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Abstract

This paper proposes a simple econometric framework that can identify moral
hazard and selection problems separately in insurance markets. Although our
methodology requires behavioral assumptions on the consumer’s optimization,
we show that these assumptions are necessary for the separate identification of
the two sources of information asymmetry. Our method is applied to the dental
insurance market in the United States. In addition to standard moral hazard, we
find advantageous selection, which is not detected by a conventional methodology.

1 Introduction

In the last decade, empirical studies have been rapidly catching up with highly-
developed economic theories of asymmetric information. This paper proposes a new
econometric framework to analyze the information problem in insurance markets.
Our main contribution is that we can identify moral hazard and selection problems
separately. This contribution is an extension of a traditional method that formulates
information asymmetry as one parameter.

The conventional methodology uses a bivariate probit model as discussed in Chi-
appori and Salanié (2000). For dependent variables, this pioneering work considered
an insurance purchase and an accident occurrence of consumers. The standard asym-
metric information problem can be detected as a positive correlation between these
two variables. Specifically, moral hazard implies that consumers increase their risk
after purchasing insurance, while adverse selection implies that riskier consumers have
a stronger demand for insurance. The conventional methodology has two advantages:
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computational simplicity and no need for detailed contract information, which is diffi-
cult to obtain. The bivariate probit analysis has been popular and applied to various
insurance markets. However, most empirical studies fail to detect a significantly pos-
itive correlation between two dependent variables, and some studies even found a
negative correlation.

In response to these unexpected results, De Meza and Webb (2001) proposed an
important counter theory called advantageous selection. This theory states that less
risky individuals have a stronger demand for insurance, due to their risk-aversion.
In contrast to adverse selection, advantageous selection produces a negative effect of
risk on an insurance purchase. Then researchers have considered that the positive
correlation test might fail when both moral hazard and advantageous selection are
present, because their distinct effects cannot be captured by only one correlation
parameter. To test the validity of this theory, one needs to identify the moral hazard
and the selection problems, meaning adverse selection and advantageous selection,
separately.

Recently, two active streams of new researches have arisen in this field. One is
the structural estimation approach, as in Cardon and Hendel (2001) and Einav et al.
(2010b), where moral hazard and selection problems are explicitly modeled as distinct
mechanisms. Another approach is a reduced form analysis for advantageous selection,
which detects selection as the effects of the explanatory variables representing an
individual’s risk preference on the insurance purchase. To measure the risk preference,
researchers have used a variety of variables, such as subjective mortality rate in Cawley
and Philipson (1999), seat belt use in Finkelstein and McGarry (2006), and health
status and schooling levels, which proximate cognitive ability and financial numeracy,
in Fang et al. (2008). No consensus has been reached with respect to appropriateness
of these variables.

In this paper, we present a new approach to identify the moral hazard and selection
problems separately using an econometric model which is much simpler than the
previous structural studies. Further, our model requires only the accident occurrence
as an explanatory variable to characterize the selection problem.

Specifically, this paper proposes an inference framework which consists of only
two equations, similar to the bivariate probit model. We parametrize moral hazard
and selection problems not as a correlation but as two distinct coefficients. Despite
a simple appearance, this specification has a statistical difficulty due to the mutual
dependency between the dependent variables. Therefore, we assume simultaneous
determination of these variables. This assumption, however, produces an econometric
problem that is equivalent to the endogenous effect of the reflection problem in peer
effects models (Manski, 1993).

The simultaneity assumption induces a well-known econometric problem that has
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been analyzed in the literature on simultaneous equation models with limited depen-
dent variables, for example in Amemiya (1975), Heckman (1978) and Gouriéroux and
Monfort (1979). These types of work yielded a statistical problem called incoherency
by Gouriéroux et al. (1980), which states that these models are not well-defined with-
out a restrictive assumption on parameters.

To handle the incoherency problem, we adopt the modeling technique proposed
by Tamer (2003) and Ciliberto and Tamer (2009) in the literature on the empirical
analysis of entry games. These authors introduced a latent variable that formulates
well-defined choice probabilities. This variable is called a selection rule in the lit-
erature on entry games, because the variable determines a Nash equilibrium among
multiple equilibria. In this paper, by taking a Bayesian approach, we estimate the pa-
rameters of the model with the selection rule and conduct model selection to consider
the information structure that fits the data.

Our simultaneity assumption produces another difficulty. Unlike the reduced form
analysis in the bivariate probit model, our methodology requires a behavioral assump-
tion in the form of an equilibrium condition for a consumer’s optimization where
consumers can precisely predict the occurrence of their future accidents. However,
using theorems of spatial statistics, it is shown that we cannot distinguish the moral
hazard and selection problems without the simultaneity assumption. To check the
robustness of our specification, we additionally consider econometric models with an
alternative parametrization under the simultaneity assumption.

As an empirical application of our methodology, we analyze the US dental insur-
ance market. Previous studies have consistently detected moral hazard in this market.
The incoherency problem has been an obstacle to analyzing selection problems. Our
results indicate that moral hazard and advantageous selection are both present. This
is a more informative result than that derived from the conventional bivariate probit
analysis.

The organization of this paper is as follows. In Section 2, we describe our basic
econometric framework. Section 3 considers the feasibility of alternative specifica-
tions. The proposed method is applied to the US dental care insurance market in
Section 4. Section 5 concludes the paper.

2 Econometric models

2.1 The bivariate probit model: Conventional methodology

This section proposes our basic inference scheme for information asymmetry in in-
surance markets. We begin by reviewing the conventional methodology, the bivariate
probit model (Poirier, 1980). This model considers a market of a simple insurance
that covers an accident in the following simple reduced-form econometric model.
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The sample consists of N consumers indexed as i = 1, 2, ..., N . The dependent
variables are two observable binary variables yi = (yi1, yi2)′, in which yi1 and yi2

represent the purchase of insurance and the occurrence of an accident, respectively,
for the ith consumer. Further, let y∗ij denote the corresponding latent variable for
the ith consumer. We assume that yij takes unity if y∗ij is non-negative and that it
takes zero otherwise. These latent variables are assumed to be linear functions of
Kj−dimensional observable regressors xij with coefficients βj and an error term εij .

Bivariate Probit Model:

y∗ij = x′
ijβj + εij , j = 1, 2, (2.1)

yij = I[y∗ij ≥ 0]. (2.2)

In this bivariate probit model, we can detect standard asymmetric information as a
positive correlation, namely ρ > 0, between y∗i1 and y∗i2 conditional on xi = (x′

i1, x
′
i2)

′.
Specifically, moral hazard indicates that consumers become riskier after they purchase
insurance, while adverse selection implies that riskier consumers are more likely to
purchase insurance. The above framework has an implicit assumption that only
asymmetric information is the source of ρ and that there is no omitted variable that
affects both latent variables.

