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Abstract 

  

 We investigate multiunit exchange where a central planner and participants both 

bring commodities to sell and the central planner plays the role of platform provider. 

The central planner has restrictions on allocations. We characterize the optimal 

mechanism concerning his (her) revenue under incentive compatibility and individual 

rationality in the ex-post term. We introduce modified virtual valuation and show that 

the optimization problem can be replaced with the maximization of modified virtual 

valuations. We apply our results to important problems of single-unit demands and 

position exchanges. We demonstrate a clock auction design that implements the optimal 

position allocation through dominant strategies. 
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1. Introduction 

 

 This paper investigates the optimal design of trading mechanisms with incomplete 

information under the standard assumptions in auction theory such as quasi-linearity, 

private values, independent type distributions, risk-neutrality, and no externality. We 

also assume single-dimensional type spaces. Multiple homogeneous commodities are 

allocated among players (participants). The central planner designs the trading 

mechanism in order to maximize his expected revenue in a consistent manner with 

incentive compatibility and individual rationality in the ex-post term. 

 We demonstrate an approach to extend the basic concepts explored by Myerson 

(1981) such as virtual valuations in the single-unit auction problem to the more general 

multiunit allocation problem3. The present paper has the following two substantial 

points of extension: 

(i) Each participant may possess multiple units as his initial endowment, which he has 

the option to sell instead of purchasing additional units. Moreover, he has the outside 

option not to participate in the allocation problem and instead consume his initial 

endowment by himself. 

(ii) An allocation that the central planner can select may be restricted to a particular 

subset of profiles of commodity bundles. 

The point (i) implies that the central planner attempts to enhance his revenue not 

only by selling his initial endowment but also by (directly or indirectly) exploiting 

brokerage fee for assisting the exchanges across players as an intermediary. Based on 

this point of extension, this paper investigates the optimal mechanism design not only 

for the multiunit auction framework but also for the more general framework termed 

multiunit exchange, which combines auction with bargaining such as Myerson and 

Satterthwaite (1983). This paper regards the central planner as the intermediary who 

monopolistically provides a platform that enables transaction among players. 

                                                      
3 There exist previous works concerning optimal multi-unit auction design such as Maskin and 
Riley (1989), Palfrey (1983), Branco (1996), and Monteiro (2002). Ulku (2009) and Edelman and 
Schwarz (2010) investigated optimal auction design in some classes with heterogeneous 
commodities. 



3 
 

The outside opportunity value that each player can obtain by consuming his 

endowment by himself could be dependent on his type. This type-dependence makes it 

substantial to incentivize each player to participate in the allocation problem, because he 

(she) might require the central planner to pay the excessive bargaining rent induced by 

his outside option whose value is unknown to the central planner. 

The incorporation of auction with bargaining has been studied by Myerson and 

Satterthwaite (1983), Cramton, Gibbons, and Klemperer (1987), Segal and Whinston 

(2010), and Matsushima (2011) in terms of the achievement of efficiency without the 

central planner’s having the deficit. Instead of the achievement of efficiency, the present 

paper focuses on revenue-maximization. 

Based on these observations, we make a modification of the key concept termed 

virtual valuation in the optimal auction design literature; we replace the virtual 

valuation for each player with the valuation reduced not only by his informational rent 

but also by his bargaining rent, which is termed the modified virtual valuation (MVV). 

The single-unit term of MVV, i.e., modified unit virtual valuation (MUVV), implies 

marginal revenue in terms of type if this player purchases additional units, whereas it 

implies marginal cost in terms of type if he sells his endowment. 

With this concept replacement, we can show a characterization result according to 

the similar method to Myerson (1981) in that the optimization problem for the central 

planner’s revenue can be replaced with the problem of maximizing the expected sum of 

the participants’ MVVs in terms of allocation rule. This characterization result holds 

irrespective of whether there is any restriction on the central planner’s allocation 

selection as implied by the point (ii). 

We demonstrate a manner of designing the optimal mechanism. We show a 

tractable monotonicity condition concerning MUVV, which could be sufficient for the 

regularity property on the trading environment that makes it much easier to construct 

the optimal mechanism. With this regularity, the optimization problem can be replaced 

with the more tractable problem of maximizing the sum of the participants’ MVVs in 

terms of allocation at every state of the world. 

 By utilizing these results, we can investigate two important cases named single-unit 

demands and position exchanges. The single-unit demand case assumes that each 

participant is either a seller of a single unit or buyer for a single unit. We show that in 
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the associated optimal mechanism, the central planner offers the bid price to each seller, 

and the ask price to each buyer, and each player decides to either reject or accept this 

offer. The bid or ask price for each player does not depend on his type revelation, 

whereas it is increasing in the other players’ type revelations. Hence, the bid-ask spread 

increases as the difference between a seller and a buyer in valuation, i.e., the surplus 

induced by their trade, decreases. This implies that the central planner attempts to obtain 

greater revenue when the surplus is smaller, without being afraid of a risk that the trade 

fails to take place. This finding is in contrast with the case of intermediary that can be 

thought about in which the brokerage fee could be proportional to the surplus. We also 

investigate the case of large double auctions. 

By taking the point (ii) into account, we can model problems of allocating 

heterogeneous commodities such as position auctions explored by Edelman, Ostrovsky, 

and Schwarz (2007), Varian (2007), and Athey and Ellison (2011) within our framework, 

where different bundles of homogeneous commodity are regarded as heterogeneous 

commodities (positions). Edelman and Schwarz (2010) demonstrated the optimal 

position auction design on the assumption of symmetric type distributions across 

players. This paper extends their results to the more general case and shows the optimal 

mechanism design for position exchange with asymmetry. 

Edelman and Schwarz (2010) introduced an ascending clock auction format that 

explicitly determines the allocation and payment vector through a dynamical 

price-adjustment process, which was termed the generalized English auction (GEA) 

with reserve price. They showed that it implements the optimal position allocations 

through Nash equilibria. The present paper introduces a new design of ascending clock 

auction format termed the generalized Japanese auction (GJA) as a substantial 

extension of the GEA with reserve price, which implements the optimal position 

allocations through (mostly) dominant strategies. 

