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Abstract

In estimation of the normal covariance matrix, finding a least favorable sequence
of prior distributions has been an open question for a long time. In this paper,
we address the classical problem and succeed in construction of such a sequence,
which establishes minimaxity of the best equivariant estimator. We also derive
unified conditions for a sequence of prior distributions to be least favorable in the
general estimation problem with an invariance structure. These unified conditions
are applied to both restricted and non-restricted cases of parameters, and we give a
couple of examples which show minimaxity of the best equivariant estimators under
restrictions of the covariance matrix.
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1 Introduction

In statistical decision theory of point estimation, minimaxity is a crucial principle, and
it is used as an intelligible criterion for measuring quality of estimators. There are two
well-known approaches to finding a minimax estimator or establishing minimaxity of a
specific estimator: one is the invariance approach and the other is the least favorable prior
approach (Strawderman (2000)).

The invariance approach is based on invariance under a group transformation. A
relationship between invariance and minimaxity is often referred to as the Hunt-Stein
theorem. It is an elegant theorem and requires invariance of the estimation problem and
amenability of the group. For more details and generalizations of the Hunt-Stein theo-
rem, see Kiefer (1957). Equivalent conditions for amenability of groups were extensively
reviewed by Bondar and Milnes (1981).
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On the other hand, the least favorable prior approach is a Bayesian method with a
least favorable prior distribution or a least favorable sequence of prior distributions (see
Berger (1985)). A valuable merit of the least favorable prior approach is that it has a
wide range of applications. For instance, this approach is of use in the case of a restricted
parameter space. Actually, Kubokawa (2004) applied this approach to show minimaxity
of the best equivariant and unrestricted estimators even in the case of restricted location
and scale parameters.

Although the invariance approach is quite general and hard to understand, the least
favorable approach gives an understandable proof for minimaxity of the best equivariant
estimator. In estimation of covariance matrix of a multivariate normal distribution, the
best equivariant estimator under the group transformation of lower triangular matrices
with positive diagonal elements, which is also called the James-Stein estimator, is known
to be minimax by the Hunt-Stein theorem from the invariance approach. It is noted that
other minimax estimation problems related to the covariance matrix have been studied in
Selliah (1964), Eaton and Olkin (1987), Krishnamoorthy and Gupta (1989) and others.
However, no least favorable sequence of prior distributions has been found since Stein
(1956) and James and Stein (1961). This is one of the most interesting issues in statistical
decision theory. Moreover in the case that the parameter space is restricted, it is not clear
whether the best equivariant estimator maintains the minimax property. In this paper,
we address these problems and succeed in constructing least favorable sequences of prior
distributions in restricted and non-restricted cases of the covariance matrix.

The outline of this paper is as follows. In Section 2, we describe exactly the general
estimation problem with an invariance structure which is similar to Hora and Buehler
(1966). Using the method given in Girshick and Savage (1951) and Kubokawa (2004)
based on a sequence of prior distributions, we derive sufficient and unified conditions
for minimaxity of the best equivariant estimator, which can be applied to restricted and
non-restricted cases of parameters.

Section 3 addresses the important issue on minimaxity in estimation of the covariance
matrix of a multivariate normal distribution model from the least favorable prior approach.
An explicit formula of a least favorable sequence of prior distributions is presented in
Section 3, and this sequence is shown to satisfy the general conditions for mimimiaxity
given in Section 2. These results are extended to a class of elliptical distribution models
including the matrix-variate F' distribution.

Section 4 deals with the case that the covariance matrix is limited to a restricted
parameter space which is motivated by Pourahmadi (1999). Then, we construct a least
favorable sequence of prior distributions and establish minimaxity of the best equivariant
estimator by applying the general result given in Section 2. It is shown that the best
equivariant estimator is further improved on by the isotonic regression method.

The general conditions given in Section 2 and the arguments given in Sections 3 and
4 have the potential to apply to various restrictions of covariance and precision matrices.
In Section 5, we provide an example of restriction based on determinant of covariance
matrix, and state concluding remarks. Some proofs are given in the appendix.



2 General Conditions for Minimaxity by Girshick-
Savage’s Method

In this section, we formulate the general estimation problem with an invariance struc-
ture and derive sufficient and unified conditions for minimaxity of the best equivariant
estimator.

Let X be an observable random variable. Let (X, Bx) be a measurable space of X
and P = {F : 0 € ©} be a family of identifiable probability measures with parameter
space ©. We assume the following conditions.

(A1) There exist a group G = {g} and a measurable space (G, Bg) on which there
exists a left invariant Haar measure ~ satisfying
v(9G) =v(G) for all g € G and all G € Bg.
Each g € G induces a one-to-one transformation g from © onto itself defined by Pyo(gA) =
Py(A) for any A € Bx and any 6 € ©. The induced space G = {7 : g € G} is measurable.

(A2) There exists a one-to-one correspondence X «» (7, U,) between X and G x Ux
such that ¢gX corresponds to (g7, U,) and Uy is a measurable space. The statistic U, is
maximal invariant under the transformation G.

(A3) There exists a one-to-one correspondence 6 <+ g, between © and G such that
g0 corresponds to gg, for all g € G. The correspondence of g, in G is denoted by gy.

(A4) There exist a conditional probability density function p(g, 't,|u,) given U, = u,
such that for all A € By,

PylA] = / P93 taltte )P (102) ()7 (s,

where p,(-) is a marginal density function of U, with respect to a measure v,(-) on Ux.