2.2 Mutually dependent dummy variable models

Next, we present our original econometric methodology that identifies the effects of
moral hazard and selection problems separately. Our basic inferential scheme consists
of seven distinct econometric models and model selection. These models share a
parametrization, but are distinct in support of the parameters. Due to the method of
the parametrization, we classify these models as mutually dependent dummy variable
models.

To achieve the separate identification for the two sources of information asym-
metry, we introduce two additional elements into the bivariate probit model in (2.1)
and (2.2). One element measures the effect of the insurance purchase yi1 on the acci-
dent occurrence yi2, and another measures the effect of yi2 on yi1. The former term
indicates moral hazard, while the latter indicates selection problems. For simplicity,
these effects are modeled as linearly additive terms, whose amounts are measured by
coefficient parameters α2 and α1.

Mutually dependent dummy variable model:

y∗ij = x′
ijβj + αjyik + uij j = 1, 2, k 6= j, (2.3)

yij = I[y∗ij ≥ 0], (2.4)
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where the new error term uij is assumed to be independent of uik, given xi. This
conditional independence is a consequence of the above implicit assumption of no
omitted variables in the bivariate probit model. Thus our model does not allow
endogeneity of uij and yik in the sense that uij can affect yik only via yij . As a
result, a positive α2 corresponds to the existence of moral hazard, while a positive or
negative α1 implies the existence of adverse or advantageous selection.

Despite a simple appearance, we cannot employ a straight-forward estimation pro-
cedure for model parameters θ = (β′

1, β
′
2, α1, α2)′, because of the mutual dependency

between yi1 and yi2: A dependent variable yi1 appears on the right-hand side of the
equation for yi2, while yi2 appears in the right-hand side for yi1.

One approach to the mutual dependency is to assume that equations (2.3) and
(2.4) hold simultaneously. To justify this simultaneity assumption, we need to as-
sign additional restrictions on the underlying economic model. A natural candidate
of such a behavioral model is the following optimization process: first, consumers
consider yi1, whether to purchase insurance, taking account of yi2, the occurrence
of a future accident. Second, consumers re-evaluate their prediction of their future
accident occurrence based on this insurance purchase. Third, consumers re-consider
their purchasing decision, considering this updated prediction. These feedback loops
continue until consumers reach a steady state, where equations (2.3) and (2.4) are
simultaneously satisfied. This equilibrium behavior is realized as consumers’ final
decisions to purchase insurance.

More precisely, we make two assumptions here. The first is the above behavioral
model with an infinite feedback system. The second is an implicit assumption that
the consumer can predict yi2 precisely. Perfect foresight is guaranteed if we assume
that the error term, ui2. is completely known to the consumers. The necessity of
such strong assumptions is a clear disadvantage to the bivariate probit model, which
does not include a behavioral assumption. We consider the possibility of alternative
assumptions in the next section.

Under the simultaneity assumption, a straight-forward calculation shows the fol-
lowing correspondences between the outcomes and error terms:

zi = 1 ⇔
{
u1i < −x′

i1β1, u2i < −x′
i2β2

}
, (2.5)

zi = 2 ⇔
{
u1i ≥ −x′

i1β1, u2i < −x′
i2β2 − α2

}
, (2.6)

zi = 3 ⇔
{
u1i < −x′

i1β1 − α1, u2i ≥ −x′
i2β2

}
, (2.7)

zi = 4 ⇔
{
u1i ≥ −x′

i1β1 − α1, u2i ≥ −x′
i2β2 − α2

}
, (2.8)

where we define a scalar variable zi = 1, 2, 3 and 4 which corresponds to (yi1, yi2) =
(0, 0), (1, 0), (0, 1) and (1, 1) for notational simplicity.
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The simultaneity assumption can manage mutual dependencies, but it induces an
econometric problem that Gouriéroux et al. (1980) called the incoherency problem.
For our model, the incoherency problem means that the statistical model is not well-
defined unless there exists j such that αj = 0.

We illustrate the above correspondence (2.5) - (2.8) on the coordinates of (ui1, ui2).
We must consider models separately according to the sign conditions of (α1, α2).
Specifically, we define four distinct models as follows:

Mutually Dependent Dummy Variable Model NN: α1 < 0, α2 < 0,

Mutually Dependent Dummy Variable Model NP: α1 < 0, α2 > 0,

Mutually Dependent Dummy Variable Model PN: α1 > 0, α2 < 0,

Mutually Dependent Dummy Variable Model PP: α1 > 0, α2 > 0,

with (2.3) and (2.4).

Figure 1 is here

Figure 1 shows two representative models, Models NN and NP, and the remaining
Models PP and PN can be analyzed similarly. In both representative Models NN and
NP, Regions 1 thorough 4 have a unique pair of outcomes, but Region 5 does not:
For Model NN, there are two candidates (yi1, yi2) = (1, 0) and (0, 1), while for Model
NP, there is no possible pair of outcomes. Due to this non-uniqueness of outcomes
in Region 5, it is not possible to obtain well-defined joint choice probabilities, unless
Region 5 vanishes by assuming the coherency condition, namely ∃i, αi = 0.

Recently, such incoherent models have gathered new attention from entry game
researchers, because (2.3) and (2.4) are equivalent to the best response functions of a
general class of entry games. To manage the incoherency problem, researchers explic-
itly modeled a data generating system in Region 5 using sample-specific parameters
pi = (pi1, pi2, pi3, pi4) ∈ [0, 1]4 with

∑4
l=1 pil = 1, which are called selection rules.

Each selection rule pil represents a proportion of Region 5 in which each pair of out-
comes is realized. Consequently, the choice probability in both Models NN and NP
can be written as:

Pr[zi = l|xi, θ, pil] = Pl(xi, θ) + pilP5(xi, θ), (2.9)

where Pl(xi, θ) measures an area of Region l in Figure 1. Note that Regions 1 through
5 are differently defined in Models NN and NP in Figure 1. Thus parameters β1,β2

in Model NN and NP have distinct effects on choice probabilities, and hence on the
likelihood function. Therefore, Models NN and NP are indeed different statistical
models and not nested.
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Because the summation of these choice probabilities with respect to zi = 1, 2, 3
and 4 is unity, the model is now well-defined. However, it is difficult to construct
a consistent estimator for θ which does not depend on a sample-specific nuisance
parameter pil. In other words, the problem shifts from the incoherency problem to
the incidental parameter problem (Lancaster, 2000).

We can interpret the incoherency problem in this context as follows: in entry game
models, the incoherency is caused by a possible non-uniqueness of Nash equilibria. In
our setting, the incoherency also corresponds to the non-uniqueness of the best action.
Model NN has multiple possible combinations of the insurance purchase decision and
the corresponding accident occurrence, while in Model NP, there is no best action.