According to the GJA, the auctioneer offers and ascends the unit price (pay per 

click for sponsored search) to each player in the continuous time horizon; each player 

decides the time to quit the GJA. The later a player makes the time to quit relatively to 

the other player, the better position he can obtain. In this case, he pays the unit price that 

the auctioneer has offered to him at the last time that some other player has quitted 

before him. In the GJA, there are substantial departures from the GEA in that the 
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auctioneer can offer different unit prices across the participants, and that the auctioneer 

can make the price-adjustment dependent on history of play. Because of these 

departures, it could be a (mostly) dominant strategy for any player to remain active until 

a particular type-dependent time of quitting, which is equivalent to the value of his 

MUVV, irrespective of the other player’s quitting time selections. 

 The organization of this paper is as follows. Section 2 shows the basic model for 

multiunit exchange. Section 3 defines the optimization problem for the central planner’s 

revenue, defines the concept of modified virtual valuation (MVV), and shows a 

characterization result for optimal mechanism design. Section 4 introduces the 

regularity condition, and provides the monotonicity condition on modified unit virtual 

valuations (MUVVs) that is sufficient for this regularity. This section also shows a 

tractable specification of the optimal mechanism for the cases without restrictions on 

allocations. Section 5 investigates the single-unit demand case. Section 6 investigates 

position exchanges. Section 7 investigates position auctions and demonstrates the 

generalized Japanese auction. Section 8 concludes. 
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2. The Model 

 

 We investigate the following allocation problem named multiunit exchange as a 

generalized concept of multiunit auction, in which each participant can not only 

purchase but also sell commodities. Let {1,..., }N n  denote the set of players 

(participants), where 2n  . Each player i N  has a type [0,1]i   in a 

single-dimensional type space that is randomly and independently determined according 

to a probability density function ( ) 0i ip   ,4 where 
1

0

( ) 1
i

i ip d


 


 . Let us denote by 

0

( ) ( )
i

i

i i i i

s

P p s ds





   the associated cumulative distribution. 

 There exist e  units of homogenous commodity in totality, where e  is a fixed 

positive integer. Each player i N  possesses ie  units as his initial endowment, 

where ie  is a fixed non-negative integer. We assume i
i N

e e


 ; there exists a central 

planner who possesses the remaining 0 i
i N

e e e


   units as his initial endowment. 

An allocation is defined as a vector of non-negative integers 1( )n
i ia a  , where we 

assume i
i N

a e


 , according to which, each player i N  is assigned ia  units, 

whereas the remaining i
i N

e a


  units are assigned to the central planner. Let us denote 

by A  the set of all allocations. Each player 'i s  payoff function has a quasi-linear 

and risk-neutral form with private values, i.e., ( , )i i i iv a s  , where is R  denotes the 

monetary transfer to him from the central planner, and :{0,..., } [0,1]iv e R   denotes 

his valuation function. We assume that it is differentiable in [0,1]i  . We assume that 

                                                      
4 In order to apply the basic concept of Myerson (1981), we need to assume single-dimensional type 
spaces. Most previous works concerning the optimal multi-unit auction and position action such as 
Branco (1996), Monteiro (2002), Athey and Elison (2009), and Edelman and Schwarz (2011) 
commonly assumed this single-dimensionality. Ulku (2009), who investigated more general 
multi-object auctions, also assumed it. 
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(1)   (0, ) 0i iv    for all [0,1]i  , and ( ,0) 0i iv a   for all {0,..., }ia e , 

and that the central planner has zero valuation at all times. We define the unit valuation 

for player i N  associated with ( , ) [0,1] {1,..., }i ia e    by 

   ( , ) ( , ) ( 1, )i i i i i i i i iw a v a v a     , 

implying player 'i s  valuation for the ( )ia -th unit consumption. 

 

Assumption 1: For every i N  and every [0,1]i  ,  

(2)   ( , ) 0i i iw a    for all {1,..., }ia e , 

and 

(3)   
( , )

0i i i

i

w a 






 for all {1,..., }ia e . 

 

 The inequalities (2) imply free disposal in that his valuation for any unit 

consumption is non-negative. From the inequalities (2), it follows that 

(4)   ( , )i i iv a   is non-decreasing in {0,..., }ia e . 

The inequalities (3) imply that the higher each player’s type is, the higher his unit 

valuation is. From the inequalities (3), it follows that 

(5)   
( , )i i i

i

v a 





 is non-decreasing in {0,..., }ia e . 

From the inequalities (3), it follows that iv  satisfies increasing difference in that for 

every 2( , ) {0,..., }i ia a e   and every 2( , ) [0,1]i i   , 

(6)  ( , ) ( , ) ( , ) ( , )i i i i i i i i i i i iv a v a v a v a          if i ia a  and i i  . 

From the inequalities (3), it follows that 

(7)   
( , )

0i i i

i

v a 






 for all {1,..., }ia e . 

 A direct revelation mechanism, shortly a mechanism, is defined as ( , )f x , where 

( ) : [0,1]n
i i Nf f A   is an allocation rule, ( ) : [0,1]n n

i i Nx x R   is a payment 

rule, : [0,1] {0,..., }n
if e , and :[0,1]n

ix R . We denote by F  the set of all 
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allocation rules. We denote by X  the set of all payment rules. We require ex post 

incentive compatibility for a mechanism ( , )f x  as follows. 

 

Ex Post Incentive compatibility (EPIC): For every i N  and every [0,1]n , 

   ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i i i i i iv f x v f x             for all [0,1]i . 

 

 Let us denote by F F  the set of all allocation rules f  satisfying that for every 

i N , if  is non-decreasing in [0,1]i  . 

 

Lemma 1: With Assumption 1, a mechanism ( , )f x  satisfies EPIC if and only if 

f F  , 

and for every ( , ) [0,1]ni N   , 

(8)   
0

( ( , ), )
( ) ( ( ), ) ( )

i

i

i i i i i
i i i i i i i

is

v f s s
x ds v f D

s

    





  

 , 

where 1: [0,1]n
iD R   is an arbitrary function. 

 

Proof: It is clear from the envelope theorem in the auction theory literature (See 

Milgrom (2004) and Krishna (2010), for instance) that the equalities (8) are necessary 

for ( , )f x  to satisfy EPIC. Moreover, if ( , )f x  satisfies EPIC, then, for every 

1( , ) [0,1]n
i    , 

( ( ), ) ( ( , ), ) ( , ) ( )i i i i i i i i i i i iv f v f x x             

( ( ), ) ( ( , ), )i i i i i i i iv f v f        , 

which along with (6) implies f F  . 

