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Abstract

In this paper, we suggest the new variable selection procedure, called MEC,
for linear discriminant rule in the high-dimensional setup. MEC is derived as a
second-order unbiased estimator of the misclassification error probability of the lin-
ear discriminant rule. It is shown that MEC not only decomposes into ‘fitting’ and
‘penalty’ terms like AIC and Mallows Cp, but also possesses an asymptotic optimal-
ity in the sense that MEC achieves the smallest possible conditional probability of
misclassification in candidate variable sets. Through simulation studies, it is shown
that MEC has good performances in the sense of selecting the true variable sets.

Key words and phrases: asymptotic optimality, high dimension, linear discrim-
inant analysis, misclassification error, multivariate normal, second-order approxi-
mation, variable selection.

1 Introduction

In this paper, we consider the problem of classifying a future observation vector into one
of the two population groups Π1 and Π2. For each i = 1, 2, Πi denotes a population from
a multivariate normal distribution Np(µi,Σ), and it is supposed that xij, j = 1, . . . , Ni,
are observed from the population Πi. Here, µi, i = 1, 2, and Σ are unknown parameters,
and they are estimated by the sample mean xi = N−1

i

∑Ni

j=1 xij, i = 1, 2, and the pooled

sample covariance matrix S = n−1
∑2

i=1

∑Ni

j=1(xij − xi)(xij − xi)
′ for n = N1 + N2 − 2.

When the dimension p is large, the model involves many unknown parameters, which
causes a large misclassification error in the linear discriminant rule (LDR). Thus, it is
desired to find an optimal subset of variables in LER. Variable selection methods for
discriminant analysis have been studied by Fujikoshi (1985, 2002), Sakurai, Nakada and
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Fujikoshi (2012), Wilbur, Ghosh, Nakatsu and Doerge (2002) and others. Related to
this issue, multiple testing problems for no additional information have been discussed by
Rao (1948, 1970, 1973) and Kshirsagar (1972). In this paper, we suggest a new variable
selection procesure based on error of misclassification and establish the optimality in
high-dimensional situation.

To explain the new variable selection procesure, consider the following linear dis-
criminant rule. Let x = (x1, . . . , xp) be a future observation in the full model. Let
j = (j1, . . . , jk(j)) be a subset of the set {1, 2, . . . , p}, and let x(j) = (xj1 , . . . , xjk(j)) be
the corresponding subvector of x. The model based on the variable x(j) is denoted by
j. Let J be a suitable family of subsets of {1, . . . , p}. The LDR for classifying x based
on the model j is that x is classified as coming from Π1, if W (j) > α, and from Π2, if
W (j) < α, where α is cut off point for classification rule, and

W (j) = (x̄1(j)− x̄2(j))
′S(j)−1{x(j)− 1

2
(x̄1(j) + x̄2(j))}.

Here, x̄i(j), i = 1, 2, and S(j) are the sample mean and the pooled sample covariance
matrix in the model j. Then the problem of variable selection in LDR is regarded as
how to select the best subset j from J . To this end, we consider the conditional error
probabilities of misallocation L1(j) = P [W (j) < α|x(j) ∈ Π1,x1(j),x2(j), S(j)] and
L2(j) = P [W (j) > α|x(j) ∈ Π2,x1(j),x2(j), S(j)], which can be expressed as

Lg(j) = Φ

(
(−1)g

(x̄1(j)− x̄2(j))
′S(j)−1{µg(j)− (x̄1(j) + x̄2(j))/2}√

(x̄1(j)− x̄2(j))′S(j)−1Σ(j)S(j)−1(x̄1(j)− x̄2(j))

)
, (1.1)

for g = 1, 2, where Φ(·) is the standard normal distribution function, and µg(j) and Σ(j)
denote the population mean and covariance matrix in the model j. When πi, i = 1, 2 is
a prior probability of the group membership, the expected error rate is given by

R(j) = π1R1(j) + π2R2(j)

where Rg(j) is the unconditional error of misallocation given by Rg(j) = E[Lg(j)] for
g = 1, 2. The variable selection procedure proposed in this paper is an asymptotically
unbiased estimator of the misclassification error R(j) in the high-dimansional setteing.