In addition to Models NN, NP, PN and PP, we have three models with a coherency
restriction, namely αj = 0 for some j. Specifically, three models are in this category:

Mutually Dependent Dummy Variable Model CI: α1 = 0, α2 = 0,

Mutually Dependent Dummy Variable Model MH: α1 = 0, α2 ∈ R,

Mutually Dependent Dummy Variable Model AS: α1 ∈ R, α2 = 0,

with (2.3) and (2.4). CI, MH and AS stand for complete information, moral hazard
and “adverse or advantageous” selection, respectively. For these models, it is possible
to adopt standard probit estimation because we do not have problems caused by
mutual dependencies. We note that the bivariate probit model with zero correlation
reduces to Model CI.

Next, we provide a computational methodology for the statistical inference of the
above scheme. The main purpose of this study is to characterize the information
problem in insurance markets. It is difficult to construct a statistical test for this
purpose, because the models are not nested. Instead, we conduct model selection
for Models NN, NP, PN, PP, CI, MH and AS to determine a suitable information
structure.

We employ a Bayesian procedure which enables us both to overcome the inci-
dental parameter problem for Models NN, NP, PN and PP and to conduct model
selection. The procedure uses the Markov chain Monte Carlo (MCMC) method,
which we presented for entry game models in Sugawara and Omori (2012). In short,
our methodology estimates sample-specific selection rule parameters. Posterior distri-
butions of the selection rule parameters may depend heavily on the prior distribution
due to the small sample size, because we can use only one sample for estimation of
the selection rule parameter. However, there is no problem of the statistical inference
because Bayesian estimation can work with finite samples. Thus, we can use standard
estimation and model selection techniques. In addition, Models CI, MH and AS are
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estimated using standard Gibbs samplers, as in see Koop et al. (2007).

3 Alternative approaches

This section investigates alternative approaches to the above mutually dependent
dummy variable models. For notational simplicity, we drop the subscript for individ-
uals i in this section.

We pursue two directions in this section. First, we examine alternative assump-
tions regarding the mutual dependency of dependent variables. This analysis is mo-
tivated by the simultaneity assumption’s requirement of a restrictive behavioral as-
sumption of a consumer’s optimization. Our discussion shows that it is not possible
to achieve the separate identification of moral hazard and selection problems without
the simultaneity assumption. This analysis additionally yields an intuitive explana-
tion for the meaning of an identification problem in this topic. Second, under the
simultaneity assumption, we consider a parametrization that is different to mutu-
ally dependent dummy variable models. This parametrization induces an alternative
econometric model that also consists of seven submodels.

3.1 Inevitability of the simultaneity assumption

To investigate an alternative assumption for the mutual dependency among the depen-
dent variables, we refer to spatial statistics, which has a long history of this problem.
This literature has revealed that there are two methodologies to model such a situ-
ation. In addition to the simultaneous specification method of the previous section,
there is another method called the conditional specification (Besag, 1974).

In the conditional specification, we begin by defining the conditional distributions
yj given yk, namely yj |yk. As noted by Anselin (2003), the conditional specification
handles the exogenous effects of the conditioned variable, which are not explained by
an underlying economic model. Accordingly, the conditional specification is suitable
for a reduced-form analysis, if feasible.

A main difficulty of the conditional specification is that we do not always have a
corresponding joint distribution for given conditional distributions. To have a well-
defined multivariate statistical model, we must recover the joint distribution for de-
pendent variables from conditional distributions. This recoverability is called com-
patibility and has been actively studied (Arnold et al., 1999).

For the analysis of the compatibility, we follow the methods presented by Besag
(1974) and summarized by Cressie (1993). It is difficult to check the compatibility
directly in general distributions. Instead, we first assume that we have compatible
conditionals and then consider the necessary conditions. Specifically, we begin our
discussion assuming that we have conditional distributions for y1|y2 and y2|y1, and
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there exists a corresponding joint distribution for (y1, y2). We do not make an as-
sumption of distributional forms, but assume y = 0 occurs with a positive probability.
Let us define a negpotential function as Q(y) = log[Pr(y)/Pr(y = 0)]. Besag (1974)
provided the following two fundamental theorems:

Theorem 1

For compatible conditional distributions:

Pr(yj |yk)
Pr(yj = 0|yk)

=
Pr(y)

Pr(yj = 0, yk)
= exp[Q(y) − Q(yj = 0, yk)]. (3.1)

Theorem 2

Q can be expanded as:

Q(y) = y1G1(y1) + y2G2(y2) + y1y2G12(y1, y2), (3.2)

where G· and G·· are uniquely determined if we define Gj(yj) = 0 when yj = 0 and

G12(y1, y2) = 0 when y1 = 0 or y2 = 0.

In words, Theorem 1 displays the relationship among the conditional distribution,
the joint distribution and the negpotential function, while Theorem 2 shows a unique
decomposition of the negpotential function. In our context, Theorem 2 specifies the
unique negpotential function as:

Q(y) = y1G1(1) + y2G2(2) + y1y2G12(1, 1). (3.3)

Letting µj = Gj(1) and γ = G1,2(1, 1), we have:

Q(y) − Q(yj = 0, yk) = µkyk + γy1y2. (3.4)

Applying Theorem 1, we obtain conditional distributions explicitly as:

Pr(yj = 0|yk) =
1

1 + exp[µj + γyk]
, (3.5)

→ Pr(yk = 1|yj) =
exp[µj + γyk]

1 + exp[µj + γyk]
. (3.6)

Finally, letting µj = x′
jβj , we have the conditional probability:

Pr(yj |yk) =
yj{exp[x′

jβj + γyk]}
1 + exp[x′

jβj + γyk]
, j = 1, 2, k 6= j. (3.7)

Because γ does not depend on j nor k, the above equation implies that the effect
of yk on the conditional distribution for yj is the same as the effect of yj on the condi-
tional distribution for yk. Because this is a direct consequence of Besag’s theorems for

9



any compatible system, it is a necessary condition for compatibility in our context.
Therefore, conditional specification cannot distinguish the effects of moral hazard
and selection problems because they are to be measured by the same parameter γ.
In other word, the simultaneity assumption is required for the separate identification
for the two sources of asymmetric information.

We now provide an intuitive interpretation for identification problems in the two
specifications. For both specifications, we want to estimate the relationship between
two dependent variables; the insurance purchase and the accident occurrence. How-
ever, the econometric analysis uses only one pair of outcomes, namely (yi1, yi2), for
each sample. Because it is difficult to distinguish the two-way interactions without
an additional assumption, the conditional specification can identify the interactions
only as one coefficient parameter. The same is true for the bivariate probit model,
which identifies the interactions as one correlation parameter. On the other hand,
the simultaneous specification achieves the separate identification of two effects in the
price of behavioral assumptions.