  Suppose that ( , )f x  satisfies f F   and the inequalities (8). Then, from (5) and 

(7), it follows that for every i N , and every 2( , ) [0,1]i i   , if i i  , then 

   ( ( ), ) ( ) { ( ( , ), ) ( , )}i i i i i i i i i i i iv f x v f x              

( ( , ), )
( ( ), ) ( ( ), )

i

i i

i i i i i
i i i i i i i

is

v f s s
ds v f v f

s





    



   
 , 
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which implies 

   ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i i i i i iv f x v f x              . 

In the same manner, 

   ( ( ), ) ( ) { ( ( , ), ) ( , )}i i i i i i i i i i i iv f x v f x              

( ( , ), )
( ( , ), ) ( ( , ), )

i

i i

i i i i i
i i i i i i i i i i i

is

v f s s
ds v f v f

s





      
 



     
 , 

which implies 

   ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i i i i i iv f x v f x             . 

Hence, ( , )f x  satisfies EPIC. 

Q.E.D. 

 

Each player has the outside option not to participate in the allocation problem and 

consume his initial endowment by himself. Each player can exercise this option at any 

time. Hence, we require for a mechanism ex post individual rationality in that any 

player never wants to exercise this option in the ex post term, because the mechanism 

guarantees him at least the same value as his type-dependent outside opportunity value 

( , )i i iv e  . 

 

Ex Post Individual Rationality (EPIR): For every i N  and every [0,1]n , 

   ( ( ), ) ( ) ( , )i i i i i i iv f x v e     . 
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3. Revenue-Maximization 

 

 The central planner attempts to maximize his expected revenue under the 

constraints of EPIC and EPIR. We denote by a non-empty subset Â A  the set of 

feasible allocations, which is exogenously given5. An allocation rule f F  is said to 

be feasible if 

ˆ( )f A   for all [0,1]n . 

Let us denote by a non-empty subset F̂ F  the set of all feasible allocation rules. We 

assume that the central planner is restricted to select any allocation rule f  from this 

subset F̂ . We define the optimization problem concerning the central planner’s 

expected revenue as 

(9)   
ˆ( , )

max [ ( )]i
f x F X

i N

E x 
  

  subject to EPIC and EPIR. 

According to Myerson (1981), we define the virtual valuation for player i N  

associated with ( , ) {0,..., } [0,1]i ia e    as 

   
1 ( ) ( , )

( , ) ( , )
( )
i i i i i

i i i i i i
i i i

P v a
u a v a

p

  
 

 
 


. 

The auction theory literature has typically assumed that 0ie   for all i N ; with this 

assumption, the central planner can extract each player 'i s  valuation ( , )i i iv a   minus 

his informational rent given by 

   
1 ( ) ( , )

( )
i i i i i

i i i

P v a

p

 
 

 


, 

which implies to the virtual valuation ( , )i i iu a   defined above. 

 In order to investigate the more general case of multiunit exchange such that 

0ie   for some i N , we further define the modified virtual valuation (MVV) for 

player i N  associated with ( , ) {0,..., } [0,1]i ia e    as 

   * ( , ) ( , )i i i i i iu a u a          if i ia e , 

and 
                                                      

5 Palfrey (1983) investigated the case that the revenue-maximizing central planner endogenously 
determines available commodity bundles as a commitment. See also Armstrong (2000). 
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   * ( , ) ( , )1
( , ) ( , ) { }

( )
i i i i i i

i i i i i i
i i i i

v e v a
u a u a

p

  
  

 
  

 
 if i ia e . 

The value of 

( , ) ( , )1
{ }

( )
i i i i i i

i i i i

v e v a

p

 
  

 


 
 

represents player 'i s  bargaining rent induced by his outside option. When the central 

planner assigns to player i  lesser than his initial endowment, in order to prevent him 

from exercising his outside option, the central planner has to make up for the loss that 

this player takes by paying back to him his bargaining rent. 

 

Theorem 2: With Assumption 1, a mechanism ( , )f x  is the solution to the optimization 

problem (9) if and only if 

ˆf F F  , 

(10)   * *[ ( ( ), )] [ ( ( ), )]i i i i i i
i N i N

E u f E u g   
 

   for all ˆg F F  , 

and x  is given by the inequalities (8), where for every i N  and every 1[0,1]n
i 

  , 

(11)   ( ) max{ ( , )
i

i i i i iD v e


  
0

( ( , ), )
}

i

i

i i i i i
i

is

v f s s
ds

s

 






 , 

that is, 

(12)   
0

( ( , ), )
( ) ( ( ), )

i

i

i i i i i
i i i i i

is

v f s s
x ds v f

s

   




 

  

0

( ( , ), )
max{ ( , ) }

i

i
i

i i i i i
i i i i

is

v f s s
v e ds

s





 




 

 . 

 

Proof: It is clear from Lemma 1 that if ( , )f x  is the solution to the optimization 

problem (9), it must satisfy ˆf F F  , the inequalities (8), and the equalities (11). 

 Suppose that ˆf F F  . For each i N  and each 1[0,1]n
i 

  , we define 

( ) [0,1]i i    by 

( ) 1i i      if ( )i if e   for all [0,1]i  , 



12 
 

( ) 0i i      if ( )i if e   for all [0,1]i  , 

and 

( ( ), )i i i i if e      and ( )i if e   for all [0, ( ))i i i    otherwise. 

Hence, player i  is assigned less than his initial endowment if and only if ( )i i i   . 

From (1), note that ( )i i i    maximizes the value of 

   
0

( ( , ), )
( , )

i

i

i i i i i
i i i i

is

v f s s
v e ds

s

  






 . 

Hence, from (11), 

   
( )

0

( , ) ( ( , ), )
( ) { }

i i

i

i i i i i i i i
i i i

i is

v e s v f s s
D ds

s s

  







 
 

  , 

and therefore, 

0

( ( , ), )
( ) ( ( ), )

i

i

i i i i i
i i i i i

is

v f s s
x ds v f

s

   




 

  

( )

0

( , ) ( ( , ), )
{ }

i i

i

i i i i i i i i
i

i is

v e s v f s s
ds

s s

  





 
 

  . 

Let us specify :{0,..., } [0,1]iz e R   by 

   ( , ) 0i i iz a         if i ia e , 

and 

   ( ,
( , ) ( , )

) i i i i i i

i i
i i i

v e a
z a

v 
 

  


 
   if i ia e , 

implying player 'i s  bargaining rent, i.e., 

   * ( , )
( , ) ( , )

( )
i i i

i i i i i i
i i

z a
u a u a

p

 


  . 