Under these assumptions, we consider estimation of gy under the loss function ¢(gg, d) =
L(g, 'd), which is invariant under the transformation gy — ggy and d — gd. Any equiv-
ariant estimator 0(7,|U,) satisfies that 6(¢97,|U,) = ¢6(T,|U,) for any g € G. The best
equivariant estimator of gy is

PELU.) = angmin | Ligr a)p(or TV () (21)

where v(-) is the measure defined by

v(dg) =~(dg™").

This is a right invariant Haar measure. Since ~y(-) is left invariant, it is noted that

v(hdg) = v(dg) and v((dg)h) = A(h)y(dg) for h,g € G, where A(-) is a modular function.

The best equivariant estimator is the generalized Bayes estimator against the right in-
variant measure v(dg). Kiefer (1957) showed that the best equivariant estimator is mini-
maz if the group G is amenable, namely, if there is a sequence of probability measures 7;(-)
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on G that is asymptotically invariant in the sense that lim; ., [{¢(ag) —v¢(a)}vy;(da) =0
for every ¢ € G and every bounded measurable function ¥ on G. However, the best
equivariant estimator is not necessarily minimax when the parameter space is restricted.
Kubokawa, et al. (2012) used this general framework for predicting the predictive den-
sity function, and showed minimaxity of the generalized Bayes predictive density function
under restriction of parameters based on the arguments of Girshick and Savage (1951).

We here show minimaxity of the best equivariant estimator based on the method of
Girshick and Savage (1951) in the context of point estimation in both cases of restricted
and non-restricted spaces. To this end, we provide the following unified conditions for
minimaxity.

(A5) In the case that © is restricted, assume that the restriction is equivalently
expressed as gy € P. Also, it is assumed that P C G C R"; namely, G is a subset of r

dimensional Euclidean space R" and P is a restricted space of G. In the case that © is
not restricted, P is identical to G.

(A6) There exist a sequence of subsets Py (C P) and one-to-one functions ¢y(-) be-
tween P, < Z C R” with £ = ¢i(gg) for g9 € Pr where P, ¢i(-) and = satisfy the
following conditions:

(A6-1) U2, P = P for some ko > 1.

(A6-2) Let V(Pg) = fP v(dge). Let yg(-
v(p; '(A)) for A € Z. Then, pi(Py) == = [['_;[~1+ aix, 1 + b;y] and

e an induced measure defined by vx(A) =

)b
Ak(Pk)f(é)vk(df)/V(Pk) 2 o / (5 € H —1+ aix, 1+ b k])f(g)df, (2.2)

where f(-) > 0, I(-) is the indicator function, and limy_, a; p = limy_,o0 b = limy_yo0 ¢ =
Ofori=1,...,r

(A6-3) Assume that ggg € P, is equivalent to [¢, ' (€)]g € Py or g € Py(€). For any
small enough ¢ > 0 and any € € [[_[-1+a;, +¢,1+ bik — g, there exists a sequence
of subsets P such that P} does not depend on §, P C P(§) and U2, Py = G for some
ki > 1.

Theorem 2.1 Assume conditions from (A1) to (A6). Then, the best equivariant esti-
mator 6BF is minimaz.

Proof. We can show this theorem along the same lines as in Kubokawa (2004) and
Kubokawa et al. (2012) who modified the method of Girshick and Savage (1951). Consider
the sequence of prior distributions given by

V(P)} tv(d if gy € P,
71 (g0)v(dge) :{ 4 k)}o (o) ot}glzzrwisg.

This yields the Bayes estimators

SF(talu) = argmin | Loy O)p(a; alu)v(dgs),

G1EP
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with conditional Bayes risks
el dFlu) = o [ Do (g e (e ).
k 99 € Py

It is easy to check that 7 (g, 07 |us) < ri(m, 0% |u,) = Ro(us), so it is sufficient to show
that liminfy e 7 (mk, OF [ug) > Ro(us), where Ro(u,) = [ L(6B (ty|us))p(te|us)y(dt,).
Making the transformation s, = g, 't, yields

(i) = gy [ o sl @s ), (23

where 67 (gps.|u,) is expressed as
SF(goselus) = axgmin [ Lo 9plor gosalu)v(dgs)
g1ER,
Now, make the transformation g, = g, '¢g; with v(dg;) = A(ge)v(dga). Then,
SFgosslus) = argmuin | L0505 9)p(gs sulue) Man)(d).
9692€ Py,
namely, we have g, 07 (gpsSz|ts) = 6} (S2|tz, go) Where
Silsuluesg0) = argmain | L0, 5)ploy s, (dga)
9692€ Py,

In view of the assumptions, there exists a transformation & = ¢y (gy) satisfying the con-
dition (A6). Note that gogs € P, is equivalent to ¢, ' (£)gs € Py, or

92 € {le (O] g5 9 € P} = Pi(€).