3.2 Alternative parametrization

Next, we consider an alternative parameterization, keeping the simultaneity assump-
tion. In the mutually dependent dummy variable models presented in Section 2.2,
selection problems are measured as an effect of the accident occurrence yi2 on the
insurance purchase, yi1. Apparently, this parametrization seems to exhibit an reverse
causality in that an accident, which should occur after the insurance purchase, af-
fects the purchase decision. However, this is actually not a logical fallacy under the
assumption that the error terms are known, because consumers can make a precise
prediction.

Alternately, we can consider an alternative parameterization by changing the mea-
surement of the selection problem. For this purpose, we assume that the latent vari-
able y∗i2 measures accident risk. Then we define the selection problem as an effect of
the accident risk on the insurance purchase, while everything else is unchanged. We
call this setting the riskiness models. Specifically:

Riskiness Models:

y∗i1 = x′
i1β1 + α1y

∗
i2 + ui1. (3.8)

y∗i2 = x′
i2β2 + α2yi1 + ui2. (3.9)

yij = I[y∗ij ≥ 0]. (3.10)

We need to separate seven models according to the support of (α1, α2). First, we
define the following four models:
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Riskiness Model NN: α1 < 0, α2 < 0,

Riskiness Model NP: α1 < 0, α2 > 0,

Riskiness Model PN: α1 > 0, α2 < 0,

Riskiness Model PP: α1 > 0, α2 > 0,

with (3.8), (3.9) and (3.10).
This alternative parametrization still has the mutual dependency between the

two dependent variables. Adopting the simultaneity assumption, we again have the
incoherency problem1. To address this problem, we consider the following correspon-
dences between outcomes and error terms:

zi = 1 ⇔
{
ui1 + α1u2 ≤ −x′

i1β1 − α1x
′
i2β2, ui2 ≤ −x′

i2β2

}
, (3.11)

zi = 2 ⇔
{
ui1 + α1u2 ≥ −x′

i1β1 − α1x
′
i2β2 − α1α2, ui2 ≤ −x′

i2β2 − α2

}
,

(3.12)

zi = 3 ⇔
{
ui1 + α1u2 ≤ −x′

i1β1 − α1x
′
i2β2, ui2 ≥ −x′

i2β2

}
, (3.13)

zi = 4 ⇔
{
ui1 + α1u2 ≥ −x′

i1β1 − α1x
′
i2β2 − α1α2, ui2 ≥ −x′

i2β2 − α2

}
.

. (3.14)

Figure 2 is here

Figure 2 illustrates the above correspondences (3.11) - (3.14) on the coordinates
of (ui2, ui1). We again concentrate on Models NN and NP. In Figure 2, the four lines
are defined as:

A : ui1 + α1ui2 = −x′
i1β1 − α1x

′
i2β2, (3.15)

B : ui1 + α1ui2 = −x′
i1β1 − α1x

′
i2β2 − α1α2, (3.16)

C : ui2 = −x′
i2β2, (3.17)

D : ui2 = −x′
i2β2 − α2. (3.18)

For both Models NN and NP, Regions 1, 2, 3, 7, 8 and 9 have a unique pair of
outcomes, while Regions 4, 5 and 6 do not. We call these regions without a unique
pair of outcomes are nonsingular. The coherency condition is ∃i, αi = 0, which makes
the two lines A and B be equivalent. If this condition is not satisfied, we again
introduce selection rules. When Region k is nonsingular, the data generating process

1This is listed by Maddala (1983, p.119) as an example of incoherent econometric models.
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can be modeled using pik = (pik1, pik2, pik3, pik4) ∈ [0, 1]4 with
∑4

l=1 pikl = 1. Now
pikl represents a proportion of Region k for the outcome zi = l. We obtain the choice
probability for zi = l as:

Pr[zi = l|xi, θ,pi] =
∑

k:zi=l uniquely
Pk(xi, θ) +

∑
k: nonsingular

piklPk(xi, θ), (3.19)

where Pk(xi, θ) measures an area of Region k in Figure 2 and pi is a vector whose
element is pikl for all the nonsingular k and l = 1, 2, 3 and 4. We present a closed
form expression of this choice probability in Appendix A.1.

For models with a coherency restriction, not all the riskiness models are different
from those in the mutually dependent dummy variable models. Specifically, we have
the same models for Models CI and MH, while Model AS is different:

Riskiness Model AS: α1 ∈ R, α2 = 0, (3.8), (3.9), and (3.10)

The compatibility analysis induces the same conditional choice probability as in
Equation (3.7) in Section 3.1. This compatibility condition yields a deterministic
relationship between moral hazard and the selection problems, which are measured
by γyi1 and γI[y∗i2 ≥ 0], respectively. Consequently, the separate identification of
moral hazard and selection problems is not achieved by the conditional specification
in the riskiness models.

4 Empirical analysis for the US dental insurance market

4.1 Data

In this section, we apply our methodology to the US dental care insurance market.
This is an ideal market for our research because the dependent variables takes stable
and modest figures. Both the rate of insurance coverage and the ratio of those have
at least one dental visit per year, which we interpret as the accident occurrence, are
consistently about 50 % (Manski et al., 2002). These numbers might indicate the
robustness of our dependent variables to unobserved shocks.

There have been several studies about the information problem in this market.
Moral hazard has been consistently detected. Mueller and Monheit (1988) moral
hazard in a surveyed dataset and Manning et al. (1985) found it in an experimental
dataset. Moral hazard in this context means a positive effect of insurance coverage
on dental visits, which does not always have a negative implication. For example,
a positive effect can imply a successful preventive efforts encouraged by insurance
companies or HMOs.
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On the other hand, the selection problems have been considered as non-negligible
but difficult to identify due to the incoherency problem (Sintonen and Linnosmaa,
2000). One exception is Munkin and Trivedi (2008), who implemented Bayesian
estimation for a switching regression model. They adopted insurance purchase and
the number of dental visits as the “treatment” and the main outcome variables,
respectively. Their approach has two parameters to indicate information asymmetry.
One parameter is a coefficient of the insurance purchase on the accident occurrence,
similar to our parameter for moral hazard. Another parameter is a sample-selection
correlation, which can be affected by both moral hazard or selection problems.

We construct a dataset similar to Munkin and Trivedi (2008). We use the 2004
wave of the Medical Expenditure Panel Survey(MEPS). The MEPS is a rotating panel
dataset that consists of five interviews during a year for each sample individual. We
restrict our samples to privately-employed workers who are 25 to 65 years old. Self-
employed and governmental workers are eliminated due to their peculiar insurance
coverage. Our sample size is 5090.

Two dependent dummy variables are defined as follows. First, the accident occur-
rence dummy takes unity if the sample individual visits a dental care at least once in
the survey period. Second, the insurance purchase dummy takes unity if the consumer
has dental insurance at the time of the first interview. Despite having panel data,
we only use information from the first interview and ignore the rest of interviews to
avoid confusion due to time inconsistency. We adopt this manner also for time-variant
explanatory variables below.