Hence, 

  

1

0 0

( ( , ), )
[ ( ) | ] { ( ( ), )} ( )

i

i i

i i i i i
i i i i i i i i i

is

v f s s
E x ds v f p d

s





     


 


 

   

  

1

0

( ( ), )
i

i i i iz f d


  


   
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1

0

( ( ), ) 1 ( ) ( ( ), )
[ { } ( ( ), ) ] ( )

( ) ( )
i

i i i i i i i i
i i i i i i

i i i i i

v f P z f
v f p d

p p

       
  

 
  

  

1

0

( ( ), )
{ ( ( ), ) } ( )

( )
i

i i i
i i i i i i

i i

z f
u f p d

p

    


    

1
*

0

( ( ), ) ( )
i

i i i i i iu f p d


   


   . 

From these observations, we have proven that 

*[ ( )] [ ( ( ), )]i i i
i N i N

E x E u f  
 

   . 

Clearly, the inequalities (10) imply the solution to the optimization problem (9). 

Q.E.D. 

 

From the proof of Theorem 2, it must be noted that the expected revenue for the 

central planner induced by the solution ( , )f x  to the optimization problem (9) is 

equivalent to the expected value of the sum of the players’ MVVs, i.e., 

   *[ ( )] [ ( ( ), )]i i i
i N i N

E x E u f  
 

   . 
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4. Regularity 

 

 The optimization problem (9) is said to be regular if there exists a feasible and 

non-decreasing allocation rule ˆf F F   such that 

(13)   * *( ( ), ) ( , )i i i i i i
i N i N

u f u a  
 

   for all ˆa A  and all [0,1]n . 

With regularity, we can replace the inequalities (10) with the inequalities (13), which 

can dramatically simplify the optimization problem. From Theorem 2, it is clear that 

with regularity, a mechanism ( , )f x  is the solution to the optimization problem (9) if 

and only if ˆf F F   and it satisfies the equalities (12) and the inequalities (13). This 

section demonstrates a sufficient condition for this regularity. 

 We define the unit virtual valuation for player i N  associated with each 

( , ) [0,1] {1,..., }i ia e    as 

   ( , ) ( , ) ( 1, )i i i i i i i i iy a u a u a     . 

We further define the modified unit virtual valuation (MUVV) for player i N  

associated with each ( , ) [0,1] {1,..., }i ia e    as 

   * * *( , ) ( , ) ( 1, )i i i i i i i i iy a u a u a     . 

Note that 

   * 1 ( ) ( , )
( , ) ( , )

( )
i i i i i

i i i i i i
i i i

P w a
y a w a

p

  
 

 
 


  if i ia e , 

and 

   * ( ) ( , )
( , ) ( , )

( )
i i i i i

i i i i i i
i i i

P w a
y a w a

p

  
 


 


  if i ia e . 

Note that the above defined MUVV implies marginal revenue in terms of type, i.e., 

{(1 ( ) ( )}

( )

i i i i
i

i i

P w

p

 




 


, if player i  purchases additional units ( i ia e ), whereas it 

implies marginal cost 

{ ( ) ( )}

( )

i i i i
i

i i

P w

p

 







 if he sells his endowment ( i ia e ). We 

assume the following mild properties of monotonicity for MUVV. 
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Assumption 2: For every i N , 

(14)   *( , )i i iy a   is non-increasing in {0,..., 1}ia e   for all [0,1]i  , 

(15)   *( , )i i iy a   is non-decreasing in [0,1]i   for all {0,..., }ia e . 

 

 The following theorem shows that the monotonicity implied by Assumption 2 are 

sufficient for the regularity. 

 

Theorem 3: With Assumptions 1 and 2, the optimization problem (9) is regular. 

 

Proof: Suppose that there exists no allocation rule that is included in F̂ F  and 

satisfies the inequalities (13). Then, there exists ˆf F  that satisfies the inequalities 

(13) but is not included in F . Without loss of generality, we can assume that there exist 

i N , [0,1]n , and i i   , such that 

   ( ) ( , )i i i if f   , 

   * *( ( ), ) ( ( , ), )j j j j j j j j
j N j N

u f u f    
 

  , 

and 

   * *

\{ }

( ( ), ) ( ( ), )i i i j j j
j N i

u f u f   


    

   

* *

\{ }

( ( , ), ) ( ( , ), )i i i i i j j j j j
j N i

u f u f      


     . 

In this case, without loss of generality, we can also assume that one of the last two 

inequalities strictly holds. Hence, 

   * * * *( ( ), ) ( ( , ), ) ( ( ), ) ( ( , ), )i i i i i i i i i i i i i i i iu f u f u f u f                , 

that is, 

    
( ) ( )

* *

( , ) ( , )

( , ) ( , )
i i

i i i i i i i i

f f

i i i i i i
a f a f

y a y a
 

   

 
   

  . 

This implies i i  , because of the property (15). This is a contradiction. 

Q.E.D.
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5. Single-Unit Demands 

 

 Suppose that the central planner can select any allocation in the entire set A  

without restriction, i.e., 

   ˆA A , that is, F̂ F . 

Then, we can specify the solution to the optimization problem (9) as the mechanism 

denoted by * *( , )f x  in the manner that the commodities are assigned to players who 

have high MUVV with precedence. In this case, *f  is well characterized according to 

the method that for every 2( , )i j N  and every [0,1]n , 

   * * * *( ( ) 1, ) ( ( ), )i i i j j jy f y f       if *( ) 0jf    and *( )if e  , 

and 

   * *( ( ) 1, ) 0i i iy f     for all i N  if *( )h
h N

f e


  and *( )if e  . 

From (15) in Assumption 2, we can select such a *f  from the set F . From (14) in 

Assumption 2, *f  satisfies the inequalities (13). Moreover, we can specify the 

payment rule *x x  according to the inequalities (12) for *f f . Hence, the proof of 

the following theorem is straightforward from Theorems 2 and 3. 

 

Theorem 4: With Assumptions 1 and 2, and with the assumption of Â A , the 

specified mechanism * *( , )f x  is the solution to the optimization problem (9). 

 

This section investigates a special case of multiunit exchange with no restriction on 

allocations, i.e., Â A , which is termed single-unit demands; each player prefers at 

most one unit, where 

   ( , )i i i iv a    for all ( , , ) {1,..., } [0,1]i ii a N e    . 

For convenience, we assume that 

   e n , and {0,1}ie   for all i N . 

