suited to characterizing the trend of welfare caseloads, since the determinant 

studies mentioned in the Introduction have typically shown welfare caseloads to be 

highly correlated with unemployment rates. 

We considered two two-regime LSTAR models and estimated their parameters by 

using the non-linear least squares method. Assuming that the LSTAR model has an 

identical lag between the two regimes, LSTAR1 is identified after the selection 

procedures based on [68]: 

1 2 12 13

1
10

1 2 12 13

(.029) (.075) (.081) (.078) (.070)

(10.401) (.008)

(2.398) (.396) (.356) (.363) (.514)

.105 .828 .180 .627 .643

{1 exp[27.035 ( 13.933)]}

( .656 .227 .322 .166 .215 )

t t t t t

t

t t t t

c c c c c

c

c c c c 

   




   

    

   

      .t

 (LSTAR1) 

However, the five parameter estimates for the second regime are not statistically 

significant, as seen from the standard errors in parentheses. Further specification tests 

and diagnostics then yield the restricted version of LSTAR1 (LSTAR2) as 
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1 2 12 13

1
10 1

(.029) (.072) (.078) (.075) (.068)

(8.603) (.002) (.068) (.396)

.098 .851 .157 .603 .618

{1 exp[38.297 ( 13.930)]} ( .618 1.103 )

t t t t t

t t t

c c c c c

c c 

   


 

    

       
 (LSTAR2) 

where all coefficients are statistically significant. The forecasts in Section 3 use both 

LSTAR1 and LSTAR2. 

 

2.4. Markov Forecasting 

Markov forecasting (MF) is designed for forecasting welfare caseloads [28]. 

Since the current stock of caseloads equals the previous stock of caseloads plus entries 

net of exits, caseloads are expressed as the following first-order Markov chain: 

1 1(1 )t t t t t t tC C E X x C E        

where Ct, Et, Xt, and xt  Xt/Ct1 are the caseloads at the end of period, entries, exits, and 

exit rate, respectively. At the steady state (xt = x, and Et = E), Ct converges to C* = E/x. 

Thus, if the values of Et and xt were held constant at t, caseloads would converge to Ct
* 

= Et/xt. MF regards this value, termed the implied steady state (ISS), to be a leading 

indicator that predicts caseload value in L periods ahead by using a linear regression 

*
0 1 .t L t tC C        

Since the actual ISS tends to be volatile, the use of a smoothed ISS Ĉt  Et(bE)/xt(bx) is 

suggested in place of Ct
* [28], where xt(bx) and Et(bE) are the values of Et and xt with 

LOWESS (locally weighted scatterplot smoothing). Parameters 0 and 1 are estimated 

by using the ordinary least squares method after setting bx = .5, bE = .8, and L = 5. These 

three values are obtained from a three-dimensional grid search that minimizes the mean 

square error (MSE) of forecasts.7 This yields the following forecasting equation: 

                                                 
7 The MSE used one-period ahead forecasts from rolling regressions with a fixed window of 110 
observations. The three-dimensional grid search run L from 10 to 36 by 1, and bx and bE from .1 to .9 
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5
(31710) (.023)

ˆ309171 .522t t tC C    
    

(MF) 

where the standard errors are in parentheses. 

These forecasts are rescaled values of the smoothed ISS pushed five periods 

ahead. Figure 4 shows the rescaled smoothed ISS, forecasts (the rescaled smoothed ISS 

shifted to the right by five periods), and actual caseloads. The in-sample fits are rather 

poor, because the method chooses the parameters that minimize the MSE of forecasts 

rather than the sum of squared residuals (SSR) of the in-sample observations. To 

illustrate this point, Figure 4 uses the parameters that together minimize the SSR8 and 

plots the fitted values against the actual observations. While the smoothed ISS here is a 

good leading indicator in the in-sample periods, the forecasts do not perform well in the 

out-of-sample periods. This is a typical example of where good in-sample fits do not 

lead to good out-of-sample forecasts.9 

Figures 4 and 5 
 

2.5. Vector Autoregression 

A vector autoregression (VAR) model refers to a system of interdependent 

autoregressive processes for a group of series that includes the series in question (here, 