[Table 1 is here]

We choose our explanatory variables from four categories: demographic, health,
geographic and insurance-purchase specific variables. Table 1 shows descriptive statis-
tics. Our sample is similar to that of Munkin and Trivedi (2008), which is made by
MEPS from 1996 to 2000. There are several comments on the definition of explanatory
variables as follows.

For the demographic variables, the consumer’s ages are dummy variables that cor-
respond to five-year categories. One category, “29 years old or younger”, is excluded
from the set of explanatory variables as a reference dummy. For health variables,
self-reported health status is included as categorical dummies; “very good”,“good”
and “fair or poor”. “Excellent” is the reference category. In addition, we include the
number of chronic conditions, namely diabetes, asthma, high blood pressure, coronary
heart disease, emphysema and arthritis. The geographic variables have two groups.
One consists of location dummies in which “west” is the reference category, and an-
other is a dummy variable which takes unity if the consumer lives in a metropolitan
statistical area. Finally, the firm size, which might have an effect on available in-
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surance plans but not on dental visits, is adopted as an explanatory variable for the
insurance purchase only.

4.2 Model selection and estimation results

We employ the Bayesian methodology using the MCMC method. Detailed procedures
for the mutually dependent dummy variable models and the riskiness models are
presented in Sugawara and Omori (2012) and Appendix A, respectively. We further
estimate the bivariate probit model to make a comparison with the conventional
methodology. The estimation procedure for the bivariate probit model is described
in Appendix B.

In our implementation of MCMC samplers, we make a distributional assumption
for error terms. In the mutually dependent dummy variable models and the riskiness
models, we assumed the standard normal distribution for error terms. Other distri-
butions beside the normal distribution can work, because the only requirement is to
define the area probability Pk(xi, θ), as discussed in Sugawara and Omori (2012) and
Appendix A. For the bivariate probit model, we adopt a standard assumption of the
normal error terms with unit variances and a correlation ρ.

We use the same hyperparameters upon distinct schemes as follows. The prior
covariance matrix for θ is set as orthogonal. Its diagonal elements, or prior variances,
are assumed to be 10 both for β and α, reflecting the lack of prior information
regarding these parameters. The prior means for β1 and β2 are set at zero. The prior
means of αj depends on its domain in each model. For models without constraint
for αj , the prior mean is set at zero. For models with constraints αj < 0 or αj >

0, the prior means are set at −1 or 1, respectively. For the selection rule p, we
set hyperparameters such that the prior distribution becomes the uniform. For a
parameter that is specific to the bivariate probit model, namely δ, we set the normal
prior distribution with mean 0 and variance 10.

We generate different numbers of posterior samples for distinct models so that each
Markov chain mixes well. First, for all models in the mutually dependent variable
models, Model AS in the riskiness models and the bivariate probit model, we generate
10,000 posterior samples after discarding 5,000 initial samples as the burn-in period.
Second, for Models NN and PP in the riskiness models, we run 20,000 iterations
after a burn-in of 20,000 iterations. Third, for Models NP and PN in the riskiness
models, we run our sampler with 50,000 samples after 20,000 burn-in iterations. In
the posterior sampling for Models NN, NP, PN and PP in both mutually dependent
dummy variable models and riskiness models, because the dimensions of β1 and β2

are large, we separately generate each element of the coefficient vectors.
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4.2.1 Model selection results

[Table 2 is here]

Table 2 shows the result of model selection using the deviance information criterion
(DIC) of Spiegelhalter et al. (2002). The first and the third rows of Table 2 presents
the DICs of the models. Additionally, we present values of the likelihood function
evaluated at the posterior means in the second and fourth columns, to indicate the
goodness of fit of models.

Both criteria choose Model NP in the mutually dependent dummy variable models.
This selected model exhibits the existence of moral hazard and advantageous selection.
Further, if we consider model selection only among the riskiness models, Model NP
is still selected. This result implies the robustness of our model selection.

While the detection of moral hazard is compatible to the previous studies, our
important contribution is the discovery of advantageous selection. The adverse se-
lection indicates risk averse preferences of consumers for dental insurance. Because
dental illness is often a result of the chronic accumulation of damage to teeth, people
might decide to purchase insurance before they need serious dental care. That is,
early preventive concerns, which lower risk, would result in the insurance purchase.

The uniqueness of our finding is reinforced when we make a comparison with the
conventional method. In the bivariate probit estimation, the posterior mean for the
correlation parameter ρ is 0.129 and its 95% credible interval is [0.089, 0.168], which
indicates the posterior probability of ρ > 0 is greater than 0.95. This result implies
that the conventional methodology found evidence of standard asymmetric informa-
tion, moral hazard or adverse selection. On the other hand, the conventional method
cannot detect advantageous selection, which our methodology found. Considering
that the bivariate probit model is outperformed by Model NP in the mutually de-
pendent dummy variable models in Table 2, our dataset likely contains advantageous
selection. In summary, our methodology has the potential power to shed a new light
on information asymmetry which hidden in previous studies.

4.2.2 Estimation results

Based on the above model selection result, we present detailed estimation results for
Model NP in the mutually dependent dummy variable models. Figures 3, 4 and 5
in Appendix C show the paths of the posterior samples where they mix well and are
stable. The convergences of α1 and α2 seem relatively slow, but their inefficiency
factors, which measures the sampling efficiency as discussed in Chib (2001), are 228
and 229. This result indicates that we obtained 43 (10,000 / 229 = 43.67) hypothetical
uncorrelated samples to conduct statistical inferences. We have sufficiently large
acceptance rates, namely more than 0.95 for all the model parameters, to guarantee
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the efficiency of our Metropolis-Hastings algorithm.

[Table 3 is here]

Table 3 shows estimation results for the coefficient parameters of Model NP in
the mutually dependent dummy variable models. The effects of the health status
variables are generally compatible to those of Munkin and Trivedi (2008). For self-
reported health, “Fair and poor” and “Good” status, have a negative relationship with
insurance purchase compared to the reference category of excellent health. This result
supports advantageous selection, where healthier people are more likely to purchase
dental insurance. However, this story does not hold for chronic illness, which has a
positive effect on insurance purchase. These health variables have only minor impacts
on the dental visit, which might indicate that general health status is not strongly
correlated with dental health.

For the demographic variables, the age categories have minor effects on the insur-
ance purchase. People older than 45 years of age receive a dental care more frequently
than younger people, possibly because dental illness is often caused by accumulated
damages. The positive effects of education both on the insurance purchase and a den-
tal visit implies positive relationship between these behaviors and cognitive ability.
Being female has positive effects both on insurance purchase and a dental visit, while
an interaction term between gender and age has negative effects on a dental visit.
These results indicate a gender difference on the consumer’s behavior. For racial
variables, we observe the same interesting results as in Munkin and Trivedi (2008)
where Hispanics are less likely to purchase dental insurance while African-Americans
are less likely to visit a dentist. Further, employees of larger firms are more likely to
have dental insurance, which might indicate the generosity of larger firms in provision
of benefits.

