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Abstract

In estimation of the normal covariance matrix, finding a least favorable sequence
of prior distributions has been an open question for a long time. In this paper,
we address the classical problem and succeed in construction of such a sequence,
which establishes minimaxity of the best equivariant estimator. We also derive
unified conditions for a sequence of prior distributions to be least favorable in the
general estimation problem with an invariance structure. These unified conditions
are applied to both restricted and non-restricted cases of parameters, and we give a
couple of examples which show minimaxity of the best equivariant estimators under
restrictions of the covariance matrix.
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1 Introduction

In statistical decision theory of point estimation, minimaxity is a crucial principle, and
it is used as an intelligible criterion for measuring quality of estimators. There are two
well-known approaches to finding a minimax estimator or establishing minimaxity of a
specific estimator: one is the invariance approach and the other is the least favorable prior
approach (Strawderman (2000)).

The invariance approach is based on invariance under a group transformation. A
relationship between invariance and minimaxity is often referred to as the Hunt-Stein
theorem. It is an elegant theorem and requires invariance of the estimation problem and
amenability of the group. For more details and generalizations of the Hunt-Stein theo-
rem, see Kiefer (1957). Equivalent conditions for amenability of groups were extensively
reviewed by Bondar and Milnes (1981).
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On the other hand, the least favorable prior approach is a Bayesian method with a
least favorable prior distribution or a least favorable sequence of prior distributions (see
Berger (1985)). A valuable merit of the least favorable prior approach is that it has a
wide range of applications. For instance, this approach is of use in the case of a restricted
parameter space. Actually, Kubokawa (2004) applied this approach to show minimaxity
of the best equivariant and unrestricted estimators even in the case of restricted location
and scale parameters.

Although the invariance approach is quite general and hard to understand, the least
favorable approach gives an understandable proof for minimaxity of the best equivariant
estimator. In estimation of covariance matrix of a multivariate normal distribution, the
best equivariant estimator under the group transformation of lower triangular matrices
with positive diagonal elements, which is also called the James-Stein estimator, is known
to be minimax by the Hunt-Stein theorem from the invariance approach. It is noted that
other minimax estimation problems related to the covariance matrix have been studied in
Selliah (1964), Eaton and Olkin (1987), Krishnamoorthy and Gupta (1989) and others.
However, no least favorable sequence of prior distributions has been found since Stein
(1956) and James and Stein (1961). This is one of the most interesting issues in statistical
decision theory. Moreover in the case that the parameter space is restricted, it is not clear
whether the best equivariant estimator maintains the minimax property. In this paper,
we address these problems and succeed in constructing least favorable sequences of prior
distributions in restricted and non-restricted cases of the covariance matrix.

The outline of this paper is as follows. In Section 2, we describe exactly the general
estimation problem with an invariance structure which is similar to Hora and Buehler
(1966). Using the method given in Girshick and Savage (1951) and Kubokawa (2004)
based on a sequence of prior distributions, we derive sufficient and unified conditions
for minimaxity of the best equivariant estimator, which can be applied to restricted and
non-restricted cases of parameters.

Section 3 addresses the important issue on minimaxity in estimation of the covariance
matrix of a multivariate normal distribution model from the least favorable prior approach.
An explicit formula of a least favorable sequence of prior distributions is presented in
Section 3, and this sequence is shown to satisfy the general conditions for mimimiaxity
given in Section 2. These results are extended to a class of elliptical distribution models
including the matrix-variate F distribution.

Section 4 deals with the case that the covariance matrix is limited to a restricted
parameter space which is motivated by Pourahmadi (1999). Then, we construct a least
favorable sequence of prior distributions and establish minimaxity of the best equivariant
estimator by applying the general result given in Section 2. It is shown that the best
equivariant estimator is further improved on by the isotonic regression method.

The general conditions given in Section 2 and the arguments given in Sections 3 and
4 have the potential to apply to various restrictions of covariance and precision matrices.
In Section 5, we provide an example of restriction based on determinant of covariance
matrix, and state concluding remarks. Some proofs are given in the appendix.
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2 General Conditions for Minimaxity by Girshick-

Savage’s Method

In this section, we formulate the general estimation problem with an invariance struc-
ture and derive sufficient and unified conditions for minimaxity of the best equivariant
estimator.

Let X be an observable random variable. Let (X ,BX) be a measurable space of X
and P = {Pθ : θ ∈ Θ} be a family of identifiable probability measures with parameter
space Θ. We assume the following conditions.

(A1) There exist a group G = {g} and a measurable space (G,BG) on which there
exists a left invariant Haar measure γ satisfying

γ(gG) = γ(G) for all g ∈ G and all G ∈ BG.

Each g ∈ G induces a one-to-one transformation g from Θ onto itself defined by Pgθ(gA) =
Pθ(A) for any A ∈ BX and any θ ∈ Θ. The induced space G = {g : g ∈ G} is measurable.

(A2) There exists a one-to-one correspondence X ↔ (Tx, Ux) between X and G×UX

such that gX corresponds to (gTx, Ux) and UX is a measurable space. The statistic Ux is
maximal invariant under the transformation G.

(A3) There exists a one-to-one correspondence θ ↔ gθ between Θ and G such that
gθ corresponds to g gθ for all g ∈ G. The correspondence of gθ in G is denoted by gθ.

(A4) There exist a conditional probability density function p(g−1
θ tx|ux) given Ux = ux

such that for all A ∈ BX ,

Pθ[A] =

∫
A

p(g−1
θ tx|ux)px(ux)γ(dtx)γx(dux),

where px(·) is a marginal density function of Ux with respect to a measure γx(·) on UX .

Under these assumptions, we consider estimation of gθ under the loss function ℓ(gθ, d) =
L(g−1

θ d), which is invariant under the transformation gθ → ggθ and d → gd. Any equiv-
ariant estimator δ(Tx|Ux) satisfies that δ(gTx|Ux) = gδ(Tx|Ux) for any g ∈ G. The best
equivariant estimator of gθ is

δBE(Tx|Ux) = argmin
δ

∫
G
L(g−1

1 δ)p(g−1
1 Tx|Ux)ν(dg1), (2.1)

where ν(·) is the measure defined by

ν(dg) = γ(dg−1).

This is a right invariant Haar measure. Since γ(·) is left invariant, it is noted that
γ(hdg) = γ(dg) and γ((dg)h) = ∆(h)γ(dg) for h, g ∈ G, where ∆(·) is a modular function.

The best equivariant estimator is the generalized Bayes estimator against the right in-
variant measure ν(dg). Kiefer (1957) showed that the best equivariant estimator is mini-
max if the group G is amenable, namely, if there is a sequence of probability measures γj(·)
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on G that is asymptotically invariant in the sense that limj→∞
∫
{ψ(ag)−ψ(a)}γj(da) = 0

for every g ∈ G and every bounded measurable function ψ on G. However, the best
equivariant estimator is not necessarily minimax when the parameter space is restricted.
Kubokawa, et al . (2012) used this general framework for predicting the predictive den-
sity function, and showed minimaxity of the generalized Bayes predictive density function
under restriction of parameters based on the arguments of Girshick and Savage (1951).