In this single-unit demand case, we can easily calculate 

   (1, )i i iw    and ( , ) 0i i iw a    for all 1ia  , 
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* 1 ( )
( , )

( )
i i

i i i i
i i

P
u a

p

 



      if 1ia  , 

   

* 1
(0, )

( )i i
i i

u
p




       if 1ie  , 

and 

   

*(0, ) 0i iu         if 0ie  . 

Hence, each player 'i s  MUVV is given by 

   * ( , ) 0i i iy a    for all 2ia  , 

   * 1 ( )
(1, )

( )
i i

i i i
i i

P
y

p

 



      if 0ie  , 

and 

   

* ( )
(1, )

( )
i i

i i i
i i

P
y

p

 


      if 1ie  . 

Note that Assumption 1 and the inequalities (14) automatically hold. We assume the 

inequalities (15); both Assumptions 1 and 2 hold. 

 Fix i N  and 1[0,1]n
i 

   arbitrarily. Let us define ( ) \{ }ij N i   as the 

player who has the ( )e -th highest MUVV among all players except for player i , where 

   * *
( )(1, ) (1, )

ii h i jy y  


  for at least e  players h  in \{ }N i , 

and 

   * *
( )(1, ) (1, )

ii h i jy y  


  for at least n e  players h  in \{ }N i . 

We define the pivotal type for player i , ( ) [0,1]i i   , by 

   * *
( ) ( )(1, ( )) (1, )

i iii i j jy y    
     if *

( ) ( )(1, ) 0
i ij jy  

 
 , 

and 

   * (1, ( )) 0ii iy         if  *
( ) ( )(1, ) 0

i ij jy  
 

 . 

Note that player i  has the ( )e -th highest or even higher MUVV if and only if 

   ( )ii i   . 

 The following theorem shows that according to the optimal mechanism * *( , )f x  

specified above, each player i  who has the null initial endowment will purchase a 

single unit of commodity if and (almost) only if his type is greater than the pivotal type 
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( )i i  , where he pays the same monetary amount as this pivotal type valuation 

( )i i  . On the other hand, each player i  who has the non-null initial endowment will 

sell his initial endowment if and (almost) only if his type is lesser than the pivotal type 

( )i i  , where he receives the same monetary amount as the pivotal type valuation 

( )i i  . 

 

Theorem 5: In the single-unit demands case, the solution * *( , )f x  to the optimization 

problem (9) is characterized as follows: for every i N  and every [0,1]n , 

   *( ) 1if         if ( )ii i   , 

   * ( ) 0if         if ( )ii i   . 

   *( ) 0ix         if 1ie   and ( )ii i   , 

   *( ) ( )ii ix        if 1ie   and ( )ii i   , 

*( ) ( )ii ix         if 0ie   and ( )ii i   , 

and 

   *( ) 0ix         if 0ie   and ( )ii i   . 

 

Proof: Based on the arguments of this section, all we have to do for this proof is just to 

show the part of the characterization of *( )ix  . From (11) and the specifications of the 

model in this section, it follows that for *f f , 

   ( ) ( )ii i iD        if 1ie  , 

and 

   ( ) 0i iD       if 0ie  . 

Moreover, from the specifications of this section, it follows that 

   
*

*

0

( ( , ), )
( ( ), ) 0

i

i

i i i i i
i i i i

is

v f s s
ds v f

s

   




 

     if ( )ii i   , 

and 
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*

*

0

( ( , ), )
( ( ), ) ( )

i

i

i i i i i
ii i i i i

is

v f s s
ds v f

s

     





  

   if ( )ii i   . 

Hence, from (12), we have shown the specifications of *( )ix  . 

Q.E.D. 

 

We can interpret the central planner as the intermediary in double auctions in the 

following manner; the central planner bids the price equal to the pivotal type, i.e., 

( )i i  , to any player i  who has the non-null initial endowment. This player sells a 

single unit to the central planner if and (almost) only if his valuation i  is less than 

( )i i  . The central planner asks the price equal to the pivotal type, i.e., ( )i i  , to 

any player i  who has the null initial endowment. This player purchases a single unit 

from the central planner if and (almost) only if his valuation i  is greater than 

( )i i  . From the specification of the pivotal types ( )i i  , the case of excess 

demand for the central planner never takes place. 

 Note that the bid or ask price ( )i i   for each player i  is independent of his 

type revelation i . From the monotonicity (15) of MUVV *( , )i i iy a   in terms of i , 

it follows that the bid or ask price ( )i i   is non-decreasing in 1[0,1]n
i 

  . Hence, 

the bid-ask spread that the central planner offers to any pair of a seller and a buyer may 

decrease as the difference between their valuations, i.e., the surplus induced by their 

trade, shrinks. Needless to say, the trade may fail to take place when this difference is 

too small, because the bid-ask spread is set too large. Hence, the central planner tends to 

aim at high revenue without being afraid of a risk that the trade fails to take place when 

the surplus induced by the trade is not very large. These points are in contrast with the 

case of intermediary that can be thought about in which the brokerage fee could be 

proportional to the surplus induced by the trade. 

 In order to clarify the above points further, let us investigate an example of bilateral 

trades a la Myerson and Satterthwaite (1983); we assume that 2n  , and that player 1 

is the only seller, i.e., 

1 1e e   and 2 0e  . 
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In this example, note that 

   1 2( ) 0            if 2 2
2

2 2

1 ( )
0

( )

P

p





  , 

   1 2
1 2

1 2

1 2 2
2

1 2 2

( )
( )

1 ( ) 1 ( )

( ) (( ) )

P P

p p

  
 




 
      if 2 2

2
2 2

1 ( )
0

( )

P

p





  , 

2 1( ) 1            if 1 1
1

1 1

1 ( )
1

( )

P

p





  , 

and 

   1 2 1
2 1

2

1
1

1 2 1

2

1

( )
( )

1 ( ) 1 ( )

( ) ( ( ))

P P

p p

   
 

  
      if 1 1

1
1 1

1 ( )
1

( )

P

p





  . 

Note also that 

   11 2( )    if and only if 22 1( )   . 

If 11 2( )   , then the trade never takes place, i.e., 

*
1 ( ) 1f   , *

2 ( ) 0f   , and * *( ) ( ) 0i ix x   . 

If 11 2( )   , then the trade does take place, i.e., 

*
1 ( ) 0f   , *

2 ( ) 1f   , *
11 2( ) ( )x    , and *

22 1( ) ( )x     . 

Hence, the central planner’s revenue is given by 

   * *
1 2( ) ( ) 0x x         if 11 2( )   , 

and 

   * *
1 21 2 2 1( ) ( ) ( ) ( )x x            if 11 2( )   . 