A naive procesure for selection of variables is to minimize

Φ (−D(j)/2) , (1.2)

with respect to j ∈ J , where D(j) is the sample Mahalanobis distance based on x(j),
namely,

D(j) = (x̄1(j)− x̄2(j))
′S(j)−1(x̄1(j)− x̄2(j)). (1.3)

However, Φ (−D(j)/2) has the biasR(j)−E[Φ(−D(j)/2)] which is not negligible. MacLach-
lan (1976,1980) derived a second order asymptotic unbiased estimator of R(j) under the
large sample framework, namely,

(A0): n → ∞, but p is bounded.
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Fujikoshi (1985) applied the estimator given by MacLachlan (1976,1980) to the variable
selection problem, and investigated the asymptotic properties and the relationship with
AIC. In the high-dimensional setting On the other hand, Raudys (1972) and Wyman,
Young and Turner (1990) derived the asymptotic approximations of the error probability
under the high-dimensional setting given by

(A1) : (n, p) → ∞ with p/n → c0 ∈ [0, 1).

It is known that these approximations are also good in the large sample situation (A0) as
seen from Fujikoshi, Ulyanov and Shimizu (2009).

In this paper, we derive a second-order unbiased estimator of R(j) in the high-
dimensional setting (A1). The unbiased estimator is here called the Misclassification
Error Criterion (MEC), which is useful for selecting variables in linear discriminant rule.
We show that MEC can be decomposed into the ‘fitting’ and ‘penalty’ terms, namely,

MEC = Φ (−D(j)/2) + (penalty),

where the penalty term increases in the number of the unknown parameres. This is a
desirable property that variable selection procedures like AIC and Cp should possess. We
also show that MEC has an asymptotical optimality as a variable selection procedure in
(A1). Such an optimality in the high-dimensional setting is not known as long as we
know.

Recently, Kubokawa, Hyodo and Srivastava (2013) derived a second-order approxima-
tion of the error probability of misclassification (EPMC) for the ridge-type linear discrim-
inant rule in high dimensional setting, and derived a second-order unbiased estimator of
EPMC. Since the ridge-type linear discriminant rule is not invariant under scale transfor-
mations, their approach needs to calculate various kinds of fourth moments of the inverted
Wishart matrix. It was hard to obtain such fourth moments, so that the approach used
by Kubokawa, et al . (2013) cannot be used for developing an asymptotic optimality of
MEC. Instead, the method used in this paper is to express Lg(j) based on nine primitive
random variables, namely four random variables having the standard normal distribution
and five random variables having chi-square distributions. This approach not only makes
it easier to derive the second-order approximation and the second-order unbiased esti-
mator of R(j), but also enables us to establish the asymptotic optimality of MEC as a
varaible selection procedure in both high-dimensional and large-sample situations.

The organization of this paper is as follows. In Section 2.1, we determine the asymp-
totically optimal cut off point α based on the expected error rate R(j). In Section 2.2,
we derive the second order unbiased estimator of R(j) in high dimensional setting and
propose the new variable selection procedure MEC based on this estimator. In Section
3.1, we show that MEC can be decomposed into the “fitting term” and “dimensionality
penalty term” like Mallows Cp and AIC. In Section 3.2, we prove the asymptotic optimal-
ity of MEC. In Section 4, we investigate performances of MEC through numerical studies.
The conclusion of our study is summarized in Section 5. Some preliminary results are
given in Appendix.
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2 MEC: A Variable Selection Procedure for High Di-

mensional Data

In this Section, we derive the second order asymptotic unbiased estimator of R(j) under
the following high dimensional framework (A1)-(A3).

2.1 The optimal cut off point based on expected probability of
misclassification

An optimal rule of allocation can be defined by taking it to be one that minimizes the
expected error rate R(j). However, the expected error rate R(j) is not explicit formula.
So, we determine the optimal cut off point based on limiting value of R(j). We assume
the following conditions, in order to derive limiting value of R(j).

(A1) : (n, p) → ∞ with p/n → c0 ∈ [0, 1).