We here show minimaxity of the best equivariant estimator based on the method of
Girshick and Savage (1951) in the context of point estimation in both cases of restricted
and non-restricted spaces. To this end, we provide the following unified conditions for
minimaxity.

(A5) In the case that Θ is restricted, assume that the restriction is equivalently
expressed as gθ ∈ P . Also, it is assumed that P ⊂ G ⊂ Rr; namely, G is a subset of r
dimensional Euclidean space Rr and P is a restricted space of G. In the case that Θ is
not restricted, P is identical to G.

(A6) There exist a sequence of subsets Pk (⊂ P ) and one-to-one functions φk(·) be-
tween Pk ↔ Ξ ⊂ Rr with ξ = φk(gθ) for gθ ∈ Pk where Pk, φk(·) and Ξ satisfy the
following conditions:

(A6-1) ∪∞
k=k0

Pk = P for some k0 ≥ 1.

(A6-2) Let V (Pk) =
∫
Pk
ν(dgθ). Let γk(·) be an induced measure defined by γk(A) =

ν(φ−1
k (A)) for A ∈ Ξ. Then, φk(Pk) = Ξ =

∏r
i=1[−1 + ai,k, 1 + bi,k] and∫

φk(Pk)

f(ξ)γk(dξ)/V (Pk) ≥
1

2r + ck

∫
I
(
ξ ∈

r∏
i=1

[−1 + ai,k, 1 + bi,k]
)
f(ξ)dξ, (2.2)

where f(·) ≥ 0, I(·) is the indicator function, and limk→∞ ai,k = limk→∞ bi,k = limk→∞ ck =
0 for i = 1, . . . , r.

(A6-3) Assume that gθg ∈ Pk is equivalent to [φ−1
k (ξ)]g ∈ Pk or g ∈ P̃k(ξ). For any

small enough ε > 0 and any ξ ∈
∏r

i=1[−1 + ai,k + ε, 1 + bi,k − ε], there exists a sequence
of subsets P ∗

k such that P ∗
k does not depend on ξ, P ∗

k ⊂ P̃k(ξ) and ∪∞
k=k1

P ∗
k = G for some

k1 ≥ 1.

Theorem 2.1 Assume conditions from (A1) to (A6). Then, the best equivariant esti-
mator δBE is minimax.

Proof. We can show this theorem along the same lines as in Kubokawa (2004) and
Kubokawa et al . (2012) who modified the method of Girshick and Savage (1951). Consider
the sequence of prior distributions given by

πk(gθ)ν(dgθ) =

{
{V (Pk)}−1ν(dgθ) if gθ ∈ Pk

0 otherwise.

This yields the Bayes estimators

δπk (tx|ux) = argmin
δ

∫
g1∈Pk

L(g−1
1 δ)p(g−1

1 tx|ux)ν(dg1),
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with conditional Bayes risks

rk(πk, δ
π
k |ux) =

1

V (Pk)

∫
gθ∈Pk

∫
L(g−1

θ δπk (tx|ux))p(g−1
θ tx|ux)γ(dtx)ν(dgθ).

It is easy to check that rk(πk, δ
π
k |ux) ≤ rk(πk, δ

BE|ux) = R0(ux), so it is sufficient to show
that lim infk→∞ rk(πk, δ

π
k |ux) ≥ R0(ux), where R0(ux) =

∫
L(δBE(tx|ux))p(tx|ux)γ(dtx).

Making the transformation sx = g−1
θ tx yields

rk(πk, δ
π
k |ux) =

1

V (Pk)

∫
gθ∈Pk

∫
L(g−1

θ δπk (gθsx|ux))p(sx|ux)γ(dsx)ν(dgθ), (2.3)

where δπk (gθsx|ux) is expressed as

δπk (gθsx|ux) = argmin
δ

∫
g1∈Pk

L(g−1
1 δ)p(g−1

1 gθsx|ux)ν(dg1).

Now, make the transformation g2 = g−1
θ g1 with ν(dg1) = ∆(gθ)ν(dg2). Then,

δπk (gθsx|ux) = argmin
δ

∫
gθg2∈Pk

L(g−1
2 g−1

θ δ)p(g−1
2 sx|ux)∆(gθ)ν(dg2),

namely, we have g−1
θ δπk (gθsx|ux) = δ∗k(sx|ux, gθ) where

δ∗k(sx|ux, gθ) = argmin
δ

∫
gθg2∈Pk

L(g−1
2 δ)p(g−1

2 sx|ux)ν(dg2).

In view of the assumptions, there exists a transformation ξ = φk(gθ) satisfying the con-
dition (A6). Note that gθg2 ∈ Pk is equivalent to φ−1

k (ξ)g2 ∈ Pk, or

g2 ∈ {[φ−1
k (ξ)]−1g; g ∈ Pk} ≡ P̃k(ξ).

Then, the Bayes estimator δ∗k(sx|ux, gθ) is rewritten as

δ∗k(sx|ux, φ−1
k (ξ)) = argmin

δ

∫
g2∈P̃k(ξ)

L(g−1
2 δ)p(g−1

2 sx|ux)ν(dg2),

and the conditional Bayes risk (2.3) is rewritten as

rk(πk, δ
π
k |ux) =

1

V (Pk)

∫
ξ∈φk(Pk)

∫
L(δ∗k(sx|ux, φ−1

k (ξ)))p(sx|ux)γ(dsx)γk(dξ).

It is noted that from (A6-2), for any small ε > 0,

φk(Pk) =
r∏

i=1

[−1 + ai,k, 1 + bi,k] ⊃
r∏

i=1

[−1 + ai,k + ε, 1 + bi,k − ε] ≡ Ik,ε.

Then from (2.2), the conditional Bayes risk is evaluated as

rk(πk, δ
π
k |ux) ≥

1

2r

∫
I(ξ ∈ Ik,ε)

∫
L(δ∗k(sx|ux, φ−1

k (ξ)))p(sx|ux)γ(dsx)dξ.
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For ξ ∈ Ik,ε, from (A6-3), it can be seen that δ∗k(sx|ux, φ−1
k (ξ)) → δBE(sx|ux) as k → ∞.

Hence, Fatou’s lemma is used to bound the Bayes risks as

lim inf
k→∞

rk(πk, δ
π
k |ux)

≥ 1

2r

∫
lim inf
k→∞

I(ξ ∈ Ik,ε)

∫
p(sx|ux) · lim inf

k→∞
L(δ∗k(sx|ux, φ−1

k (ξ)))γ(dsx)dξ

=
1

2r

∫
|−1+ε,1−ε|r

dξ

∫
p(sx|ux)L(δBE(sx|ux))γ(dsx)

=(1− ε)rR(θ, δBE(tx|ux)) = (1− ε)rR0(ux)

From the arbitrariness of ε > 0, it follows that lim infk→∞ rk(πk, δ
π
k |ux) ≥ R0(ux), com-

pleting the proof of Theorem 2.1.