Then, the Bayes estimator 07 (s;|uz, go) is rewritten as

Si(sulun o ) =agmin [ Ly 0)plgy sl ().
92€P,(§)

and the conditional Bayes risk (2.3) is rewritten as

(s dfle) = ey [ [ D e i €l (dse ),

It is noted that from (A6-2), for any small £ > 0,

r

gOk(Pk) = H[—l + (l@k, 1 + bz,k] D) H[—l + CL,"]@ + g, 1 + bi,k — 8] = Ikﬁ.

i=1 =1

Then from (2.2), the conditional Bayes risk is evaluated as

Tk(ﬂ'kyéﬂux) Z %/1(5 c Ik,s)/L(éz(sm|um90k1(§>>>p<5x‘um>7(d5x>d£
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For £ € I, from (A6-3), it can be seen that 0} (s,|us, 5 ' (€)) = 688 (s, |u,) as k — oc.
Hence, Fatou’s lemma is used to bound the Bayes risks as

lilgn infry (7, 0 |uz)
/ liminf 7(6 € Ic) [ ploslus) - liminf L0575 (€)1 ()

:2_ . d{/ (Su|us) L(077 (sp|us))y(dsy)
=(1—¢)"R(0,55F (t,|us)) = (1 — )" Ro(uy)

From the arbitrariness of ¢ > 0, it follows that liminfy_,o 7 (7k, 6 |uz) > Ro(u,), com-
pleting the proof of Theorem 2.1. [

In some examples, handling g, ! as a parameter is more convenient than treating

ge- Namely, in assumption (A4), consider the conditional probability density function
p(het,|u,) and the probability

Pyl A] = /A p(hatalus)pa (d2)7(dt2) 1 (dus),

where hy = g, ! In this case, the best equivariant estimator given in (2.1) is

5% (13]U,) = arg min /g L(n®)p(iTo U, )7 (dh),

for the left invariant measure 7(-). The minimaxity of the best equivariant estimator
under restriction can be similarly shown by modifying assumptions (A5) and (A6) as
follows:

(A5’) In the case that © is restricted, assume that the restriction is equivalently
expressed as hy € P. Also, it is assumed that P C G C R"; namely, G is a subset of r
dimensional Euclidean space R" and P is a restricted space of G. In the case that © is
not restricted, P is identical to G.

(A6’) There exist a sequence of subsets P, and one-to-one functions ¢ (-) between
P, < = C R" with & = @i (hg) for hy € G such that P, and ¢g(-) satisfy the following
conditions:

(A6-1") U2, P = P for some ko > 1.
(A6-2") Let V (Py) = [ p, V(dhg). Let v4(-) be an induced measure defined by 7;,(A) =
Y(pr ' (A)) for A € E. Then, ¢(Py) == =T[,_,[~1 + aix, 1 + b;x] and

I
[ senaominy = o [1( geH L g+l FO)

where f(-) > 0, I(+) is the indicator function, and limy_, @; p = limy_o0 b = limy_yo0 ¢ =
Ofori=1,...,r



(A6-3") Assume that hhy € P is equivalent to h € Py(€). For any small enough & > 0
and any € [['_,[—1+ a;, + &, 14 b, — €], there exists a sequence of subsets P; such
that P; does not depend on &, P C Py(€) and Uy, Pi = G for some ky > 1.

Under assumptions (A1)-(A4), (A5’) and (A6’), we can check each step in the proof
of Theorem 2.1 by replacing ge_l, gt gt v(), g = gg_lgl and gpgs € P, with hy, hq,
ho, Y(+), he = h1h9_1 and hohy € Py, respectively. Then, it can be verified that the best
equivariant estimator is minimax.

Corollary 2.1 Assume conditions (A1)-(A4), (A5’) and (A6’). Then, the best equiv-
ariant estimator 6P is minimaz.

3 A Least Favorable Sequence of Prior Distributions
in Estimation of Covariance Matrix

We now construct a least favorable sequence of prior distributions in estimation of the
normal covariance and precision matrices. The problem of finding such a sequence for the
normal covariance matrix has been an open question for a long time since Stein (1956)
and James and Stein (1961). Thus, the derived sequence, which satisfies the general
conditions given in Theorem 2.1, brings a solution to one of the most interesting issues in
statistical decision theory.

3.1 Estimation of normal covariance and precision matrices

Consider the estimation of 3 based on a p X p random matrix V having the Wishart
distribution Wy(n, ). Let T be the set of p x p lower triangular matrices with positive
diagonal entries. By the Cholesky decomposition, X' and V can be written as X" =
OO and V =TT for © = (;;) € T+ and T = (t;;) € T+. The probability density
function of T is

fi(TI@)(AT) = ClOTI" exp [~ Stx (OT)(OT)]|(aT),

where C' is a normalizing constant and v(dT) = ([]5_, t;")dT, which is left-invariant

measure on 7 7. Denote a loss function by L(©§@"), where & is an estimator of 3.

For all A € T, the group transformation with respect to 7+ on a random matrix T
and a parameter matrix © is defined by (T',0) — (AT,©A™"). Then the equivariant
estimator with respect to the group 7+ has the form T DT, where D is a diagonal
matrix independent of T'. The best diagonal matrix D which yields the best equivariant
estimator 2%, say, depends on the loss function L.

Let ¢;; = 3(¢ — j) — 1. Define a set P, of © by
P, = {@ c TJF : l/l{? < 9“ <k (Z = 1,,p) and —kcijem' < Qij < ]Ccijen' (1 S] <1 Sp)}
Then, we consider the sequence of prior distributions given by

7(d©)

7(©)dO = 76

[(®cP), k=12, (3.1)



where 7(d6) = (T7_, 677)d8, V() = [, 7(d©) = 2#*0/2(log k) [T, [Tj-, 4, and

i=1"1u
I(+) denotes the indicator function. The following theorem shows that the sequence (3.1)

is least favorable.

Theorem 3.1 The best equivariant estimator 8°F is minimaz.