PA caseloads). Each variable in a VAR model has an equation that explains its trend 

based on its own lags and the lags of the other variables in the system. VAR models also 

provide a benchmark as ARIMA models do. Indeed, as they have done with ARIMA 

models, many forecasters have applied VAR models to a variety of time series in many 

                                                                                                                                               
by .01. The in- and out-samples are from 2001 M01 to 2010 M02 (110 months) and from 2010 M03 to 
2011 M02 (12 months), respectively. 
8 They are estimated as 0 =173, 1 = .887, L = 33, bE = .79, and bE = .17. Because L = 33, the OLS 
estimation now has a smaller sample from 2002 M07 to 2010 M02. 
9 It argued that MF can detect a turning point in caseload trajectory [28]. However, the PA caseloads 
studied here do not display any turning points or changes in the pace of increase in the in-sample periods. 
We thus cannot validate the strength of MF in this exercise. 
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areas. By contrast, few studies have used VAR analysis to examine welfare caseloads 

[42, 58, 61]. 

The first task in VAR modeling is to select a group of variables in its system. The 

VAR here concerns three variables: PA caseloads, unemployment rates, and the elderly 

ratio (the population proportion of those aged 65 years and over). While the choice of 

unemployment rates is standard [42, 58, 61], the choice of the elderly ratio may be 

specific to the Japanese case. Japanese programs also cover the elderly, and caseload 

growth partly reflects the increasing number of older people who have little or no 

pension benefits [32]. The model uses the natural logarithms of caseloads and the 

elderly ratio, and unemployment rates as a percentage. 

Although the ARIMA analysis above implied that the series was non-stationary, 

caseload series are not differenced. In ARIMA modeling, it is necessary to make a series 

stationary since the Box–Jenkins method only relates to stationary processes. In 

addition, when estimating ARIMA processes, algorithms are likely to fail if series are 

integrated. These do not apply to VAR models. Furthermore, even if time series are non- 

stationary and/or integrated, the OLS estimators of VAR coefficients are consistent [31]. 

The second task is to select the lag p of VAR(p). The estimation starts from p = 1 

to 13 in order to find p = 6 that minimizes the MSE in the out-of sample. Table 2 lists 

the estimation results for VAR(6). The last three lines of the table consist of the P values 

for the Granger tests, based on the lag-augmented VAR (LA-VAR) [70]. The tests use 

LA-VAR(8), allowing for possible integrated or co-integrated variables up to the second 

order. The results imply that the elderly ratio and PA caseloads do not Granger-cause 

unemployment rates and the elderly ratio, respectively. However, the exercise below 

does not exclude them, as doing so weakens the fits of the forecasts. 
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Table 2 
 

2.6. Forecast Combination 

Forecast combination (FC) combines the multiple forecasts made by different 

models for a single time series. Hence, FC diversifies against model uncertainty [1, 22]. 

When a diagnostic test fails to reject a hypothesis that two models have an equal 

predictive accuracy, it is not clear which model to choose when making forecasts. Even 

if one model seems to be better, it is again not clear if it is optimal to ignore the 

forecasts from the other models altogether. In addition, assume that a forecasting model 

can only approximate a more complicated and evolving DGP. Then, the model 

necessarily misspecifies the DGP. Nonetheless, some models, albeit misspecified, may 

adapt more quickly to the changing behavior of a time series, while others may not. 

Thus, when multiple forecasts exist, it may be sensible to combine them in order to 

diversify forecasting errors. 