In some examples, handling g−1
θ as a parameter is more convenient than treating

gθ. Namely, in assumption (A4), consider the conditional probability density function
p(hθtx|ux) and the probability

Pθ[A] =

∫
A

p(hθtx|ux)px(dtx)γ(dtx)γx(dux),

where hθ = g−1
θ . In this case, the best equivariant estimator given in (2.1) is

δBE(Tx|Ux) = argmin
δ

∫
G
L(h1δ)p(h1Tx|Ux)γ(dh1),

for the left invariant measure γ(·). The minimaxity of the best equivariant estimator
under restriction can be similarly shown by modifying assumptions (A5) and (A6) as
follows:

(A5′) In the case that Θ is restricted, assume that the restriction is equivalently
expressed as hθ ∈ P . Also, it is assumed that P ⊂ G ⊂ Rr; namely, G is a subset of r
dimensional Euclidean space Rr and P is a restricted space of G. In the case that Θ is
not restricted, P is identical to G.

(A6′) There exist a sequence of subsets Pk and one-to-one functions φk(·) between
Pk ↔ Ξ ⊂ Rr with ξ = φk(hθ) for hθ ∈ G such that Pk and φk(·) satisfy the following
conditions:

(A6-1′) ∪∞
k=k0

Pk = P for some k0 ≥ 1.

(A6-2′) Let V (Pk) =
∫
Pk
γ(dhθ). Let γk(·) be an induced measure defined by γk(A) =

γ(φ−1
k (A)) for A ∈ Ξ. Then, φk(Pk) = Ξ =

∏r
i=1[−1 + ai,k, 1 + bi,k] and∫

φk(Pk)

f(ξ)γk(dξ)/V (Pk) ≥
1

2r + ck

∫
I
(
ξ ∈

r∏
i=1

[−1 + ai,k, 1 + bi,k]
)
f(ξ)dξ,

where f(·) ≥ 0, I(·) is the indicator function, and limk→∞ ai,k = limk→∞ bi,k = limk→∞ ck =
0 for i = 1, . . . , r.
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(A6-3′) Assume that hhθ ∈ Pk is equivalent to h ∈ P̃k(ξ). For any small enough ε > 0
and any ξ ∈

∏r
i=1[−1 + ai,k + ε, 1 + bi,k − ε], there exists a sequence of subsets P ∗

k such
that P ∗

k does not depend on ξ, P ∗
k ⊂ P̃k(ξ) and ∪∞

k=k1
P ∗
k = G for some k1 ≥ 1.

Under assumptions (A1)-(A4), (A5′) and (A6′), we can check each step in the proof
of Theorem 2.1 by replacing g−1

θ , g−1
1 , g−1

2 , ν(·), g2 = g−1
θ g1 and gθg2 ∈ Pk with hθ, h1,

h2, γ(·), h2 = h1h
−1
θ and h2hθ ∈ Pk, respectively. Then, it can be verified that the best

equivariant estimator is minimax.

Corollary 2.1 Assume conditions (A1)-(A4), (A5′) and (A6′). Then, the best equiv-
ariant estimator δBE is minimax.

3 A Least Favorable Sequence of Prior Distributions

in Estimation of Covariance Matrix

We now construct a least favorable sequence of prior distributions in estimation of the
normal covariance and precision matrices. The problem of finding such a sequence for the
normal covariance matrix has been an open question for a long time since Stein (1956)
and James and Stein (1961). Thus, the derived sequence, which satisfies the general
conditions given in Theorem 2.1, brings a solution to one of the most interesting issues in
statistical decision theory.

3.1 Estimation of normal covariance and precision matrices

Consider the estimation of Σ based on a p × p random matrix V having the Wishart
distribution Wp(n,Σ). Let T + be the set of p× p lower triangular matrices with positive
diagonal entries. By the Cholesky decomposition, Σ−1 and V can be written as Σ−1 =
ΘtΘ and V = TT t for Θ = (θij) ∈ T + and T = (tij) ∈ T +. The probability density
function of T is

fW (T |Θ)γ(dT ) = C|ΘT |n exp
[
−1

2
tr [(ΘT )(ΘT )t]

]
γ(dT ),

where C is a normalizing constant and γ(dT ) = (
∏p

i=1 t
−i
ii )dT , which is left-invariant

measure on T +. Denote a loss function by L(ΘδΘt), where δ is an estimator of Σ.

For all A ∈ T +, the group transformation with respect to T + on a random matrix T
and a parameter matrix Θ is defined by (T ,Θ) → (AT ,ΘA−1). Then the equivariant
estimator with respect to the group T + has the form TDT t, where D is a diagonal
matrix independent of T . The best diagonal matrix D which yields the best equivariant
estimator δBE, say, depends on the loss function L.

Let cij = 3(i− j)− 1. Define a set Pk of Θ by

Pk = {Θ ∈ T + : 1/k < θii < k (i = 1, . . . , p) and −kcijθii < θij < kcijθii (1 ≤ j < i ≤ p)}.

Then, we consider the sequence of prior distributions given by

πk(Θ)dΘ =
γ(dΘ)

V (Pk)
I(Θ ∈ P k), k = 1, 2, . . . , (3.1)
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where γ(dΘ) = (
∏p

i=1 θ
−i
ii )dΘ, V (Pk) =

∫
Pk
γ(dΘ) = 2p(p+1)/2(log k)p

∏p
i=1

∏i−1
j=1 k

cij , and

I(·) denotes the indicator function. The following theorem shows that the sequence (3.1)
is least favorable.

Theorem 3.1 The best equivariant estimator δBE is minimax.

Proof. The minimaxity of the best equivariant estimator of Σ can be shown by checking
the conditions (A6-1′)-(A6-3′) of Corollary 2.1 for P = G = T +. It holds that ∪∞

k=1Pk =
T +, which satisfies (A6-1′). For (A6-2′), let ξii = log θii/ log k for i = 1, . . . , p and let
ξij = θij/(k

cijθii) for i > j. This correspondence is denoted by the function ξ = φk(Θ).
Then, we obtain φk(Pk) = [−1, 1]p(p+1)/2 and

γk(dξ) = (log k)p
( p∏

i=1

i−1∏
j=1

kcij
)
dξ = γ(dΘ)

for ξ = (ξ11, ξ21, ξ22, . . . , ξp1, . . . , ξpp)
t and γ(dΘ) = (

∏p
i=1 θ

−i
ii )dΘ. Also, it follows that∫

φk(Pk)

f(ξ)γk(dξ)/V (Pk) = 2−p(p+1)/2

∫
f(ξ)I(ξ ∈ [−1, 1]p(p+1)/2)dξ.

Finally, we shall show condition (A6-3′). Note that “Y Θ ∈ Pk” is equivalent to
“Y ∈ P ′

k(Θ)”, where

P ′
k(Θ) = {Y ∈ T + : k−1 < {Y Θ}ii < k (i = 1, . . . , p) and

− kcij{Y Θ}ii < {Y Θ}ij < kcij{Y Θ}ii (i > j)}

=
{
Y ∈ T + : k−1 < yiiθii < k (i = 1, . . . , p) and

− kcijyiiθii <
i∑

m=j

yimθmj < kcijyiiθii (i > j)
}
.