Proof. The minimaxity of the best equivariant estimator of 3 can be shown by checking
the conditions (A6-1)-(A6-3") of Corollary 2.1 for P =G = 7. It holds that U° P, =
T+, which satisfies (A6-1"). For (A6-2'), let &; = log#;/logk for i = 1,...,p and let
&j = 0/ (k%90;;) for i > j. This correspondence is denoted by the function £ = ¢ (0).
Then, we obtain ¢(P;) = [—1,1]PP+1)/2 and

p 1—1

74(dg) = (log k) ( [T TT ¥ )¢ = ~(a®)

=1 j=1

for &€ = (&11, 601, €02, &pty - -+, Epp)t and (dO) = (TTE, 0;;,1)dO. Also, it follows that

/  JEPRAg) V() = 27 / FO)I(E € [-1, 1PH/2)dg.

Finally, we shall show condition (A6-3"). Note that “Y© € P,” is equivalent to
“Y € P/(©)”, where
PlO)={Y eT :k'<{Y®};<k (i=1,...,p) and
— k9 {YO}; < {YO}; <k“{YO}:i (i>j)}
= {Y€T+:]€_1 <ym0” <k (’L:l,,p) and

m=j

By the function & = (@), “Y € PL(©)” is expressed as “Y € P;(£)”, where

Pue) = {Y ETH k' <yskS <k (i=1,...,p) and

_yiikcij+§ii < yijkﬁjj + Z yimgmjk,CnLj"l‘Emm < yiik,Cij+€ii (Z > ])}
m=j+1
= {Y e TH kW) <y < k% (i=1,...,p) and (3.2)
Lz](Y7€> < yij < U“(Y,E) (Z > j)}?

with

Uy(Y . &) = yiikciﬁ&ﬁgﬁ o Z yimfmjkcmﬁgmmig”?

m=j5+1

Lij (Y, &) = —yike 5t — Z YimEmg koI TEmm =40,

m=j+1



Recall that ¢;; = 3(i — j) — 1. Also, assume that |§;;| < 1 —¢ for any € > 0 and 7 > j.
Then, &;; satisfies that 1 — &;; > ¢ and 1+ §;; > €. For each y;;, it follows from (3.2) that
the set {y; € R : k~(+&) < ¢ < k=% includes

{yiw e R:k™° <y <k} (3.3)
As proved in Lemma 3.1 given below, we express the upper and lower bounds of y;; as
Uij(Y,€) > yue(l — k=) geit&n =4, (3.4)
Li(Y,€) < —yue(1 — k)97 1kcm+€n—fﬂ (3.5)
for i > j. Hence from (3.3) and (3.4), it is observed that
Uij(Y,E) > k‘%(l —k l)z J=13(i=) = 1=2+4(14+&i) +(1-5)
> koe(1 — k_—l)z—j—lk?) (i—j—1)+2¢
>e(l—k~1)y 7k = Uy,
since i —j — 1 > 0. Similarly, using (3.3) and (3.5) gives that L;;(Y,€) < —e(1 —
k=) 7k = L. Let
Pi={Y eT "k <y; <k (i=1,....,p) and L}, <y; <U; (i>j)}.

Then, P; C Py(€) and U2, P; = T+ = G, which satisfies (A6-3'). Hence from Corollary
2.1, the best equivariant estimator of covariance matrix 3 is minimax. ]

To complete the proof of Theorem 3.1, we need to show the following lemma.

Lemma 3.1 Fori > j,

Uij(Y,€) > yue(l — k) geutsn =4, (3.6)
Ly(¥,€) < —ynell — k1) et (3.7)
Proof. We show the inequality (3.6) by induction. For j =i —1, U;;_1(Y,§) =

Yii(1 — & iop ) kCiim1 T 8i—8imnizt > g efciimiti=di-ni-1 g0 that the inequality (3.6) holds for
j=1—1. For{=4i—1,...,j5+ 1, suppose that the inequality

Uie(Y, &) > yue(1 — k1) peettn—te, (3.8)
namely, '
Yir < yii5(1 _ k_l)l_g_lkcié"!‘&ii_gﬁ' (3'9)

Then, we verify the inequality when ¢ = j. Using the assumption (3.8) and (3.9) of
induction, we see that

i—1

Uij(Y7 f) _ yiikc¢j+£¢r5jj{1 _ éz’j _ Z yz_mgmjkt:mjfafrﬁmm*&i}
m=gt+1 Jil
i—1
> yiikc¢j+€¢r§jj{5 _ Z (1 ke )z m—1}.Cim+Cm;— c”}
m=j5+1



Since ¢+ iy —cij =3(i—m)—1+4+3(m—j)—1—3(i—j)+1 = —1, it is observed that

i—1
Uij(Yas) > yiikcij+§ii—fjj{5 — Z 5(1 _ k,—l)i—m—lk,—l}
m=j+1
1 1N\1 1\21 1\i=i-21
Y Uk U TR k) ok Kok
which proves the inequality (3.6). Since the inequality (3.7) can be shown similarly, we
get Lemma 3.1. [

In estimation of the covariance matrix X, Stein (1956) employed the so-called Stein
loss function given by

Ls(6,2) =trX7'6 —log |78 — p = tr @60 — log |©5O"| — p,

and the best equivariant estimator is given by 6% = TDPET? where
-1
DPE — [/ G)tG)fW(Ip|G))7(dG))] = diag (d, ..., d,),

for d; = (n+p—2i+1)~'. From Theorem 3.1, §”* is minimax relative to Lg(d, %), and
the least favorable sequence of prior distributions is given in (3.1). Similarly, we use the
following invariant loss functions

Lo(8, ) =tr (2716 —I,)2 =tr (@60" — I,)?,

Lp(8, ) =trXd ' —log|Xd | —p=tr (@60 —log |(©@5O")~!| — p,
so that the resulting best equivariant estimators are minimax. It is noted that the loss
Lp is used in estimation of the precision matrix X! rather than of the covariance matrix

3. For more details of estimation with respect to Ly and Lp, see Selliah (1964) and
Krishnamoorthy and Gupta (1989), respectively.