(A2) : (n, N1, N2) → ∞ with N1/n → γ1, N2/n → γ2.

(A3) : lim
p→∞

∆2 = (µ1 − µ2)
′Σ−1(µ1 − µ2) < ∞.

Let ♯(j) be the cardinality of j. In what follows, we treat the case that (♯(j), n) → ∞
with ♯(j)/n → c ∈ [0, 1), but the derived results include the case of ♯(j) bounded. We
primarily consider the asymptotic approximation for the expected error rate of E[L1(j)],
since the asymptotic approximations for the expected error rate of E[L2(j)] can be con-
structed similarly.

Suppose that x ∈ Π1. Then, a conditional distribution given (x1(j),x2(j), S(j)) is
written as W (j)|(x1(j),x2(j), S(j)) ∼ Np(−U, V ), where

U =(x1(j)− x2(j))
′S(j)−1(x1(j)− µ1(j))− 2−1D(j),

V =(x1(j)− x2(j))
′S(j)−1Σ(j)S(j)−1(x1(j)− x2(j)),

where D(j) is given in (1.3). Then, the expected error rate of W (j) can be expressed as

E[L1(j)] = E

[
Φ

(
U + α√

V

)]
,

where Φ(·) denotes the distribution function of a standard normal random variable.

As given in (6.1) and (6.2), U and V can be expanded as U = U0 + n−1/2U1 + n−1U2

and V = V0 + n−1/2V1 + n−1V2 with

U0 = − 1

2(1− c)

(
∆(j)2 +

c(γ1 − γ2)

γ1γ2

)
, V0 =

1

(1− c)3

(
c

γ1γ2
+∆(j)2

)
,

U1 = Op(1), U2 = Op(1), V1 = Op(1) and V2 = Op(1). Then we observe that

U + α

V 1/2
= {U0 +

U1√
n
+

U2

n
+ α} 1

V
1/2
0

{
1− 1

2V0

(
V1√
n
+

V2

n

)
+

3V 2
1

8nV 2
0

}
+Op(n

−3/2), (2.1)
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which gives the expansion

(U + α)/V 1/2 = w0 + w1 + w2 +Op(n
−3/2),

where

w0 =V
−1/2
0 (U0 + α),

w1 =
1

√
nV

1/2
0

{
U1 −

U0 + α

2V0

V1

}
,

w2 =
1

nV
1/2
0

{
U2 −

U0 + α

2V0

V2 +
3(U0 + α)

8V 2
0

V 2
1 − 1

2V0

U1V1

}
.

Using the Taylor series expansion again, we can approximate E[L1(j)] as

E[L1(j)] =E[Φ(w0 + (w1 + w2))]

=Φ(w0) + ϕ(w0)E[w1 + w2 −
1

2
w0w

2
1] +O(n−3/2),

where ϕ(·) is the pdf of the standard normal distribution. LettingH = E[w1+w2− 1
2
w0w

2
1],

we can write H as

H =
1

V
1/2
0

{
E[U1]√

n
+

E[U2]

n

}
− U0 + α

2V
3/2
0

{
E[V1]√

n
+

E[V2]

n

}
− U0 + α

2V
3/2
0

E[U2
1 ]

n

+
U0 + α

8V
5/2
0

(
3− (U0 + α)2

V0

)E[V 2
1 ]

n
− 1

2V
3/2
0

(
1− (U0 + α)2

V0

)E[U1V1]

n
. (2.2)

Since U1, U2, V1 and V2 are given around (6.1) and (6.2), we can calculate the moments
in (2.2), which yields the following theorem. Define HU , HV , H1, H2 and H12 by

HU(∆(j), γ1, γ2, c) =− 1

2(1− c)2

(
∆(j)2 +

c(γ1 − γ2)