By the function ξ = φk(Θ), “Y ∈ P ′
k(Θ)” is expressed as “Y ∈ P̃k(ξ)”, where

P̃k(ξ) =
{
Y ∈ T + : k−1 < yiik

ξii < k (i = 1, . . . , p) and

− yiik
cij+ξii < yijk

ξjj +
i∑

m=j+1

yimξmjk
cmj+ξmm < yiik

cij+ξii (i > j)
}

=
{
Y ∈ T + : k−(1+ξii) < yii < k1−ξii (i = 1, . . . , p) and (3.2)

Lij(Y , ξ) < yij < Uij(Y , ξ) (i > j)
}
,

with

Uij(Y , ξ) = yiik
cij+ξii−ξjj −

i∑
m=j+1

yimξmjk
cmj+ξmm−ξjj ,

Lij(Y , ξ) = −yiikcij+ξii−ξjj −
i∑

m=j+1

yimξmjk
cmj+ξmm−ξjj .
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Recall that cij = 3(i − j) − 1. Also, assume that |ξij| < 1 − ε for any ε > 0 and i ≥ j.
Then, ξij satisfies that 1− ξij > ε and 1 + ξij > ε. For each yii, it follows from (3.2) that
the set {yii ∈ R : k−(1+ξii) < yii < k1−ξii} includes

{yii ∈ R : k−ε < yii < kε}. (3.3)

As proved in Lemma 3.1 given below, we express the upper and lower bounds of yij as

Uij(Y , ξ) > yiiε(1− k−1)i−j−1kcij+ξii−ξjj , (3.4)

Lij(Y , ξ) < −yiiε(1− k−1)i−j−1kcij+ξii−ξjj (3.5)

for i > j. Hence from (3.3) and (3.4), it is observed that

Uij(Y , ξ) > k−εε(1− k−1)i−j−1k3(i−j)−1−2+(1+ξii)+(1−ξjj)

> k−εε(1− k−1)i−j−1k3(i−j−1)+2ε

> ε(1− k−1)i−j−1kε ≡ U∗
ij,

since i − j − 1 ≥ 0. Similarly, using (3.3) and (3.5) gives that Lij(Y , ξ) < −ε(1 −
k−1)i−j−1kε ≡ L∗

ij. Let

P ∗
k = {Y ∈ T + : k−ε < yii < kε (i = 1, . . . , p) and L∗

ij < yij < U∗
ij (i > j)}.

Then, P ∗
k ⊂ P̃k(ξ) and ∪∞

k=1P
∗
k = T + = G, which satisfies (A6-3′). Hence from Corollary

2.1, the best equivariant estimator of covariance matrix Σ is minimax.

To complete the proof of Theorem 3.1, we need to show the following lemma.

Lemma 3.1 For i > j,

Uij(Y , ξ) > yiiε(1− k−1)i−j−1kcij+ξii−ξjj , (3.6)

Lij(Y , ξ) < −yiiε(1− k−1)i−j−1kcij+ξii−ξjj . (3.7)

Proof. We show the inequality (3.6) by induction. For j = i − 1, Ui,i−1(Y , ξ) =
yii(1− ξi,i−1)k

ci,i−1+ξii−ξi−1,i−1 > yiiεk
ci,i−1+ξii−ξi−1,i−1 , so that the inequality (3.6) holds for

j = i− 1. For ℓ = i− 1, . . . , j + 1, suppose that the inequality

Uiℓ(Y , ξ) > yiiε(1− k−1)i−ℓ−1kciℓ+ξii−ξℓℓ , (3.8)

namely,
yiℓ < yiiε(1− k−1)i−ℓ−1kciℓ+ξii−ξℓℓ . (3.9)

Then, we verify the inequality when ℓ = j. Using the assumption (3.8) and (3.9) of
induction, we see that

Uij(Y , ξ) = yiik
cij+ξii−ξjj

{
1− ξij −

i−1∑
m=j+1

yim
yii

ξmjk
cmj−cij+ξmm−ξii

}
> yiik

cij+ξii−ξjj
{
ε−

i−1∑
m=j+1

ε(1− k−1)i−m−1kcim+cmj−cij
}
.
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Since cim+ cmj − cij = 3(i−m)− 1+3(m− j)− 1− 3(i− j)+ 1 = −1, it is observed that

Uij(Y , ξ) > yiik
cij+ξii−ξjj

{
ε−

i−1∑
m=j+1

ε(1− k−1)i−m−1k−1
}

= yiik
cij+ξii−ξjjε

{
1− 1

k
−
(
1− 1

k

)1
k
−
(
1− 1

k

)2 1

k
− · · · −

(
1− 1

k

)i−j−2 1

k

}
= yiik

cij+ξii−ξjjε
(
1− 1

k

)i−j−1

,

which proves the inequality (3.6). Since the inequality (3.7) can be shown similarly, we
get Lemma 3.1.

In estimation of the covariance matrix Σ, Stein (1956) employed the so-called Stein
loss function given by

LS(δ,Σ) = trΣ−1δ − log |Σ−1δ| − p = trΘδΘt − log |ΘδΘt| − p,

and the best equivariant estimator is given by δBE = TDBET t, where

DBE =
[∫

ΘtΘfW (Ip|Θ)γ(dΘ)
]−1

= diag (d1, . . . , dp),

for di = (n+ p− 2i+ 1)−1. From Theorem 3.1, δBE is minimax relative to LS(δ,Σ), and
the least favorable sequence of prior distributions is given in (3.1). Similarly, we use the
following invariant loss functions

LQ(δ,Σ) = tr (Σ−1δ − Ip)
2 = tr (ΘδΘt − Ip)

2,

LP (δ,Σ) = trΣδ−1 − log |Σδ−1| − p = tr (ΘδΘt)−1 − log |(ΘδΘt)−1| − p,

so that the resulting best equivariant estimators are minimax. It is noted that the loss
LP is used in estimation of the precision matrix Σ−1 rather than of the covariance matrix
Σ. For more details of estimation with respect to LQ and LP , see Selliah (1964) and
Krishnamoorthy and Gupta (1989), respectively.

The same arguments can be used for estimation of Θ based on the Cholesky decom-
position. The best equivariant estimator of Θ is given in Eaton and Olkin (1987), and its
minimaxity can be shown by the arguments based on the sequence of prior distributions.