The same arguments can be used for estimation of ® based on the Cholesky decom-
position. The best equivariant estimator of © is given in Eaton and Olkin (1987), and its
minimaxity can be shown by the arguments based on the sequence of prior distributions.

3.2 Extension to elliptical distributions

The results given in Subsection 3.1 can be extended to a class of elliptical distributions
whose probability density function (p.d.f.) with respect to «(dT') is given by

f5(T©)(dT) = |OT|"¢(OT{OT}')7(dT), (3.10)

for an integrable function ¢(-). It is assumed that ¢ satisfies ¢(A) = ¢(BAB) for a
squared matrix A and a diagonal matrix B with diagonal elements 1. Then the best
equivariant estimator relative to an invariant loss L(©d@") is given by

65" = argngn/L(@5@t)f¢>(T\@)7(d@) =TD,T",
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where D, is a diagonal matrix whose diagonal elements are constants depending on the
functions ¢ and L. Then, we obtain the following theorem based on the same arguments
as in the previous subsection.

Theorem 3.2 Assume that the random matriz is distributed as an elliptical distribution
with the p.d.f. (3.10). Then the best equivariant estimator 55E 1S MINIMAx.

An example of f,(T'|©)y(dT) is the p.d.f. of matrix-variate F' distribution or matrix-
variate beta distribution, which is expressed as

fr(T|©)7(dT) = C|OT|"|I, + @T{OT}'|~ "7~ 1/2(dT),

where C' is a normalizing constant and v is a positive constant. The best equivariant
estimator of ¥ = (@'®)~! relative to the Stein loss is 677 = [[ ©'O fr(T|©)(d®)] .
Making transformation from © to @T ' gives the expression §2F = TDE*T" where

DEE — [/ @t(afF(Ipy@)y(d@)r. (3.11)

The value of D2 is hard to derive, but we can obtain it in the following proposition
which will be proved in the appendix.

Proposition 3.1 Suppose that v > 2. The exact value of DB defined in (3.11) is given
by DRF = diag (hy',..., h,') for

n—it+1 v+p—2 p—1
v+1—-3 v+i—2 v+i—2

)

(t=1,...,p).

Theorem 3.2 suggests that the best equivariant estimator 627 is minimax. It is noted
that 2% is the same as a minimax estimator obtained by Muirhead and Verathaworn
(1985) from the invariance approach. Our notation (n,p,v) corresponds to (ni,m,ny —
m + 1) in their notation. See Section 3 of Muirhead and Verathaworn (1985).

4 Estimation under Restriction of Lower Triangular
Matrix

4.1 Minimaxity under order-restricted diagonal elements

Consider the unique reparametrization for 3 of the form I'SI" = A, where I' = (v;;) is
a lower triangular matrix with unit diagonal elements, v; = 1, and A = diag (A\1,...,\,)
with positive diagonal elements ;. Pourahmadi (1999) has pointed out a statistical mean-
ing of the ~;; and A; in analysis of longitudinal data and showed that they are interpreted
as the autoregressive coefficients and the innovation (residual) variances, respectively.

In the previous section, we used the Cholesky decomposition £7' = @'® where
© = (0;;) € T+. It then follows that \; = 0,2 and Vi = 0i;/0: because St =TIATIT
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and the Cholesky decomposition is unique. In this section, we consider the restriction
A1 > Ag > - > )\, namely

«91’12 > 9;22 >0 > 6;]027 or, equivalently, 017 < gy < - < 6,,. (4.1)

This signifies that the innovation variances decrease as time goes. For simple explanation
of this constraint, see Pourahmadi (1999, Section 2.6).

For ¢;; = 3(i — j) — 1, define a set PF of © by
Pl={@cT: k'2<0,<k'? 1< 0ii/0i—1i-1 < k° (i=2,...,p) and
—k0; < 0;; < k90, (1<j7<i<p)}.

Then, we consider the sequence of prior distributions given by

1(d®) L
0)dO = I1(®eP k=1,2,...
ﬂ-k( ) V(P’f/) ( E k)? y < 9

where 9(d®) = (T2, 6;)d4 and V(P) = 201/ (log ke [T, [T, k.

i=1 "1

Theorem 4.1 For an elliptical distribution (3.10) with the restriction (4.1), the best
equivariant and unrestricted estimator Jf E is minimax.

Proof. The minimaxity is verified by checking the conditions (A6-1")-(A6-3") of Corollary
2.1. Let G :7-+, P = {@ e Tt : 011 < Oy <--- < pr} and Py :PkL fOl"g, P and
P in the assumptions (A5’) and (A6'). It is seen that U2 P, = P C T'. The function
& = pr(O) is defined by

~ 2logbn 1 0,

= i = 1 —1 (i=2,...
611 ) éu lng 0og Qi—l,i—l (l ) ap)a
Gij

fij - eiik‘cij

log k

(1<j<i<p).