Since ( )i i   is non-decreasing in i , the central planner’s revenue induced by the 

trade is non-increasing in the buyer’s type 2  and is non-decreasing in the seller’s type 

1 . 

 Let us further assume uniform distributions; 

( ) 1i ip    for all {1,2}i  and all [0,1]i  . 

Hence, 

   1 2 2
1( ) max[ ,0]2     and 2 1 1

1( ) min[ ,1]2    , 

where 



21 
 

   1 2
1

2    if and only if 1 2 1( )    and 2 1 2( )   . 

Hence, the central planner’s revenue is given by 

   * *
1 2( ) ( ) 0x x        if 2 1

1
2   , 

and 

   * *
1 2 2 1( ) ( ) 1 ( )x x          if 2 1

1
2   . 

The central planner’s revenue is maximal if the surplus 2 1   is equal to 1
2 . It 

declines as the surplus decreases. It is equal to zero, i.e., minimal if the surplus is 

maximal, i.e., 2 1 1   . See Figure 1. 

 

[Figure 1] 

 

Remark (Large Double Auction): Let us consider the large double auction in which 

there are rn  sellers and (1 )r n  buyers and n  is assumed to be sufficiently large; 

0 1r   is assumed. For convenience, we assume that the central planner brings no 

commodities to sell. Each seller’s type and each buyer’s type are determined according 

to the same distributions denoted by sP  and bP , respectively. In such large double 

auctions, according to the optimal mechanism * *( , )f x , the central planner almost 

certainly makes his ask and bid prices close to particular prices *
s  and *

b , which are 

specified as the solution to the constrained maximization: 

   
2

* *

( , ) [0,1]

( , ) arg max [ (1 ){1 ( )} ( )]
s b

s b s b s b s br P rP
 

     


     

subject to 

   (1 ){1 ( )} ( )b s s br P rP    . 

The interpretation of this central planner’s behavioral mode in the limit of double 

auctions is as follows. The central planner purchases commodities for the bid price b  

from a large group of sellers whose supply function is given by ( ) ( )b s bS rP  , and 

then sells these commodities for the ask price s  to a large group of buyers whose 
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demand function is given by ( ) (1 ){1 ( )}s b sD r P    . Hence, the central planner’s 

optimization problem is given by the following profit maximization: 

   
2( , ) [0,1]

max { ( ) ( )}
s b

s b s b s bD S
 

   


  

subject to the equivalence of demand and supply, i.e., 

   ( ) ( )s bD S  . 
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6. Position Exchanges 

 

 This section investigates the problem of allocating heterogeneous items termed the 

position exchange; we can model it within our framework. There exist 1m   positions 

as the heterogeneous items to be traded. Each player i N  possesses a single position 

{1,..., 1}il m   as his initial endowment. Position 1m   implies the null position for 

which any player has zero valuation. We assume that the players’ initial endowments are 

different with each other whenever some of them is a non-null position, i.e., for every 

i N  and every \{ }j N i , 

   i jl l    if 1il m  .6 

A special case of position exchange is so-called the position auction, where the central 

planner possesses the entire non-null positions, i.e., 

1il m   for all i N . 

The sponsored search auction is an example7. 

Each player i  has the valuation for each position {1,..., 1}l m   given by a 

linear form ( ) il  , where ( )l  is a fixed non-negative integer, implying, for instance, 

the click number in position l  in the context of sponsored search. Note that ( )l  is 

common across players, and that i  implies player 'i s  valuation per click. We 

assume that the lower the position is, the more valuable it is for any player, that is, 

   (1) (2) ( ) ( 1) 0m m          . 

We can model this position exchange as multiunit exchange with restriction on 

allocations by regarding each position as a bundle of homogeneous commodities 

(regarding one click as one unit), i.e., 

  
1

( )
m

l

e l


 , and ( )i ie l  for all i N . 

The set of feasible allocations Â  is specified as the proper subset of A  such that 

ˆa A  if and only if for every i N , 
                                                      

6 There might be multiple players who have the null positions as their initial endowments. 
7 See Edelman, Ostrovsky, and Schwarz (2007), Varian (2007), Edelman and Schwarz (2010), and 

Athey and Ellison (2011), for instance. 
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   { (1),..., ( ), ( 1)}ia m m    , 

and for every \ { }j N i , 

   i ja a    if 0ja  . 

Note that the profile of their initial endowments is feasible, i.e., ˆ( ( ))i i Nl A   . Each 

player 'i s  valuation function iv  is given by 

   ( , )i i i i iv a a   for all ( , ) {0,..., } [0,1]i ia e   . 

We can calculate unit valuations, MVVs, and MUVVs as 

   ( , )i i i iw a    for all ( , ) {1,..., } [0,1]i ia e   , 

   * 1 ( )
( , ) { }

( )
i i

i i i i i
i i

P
u a a

p

 



      if i ia e , 

   * ( )
( , ) { }

( ) ( )
i i i

i i i i i
i i i i

P e
u a a

p p

 
 

     if i ia e , 

   * 1 ( )
( , )

( )
i i

i i i i
i i

P
y a

p

 



       if i ia e , 

and 

   * ( )
( , )

( )
i i

i i i i
i i

P
y a

p

 


       if i ia e . 

Assumption 1 and the property (14) automatically hold. We assume that the property of 

(15) in Assumption 2 holds in a strict sense, i.e., *( , )i i iy a   is increasing in i . 

 Let us denote by ˆ ˆ( , ) ( , )f x f x  the solution to the optimization problem (9) for 

the position exchange modeled as the multiunit exchange with restriction on allocations. 

It is clear that for every i N , there exists 1ˆ : {1,..., } [0,1] [0,1]n
i m    such that 

ˆ ( , )i il   is decreasing in {1,..., }l m , and for every [0,1]n , 

   ˆ ( ) (1)if          if ˆ (1, )i i i   , 

   ˆ ( ) 0if           if ˆ ( , )i i im   , 

and for every {2,..., }l m , 

   ˆ ( ) ( )if l         if ˆ ˆ( 1, ) ( , )i i i i il l        . 
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We call ˆ ( , )i il   the ( )l th  pivotal type for player i ; he obtains position l  or any 

better position if and (almost) only if his type is greater than ˆ ( , )i il  . 