3.2 Extension to elliptical distributions

The results given in Subsection 3.1 can be extended to a class of elliptical distributions
whose probability density function (p.d.f.) with respect to γ(dT ) is given by

fϕ(T |Θ)γ(dT ) = |ΘT |nϕ(ΘT {ΘT }t)γ(dT ), (3.10)

for an integrable function ϕ(·). It is assumed that ϕ satisfies ϕ(A) = ϕ(BAB) for a
squared matrix A and a diagonal matrix B with diagonal elements ±1. Then the best
equivariant estimator relative to an invariant loss L(ΘδΘt) is given by

δBE
ϕ = argmin

δ

∫
L(ΘδΘt)fϕ(T |Θ)γ(dΘ) = TDϕT

t,

10



where Dϕ is a diagonal matrix whose diagonal elements are constants depending on the
functions ϕ and L. Then, we obtain the following theorem based on the same arguments
as in the previous subsection.

Theorem 3.2 Assume that the random matrix is distributed as an elliptical distribution
with the p.d.f. (3.10). Then the best equivariant estimator δBE

ϕ is minimax.

An example of fϕ(T |Θ)γ(dT ) is the p.d.f. of matrix-variate F distribution or matrix-
variate beta distribution, which is expressed as

fF (T |Θ)γ(dT ) = C|ΘT |n|Ip +ΘT {ΘT }t|−(v+n+p−1)/2γ(dT ),

where C is a normalizing constant and v is a positive constant. The best equivariant
estimator of Σ = (ΘtΘ)−1 relative to the Stein loss is δBE

F = [
∫
ΘtΘfF (T |Θ)γ(dΘ)]−1.

Making transformation from Θ to ΘT−1 gives the expression δBE
F = TDBE

F T t where

DBE
F =

[∫
ΘtΘfF (Ip|Θ)γ(dΘ)

]−1

. (3.11)

The value of DBE
F is hard to derive, but we can obtain it in the following proposition

which will be proved in the appendix.

Proposition 3.1 Suppose that v > 2. The exact value of DBE
F defined in (3.11) is given

by DBE
F = diag (h−1

1 , . . . , h−1
p ) for

hi =
n− i+ 1

v + i− 3
· v + p− 2

v + i− 2
+

p− i

v + i− 2
(i = 1, . . . , p).

Theorem 3.2 suggests that the best equivariant estimator δBE
F is minimax. It is noted

that δBE
F is the same as a minimax estimator obtained by Muirhead and Verathaworn

(1985) from the invariance approach. Our notation (n, p, v) corresponds to (n1,m, n2 −
m+ 1) in their notation. See Section 3 of Muirhead and Verathaworn (1985).

4 Estimation under Restriction of Lower Triangular

Matrix

4.1 Minimaxity under order-restricted diagonal elements

Consider the unique reparametrization for Σ of the form ΓΣΓt = Λ, where Γ = (γij) is
a lower triangular matrix with unit diagonal elements, γii = 1, and Λ = diag (λ1, . . . , λp)
with positive diagonal elements λi. Pourahmadi (1999) has pointed out a statistical mean-
ing of the γij and λi in analysis of longitudinal data and showed that they are interpreted
as the autoregressive coefficients and the innovation (residual) variances, respectively.

In the previous section, we used the Cholesky decomposition Σ−1 = ΘtΘ where
Θ = (θij) ∈ T +. It then follows that λi = θ−2

ii and γij = θij/θii because Σ−1 = ΓtΛ−1Γ
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and the Cholesky decomposition is unique. In this section, we consider the restriction
λ1 ≥ λ2 ≥ · · · ≥ λp, namely

θ−2
11 ≥ θ−2

22 ≥ · · · ≥ θ−2
pp , or, equivalently, θ11 ≤ θ22 ≤ · · · ≤ θpp. (4.1)

This signifies that the innovation variances decrease as time goes. For simple explanation
of this constraint, see Pourahmadi (1999, Section 2.6).

For cij = 3(i− j)− 1, define a set PL
k of Θ by

PL
k = {Θ ∈ T + : k−1/2 ≤ θ11 ≤ k1/2, 1 ≤ θii/θi−1,i−1 ≤ k2 (i = 2, . . . , p) and

− kcijθii ≤ θij ≤ kcijθii (1 ≤ j < i ≤ p)}.

Then, we consider the sequence of prior distributions given by

πk(Θ)dΘ =
γ(dΘ)

V (PL
k )
I(Θ ∈ PL

k ), k = 1, 2, . . . ,

where γ(dΘ) = (
∏p

i=1 θ
−i
ii )dΘ and V (PL

k ) = 2p(p+1)/2−1(log k)p
∏p

i=1

∏i−1
j=1 k

cij .

Theorem 4.1 For an elliptical distribution (3.10) with the restriction (4.1), the best
equivariant and unrestricted estimator δBE

ϕ is minimax.

Proof. The minimaxity is verified by checking the conditions (A6-1′)-(A6-3′) of Corollary
2.1. Let G = T +, P = {Θ ∈ T + : θ11 ≤ θ22 ≤ · · · ≤ θpp} and Pk = PL

k for G, P and
Pk in the assumptions (A5′) and (A6′). It is seen that ∪∞

k=1Pk = P ⊂ T +. The function
ξ = φk(Θ) is defined by

ξ11 =
2 log θ11
log k

, ξii =
1

log k
log

θii
θi−1,i−1

− 1 (i = 2, . . . , p),

ξij =
θij

θiikcij
(1 ≤ j < i ≤ p).

Then, it follows that φk(Pk) = [−1, 1]p(p+1)/2 and

γk(dξ) = 2−1(log k)p
( p∏

i=1

i−1∏
j=1

kcij
)
dξ = γ(dΘ)

for γ(dΘ) = (
∏p

i=1 θ
−i
ii )dΘ.

For (A6-3′), “Y Θ ∈ Pk” is rewritten as “Y ∈ P ′
k(Θ)”, where

P ′
k(Θ) =

{
Y ∈ T + : k−1/2 ≤ {Y Θ}11 ≤ k1/2, 1 ≤ {Y Θ}ii

{Y Θ}i−1,i−1

≤ k2 (i = 2, . . . , p)

and− kcij{Y Θ}ii ≤ {Y Θ}ij ≤ kcij{Y Θ}ii (1 ≤ j < i ≤ p)

}
=

{
Y ∈ T + : k−1/2 ≤ y11θ11 ≤ k1/2, 0 ≤ yiiθii

yi−1,i−1θi−1,i−1

≤ k2 (i = 2, . . . , p)

and− kcijyiiθii ≤
i∑

m=j

yimθmj ≤ kcijyiiθii (1 ≤ j < i ≤ p)

}
.
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It is noted that θii = kξ11/2+
∑i

ℓ=2(1+ξℓℓ) for i ≥ 2. Thus by the function ξ = φk(Θ),
“Y ∈ P ′

k(Θ)” is expressed as “Y ∈ P̃k(ξ)”, where

P̃k(ξ) = {Y ∈ T + : Lij(Y , ξ) ≤ yij ≤ Uij(Y , ξ) (1 ≤ j ≤ i ≤ p)}

with

Lij(Y , ξ) =


k−(1+ξ11)/2 if i = j = 1,

yi−1,i−1k
−(1+ξii) if i = j ≥ 2,

−yiikcij+
∑i

ℓ=j+1(1+ξℓℓ) −
∑i

m=j+1 yimξmjk
cmj+

∑m
ℓ=j+1(1+ξℓℓ) if i > j,

Uij(Y , ξ) =


k(1−ξ11)/2 if i = j = 1,

yi−1,i−1k
1−ξii if i = j ≥ 2,

yiik
cij+

∑i
ℓ=j+1(1+ξℓℓ) −

∑i
m=j+1 yimξmjk

cmj+
∑m

ℓ=j+1(1+ξℓℓ) if i > j.