Then, it follows that ¢ (P;) = [—1, 1]P®P+1/2 and

p i—1

w(dg) = 27 log k) ( T [T ) dé = 1(d®)

i=1 j=1

for v(d®) = (J]-_, 6;,")d©.

i=1 Y
For (A6-3'), “Y'® € P,” is rewritten as “Y € P/(©)”, where

YO®},
P(O®)=1Y T2 <Y Oy < kY2 1<¥ )
#(©) { €T <{Y®O}, < S ven L= 2,

Yiiii
yi—l,i—lez‘—l,i—l

:{Y€T+2k1/2§y11911§k1/270§ <]{Z2(’l:2,,p)

and — kSiy0;; < Zyimemj < kY0 (1<j<i< p)}

m=j

12



It is noted that 6; = k511/2+22:2(1+~5”) for i > 2. Thus by the function & = ¢4(©),
“Y € P/(©)” is expressed as “Y € P(£€)”, where

b)) ={Y €T : Lj(Y,6) <y;; <U;(Y,§) (1<j<i<p)}

with
(|~ (1H611)/2 ifi=j=1,
Lij(Y,8) = { yiqia k™ (180 ifti=j52>2,
L —yiikcl-jJrZZ:jH(Hﬁee) _ anzj-H yimfmjkcmj+22n:j+1(1+§ee) if i > 7,
(k-2 ifi=j=1,
Uy(Y ., &) = yi—l,i—ﬂfl_*g“ ifi=j52>2,
\yiikc¢j+2@:j+1(l+£u) _ Zin:jJrl yimfmjkcmfrz;zn:jﬂ(hréu) ifi> j.

Let || < 1—¢ for i > j and any small € > 0. We here use the same arguments as in
the preceding section and can easily show that, for ¢ > j,

U’L] (Yv 5) > yu€<]— - k_l)i_j_lkCij+Zz:j+l(1+EM)7
Lu(Y,S) < _ylz€(1 - kil)iijilkcuﬁ_zz:ﬂl(l—kgu)7

which yields

. R if i = j,
T —e(1 = Y i > g,

s if i =7,
A B e L S S S

Let
Pi={Y eT":Lj<y; <Uj; (1<j<i<p}

It then holds that Py C Py(€) and U2, P = T+ = G, which satisfies (A6-3'). Hence the
proof is complete. [

4.2 Improvement by the isotonic regression method

In the previous subsection, the best equivariant and unrestricted estimator is shown to
remain minimax under the restriction (4.1). In this subsection, it is shown that the best
equivariant estimator can be further improved on by the isotonic regression method under
the restriction (4.1).

Let V ~ W,(n,X), and the Cholesky decomposition is written as V' = TT" with
T = (tij) € T™. Let T, be the lower triangular matrix with unit diagonal elements
such that, for ¢ > j, the (i, j) off-diagonal elements are t;;/t;;. Then the best equivariant
estimator with respect to the Stein loss is rewritten as 6°% = T ®5F(t)T" for t =
(t3,,...,t2,), where ®°F(t) = diag (dit?,, ..., dyt2) with d; = (n+p — 20 +1)~1. If

> 7pp
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02 > 0y > - > 0,7 on ¥ = (©'©)"", we should modify the ordering property of
diagonal elements of ®”7(t) as long as Pr(dit}; > --- > d,t2) < 1.

To revise the unnatural ordering, we apply the isotonic regression to diagonal ele-
ments of ®5F(t). Let ®PF(t) = diag (477, .. -, o5F) with ¢PP = d;t?, and let O () =

227

diag (¢!, ..., qﬁéR), where {12, ... ,¢Z])R} is a solution of minimizing > 5 | (\; — ¢P¥)?
subject to Ay > Ay > -+ > A,

Theorem 4.2 Assume that V ~ W,(n,X). Under the restriction 0> > Oy > -+ > 0,7,

O =T ®"B(4)T" is minimax estimator dominating 85 relative to the Stein loss.

We verify this theorem via the following lemma. For details of the lemma, see Rock-
afellar (1970) and Calvin and Dykstra (1991).

Lemma 4.1 (Fenchel duality theorem) Let f(x) be a concave function defined in RP
and let K be a closed convex cone in RP. Define the concave conjugate of f(x) and the
dual cone of K as, respectively,

p
_ * P . s
f(y —mlélﬂgp{leyl } K —{yER .leylgO, V:UEIC}.

=1

Then we have

sup f(z) = — sup f*(y) (4.2)

xeK yer*
if either ri(dom f)Nri(K) # 0 or ri(dom f*) Nri(K*) # 0, where ri means relative interior
and dom f = {x € RP : f(x) > —o0}. Denote by x* and y*, respectively, solutions of
the left- and m’ght hcmd sides of (4.2). It then holds that (a) x* € IC, (b) y* € K*, (¢)
(x*)y*=>" * =0 and (d) —y* is a subgradient of —f at x*.