5 Conclusion

This paper has proposed an econometric methodology to analyze moral hazard and
selection problems separately in insurance markets. We need to impose a behavioral
assumption on the consumer’s optimization to ensure the separate identification of
the two sources of asymmetric information. Our applied study has shown that moral
hazard and advantageous selection are present in the US dental insurance market.
This result is more informative than that of the conventional methodology.

As summarized in Einav et al. (2010a), a literature of structural estimation for
empirical insurance analysis has emerged. Our simple econometric model can be used
to determine an appropriate model for an intensive structural analysis. For example,
our result indicates that we can concentrate on structural models with moral hazard
and advantageous selection to analyze the US dental insurance market.
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A Estimation details for riskiness models

A.1 Choice probabilities

This appendix presents detailed analysis for the riskiness models, which is described
in Section 3.2. First, we provide closed forms of the choice probabilities (3.19). For
notational simplicity, we define the following variables:
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u′
i1 = ui1 + α1ui2, (A.1)

Wi1 = −x′
i1β1 − α1x

′
i2β2 (A.2)

Wi2 = −x′
i1β1 − α1x

′
i2β2 − α1α2 (A.3)

Wi3 = −x′
i2β2 (A.4)

Wi4 = −x′
i2β2 − α2. (A.5)

Using these variables, we have simple expressions for the lines A, B, C and D
which are defined in Section 3.2 as

A : u′
i1 = Wi1, B : u′

i1 = Wi2, (A.6)

C : ui2 = Wi3, D : ui2 = Wi4. (A.7)

To obtain choice probabilities, we separately consider models NN (α1 < 0, α2 < 0)
and NP (α1 < 0, α2 > 0). For model NN, Figure 2 shows that each of nonsingular
regions has two possible pairs of outcomes, namely zi = 1 or 2 in Region 4, zi = 2 or 3
in Region 5 and zi = 3 or 4 in Region 6. We then need to define three selection rules,
each of which distributes a nonsingular region into two pairs of outcomes. Specifically,
we assume that pi4, pi5, and pi6 represent proportions of zi = 1 in Region 4, zi = 2
in Region 5 and zi = 3 in Region 6, respectively. Then we have the following choice
probabilities:

Pr(zi = 1|θ,pi) = P7(xi, θ) + pi4P4(xi, θ), (A.8)

Pr(zi = 2|θ,pi) = P1(xi, θ) + P2(xi, θ) + (1 − pi4)P4(xi, θ) + pi5P5(xi,θ),

(A.9)

Pr(zi = 3|θ,pi) = P8(xi, θ) + P9(xi, θ) + (1 − pi5)P5(xi, θ) + pi6P6(xi,θ),

(A.10)

Pr(zi = 4|θ,pi) = P3(xi, θ) + (1 − pi6)P6(xi, θ), (A.11)

where pi = (pi4, pi5, pi6). We define p = (p1, ...,pN ) for the future reference.
Next, we provide area probabilities Pk(xi,θ), for k = 1, ..., 9. From the definition

of lines A, B ,C and D, these area probabilities are formulated as functions of joint
probabilities of (u′

1i, ui2). Specifically:
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P7(xi, θ) = Pr[(u′
i1, ui2) ≤ (Wi2,Wi3)], (A.12)

P4(xi, θ) = Pr[(ui1, ui2) ≤ (Wi1,Wi3)′] − P7(xi, θ), (A.13)

P1(xi, θ) = Pr[ui2 ≤ Wi3] − P4(xi, θ) − P7(xi, θ), (A.14)

P8(xi, θ) = Pr[(u′
i1, ui2) ≤ (Wi2,Wi4)] − P7(xi, θ), (A.15)

P5(xi, θ) = Pr[(u′
i1, ui2) ≤ (Wi1,Wi4)] − P4(xi, θ) − P7(xi, θ) − P8(xi,θ), (A.16)

P2(xi, θ) = Pr[ui2 ≤ Wi4] − P1(xi, θ) − P4(xi, θ) − P5(xi, θ) − P7(xi, θ) − P8(xi, θ),

(A.17)

P9(xi, θ) = Pr[u′
i1 ≤ Wi2] − P7(xi, θ) − P8(xi, θ), (A.18)

P6(xi, θ) = Pr[u′
i1 ≤ Wi1] − P4(xi, θ) − P5(xi, θ) − P7(xi, θ) − P8xi, θ) − P9(xi, θ),

(A.19)

P3(xi, θ) = 1 − P1(xi, θ) − P2(xi,θ) − P4(xi,θ) − P5(xi,θ) − P6(xi, θ) − P7(xi, θ)

−P8(xi, θ) − P9(xi, θ). (A.20)

For model NP, Figure 2 shows that each of nonsingular regions has all four possible
pairs of outcomes, zi = 1, 2, 3 and 4. Then we need to define three selection rule
vectors each of which distributes a nonsingular region into four pairs. Namely, we
assume that for each Region k = 4, 5, and 6, pik = (pik,1, pik,2, pik,3, pik,4) represents
the proportion of zi = 1, 2, 3 and 4, respectively. Consequently, we have the following
choice probabilities:

Pr(zi = 1|θ, pi) = P7(xi,θ) + P8(xi,θ) + pi4,1P4(xi, θ) + pi5,1P5(xi, θ) + pi6,1P6(xi, θ),

(A.21)

Pr(zi = 2|θ, pi) = P1(xi,θ) + pi4,2P4(xi,θ) + pi5,2P5(xi, θ) + pi6,2P6(xi, θ), (A.22)

Pr(zi = 3|θ, pi) = P9(xi,θ) + pi4,3P4(xi,θ) + pi5,3P5(xi, θ) + pi6,3P6(xi, θ), (A.23)

Pr(zi = 4|θ, pi) = P2(xi,θ) + P3(xi,θ) + pi4,4P4(xi, θ) + pi5,4P5(xi, θ) + pi6,4P6(xi, θ),

(A.24)

where pi = (pi4,pi5,pi6). We define p = (p1, ...,pN ) for the future reference. We
have the area probabilities as:
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P7(xi, θ) = Pr[(u′
i1, ui2) ≤ (Wi1,Wi4)], (A.25)

P4(xi, θ) = Pr[(u′
i1, u2) ≤ (Wi2,Wi4)] − P7(xi, θ), (A.26)

P1(xi, θ) = Pr[ui2 ≤ Wi4] − P4(xi, θ) − P7(xi, θ), (A.27)

P8(xi, θ) = Pr[(u′
i1, u2) ≤ (Wi1,Wi3)] − P7(xi, θ), (A.28)

P5(xi, θ) = Pr[(u′
i1, ui2) ≤ (Wi2,Wi3)] − P4(xi, θ) − P7(xi, θ) − P8(xi,θ), (A.29)