An issue with FC is how to weight the multiple forecasts. This study first uses a 

simple average or equal weights (FC1), which often outperform other weights that are 

deliberately designed [22]. In addition, one may improve forecast performance by 

trimming a group of models by dropping the least performing ones [2]. The current case, 

where there are six sets of forecasts, excludes the model that performs worst in order to 

obtain simple-averaged forecasts based on the trimmed group (FC2). 

 

3. Performance Comparison 

3.1. Pseudo real-time forecasting 

The exercise presented in this section uses data on PA caseloads from 2001 M01 

to 2011 M02 (T = 122), which are divided into an in-sample period for initial parameter 
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estimation and model selection and an out-of-sample period for evaluating forecast 

performance. The out-of-sample period runs from 2010 M03 to 2011 M02 (P = 12). For 

each of the out-of-sample observations, pseudo real-time forecasting is performed to 

make forecasts ft as if they were actually made in real time. 

Three schemes are employed for updating forecasts, which are widely used in 

simulating real-time forecasts [22]. 10  The first scheme is iterated multi-period 

forecasting. It recursively generates forecasts (fN + 1|N, . . . , fT|N) for all the P periods 

from a fixed origin (2010 M02). This uses only the fixed in-sample (N = 110 

observations from 2001 M01 to 2010 M02). The second scheme makes one-period 

ahead forecasts ft+1|t using the in-samples with an expanding data window. It makes 

forecasts for t + 1  N exploiting all the data available up to t and repeats the process P 

times to generate a series of P one-period ahead forecasts (fN+1|N, fN+2|N+1, . . . , fT|N+P1). 

Its in-sample thus expands by one observation when an additional forecast is made. The 

third scheme again makes one-period ahead forecasts (fN+1|N, fN+2|N+1, . . . , fT|N+P1), but 

does so using the in-samples with a rolling data window of fixed size N. This is similar 

to the second scheme of expanding windows except that it drops the earliest observation 

for an additional forecast. 

There are eight estimated models to forecast PA caseloads. Each model generates 

three types of forecasts for out-of-sample periods and compares them to the actual 

observations of PA caseloads in those periods. To evaluate the performance of each 

method, three measures are used, namely the mean absolute error (MAE = |Ct  ft|/P), 

root mean square error (RMSE = [(Ct  ft)
2/P]1/2), and mean error (ME = (Ct  

                                                 
10 Note that when forecasting with the LSTAR model, as is standard, the exercise simulates multiple 
forecast paths by using a pseudo random number generator that follows the normal distribution and 
averages the multiple paths to obtain forecast values. The number of replications for the simulation here is 
10,000. 
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ft)/P),11 which are all calculated using caseloads in level. In addition, the Diebold–

Mariano (DM) test [19] is performed to compare more formally a pair of forecasts from 

different models. The DM test here only utilizes the test statistics based on the RMSE 

from the forecasts generated by the first scheme (iterated multi-period forecasting). This 

scheme is used, since we are interested in conducting real-time forecasting for PA 

caseloads in multiple periods beyond 2011 M02, where we can only conduct iterated 

multi-period forecasting based on the currently available (fixed) data. 

 

3.2. Results 

Table 3 lists the MAE, RMSE, and ME. First, for iterated multi-period forecasts, 

ES performs the worst, followed by MF. The best model is either FC2 with MAE or 

VAR with both RMSE and ME. LSTAR1 fares relatively well, being either the second 

or third best. However, FC1 shows mediocre performance, possibly because there are 

only six forecasts. Second, the expanding window evaluation changes the ranking. 

ARIMA now performs the worst in terms of all three measures, while MF remains the 

second worst as before. VAR and FC2 continue to perform well. Third, the rolling fixed 

window evaluation provides another different picture. ARIMA is the best in terms of 

RMSE and ME and the second best in terms of MAE. In addition, possibly reflecting 

the performance of ARIMA, FC1 ranks first, second, and third in terms of MAE, ME, 

and RMSE, respectively. However, VAR still fares relatively well, being the second best 

according to RMSE and third best with MAE and ME. Overall, these results indicate 

that VAR and one of the FCs perform consistently well. The good performance of VAR 

is consistent with the previous result [42]. The results for FC also parallel the previous 

                                                 
11 The ME may be less popular for this type of evaluation. However, since public sectors usually plan 
budgets on an annual basis, month-to-month errors may not be a serious problem as long as they average 
to zero over a year (12 months). The ME indeed captures such averaging. 
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finding that while FCs not always deliver the best forecasts, they do not generally 

deliver poor performance [1]. 