211

Proof of Theorem 4.2. Let ®(t) = diag(¢1, ..., ¢,) whose diagonal elements are
functions of ¢. Recall that ¥7! = T!AIT with Ay > Ay > -+ > Ap. Then the risk of
estimator § = T ®(¢)T", is written as

R(6,%) = Etr 27T ®()T", — log |7 'T,®(t)T| — p]
= Etr AT'U®(t)U" — log |A"'®(t)| — log |UU'| — pl,
where the second equality follows from the transformation U = (u;;) = I'T';. The first
term of the last right-hand side is expressed as

Etr AU (¢ {Z@{U?5 1U}u] :E{é@iu;m}

It is noted that w; = 1 and that, from the Bartlett decomposition, ¢/, ~ x2_,,, for
i=1,...,pand u|t; ~ N(0,);/t%) for j > 4. Thus, we obtain
2

Etr AT'U®(t [Zgb { Z+“+...+h t”

z-l-l )\p

_ E[Z B0 + - /)|
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which yields
= B S0 + (0= /) ~ low(on/ 3] (13)

Let ¢PF = (¢PF,. ., ¢P") and o't = ( el Fordi=1,...,p, let &= N1
and a; = (p — i)/t}. Denote RE = {x € R?: z; > 0 for each i}. Then & = (&1,...,&,)
belongs to

K={{eRi &< <6}
Also denote the dual cone of I by
K*={neRP:n'z <0 for any x € K}.
Let the objective function be
p
(&l¢"7) = {log& — ¢l (& + an)},
i=1

which is the concave function of £. It is noted from Robertson et al. (1988) that dI’s are
the same as certain solutions &' of maximizing > 7 {log& — ¢PF¢;} subject to &€ € K
and, moreover, the &’s are equivalent to solutions of maximizing £(£|¢”*) subject to

Ecek.

The concave conjugate function of £(€|p") is given by

(77|¢BE = lnf {mez _E £|¢BE)}

p
= inf {Z{éz(m +¢;F) —log fz}] + Z ¢ Cai
i=1 i=1

.ﬁeRﬁ
p p
= log(n; + 67) +p+ > ¢FFa;
i=1 i=1

and the domain of ¢*(n|¢”?) is {n € R? : n + ¢"* = 0,}, where “~” stands for “is
componentwise greater than”.

The subgradient of —¢(&|¢"%) is equal to (¢PF — €71, ... ,¢BF — &1, so Lemma 4.1
(d) implies that the supremum of ¢*(n|¢”") attains at

n=(E" -0t 8 - et

Since &' = ¢! we can see that

= swp C(nle™) = —C'(@]¢") = Zlogde—p Z¢BE (44)
E *
7I+ZBE>OP
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It is noted that ¢pPFes(@I"~9F") ~ ( for each i. Replacing ¢/F by ¢BEe(@"=¢7") in the
above expression yields

a IR BE
— sup C(n|¢”") < - Zlog¢BE (0Tme) ZW

nex” =1
n+¢PF -0,

p p
== log¢f” —p—>Y " ¢/"a;. (4.5)
i=1 i=1

Combining (4.4) and (4.5) gives that >0 (¢1Fa; —log o) <SP (¢pP¥a; —log ¢PF), or,
equivalently,

Z{aﬁmaz log(¢7"/Xi)} < Z{asBE —log(¢7"/ M)} (4.6)
From the fact that n € K* and &€ € K, it follows that % & <0, namely,

D (@ = ¢PE)g = (61— ¢PEA <. (4.7)

i=1 i=1

Combining (4.6) and (4.7), we can see that

3

Z{#R(A{“r(p—i)/t?) log(¢;"/A:)} Z PO (p = 0)/15) — log(67F /M) }

with probability one. Thus, it follows from (4.3) that R(6'%, %) < R(6"F %), which
implies that 6% is minimax estimator improving 6% . [ ]

5 Concluding Remarks

In this paper, we have considered the general estimation problem with the invariance
structure, and have derived sufficient and unified conditions under which a sequence of
prior distributions is least favorable, namely, the best equivariant estimator is minimax.
The unified conditions can be used in both restricted and non-restricted cases of param-
eters. The most striking result of the paper is that we have succeeded in deriving an
explicit formula for a least favorable sequence of prior distributions for the covariance
matrix. This has been an open question for a long time since Stein (1956) and James and
Stein (1961). Interestingly, our general conditions are satisfied by the suggested sequence
of prior distributions of the covariance matrix. We have also applied the general results
given in Theorem 2.1 to the restricted case of lower triangular matrix for establishing min-
imaxity of the best equivariant and unrestricted estimators, which is further improved on
by the isotonic regression method.

The general conditions in Theorem 2.1 and the arguments used in the proofs of Theo-
rem 3.1 have the potential to apply to various restrictions of covariance and precision ma-
trices. For example, consider the restriction |X| < ¢ for positive ¢, namely, [T_, 62 > 1/c.
Then, we can get the following theorem which will be shown in the appendix.
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Theorem 5.1 For an elliptical distribution (3.10) with the restriction |X| < ¢, the best
equivariant estimator of 3 is minimax.

The results given in this paper can be extended to more general models with both
location and scale parameters. For instance, we can handle the case that a sample mean
vector is available, which can be described as V' ~ W,(n,X) and X ~ N,(p, ). Our
results can be easily extended to this model, and minimaxity for the best equivariant
estimator of X is established.
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A Appendix

A.1 Proof of Proposition 3.1

It is noted that the integral in DBZ given in (3.11) is invariant under transformation ® — BOB
where B is a diagonal matrix such that all diagonal elements are respectively either one or
minus one. Denote by FE, the expectation with respect to the probability density function
fr(I,|®)y(d®) and let

H,-E[0'] - [ 00 (1 0N (de)

Partition ® into four blocks as follows:

®;; 0 1)
e-= =1
(951 Opp

where the sizes of @11 and 091 are, respectively, (p —1) X (p—1) and (p— 1) x 1. It is seen that