 

Theorem 5: For every {2,..., }l m , suppose that ˆ ( ) ( )if l  . Then, 

   ˆ ( ) 0ix           if ˆ ( )i if e  , i.e., il l , 

   
1

ˆˆ ( ) { ( ) ( 1)} ( , )
il

i i i
k l

x k k k    





      if ( )i if e  , i.e., il l , 

and 

   
1

ˆˆ ( ) { ( ) ( 1)} ( , )
i

l

i i i
k l

x k k k    





     if ( )i if e  , i.e., il l . 

 

Proof: From the equalities (12) and ˆ ( ) ( )if l  , it follows that 

   ˆ ˆˆ ( ) { ( ) ( 1)} ( , ) { ( ) ( 1)} ( , )
i

m m

i i i i i
k l k l

x k k k k k k         
 

        , 

which implies the equalities of this theorem. 

Q.E.D. 

 

 According to the optimal mechanism ˆ ˆ( , )f x , if each player i  purchases a better 

position il l  than his initial endowment, then he pays the pivotal type valuation 

ˆ ( , )i ik   for any position k  between his initial endowment and his purchased 

position ( il k l  ) multiplied by the increase in click number ( ) ( 1)k k   . If each 

player i  purchases a worse position il l  than his initial endowment, then he earns 

the pivotal type valuation ˆ ( , )i ik   for any position k  between his initial 

endowment and his purchased position ( il k l  ) multiplied by the increase in click 

number ( ) ( 1)k k   . 

 The optimal design for sponsored search auction with symmetry, addressed by 

Edelman and Schwarz (2010), termed the generalized second price auction with reserve 

price is closely related to our design ˆ ˆ( , )f x . Theorem 5 generalizes their result by 
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taking into account the asymmetry across players in terms of their type distributions, 

and also by extending the auction framework to the exchange framework. 
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7. Position Auctions: Generalized Japanese Auction 

 

We further investigate the position auction as a special case of position exchange, 

where 

  0ie  , i.e., 1il m   for all i N . 

In this case, for every [0,1]n , every i N , every \{ }j N i , and {1,..., }l m , 

   
1 ( )1 ( )

( ) ( )
j ji i

i j
i i j j

PP

p p

 
 


      if ˆ ˆ( ) ( )i jf f  . 

The ( )l th  pivotal type ˆ ( , )i il   is regarded as the type i  such that 

1 ( )

( )
i i

i
i i

P

p





  is equivalent to the l th  largest 

1 ( )

( )
j j

j
j j

P

p







  among the other 

players j i . We define (0,1)i   by 

   
1 ( )

0
( )

ii
i

ii

P

p





  , 

which implies the reserve price for player i . Note that 

   ˆ ( ) 0if           if ii  . 

 From Theorem 5, it follows that in the position auction, the optimal payment rule 

x̂  is rewritten in a more tractable manner; for every ( , ) [0,1]ni N   , 

   ˆ ( ) 0ix           if ˆ ( ) 0if   , 

and for every {1,..., }l m , 

   ˆˆ ( ) { ( ) ( 1)} ( , )
m

i i i
k l

x k k k    


     if ˆ ( )if l  . 

The optimal mechanism ˆ ˆ( , )f x  in this case implies a generalized concept of the 

generalized second price auction with reserve price addressed by Edelman and Schwarz 

(2010); the asymmetry in terms of type distribution is newly taken into account in the 

present paper. 

 It is important to note that in (not the position exchange but) the position auction, 

the optimal allocation and payment ˆ ˆ( ( ), ( ))i if x   for each player i  do not depend on 
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the types of the other players who are assigned better positions than him; for every 

i N  and every 2( , ) [0,1] n   , whenever for every \{ }j N i , 

   j j    if ˆ ˆ( ) ( )i jf f  , 

and 

   j j    if ˆ ˆ( ) ( )i jf f  , 

then it holds that 

   ˆ ˆ( ( ), ( )) ( ( ), ( ))i i i if R f R     . 

This irrelevance property can make the optimal mechanism ˆ ˆ( , )f x  easy to implement 

in practice: we introduce below an ascending clock auction format termed the 

generalized Japanese auction (GJA), which implements the optimal allocations and 

payment vectors induced by ˆ ˆ( , )f x  through (mostly) dominant strategies, and can 

bring the process of determining the allocation and payment vector to light.8 

 For every i N  and every i i  , let us define 

   
1 ( )

( )
( )
i i

i i i
i i

P
t

p

 



  . 

Note that 

   ( ) 0i it    if and only if ii   

For every [0,1]t , let us denote 

1( ) ( )i it t t  . 

Note that the time t  is equivalent to type ( ) '
i t s  MUVV, i.e., 

   
1 ( ( ))

( )
( ( ))




i i
i

i i

P t
t t

p t





   for all ( , ) [0,1]i t N  . 

For every ( , , ) [0,1] {1,..., }t l r n R   , we define ( , , ) [0,1]ir t l r   by 

   
{ ( ) ( 1)} ( ) ( 1)

( , , )
( )

i
i

l l t l r
r t l r

l

   


   


   if l m , 

and 

   ( , , ) ( )i ir t l r t          if 1l m  . 

                                                      
8 It might be a difficult problem to implement the optimal position exchange through a clock auction 
format, because the irrelevance property no longer holds. 
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 Based on these definitions, we define the GJA as the following ascending clock 

auction format in the continuous time horizon [0,1] . At the initial time 0t  , the 

auctioneer offers the unit price, equal to the reserve price, (0) iir   for each player i . 

The auctioneer continues to ascend the unit price ( )ir t . It is important to note that the 

auctioneer is permitted to offer different unit prices across players and to make the 

price-adjustment history-dependent. Any active player decides on whether to ‘quit the 

GJA’ or ‘keep active’. Once he decides to quit, he never comes back to the GJA. 

 Fix an arbitrary time (0,1]t . We denote by ( ) (0,1)ir    the unit price that the 

auctioneer has offered each player i N  at any previous time [0, )t  . We denote by 

N N  the set of all players who are active at the time t . We denote by [0, )t   the 

last time at which there exists a player who has quitted the GJA; we let 0   

whenever N N . Based on these notations, we specify the unit price that the 

auctioneer offers each active player i  at time t  as 

   ( ) ( , 1, ( ))i i ir t r t N r   
{ ( 1) ( )} ( ) ( )

( 1)
iN N t N r

N

   



  




  
 . 

If player i  decides to quit the GJA at time t , he obtains position min[ 1, ]m N   for 

the unit price ( )ir  , which the auctioneer has offered him at the previous time  . 