Table 3 

Table 4 shows the P values of the DM tests. LSTAR1 and LSTAR2 are not 

compared since LSTAR1 nests LSTAR2.12 The far-left column lists the null hypothesis 

(model) to be tested and the top row lists the alternative hypothesis (model) to be tested 

when the associated null hypothesis is rejected. Among the eight forecasts, LSTAR1, 

VAR, and FC2 are not rejected for any of the alternative models, barring the fact that 

LSTAR1 is not tested against LSTAR2. Thus, setting aside LSTAR1, VAR and FC2 are 

among the best models, although their differences are not statistically significant.13 

Table 4 

 

4. Forecasting Welfare Caseloads 

4.1. Re-estimated Models 

This section now makes real-time forecasts for the periods beyond 2010 M02, 

using all the available data from 2001 M01 to 2011 M02. Using the terminology in the 

previous section, this section performs iterated multi-period forecasting that recursively 

generates forecasts for the periods beyond a fixed origin 2010 M02, using a fixed 

in-sample of observations from 2001 M01 to 2011 M02. Since the current estimation 

uses longer data than those used in Section 2 spanning from 2001 M01 to 2011 M02, the 

specifications are different from those in Section 2 for some of the forecasting models, 

and the coefficient estimates are different from those in Section 2 for all models, too. 

                                                 
12 If the DM test relates to a pair of models in which one nests the other, the distribution of the test 
statistics will be non-standard. 
13 Since a study argued that more than 100 forecasts may be necessary to establish significant differences 
in predictive accuracy across models [6], the results in Table 4 should be taken with caution as they rely 
on only 12 forecast values. However, as all the P values for the well-performing models are close to one 
except when compared among themselves, we may not necessarily have to be too cautious on this point. 
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First, the Box–Jenkins methodology yielded the following ARIMA specification: 

12 1 13 2 14

3 15 12 13

(.004) (.077) (.143)

(.076) (.112) (.096)

.061 1.350 ( ) .157 ( )

.515 ( ) .749 .173 .

t t t t t t
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         
 (ARIMA’) 

Second, the ES model now has a linear trend and multiplicative seasonality 

1 1 1

1

.924 / ,  (.924) (.263) / ,  and

(.855) (1 .924) /
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
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 (ES’) 

where It is the seasonal index and p the seasonal span. Third, the two LSTAR models 

are estimated as 

1 2 12 13

10

1 2 12 13

(.028) (.071) (.077) (.074) (.067)

(6.507) (.003)

(.166) (.234) (.239) (.204) (.180)
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1 2 12 13
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(.026) (.066) (.072) (.068) (.061)

(8.502) (.001) (.090) (.006)

.113 .847 .150 .610 .615

1/{1 exp[41.089 ( 13.932)]} ( .837 .059 ) .
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t t t
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    (LSTAR2’) 

Fourth, the MF model is estimated as 

5
(.015)(22,829)

ˆ342,734 .497t t tC C    
     

(MF’) 

where bx = .17, and bE = .76. Note that MF cannot forecast caseloads in periods more 

than L-periods ahead (L = 5) in this real-time forecasting, since unlike, the previous 

pseudo real-time forecasting, the data are unavailable to obtain the regressor (smoothed 

ISS) beyond 2011 M02. Fifth, the VAR model is still specified as VAR(6) with the 

different coefficient estimates listed in Table 5. 