Ip—l + @11@51 611921
0,,0!, 1+ 02, + 65,65

= I,—1 + OO, {1462, + 656051 — 65,01, (I,_1 + ©1,0],)'O116,}

= I, 1 +©10}[{1+ 9§p + 605 (Ip—1 + ©],011) 621},

I, + @0 =
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which yields

p

Jr(L,]©)7(d0) = C|Ip-1 + ©1104 (1 + 62,) (1 + 0, G 021) ™ ( [[ 0377) A©11d02140,
=1
p .
= O, 1 + @11@1:11‘—a+1/2(1 n ezp)—aJr(p—l)/z(H%—z)
=1

X |G|7Y2(1 4 04,G1021)"2d©11d651d6,,

witha = (v+n+p—1)/2 and G = (1402,)(I,-1 + ©7,011). Hence, the marginal distribution
of {(v+p—1)/(n—p+1)}62, is the F distribution with n —p + 1 and v + p — 1 degrees of
freedom, and the conditional distribution of (v + n)/202; given ©1; and 6,, is the (p — 1)-

dimensional ¢ distribution with v +n degrees of freedom, mean zero and scale matrix G. Letting
H, | = E.[©,01;], we obtain

-p+1
B02) =L
182 v+p—3
and o
1+ 1
E*[021051] = E* |:’U—|—nin(Ipl + 931911)] = m(Ipfl + Hp—l)a
which implies that
H _ E* [@lil@ll + 021051] Opfl
: 0;—1 E, Wﬁp]
_ (1 + ﬁp—l)Hp—l + Bp—le—l Op—l
0,1 ap )’

where a; = E*[H%p] =(n—-p+1)/(v+p—3)and fp—1 =1/(v+p—3).
Similarly, let A; be the i x i left upper corner of ® and denote H; = E,[ALA;]. Then, it
holds that i
ai = B,[0%] = nottl
v+1—3
and

H. — <(1 + Bic1)Hi—1 + Bic1Iia 011)
i—1 4

with ;-1 = (1+«a;)/(v+n—2) =1/(v+i—3). Solving these inductively yields

p—1 p—1 P
hi= EJ(©O)] = a [[1+8)+ 3.8 [ 0+8) (=1....p—1),
j=i j=i  k=j+1
hyp = E*[{GtG}pp] = Qp;,
where 3, = 0. It is observed that
p—1
v+p—2
1 i) =
E( + B5) i
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and

p—1 p p—1

_ v4+p—2
2.5 11 (1+Bk)_;(v+j—2)(v+j—1)

j=i  k=j+1
p—1
1 1
= —9 —
(vt );<v+]’—2 v+j—1)

__p—i
Cvti—2

which gives h; in Proposition 3.1. This completes the proof of Proposition 3.1.

A.2 Proof of Theorem 5.1

Without loss of generality, we take c=1. Let G =T T and P={@ c T : @2 > 1} ={O© ¢
T+ > 1}. Define

zlzz

p
}%:{@eT+q§II%§k%,1mgeﬁgk (i=2,...,p), and
=1

— k90, < 9@']’ < k%6, (1 <7< Sp)}

Note that U® P, = P, which fulfills (A6- 1’) of Corollary 2.1. To check condition (A6-2") of
Corollary 2.1, we observe that V(Py) = fP = p2rP+ D2 (log k)P TT2_, H;;ll kci. A set of
functions

log 6;; log0i; . 0 .
= 1, &= =2,...,p), & 1< <
§n = Z ogk U 3 log k (i p), &j= k%ﬁ (I<j<i<p)

is denoted by &€ = ¢ (©), which implies that ¢ (P,) = [—1,1]P®P+1)/2, It then follows that

p i—1

7 (d€) = pQlog k) ( T T #° ) dé = 7(a®)

i=1j=1

for v(d®) = ( 6-)d®, and

zln

[ f@mae vy =272 [ e e -1, apr e
@1 (Pr)
Replacing the 6;; in P, by the {Y ®},;, we obtain
P
Pl(©) = {Y eTt:1< H{YQ}M <E* 1/k<{Y®}y <kfori=2,...,p, and

=1

— k9 {Y @} < {Y O} < k(YO for i > j}.
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The function & = ¢x(©) implies that 61, = Ep(+€11)— 5:2552, 0;; = kS for i = 2,... ,p, and
0i; = fijkciﬁfii for i > j. The intervals “1 < [[?_{Y©®};; < k% and “1/k < {Y©®}; < k" are
equivalent to, respectively,

p p
) [Tyt <y < w90 Tt
=2 =2

60 < g < RS (12, )
Hence, P/(©) becomes

Pe(&) ={Y €T : Li(Y,€) <yi; <U;(Y,€) for 1 < j <i<p},

where
E—p(1+&11) [, ye_él ifi=45=1,
Lij(Y,€) = k=06 ifi=j>2,
—yyikCii &8 — Zin:j—&—l yimé'mjk;67rzj+€mm_£jj if1<j<i<p,
kPU=S) TT0_, y,,! ifi=j=1,
Ui (Y, §) = { k' 5 ifi=j>2,
yiikcij-l—ﬁii—fjj _ an:j-‘,—l yimfmjkcmj“!‘g'mm_ﬁjj ifl1<j<i<p.

The same arguments as in Section 3.1 yields that Py(&) D Py = {Y € T+ : Ly < yij <
U (1 <j<i<p)}, where, for a small enough ¢ > 0,

N if i =j,

U —e(l = kY 1< j<i<p,
.k if i =7,

T e — kY if1<j<i<p.

Therefore, we observe that U2 | Pf = T = §G. Since this satisfies (A6-3') of Corollary 2.1, the
proof is complete.
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