P2(xi, θ) = Pr[ui2 ≤ Wi3] − P1(xi, θ) − P4(xi, θ) − P5(xi, θ) − P7(xi, θ) − P8(xi, θ),

(A.30)

P9(xi, θ) = Pr[u′
i1 ≤ Wi1] − P7(xi, θ) − P8(xi, θ), (A.31)

P6(xi, θ) = Pr[u′
i1 ≤ Wi2] − P4(xi, θ) − P5(xi, θ) − P7(xi, θ) − P8(xi, θ) − P9(xi, θ),

(A.32)

P3(xi, θ) = 1 − P1(xi, θ) − P2(xi,θ) − P4(xi,θ) − P5(xi,θ) − P6(xi, θ) − P7(xi, θ)

−P8(xi, θ) − P9(xi, θ). (A.33)

A.2 Bayesian estimation

A.2.1 Additional hierarchical structure and the likelihood function

This appendix provides an estimation procedure for the riskiness models. For tech-
nical tractability, we insert an additional structure using hierarchical Bayesian mod-
eling. Specifically, we introduce a latent dummy variable λ which takes unity in
proportion to the selection rule p. We need different hierarchical structures for
Models NN and NP: First, for Model NN, we adopt λik|pik ∼ Bernoulli(pik) for
k = 4, 5 and 6. Second, for Model NP, we adopt λik = (λik,1, λik,2, λik,3, λik,4)|pik ∼
Multinomial(1;pik). We let λi = (λi4, λi5, λi6) or λi = (λi4, λi5, λi6) for Models NN
and NP, respectively. For both models, we define λ = (λ1, ...,λN ). Using these new
structures, the choice probabilities can be represented as:

Pr(zi = l|θ, λi) =
∫

Pr(zi = l|θ, p)π(λi|pi)dpi. (A.34)

For Model NN, new representations of the choice probabilities are:
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Pr(zi = 1|θ, λi) = P7(xi, θ) + λi4P4(xi, θ), (A.35)

Pr(zi = 2|θ, λi) = P1(xi, θ) + P2(xi, θ) + (1 − λi4)P4(xi,θ) + (1 − λi5)P5(xi, θ),

(A.36)

Pr(zi = 3|θ, λi) = P8(xi, θ) + P9(xi, θ) + λi5P5(xi, θ) + λi6P6(xi, θ),

(A.37)

Pr(zi = 4|θ, λi) = P3(xi, θ) + (1 − λ6i)P6(xi,θ). (A.38)

For Model NP:

Pr(zi = 1|θ, λi) = P7(xi, θ) + P8(xi, θ) + λi4,1P4(xi, θ) + λi5,1P5(xi, θ) + λi6,1P6(xi, θ),

(A.39)

Pr(zi = 2|θ, λi) = P1(xi, θ) + λi4,2P4(xi, θ) + λi5,2P5(xi, θ) + λi6,2P6(xi,θ), (A.40)

Pr(zi = 3|θ, λi) = P9(xi, θ) + λi4,3P4(xi, θ) + λi5,3P5(xi, θ) + λi6,3P6(xi,θ), (A.41)

Pr(zi = 4|θ, λi) = P2(xi, θ) + P3(xi, θ) + λi4,4P4(xi, θ) + λi5,4P5(xi, θ) + λi6,4P6(xi, θ).

(A.42)

Given these choice probabilities, the likelihood function is obtained as:

f(z|θ, λ) =
N∏

i=1

4∏
l=1

Pr(zi = l|θ, λi)I[zi=l]. (A.43)

There are two remarks on the above likelihood function. First, because of the hi-
erarchical nature of our setting, the marginal posterior distribution for the parameter
θ is equivalent whether we use λ or p. Second, to have the closed form expression for
the likelihood function, we need to provide distributional assumptions for error terms
(ui1, ui2) to calculate the area probabilities Pk(xi,θ).

A.2.2 Prior distributions

For coefficient parameters θ, we assume a normal prior distribution with mean θ0

and covariance matrix Σ0 truncated on the region R:

θ ∼ TNR(θ0, Σ0).

The truncation corresponds to a prescribed sign condition for (α1, α2). For exam-
ple, we take the region R = (−∞,∞)K1+K2 × (−∞, 0) × (−∞, 0) for Model NN.

For p, we use conjugate prior distributions: In Model NN, we assume the beta
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prior with parameters (aik1, aik2) for pik, k = 4, 5 and 6:

pik ∼ Beta(aik1, aik2).

In Model NP, the prior distribution of pik is assumed to be a Dirichlet distribution
with parameter aik = (aik1, . . . , aik4):

pik ∼ Dirichlet(aik).

A.2.3 Posterior sampling for Riskiness Model NN

Here we derive the MCMC sampling procedure for Model NN. Given the likelihood
function and the prior distributions, we have the joint posterior density as:

π(θ, λ, p|z) ∝ f(z|θ, λ)π(θ)
N∏

i=1

6∏
k=4

p
(λik+aik1)−1
ik (1 − pik)(1−λik+aik2)−1, (A.44)

where π(θ) denotes a probability density function of the truncated normal distribution
TNR(θ0, Σ0). The conditional posterior distributions of λik and pik are:

λik|θ, pik, zi ∼ Bernoulli(qik), (A.45)

pik|θ, λik, zi ∼ Beta(aik1 + λik, aik2 + 1 − λik), (A.46)

where

qik =
paik1

ik (1 − pik)aik2−1f(zi|θ, λik = 1,λi,(−k)

paik1
ik (1 − pik)aik2−1f(zi|θ, λik = 1, λi,(−k)) + paik1−1

ik (1 − pik)aik2f(zi|θ, λh,m = 0, λ(−h),m)
,

(A.47)

and λi,(−k) is a vector which consists of components of λi except λik and f(zi|θ, λi)
is the individual i’s contribution to the likelihood function.

Because the conditional posterior distributions take familiar forms, we implement
Gibbs samplers for λik and pik, for k = 4, 5 and 6 and i = 1, ..., N . On the other
hand, θ is sampled using the Metropolis-Hastings algorithm.

A.2.4 Posterior sampling for Riskiness Model NP

Next, we describe the MCMC implementation for Model NP. The joint posterior
density is:

π(θ, λ, p|z) = f(z|θ, λ)π(θ)
N∏

i=1

6∏
k=4

4∏
l=1

pλikl+aikl−1
ikl . (A.48)

The conditional posterior distributions of λik and pik are:
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λik|θ, pik, zi ∼ Multinomial(1, qik), (A.49)

pik|θ, λik, zi ∼ Dirichlet(aik + λik), (A.50)

where qik = (qik1, ..., qik4) such that:

qikl =
paikl

ikl

(∏
j 6=l p

aikj−1
ikj

)
f(zi|θ, λikl = 1, λik\l = 0)∑4

h=1 paikh
ikh

(∏
j 6=h p

aikj−1
ikj

)
f(zi|θ, λikh = 1, λik\h = 0)

, l = 1, ..., 4, (A.51)

and λik\h = 0 is a vector which consists of λikh and zeros.
Using the above conditional posterior densities, we can implement Gibbs samplers

for λik and pik, for k = 4, 5 and 6 and i = 1, ..., N . For θ, we implement the
Metropolis-Hastings algorithm for the posterior sampling.