Table 5 

Lastly, since the information from the validation period is now available, the FCs 

here consider two types in addition to FC1 and FC2. These two additional FCs use 
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different types of weights that require information ex-ante to the forecast origin (2010 

M02). First, FC3 utilizes weights based on inverse mean squared errors [7], which 

weigh forecasts made by the j-th forecasting model with 

1/

1/
j

j
ii

MSE

MSE
 


       (FC3)  

where MSE is calculated from the RMSE values listed in the third column in Table 3. 

Second, FC4 uses the weights proposed by [27]. It thus takes advantage of the 

estimates from the following regression model: 

residuals for .t j jtj
C f N t T          (FC4) 

The estimated coefficients, in addition to the constant, rescale their corresponding 

forecasts beyond 2011 M02. As shown in Table 6, the fit of the regression is very good 

(R2 = .9999 and R
_

2 = .9998). However, these “weights” turn out to be different from 

what we usually think weights are. First, they do not add up to unity; however, when 

excluding the constant , the sum of the coefficients is close to one (1.012). Second, 

there are three negative coefficients (.722 for ES, .719 for LSTAR1, and .234 for 

LSTAR2). Third, the coefficient (“weight”) on the forecasts from the VAR model is 

more than unity (1.696). Note that MF only provided forecasts up to 2010 M07 in the 

validation period since its smoothed ISS had a lag of five periods. For this reason, all 

the FCs exclude MF. 

Table 6 

 

4.2. Results 

Figure 7 describes the forecasts. Not surprisingly, each of the non-FCs behaves 

erratically in the long-term. Furthermore, although their behaviors were more or less 

similar when forecasted for the out-of sample period, they are different here. MF, which 
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has only five forecast values, seems to predict the largest level of caseloads for the 

limited periods of forecasting. ES also displays constantly increasing caseloads well 

beyond two million toward the end of 2015. Likewise, ARIMA also shows increasing 

caseloads that, while not as sharp as the rise of ES, is also substantially high at just 

below two million by the end of the period. By contrast, LSTAR1 and LSTAR2 show 

long-run declines, even though they slowly increased in the early period. This finding is 

implausible given the current socio-economic trends affecting PA, such as the aging 

population. 

VAR displays another implausible movement. In the earlier stages, its forecasts 

started decreasing more rapidly than those of the two LSTARs and then increased at the 

beginning of 2014. This is striking since VAR performed well in the pseudo real-time 

forecasting. These erratic behaviors of the individual forecasts are different from those 

of the pseudo real-time forecasts. This result implies that good performance in the 

validation period, which is typically short for this study, may not constitute a sound 

foundation for longer-term forecasting. 

Finally, let us consider the four FCs. Since MF only generates forecasts up to 

2011 M07, FC1 generates its forecasts up to 2011 M07 and FC3 and FC4 exclude its 

forecasts. FC2 also excludes the forecasts by MF (it seems to be the worst performing, 

as Figure 6 indicates). The two more elaborate FCs, FC3 and FC4, behave more 

erratically than the forecasts from some of the individual models. In particular, the 

forecasts made by FC4 start to decrease as early as 2011 and continue to decline until 

mid-2013 before increasing rapidly to exceed the forecasts made by FC2 for 2015. This 

result occurs because FC4 places the largest “weight” of 1.696 on the forecasts from 

VAR, which behaved erratically as described above. The behavior of the FC3 forecasts 
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is less erratic compared with those of FC4; however, it still displays a decrease that 

starts in mid-2012. 

Figure 6 

The forecasts made by FC2 seem to be a safe choice in that this model 

demonstrates the most plausible future path of PA caseloads given the available 

information that may affect caseloads in the future, including the aging population, 

continuing stagnant economy, and changing labor market practices in Japan. FC2 

caseload forecasts FC consistently increase beyond 2011 M02 with an inflection point 

around early 2014, reaching more than 1.7 million toward the end of 2015. 