Let |ξij| < 1− ε for i ≥ j and any small ε > 0. We here use the same arguments as in
the preceding section and can easily show that, for i > j,

Uij(Y , ξ) > yiiε(1− k−1)i−j−1kcij+
∑i

ℓ=j+1(1+ξℓℓ),

Lij(Y , ξ) < −yiiε(1− k−1)i−j−1kcij+
∑i

ℓ=j+1(1+ξℓℓ),

which yields

L∗
ij =

{
k−ε/2 if i = j,

−ε(1− k−1)i−j−1kε if i > j,

U∗
ij =

{
kε/2 if i = j,

ε(1− k−1)i−j−1kε if i > j.

Let
P ∗
k = {Y ∈ T + : L∗

ij < yij < U∗
ij (1 ≤ j ≤ i ≤ p)}.

It then holds that P ∗
k ⊂ P̃k(ξ) and ∪∞

k=1P
∗
k = T + = G, which satisfies (A6-3′). Hence the

proof is complete.

4.2 Improvement by the isotonic regression method

In the previous subsection, the best equivariant and unrestricted estimator is shown to
remain minimax under the restriction (4.1). In this subsection, it is shown that the best
equivariant estimator can be further improved on by the isotonic regression method under
the restriction (4.1).

Let V ∼ Wp(n,Σ), and the Cholesky decomposition is written as V = TT t with
T = (tij) ∈ T +. Let T 1 be the lower triangular matrix with unit diagonal elements
such that, for i > j, the (i, j) off-diagonal elements are tij/tjj. Then the best equivariant
estimator with respect to the Stein loss is rewritten as δBE = T 1Φ

BE(t)T t
1 for t =

(t211, . . . , t
2
pp), where ΦBE(t) = diag (d1t

2
11, . . . , dpt

2
pp) with di = (n + p − 2i + 1)−1. If

13



θ−2
11 ≥ θ−2

22 ≥ · · · ≥ θ−2
pp on Σ = (ΘtΘ)−1, we should modify the ordering property of

diagonal elements of ΦBE(t) as long as Pr(d1t
2
11 ≥ · · · ≥ dpt

2
pp) < 1.

To revise the unnatural ordering, we apply the isotonic regression to diagonal ele-
ments of ΦBE(t). Let ΦBE(t) = diag (ϕBE

1 , . . . , ϕBE
p ) with ϕBE

i = dit
2
ii, and let ΦIR(t) =

diag (ϕIR
1 , . . . , ϕIR

p ), where {ϕIR
1 , . . . , ϕIR

p } is a solution of minimizing
∑p

i=1(λi − ϕBE
i )2

subject to λ1 ≥ λ2 ≥ · · · ≥ λp.

Theorem 4.2 Assume that V ∼ Wp(n,Σ). Under the restriction θ−2
11 ≥ θ−2

22 ≥ · · · ≥ θ−2
pp ,

δIR = T 1Φ
IR(t)T t

1 is minimax estimator dominating δBE relative to the Stein loss.

We verify this theorem via the following lemma. For details of the lemma, see Rock-
afellar (1970) and Calvin and Dykstra (1991).

Lemma 4.1 (Fenchel duality theorem) Let f(x) be a concave function defined in Rp

and let K be a closed convex cone in Rp. Define the concave conjugate of f(x) and the
dual cone of K as, respectively,

f ∗(y) = inf
x∈Rp

{ p∑
i=1

xiyi − f(x)

}
, K∗ =

{
y ∈ Rp :

p∑
i=1

xiyi ≤ 0, ∀x ∈ K
}
.

Then we have
sup
x∈K

f(x) = − sup
y∈K∗

f ∗(y) (4.2)

if either ri(dom f)∩ ri(K) ̸= ∅ or ri(dom f ∗)∩ ri(K∗) ̸= ∅, where ri means relative interior
and dom f = {x ∈ Rp : f(x) > −∞}. Denote by x∗ and y∗, respectively, solutions of
the left- and right-hand sides of (4.2). It then holds that (a) x∗ ∈ K, (b) y∗ ∈ K∗, (c)
(x∗)ty∗ =

∑p
i=1 x

∗
i y

∗
i = 0 and (d) −y∗ is a subgradient of −f at x∗.

Proof of Theorem 4.2. Let Φ(t) = diag (ϕ1, . . . , ϕp) whose diagonal elements are
functions of t. Recall that Σ−1 = ΓtΛ−1Γ with λ1 ≥ λ2 ≥ · · · ≥ λp. Then the risk of
estimator δ = T 1Φ(t)T t

1 is written as

R(δ,Σ) = E[trΣ−1T 1Φ(t)T t
1 − log |Σ−1T 1Φ(t)T t

1| − p]

= E[trΛ−1UΦ(t)U t − log |Λ−1Φ(t)| − log |UU t| − p],

where the second equality follows from the transformation U = (uij) = ΓT 1. The first
term of the last right-hand side is expressed as

E[trΛ−1UΦ(t)U t] = E

[ p∑
i=1

ϕi{U tΛ−1U}ii
]
= E

[ p∑
i=1

ϕi

p∑
j=i

u2ji/λj

]
.

It is noted that uii = 1 and that, from the Bartlett decomposition, t2ii/λi ∼ χ2
n−i+1 for

i = 1, . . . , p and uji|tii ∼ N (0, λj/t
2
ii) for j > i. Thus, we obtain

E[trΛ−1UΦ(t)U t] = E

[ p∑
i=1

ϕiE

[
1

λi
+
u2i+1,i

λi+1

+ · · ·+
u2pi
λp

∣∣∣∣ t ]]

= E

[ p∑
i=1

ϕi(λ
−1
i + (p− i)/t2ii)

]
,
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which yields

R(δ,Σ) = E

[ p∑
i=1

{ϕi(λ
−1
i + (p− i)/t2ii)− log(ϕi/λi)}

]
− p. (4.3)

Let ϕBE = (ϕBE
1 , . . . , ϕBE

p )t and ϕIR = (ϕIR
1 , . . . , ϕIR

p )t. For i = 1, . . . , p, let ξi = λ−1
i

and ai = (p − i)/t2ii. Denote Rp
+ = {x ∈ Rp : xi > 0 for each i}. Then ξ = (ξ1, . . . , ξp)

t

belongs to
K = {ξ ∈ Rp

+ : ξ1 ≤ · · · ≤ ξp}.

Also denote the dual cone of K by

K∗ = {η ∈ Rp : ηtx ≤ 0 for any x ∈ K}.