B Bayesian estimation for the bivariate probit model

This appendix presents the detail of our Bayesian estimation procedure for the bi-
variate probit model. It is similar to that of Chib and Greenberg (1998) for the
multivariate probit model, but is simpler because we have only two dependent vari-
ables.

In the bivariate probit model (2.1) and (2.2), we place a standard assumption of
the normal errors: (

εi1

εi2

)
∼ N(0,Σ), Σ =

(
1 ρ

ρ 1

)
. (B.1)

For notational simplicity, we let y∗
i = (y∗i1, y

∗
i2)

′ and y∗ = [(y∗
1)

′, (y∗
2)

′, ..., (y∗
N )′]′.

We obtain the likelihood function given the latent variables as:

f(β1, β2, ρ|y∗) = (2π)−N |Σ|−N/2 exp
(
−1

2

N∑
i=1

(y∗
i − Xiβ)′Σ−1(y∗

i − Xiβ)
)
, (B.2)

where

Xi =

(
x′

i1 0

0 x′
i2

)
, β =

(
β1

β2

)
. (B.3)

For the prior distributions, we use the normal distributions for β:

β ∼ N(µβ,0, Σβ,0). (B.4)

On the other hand, for the covariance parameter, we must have the positive def-
initeness of the covariance matrix, or |ρ| ≤ 1. To impose this condition, we use the
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following Fisher transformation δ = (1/2) ln[(1 + ρ)/(1 − ρ)]. Using this transforma-
tion, |ρ| < 1 corresponds to δ ∈ (−∞,∞). Then we adopt the unconstrained normal
prior distribution for δ:

δ ∼ N(µδ,0, σ
2
δ,0). (B.5)

For the posterior analysis, our MCMC sampler consists of the three parts; (1)
Data augmentation for y∗|β, ρ, y, (2) Posterior sampling for β|ρ, y∗ and (3) Posterior
sampling for δ|β, y∗. This subsection describes all the steps.

The first part is the data augmentation for the latent variables y∗
i . We adopt the

following two-step sequential sampling. First, we generate y∗i1 from a marginal dis-
tribution. Then, we generate y∗i2 from a conditional distribution given the generated
value of y∗i1. The distributions are truncated according to the observed values of yi.
In other words, for i = 1, 2, ..., N :

y∗i1|β, ρ, yi ∼

{
TN(−∞,0](x′

i1β1, 1) if yi1 = 0
TN(0,∞)(xi1β1, 1) if yi1 = 1

, (B.6)

y∗i2|β, ρ, yi, y
∗
1i ∼

{
TN(−∞,0][x′

i2β2 + ρ(y∗i1 − x′
i1β1), 1 − ρ2] if yi2 = 0

TN(0,∞)[x′
i2β2 + ρ(y∗i1 − x′

i1β1), 1 − ρ2] if yi2 = 1
.

(B.7)

The second part is the posterior sampling for β. This part can be implemented
using the Gibbs sampler from the following conditional posterior distribution:

β|ρ,y ∼ N(µβ,1, Σβ,1), (B.8)

where

Σβ,1 =
[ N∑

i=1

X ′
iΣ

−1Xi + Σ−1
β,0

]−1
, (B.9)

µβ,1 = Σβ,1

[ N∑
i=1

X ′
iΣ

−1y∗
i + Σ−1

β,0µβ,0

]
. (B.10)

The third part is the posterior analysis for the covariance parameter. In this
step, we construct a sampler for the transformed parameter δ. This part can be
implemented using the Metropolis-Hastings algorithm for the following conditional
posterior density:
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π(δ|β, y∗) ∝ |Σ(δ)|1−N/2 exp

(
−1

2

(∑N
i=1(y

∗
i − Xiβ)′Σ(δ)−1(y∗

i − Xiβ) + (δ−µδ,0)2

σ2
δ,0

))
.

(B.11)

For the proposal distribution, we use the normal distribution whose mean and
variance are the mode and the inverse of the negative Hessian for the logarithm of
the conditional posterior density.

C Posterior sample paths for the MCMC samplers

Figure 3 is here

Figure 4 is here

Figure 5 is here

D Tables and Figures
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Mean S.D.
Insurance purchase (y1) 0.537 ( 0.499 )
Dental visit (y2) 0.550 ( 0.498 )
30 ≤ Age < 35 0.140 ( 0.347 )
35 ≤ Age < 40 0.153 ( 0.360 )
40 ≤ Age < 45 0.156 ( 0.363 )
45 ≤ Age < 50 0.146 ( 0.354 )
50 ≤ Age < 55 0.119 ( 0.324 )
55 ≤ Age < 60 0.085 ( 0.278 )
60 ≤ Age < 65 0.034 ( 0.181 )
Afro-American 0.133 ( 0.339 )
Hispanic 0.222 ( 0.416 )
Married 0.634 ( 0.482 )
Family Size 3.106 ( 1.540 )
Schooling years 12.910 ( 3.113 )
Income 38.654 ( 30.810)
Female 0.487 ( 0.500 )
Age × Female 2.054 ( 2.228 )
Very good health 0.328 ( 0.469 )
Good health 0.275 ( 0.446 )
Fair or poor health 0.105 ( 0.306 )
# Chronic conditions 0.485 ( 0.768 )
Northeast 0.158 ( 0.365 )
Midwest 0.203 ( 0.402 )
South 0.400 ( 0.490 )
MSA 0.827 ( 0.379 )
Firm size 13.617 ( 17.988)
N 5090

Table 1: Descriptive Statistics

Mutually dependent dummy variable models Riskiness models
DIC Likelihood DIC Likelihood

NN 12406 -6154.4 12407 -6154.4
NP 12289 -6093.0 12296 -6095.5
PN 12319 -6109.1 12441 -6177.5
PP 12299 -6099.3 12299 -6099.4
CI 12403 -6152.4
AS 12316 -6108.1 12334 -6117.4
MH 12297 -6098.4
Bivariate Probit 12335 -6117.8

Table 2: Model selection via DIC and likelihood at posterior mean
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Figure 1: Data generating process for mutually dependent dummy variable models in
(ui1, ui2) coordinates
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Figure 2: Data generating process for riskiness models in (ui2, ui1) coordinates
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Figure 3: Sample paths of β1 for Mutually Dependent Dummy Variable Model NP
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Figure 4: Sample paths of β2 for Mutually Dependent Dummy Variable Model NP
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