In fact, as some time has elapsed since these forecasts were calculated, the 

additional finalized data on PA caseloads have become available up to 2012 M03. Table 

7 shows both the actual and the forecasted PA caseloads along with their monthly 

differences (in absolute values). While the forecasts underestimate PA caseloads with an 

increasing order, the percentage errors all remain below 1%. This performance is 

outstanding despite the increase in PA caseloads brought about by the Great East Japan 

Earthquake in March 2011. In addition, this finding may constitute another example of 

an “FC puzzle,” where simple combinations of point forecasts repeatedly outperform 

other sophisticated FCs [60]. 

Table 7 

 

5. Concluding Remarks 

Forecasting welfare caseloads has grown in importance in Japan due to their recent 

rapid increase. Against the background that most previous studies only examine US 

cases and have not exploited recent developments in the literature, this study employed 

several forecasting methods (ARIMA, ES, LSTAR, VAR, and a set of FCs) in order to 
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predict Japanese welfare caseloads and compare their performances. The presented 

findings showed that while the VAR model and one of the FC methods tend to 

outperform the others in pseudo real-time forecasting, a simple average FC seems to 

perform best in real-time forecasting. In addition, simple average forecasting predicts 

that PA caseloads in Japan will surpass 1.7 million by the end of the forecast period 

(2016 M02), an approximately 20% increase from the beginning of 2011. 
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Figure 1. PA Caseloads in the 2000s 
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Figure 2. Correlogram for lnCt  lnCt12 

 

 

 

Figure 3. Correlogram for Residuals 
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Figure 4. MF: Out-of-sample Fitting 

 
 

Figure 5. MF: Within-sample Fitting 
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Figure 6. Real-time Forecasting 
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Table 1. Basic Models of ES in Error Correction Form 

Seasonal 
 

Trend 
No Seasonality Additive Multiplicative 

No Trend St = St1 + ut 
ct(m) = St 

St = St1 + ut 
It = Itp + (1)ut 
ct(m) = St + Itp+m 

St = St1 + ut/Itp 
It = Itp +(1)ut/St 

ct(m) = StItp+m 

Linear 
St = St1 + Tt1 + ut 

Tt = Tt1 + ut 

ct(m) = St + mTt 

St = St1 + Tt1 + ut 
Tt = Tt1 + ut 

It = Itp +(1)ut 
ct(m) = St + mTt + Itp+m

St = St1 + Tt1 + ut/Itp

Tt = Tt1 + ut/Itp 

It = Itp +(1)ut/St 
ct(m) = (St + mTt)Itp+m 

Multiplicative 
St = St1Tt1 + ut 

Tt = Tt1 + ut/St1  

ct(m) = St Tt
m 

St = St1Tt1 + ut 
Tt = Tt1 + ut/St1 

It = Itp +(1)ut 
ct(m) = StTt

m + Itp+m 

St = St1Tt1 + ut/Itp 
Tt = Tt1 + ut/(It 

It = Itp +(1)ut/St  
ct(m) = StTt

mItp+m 

Notes: St is the smoothed level of the series; Tt is the trend rate; It is the seasonal index; ct(m) is the 
forecast for m periods ahead from origin t; ut = ct  ct1(1) is the one-step ahead forecast error; p is 
the seasonal span. The forecasts are the current smoothed value for any number of steps ahead m. 
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Table 2. Estimation Results: VAR(6) for 2001 M01 to 2010 M02 

Dependent Variable 

 
Log of Caseloads Unemployment Rates

Log of the Elderly 
Ratio 

Variable Lag Coeff. S.E. Coeff. S.E. Coeff. S.E. 