Let the objective function be

ℓ(ξ|ϕBE) =

p∑
i=1

{log ξi − ϕBE
i (ξi + ai)},

which is the concave function of ξ. It is noted from Robertson et al. (1988) that ϕIR
i ’s are

the same as certain solutions ξ̂−1
i of maximizing

∑p
i=1{log ξi − ϕBE

i ξi} subject to ξ ∈ K
and, moreover, the ξ̂i’s are equivalent to solutions of maximizing ℓ(ξ|ϕBE) subject to
ξ ∈ K.

The concave conjugate function of ℓ(ξ|ϕBE) is given by

ℓ∗(η|ϕBE) = inf
ξ∈Rp

+

{ p∑
i=1

ξiηi − ℓ(ξ|ϕBE)

}

= inf
ξ∈Rp

+

[ p∑
i=1

{ξi(ηi + ϕBE
i )− log ξi}

]
+

p∑
i=1

ϕBE
i ai

=

p∑
i=1

log(ηi + ϕBE
i ) + p+

p∑
i=1

ϕBE
i ai

and the domain of ℓ∗(η|ϕBE) is {η ∈ Rp : η + ϕBE ≻ 0p}, where “≻” stands for “is
componentwise greater than”.

The subgradient of −ℓ(ξ|ϕBE) is equal to (ϕBE
1 − ξ−1

1 , . . . , ϕBE
p − ξ−1

p )t, so Lemma 4.1

(d) implies that the supremum of ℓ∗(η|ϕBE) attains at

η̂ = (ξ̂−1
1 − ϕBE

1 , . . . , ξ̂−1
p − ϕBE

p )t.

Since ξ̂−1
i = ϕIR

i , we can see that

− sup
η∈K∗

η+ϕBE≻0p

ℓ∗(η|ϕBE) = −ℓ∗(η̂|ϕBE) = −
p∑

i=1

log ϕIR
i − p−

p∑
i=1

ϕBE
i ai. (4.4)
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It is noted that ϕBE
i eai(ϕ

IR
i −ϕBE

i ) > 0 for each i. Replacing ϕIR
i by ϕBE

i eai(ϕ
IR
i −ϕBE

i ) in the
above expression yields

− sup
η∈K∗

η+ϕBE≻0p

ℓ∗(η|ϕBE) ≤ −
p∑

i=1

log(ϕBE
i eai(ϕ

IR
i −ϕBE

i ))− p−
p∑

i=1

ϕBE
i ai

= −
p∑

i=1

log ϕBE
i − p−

p∑
i=1

ϕIR
i ai. (4.5)

Combining (4.4) and (4.5) gives that
∑p

i=1(ϕ
IR
i ai− log ϕIR

i ) ≤
∑p

i=1(ϕ
BE
i ai− log ϕBE

i ), or,
equivalently,

p∑
i=1

{ϕIR
i ai − log(ϕIR

i /λi)} ≤
p∑

i=1

{ϕBE
i ai − log(ϕBE

i /λi)}. (4.6)

From the fact that η̂ ∈ K∗ and ξ ∈ K, it follows that λ̂
t
ξ ≤ 0, namely,

p∑
i=1

(ϕIR
i − ϕBE

i )ξi =

p∑
i=1

(ϕIR
i − ϕBE

i )λ−1
i ≤ 0. (4.7)

Combining (4.6) and (4.7), we can see that

p∑
i=1

{ϕIR
i (λ−1

i + (p− i)/t2ii)− log(ϕIR
i /λi)} ≤

p∑
i=1

{ϕBE
i (λ−1

i + (p− i)/t2ii)− log(ϕBE
i /λi)}

with probability one. Thus, it follows from (4.3) that R(δIR,Σ) ≤ R(δBE,Σ), which
implies that δIR is minimax estimator improving δBE.

5 Concluding Remarks

In this paper, we have considered the general estimation problem with the invariance
structure, and have derived sufficient and unified conditions under which a sequence of
prior distributions is least favorable, namely, the best equivariant estimator is minimax.
The unified conditions can be used in both restricted and non-restricted cases of param-
eters. The most striking result of the paper is that we have succeeded in deriving an
explicit formula for a least favorable sequence of prior distributions for the covariance
matrix. This has been an open question for a long time since Stein (1956) and James and
Stein (1961). Interestingly, our general conditions are satisfied by the suggested sequence
of prior distributions of the covariance matrix. We have also applied the general results
given in Theorem 2.1 to the restricted case of lower triangular matrix for establishing min-
imaxity of the best equivariant and unrestricted estimators, which is further improved on
by the isotonic regression method.

The general conditions in Theorem 2.1 and the arguments used in the proofs of Theo-
rem 3.1 have the potential to apply to various restrictions of covariance and precision ma-
trices. For example, consider the restriction |Σ| ≤ c for positive c, namely,

∏p
i=1 θ

2
ii ≥ 1/c.

Then, we can get the following theorem which will be shown in the appendix.
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Theorem 5.1 For an elliptical distribution (3.10) with the restriction |Σ| ≤ c, the best
equivariant estimator of Σ is minimax.

The results given in this paper can be extended to more general models with both
location and scale parameters. For instance, we can handle the case that a sample mean
vector is available, which can be described as V ∼ Wp(n,Σ) and X ∼ Np(µ,Σ). Our
results can be easily extended to this model, and minimaxity for the best equivariant
estimator of Σ is established.
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A Appendix

A.1 Proof of Proposition 3.1

It is noted that the integral in DBE
F given in (3.11) is invariant under transformation Θ → BΘB

where B is a diagonal matrix such that all diagonal elements are respectively either one or
minus one. Denote by E∗ the expectation with respect to the probability density function
fF (Ip|Θ)γ(dΘ) and let

Hp = E∗[Θ
tΘ] =

∫
ΘtΘfF (Ip|Θ)γ(dΘ).

Partition Θ into four blocks as follows:

Θ =

(
Θ11 0p−1

θt
21 θpp

)
,

where the sizes of Θ11 and θ21 are, respectively, (p− 1)× (p− 1) and (p− 1)× 1. It is seen that

|Ip +ΘΘt| =
∣∣∣∣Ip−1 +Θ11Θ

t
11 Θ11θ21

θt
21Θ

t
11 1 + θ2pp + θt

21θ21

∣∣∣∣
= |Ip−1 +Θ11Θ

t
11|{1 + θ2pp + θt

21θ21 − θt
21Θ

t
11(Ip−1 +Θ11Θ

t
11)

−1Θ11θ21}
= |Ip−1 +Θ11Θ

t
11|{1 + θ2pp + θt

21(Ip−1 +Θt
11Θ11)

−1θ21},
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which yields

fF (Ip|Θ)γ(dΘ) = C|Ip−1 +Θ11Θ
t
11|−a(1 + θ2pp)

−a(1 + θt
21G

−1θ21)
−a

( p∏
i=1

θn−i
ii

)
dΘ11dθ21dθpp

= C|Ip−1 +Θ11Θ
t
11|−a+1/2(1 + θ2pp)