 What each player has to do in the GJA is just to select the time at which he intends 

to quit. Clearly, any player i  whose type i  is lesser than i  prefers not to 

participate in the GJA, while any player i  whose type i  is greater than i  prefers 

to participate. Suppose that the time at which each player i  with type [ ,1]ii   

intends to quit is given by [0,1]it  . Let us denote 

   ( )j j jt    for all j N , and ˆ ( )il f   . 

Then, the resulting allocation and payment for each player i  is given by 

   ˆ ( )if   and ˆˆ ( ) { ( ) ( 1)} ( , )
m

i i i
k l

x k k k    


     . 

This, along with ex post incentive compatibility of ˆ ˆ( , )f x , implies that it is a best 

response for each player i  with type [ ,1]ii   to make the time to quit the GJA 
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equivalent to ( )i i it t  , i.e., the time that is equivalent to his MUVV value, irrespective 

of the other players’ time selections. Hence, we have shown that the GJA can achieve 

the same allocation and payment vector as those induced by ˆ ˆ( , )f x  as the outcome of 

the mostly dominant strategy profiles. 

 Edelman and Schwarz (2010) showed that with the symmetry assumption, the 

optimal sponsored search auction termed the generalized second price auction with 

reserve price can be implemented by the generalized English auction (GEA) with 

reserve price through Nash equilibria, where the auctioneer was restricted to offer the 

same unit price across players and prohibited from making the price-adjustment 

history-dependent. In the GJA, the auctioneer has the more controllability of price 

adjustment in term of history-dependence and heterogeneity across players than the 

GEA with reserve price. Because of this high price controllability, the best strategy for 

each player in the GJA could be much simpler than in the GEA; each player 'i s  best 

time ( )i
i i it     to quit equals his MUVV in the history-independent manner. 

In order to make the manner of determining the allocation and payments in the GJA 

clearer, let us consider an arbitrary type profile [0,1]n , where players are ordered 

according to the size of MUVV, and every player’s MUVV is positive, i.e., 

   1 1 2 2
1 2

1 1 2 2

1 ( )1 ( ) 1 ( )
0

( ) ( ) ( )
n n

n
n n

PP P

p p p

   
  

 
       . 

According to the (mostly) dominant strategy, each player i N  intends to quit at the 

time 
1 ( )

( )
( )
i i

i i i
i i

P
t

p

 



  . Since 

   1 1 2 2( ) ( ) ( ) 0n nt t t      , 

each player {1,..., }i m  receives the non-null position i  for the unit price that the 

auctioneer have offered him when player 1i   has quitted, i.e., 1 1( ( ))i i ir t   ; any 

player { 1,..., }i m n   receives the null position 1m . 

Until the time of 1 1( )m mt   , the auctioneer continues to offer any active player i  

the unit price given by 

   ( ) ( )i ir t t  . 
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At any time 1( , ]m mt t t , the auctioneer offers any active player i  the unit price given 

by 

   1{ ( 1) ( )} ( ) ( ) ( )
( )

( 1)
i i m

i

m m t m r t
r t

m

   


  





 

1{ ( 1) ( )} ( ) ( ) ( )

( 1)
i i mm m t m t

m

    


  



 

. 

Recursively, for every {2,..., }l m , at any time 1( , ]l lt t t , the auctioneer offers any 

active player i  the unit price given by 

   1{ ( 1) ( )} ( ) ( ) ( )
( )

( 1)
i i l

i

l l t l r t
r t

l

   


  





. 

Hence, the unit price that each player {1,..., }i m  pays for the purchase of position i  

is equivalent to 

   
1

1

{ ( ) ( 1)} ( )
( )

( )

m

i k
k i

i i

k k t
r t

i

  








 

 

. 

Since 

   1( , ) ( )i i i kk t      for all { ,..., }k i m , 

it holds that 1ˆ ( ) ( ) ( )i i ix i r t    . 
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8. Conclusion 

 

 This paper investigated a class of allocation problems termed multiunit exchanges 

with/without restriction on allocations, where not only the central planner but also the 

participants brought commodities to sell. This class included important situations such 

as platforms in double auctions and heterogeneous position allocations as special cases. 

By introducing the concept termed modified virtual valuation (MVV), which was 

defined as the valuation minus the bargaining rent as well as the informational rent, the 

unit term of which (MUVV) implied a hybrid of marginal revenue and marginal cost, 

we demonstrated a tractable characterization result of optimal mechanism design with 

ex post incentive compatibility and ex post individual rationality. With mild 

monotonicity assumptions, this optimization problem could be replaced with the 

maximization of the sum of expected values of MVVs. By utilizing these results, we 

investigated the platform-provider’s revenue maximization in the single-unit demand 

case and in position exchanges. We further showed a new design of ascending clock 

auction format that implements the optimal position auction through mostly dominant 

strategies. 

 The arguments in this paper depended on the standard assumptions such as 

quasi-linearity, private values, independent type distributions, risk-neutrality, and no 

externality. It might be important as future researches to eliminate or weaken these 

assumptions. For instance, Figueroa and Skreta (2011) argued that the presence of 

externalities makes their outside opportunity values type-dependent in a different 

manner. The present paper did not take such externalities into account; the 

type-dependence of the outside opportunity value for each player was caused by the 

presence of his non-null initial endowment. 

 This paper assumed one-dimensional type spaces. It might be substantial to 

investigate multi-dimensional type spaces if we attempts to extend this paper to general 

dynamical multi-object trading; it is inevitable that we are confronted with such 

multi-dimensionality issues if players gradually receive private information in 

dynamical trading procedures. See Bergemann and Said (2010), for instance. 
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It was implicit to assume that the participants could not either access other 

competing platforms or directly trade with each other. It might be interesting to 

investigate strategic behavior of competing platforms as an extension of this paper, 

where the central planners might be able to provide differentiated contents with each 

other. In this respect, the literature of multi-sided markets could be relevant. See Rochet 

and Tirole (2003), for instance. 

 This paper required incentive compatibility and individual rationality not in the 

interim term but in the ex-post term. Mookherjee and Riechelstein (1992) showed that 

any incentive compatible mechanism with interim individual rationality could be 

implemented by an ex-post incentive compatible mechanism with interim individual 

rationality. However, it is not necessarily possible for any incentive compatible 

mechanism with interim individual rationality to be implemented by an ex post 

incentive compatible mechanism with ex-post individual rationality. The effect of 

replacing the ex-post term with the interim term on the optimization problem remains 

unsolved. 
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