Log of 
Caseloads 

1 .897 (.102)*** .131 (.109) .033 (.069) 
2 .238 (.138)* .068 (.148) .091 (.094) 
3 .113 (.138) .109 (.148) .096 (.094) 
4 .142 (.126) .205 (.135) .064 (.085) 
5 .094 (.120) .010 (.128) 0.063 (.081) 
6 .218 (.096)** .097 (.103) 0.024 (.065) 

Unemployment 
Rates (%) 

1 .104 (.094) .708 (.101) 0.178 (.064)*** 
2 .310 (.115)*** .077 (.123) 0.203 (.078)*** 
3 .410 (.121)*** .134 (.130) 0.086 (.082) 
4 .317 (.130)** .009 (.139) 0.103 (.088) 
5 .088 (.133) .093 (.143) 0.123 (.090) 
6 .108 (.106) .011 (.114) 0.052 (.072) 

Log of the 
Elderly Ratio 

1 .206 (.158) .202 (.169) 1.030 (.107)*** 
2 .039 (.222) .041 (.238) 0.076 (.150) 
3 .262 (.219) .231 (.235) 0.159 (.148) 
4 .040 (.224) .057 (.240) 0.098 (.152) 
5 .135 (.220) .494 (.236)** 0.046 (.149) 
6 .037 (.149) .371 (.160)** 0.020 (.101) 

Constant .291 (.119)** .069 (.128) 0.043 (.081) 
S.E. of Estimate .002 .002 .001 
SSR .000 .000 .000 
DW 1.802 1.998 1.983 

P values for Granger (non-) causality tests with LA-VAR(8) 
Log of Caseloads .000 .001 .550 
Unemployment Rates .002 .000 .004 
Log of the Elderly 
Ratio 

.066 
 

.236 
 

.000 
 

Notes: “Notes: *** p  .01; ** .01 < p  .05, * .05 < p  .10. Standard errors are in parentheses. 
Granger non-causality is examined using the LA-VAR. 
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Table 3. Forecasting Performance: 2010 M03 to 2011 M02 

 

Iterated multi-period forecasts 
One-period ahead forecasting 

(Expanding windows) 
One-period ahead forecasting 

(Rolling fixed windows) 

MAE RMSE ME MAE RMSE ME MAE RMSE ME 

ARIMA 6,823(5) 8,126 (5) 6,823 (5) 6,823 (8) 8,126 (8) 6,823 (8) 1,199 (2) 1,366 (1) 267 (1) 

ES 12,962 (8) 17,747 (8) 12,635(8) 2,182 (4) 2,399 (3) 1,547 (5) 2,289 (7) 2,491 (4) 1,727 (6) 

LSTAR1 1,636 (3) 1,736 (2) 1,359 (3) 1,708 (3) 2,984 (4) 757 (3) 1,714 (4) 2,983 (6) 793 (4) 

LSTAR2 8,769 (6) 11,342 (6) 8,664 (6) 2,317 (5) 3,669 (6) 480 (1) 2,154 (5) 3,619 (7) 824 (5) 

MF 9,572 (7) 11,515 (7) 9,572 (7) 4,320 (7) 6,283 (7) 3,750 (7) 4,388 (8) 4,714 (8) 1,895 (7) 

VAR(6) 1,363 (2) 1,722 (1) 400 (1) 1,465 (2) 1,722 (1) 751 (2) 1,347 (3) 1,598 (2) 524 (3) 

FC1 (simple average) 3,101 (4) 4,253 (4) 3,101 (4) 2,510 (6) 2,984 (4) 2,351 (6) 1,169 (1) 1,761 (3) 373 (2) 

FC2 (simple average, excluding 
ES) 

1,316 (1) 1,795 (3) 1,195 (2) 1,177 (1) 1,751 (2) 827 (4) 2,221 (6) 2,602 (5) 2,071 (8) 

Note: The numbers in parentheses are the rank of the forecasting methods according to their respective loss functions. 
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Table 4. DM Tests (P values) 

Alternative 
Null 

ARIMA ES LSTAR1 LSTAR2 MF VAR(6) FC1 FC2 

ARIMA  .988 .002 .997 .983 .001 .000 .001 

ES .012  .009 .018 .012 .008 .008 .008 

LSTAR1 .998 .991  n.a. .994 .486 .964 .549 

LSTAR2 .003 .982 n.a.  .591 .002 .001 .002 

MF .017 .988 .006 .409  .005 .004 .005 

VAR(6) .999 .992 .514 .998 .995  .975 .588 

FC1 (simple average) 1.000 .992 .036 .999 .996 .025  .017 

FC2 (simple average, 
excluding ES) .999 .992 .451 .999 .995 .412 .983  

Note: LSTAR1 and LSTAR2 are not compared since the former nests the latter.