−a+(p−1)/2
( p∏

i=1

θn−i
ii

)
× |G|−1/2(1 + θt

21G
−1θ21)

−adΘ11dθ21dθpp

with a = (v+n+ p− 1)/2 and G = (1+ θ2pp)(Ip−1+Θt
11Θ11). Hence, the marginal distribution

of {(v + p − 1)/(n − p + 1)}θ2pp is the F distribution with n − p + 1 and v + p − 1 degrees of

freedom, and the conditional distribution of (v + n)1/2θ21 given Θ11 and θpp is the (p − 1)-
dimensional t distribution with v+n degrees of freedom, mean zero and scale matrix G. Letting
Hp−1 = E∗[Θ

t
11Θ11], we obtain

E∗[θ
2
pp] =

n− p+ 1

v + p− 3

and

E∗[θ21θ
t
21] = E∗

[
1 + θ2pp

v + n− 2
(Ip−1 +Θt

11Θ11)

]
=

1

v + p− 3
(Ip−1 +Hp−1),

which implies that

Hp =

(
E∗[Θ

t
11Θ11 + θ21θ

t
21] 0p−1

0tp−1 E∗[θ
2
pp]

)
=

(
(1 + βp−1)Hp−1 + βp−1Ip−1 0p−1

0tp−1 αp

)
,

where αp = E∗[θ
2
pp] = (n− p+ 1)/(v + p− 3) and βp−1 = 1/(v + p− 3).

Similarly, let Ai be the i × i left upper corner of Θ and denote H i = E∗[A
t
iAi]. Then, it

holds that

αi = E∗[θ
2
ii] =

n− i+ 1

v + i− 3

and

H i =

(
(1 + βi−1)H i−1 + βi−1Ii−1 0i−1

0ti−1 αi

)
with βi−1 = (1 + αi)/(v + n− 2) = 1/(v + i− 3). Solving these inductively yields

hi = E∗[{ΘtΘ}ii] = αi

p−1∏
j=i

(1 + βj) +

p−1∑
j=i

βj

p∏
k=j+1

(1 + βk) (i = 1, . . . , p− 1),

hp = E∗[{ΘtΘ}pp] = αp,

where βp = 0. It is observed that

p−1∏
j=i

(1 + βj) =
v + p− 2

v + i− 2
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and

p−1∑
j=i

βj

p∏
k=j+1

(1 + βk) =

p−1∑
j=i

v + p− 2

(v + j − 2)(v + j − 1)

= (v + p− 2)

p−1∑
j=i

(
1

v + j − 2
− 1

v + j − 1

)
=

p− i

v + i− 2
,

which gives hi in Proposition 3.1. This completes the proof of Proposition 3.1.

A.2 Proof of Theorem 5.1

Without loss of generality, we take c = 1. Let G = T + and P = {Θ ∈ T + : |Θ|2 ≥ 1} = {Θ ∈
T + :

∏p
i=1 θ

2
ii ≥ 1}. Define

Pk =

{
Θ ∈ T + : 1 ≤

p∏
i=1

θii ≤ k2p, 1/k ≤ θii ≤ k (i = 2, . . . , p), and

− kcijθii ≤ θij ≤ kcijθii (1 ≤ j < i ≤ p)

}
.

Note that ∪∞
k=1Pk = P , which fulfills (A6-1′) of Corollary 2.1. To check condition (A6-2′) of

Corollary 2.1, we observe that V (Pk) =
∫
Pk

γ(dΘ) = p2p(p+1)/2(log k)p
∏p

i=1

∏i−1
j=1 k

cij . A set of
functions

ξ11 =
1

p

p∑
i=1

log θii
log k

− 1, ξii =
log θii
log k

(i = 2, . . . , p), ξij =
θij

kcijθii
(1 ≤ j < i ≤ p)

is denoted by ξ = φk(Θ), which implies that φk(Pk) = [−1, 1]p(p+1)/2. It then follows that

γk(dξ) = p(log k)p
( p∏

i=1

i−1∏
j=1

kcij
)
dξ = γ(dΘ)

for γ(dΘ) = (
∏p

i=1 θ
−i
ii )dΘ, and∫

φk(Pk)
f(ξ)γk(dξ)/V (Pk) = 2−p(p+1)/2

∫
f(ξ)I(ξ ∈ [−1, 1]p(p+1)/2)dξ.

Replacing the θij in Pk by the {Y Θ}ij , we obtain

P ′
k(Θ) =

{
Y ∈ T + : 1 ≤

p∏
i=1

{Y Θ}ii ≤ k2p, 1/k ≤ {Y Θ}ii ≤ k for i = 2, . . . , p, and

− kcij{Y Θ}ii ≤ {Y Θ}ij ≤ kcij{Y Θ}ii for i > j

}
.
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The function ξ = φk(Θ) implies that θ11 = kp(1+ξ11)−
∑p

ℓ=2 ξℓℓ , θii = kξii for i = 2, . . . , p, and
θij = ξijk

cij+ξii for i > j. The intervals “1 ≤
∏p

i=1{Y Θ}ii ≤ k2p” and “1/k ≤ {Y Θ}ii ≤ k” are
equivalent to, respectively,

k−p(1+ξ11)
p∏

ℓ=2

y−1
ℓℓ ≤ y11 ≤ kp(1−ξ11)

p∏
ℓ=2

y−1
ℓℓ ,

k−(1+ξii) ≤ yii ≤ k1−ξii (i = 2, . . . , p).

Hence, P ′
k(Θ) becomes

P̃k(ξ) = {Y ∈ T + : Lij(Y , ξ) ≤ yij ≤ Uij(Y , ξ) for 1 ≤ j ≤ i ≤ p},

where

Lij(Y , ξ) =


k−p(1+ξ11)

∏p
ℓ=2 y

−1
ℓℓ if i = j = 1,

k−(1+ξii) if i = j ≥ 2,

−yiik
cij+ξii−ξjj −

∑i
m=j+1 yimξmjk

cmj+ξmm−ξjj if 1 ≤ j < i ≤ p,

Uij(Y , ξ) =


kp(1−ξ11)

∏p
ℓ=2 y

−1
ℓℓ if i = j = 1,

k1−ξii if i = j ≥ 2,

yiik
cij+ξii−ξjj −

∑i
m=j+1 yimξmjk

cmj+ξmm−ξjj if 1 ≤ j < i ≤ p.

The same arguments as in Section 3.1 yields that P̃k(ξ) ⊃ P ∗
k = {Y ∈ T + : L∗

ij < yij <
U∗
ij (1 ≤ j ≤ i ≤ p)}, where, for a small enough ε > 0,

L∗
ij =

{
k−ε if i = j,

−ε(1− k−1)i−j−1kε if 1 ≤ j < i ≤ p,

U∗
ij =

{
kε if i = j,

ε(1− k−1)i−j−1kε if 1 ≤ j < i ≤ p.

Therefore, we observe that ∪∞
k=1P

∗
k = T + = G. Since this satisfies (A6-3′) of Corollary 2.1, the

proof is complete.
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