 
 

 
Table 5. Estimation Results: VAR(6) for 2001 M01 to 2011 M02 

Dependent Variable 

 
Log of Caseloads Unemployment Rates

Log of the Elderly 
Ratio 

Variable Lag Coeff. S.E. Coeff. S.E. Coeff. S.E. 

Log of 
Caseloads 

1 .898 (.096) *** .030 (.064) .129 (.104) 
2 .224 (.130) * .095 (.086) .063 (.140) 
3 .154 (.128) .085 (.085) .145 (.139) 
4 .152 (.118) .071 (.078) .225 (.128) * 
5 .066 (.113) .058 (.075) .006 (.123) 
6 .211 (.090) ** .025 (.060) .106 (.098) 

Unemployment 
Rates (%) 

1 .193 (.151) 1.036 (.100) *** .172 (.163) 
2 .037 (.213) .073 (.141) .045 (.230) 
3 .296 (.210) .165 (.139) .200 (.227) 
4 .030 (.214) .099 (.142) .044 (.231) 
5 .182 (.210) .051 (.140) .480 (.228) ** 
6 .053 (.142) .013 (.094) .373 (.154) ** 

Log of the 
Elderly Ratio 

1 .075 (.088) .166 (.058) *** .710 (.095) *** 
2 .304 (.109) *** .196 (.072) *** .070 (.118) 
3 .390 (.115) *** .093 (.076) .130 (.124) 
4 .303 (.122) ** .110 (.081) .017 (.132) 
5 .110 (.124) .119 (.083) .089 (.135) 
6 .076 (.097) .038 (.064) .020 (.105) 

Constant .345 (.107)*** .018 (.071) .004 (.116) 
S.E. of Estimate .002 .001 .002 

SSR .000 .000 .000 

DW 1.815 1.989 1.984 

Notes: *** p  .01; ** .01 < p  .05, * .05 < p  .10. Standard errors are in parentheses. 
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Table 6. Regression Weights 

Coeff. “weight” S.E. P values 

Constant 16,395  32,274  .630  
ARIMA .991  .234  .005  
ES .722  .336  .075  
MSTAR1 .719  .808  .408  
MSTAR2 .234  .592  .706  
VAR 1.696  .442  .009  
R2 .9999  

 R
_

2 .9998   

N 12 
 
 
 
Table 7. Forecast Errors 

 
Actual values Forecasts (FC2) Absolute errors 

(AE) AE in % 

2011 M03 1,458,583 1,456,547 2,036 0.14% 

2011 M04 1,462,186 1,460,642 1,544 0.11% 

2011 M05 1,471,257 1,467,399 3,858 0.26% 

2011 M06 1,479,611 1,475,151 4,460 0.30% 

2011 M07 1,486,338 1,481,679 4,659 0.31% 

2011 M08 1,493,228 1,486,839 6,389 0.43% 

2011 M09 1,497,328 1,491,265 6,063 0.40% 

2011 M10 1,502,316 1,496,682 5,634 0.37% 

2011 M11 1,507,940 1,501,168 6,772 0.45% 

2011 M12 1,513,448 1,505,513 7,935 0.52% 

2012 M01 1,516,995 1,508,070 8,925 0.59% 

2012 M02 1,521,480 1,510,055 11,425 0.75% 

2012 M03 1,528,377 1,514,258 14,119 0.92% 

 
 