γ1γ2

)
,

HV (∆(j), γ1, γ2, c) =
(c+ 3)∆(j)2γ1γ2 + (5− c)c

(c− 1)4γ1γ2
,

H1(∆(j), γ1, γ2, c) =
∆(j)4

2(1− c)3
+

1

(1− c)3γ2

(
c

γ1
+∆(j)2

)
+

c(γ1 − γ2)
2

2(1− c)3γ2
1γ

2
2

,

H2(∆(j), γ1, γ2, c) =
2(c+ 4)∆(j)4

(1− c)7
+

4 {(c+ 1)2 + c}∆(j)2

(1− c)7γ1γ2
+

2c {(c+ 1)2 + c}
(1− c)7γ2

1γ
2
2

,

H12(∆(j), γ1, γ2, c) =− 2∆(j)4

(1− c)5
− 2(c+ 1)∆(j)2

(1− c)5γ2
− c(c+ 1) (γ2

1 − γ2
2)

(1− c)5γ2
1γ

2
2

,

for ∆(j) = {µ1(j)− µ2(j)}′Σ(j)−1{µ1(j)− µ2(j)}.

Theorem 2.1 Assume the conditions (A1)-(A3). The second order approximation of
E[L1(j)] is given by

E[L1(j)] = Φ

(
U0 + α√

V0

)
+

1

n
ϕ

(
U0 + α√

V0

)
H(∆(j), γ1, γ2, c) +O(n−3/2), (2.3)
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where, H(∆(j), γ1, γ2, c) is given by

H(∆(j), γ1, γ2, c) =
1

V
1/2
0

{
HU(∆(j), γ1, γ2, c)−

U0 + α

2V0

HV (∆(j), γ1, γ2, c)

− U0 + α

2V0

H1(∆(j), γ1, γ2, c)

+
U0 + α

8V 2
0

(
3− (U0 + α)2

V0

)
H2(∆(j), γ1, γ2, c)

− 1

2V0

(
1− (U0 + α)2

V0

)
H12(∆(j), γ1, γ2, c)

}
. (2.4)

It is noted that the second order approximation of E[L2(j)] can be also obtained by
replacing (γ1, γ2, α) in (2.3) and (2.4) with (γ2, γ1,−α). Thus, it follows from Theorem
2.1 that the limiting value of R(j) is given by

π1Φ

(
−
∆(j)2 + c(γ1−γ2)

γ1γ2
− (1− c)α

2
√
1− c

√
∆2(j) + c/(γ1γ2)

)
+ π2Φ

(
−
∆(j)2 − c(γ1−γ2)

γ1γ2
+ (1− c)α

2
√
1− c

√
∆2(j) + c/(γ1γ2)

)
,

which can be minimized at

α =
c(γ1 − γ2)

2γ1γ2(1− c)
+

(
1

(1− c)2
+

c

(1− c)2∆(j)2γ1γ2

)
log

(
π2

π1

)
. (2.5)

It is hereafter assumed that π1 = π2 = 1/2. Then, the asymptotically optimal classifica-
tion rule is given by

W (j) = (x1(j)− x2(j))
′S(j)−1{x(j)− 1

2
(x1(j) + x2(j))} >(resp.<)

c(γ1 − γ2)

2γ1γ2(1− c)

=⇒ x ∈ Π1(resp.Π2). (2.6)

2.2 Derivation of MEC

We now derive a new variable selection procedure, called MEC, based on the misclassi-
fication error probability of the linear discriminant rule. As variable selection methods,
Mallow’s Cp and AIC are well known. Mallow’s Cp is an unbiased estimator of the pre-
diction error for a future observation relative to a quadratic loss, and AIC is motivated
from minimization of prediction error relative to the Kullback-Leibler information. Re-
call that L1(j) given in (1.1) can be interpreted as a conditional prediction error that
a future observation x from Π1 is misclassified into Π2. Thus, the expected error rate
R(j) = (R1(j) + R2(j))/2 for π1 = π2 = 1/2 is regarded as a predictive probability of
misclassification, which suggests that an unbiased estimator of R(j) possesses the ability
to work as a variable selection procedure. In this subsection, we derive the second or-
der unbiased estimator of R(j) in the high dimensional setting (A1) or the large sample
setting (A0).

Consider the linear discriminant rule (2.6) with the asymptotically optimal cut-off
point α given in (2.5) for π1 = π2 = 1/2. For notational covenience, let

Uα = U0 + α = − 1

2(1− c)
∆(j)2.
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Note that V0 = (1 − c)−3{∆(j)2 + c/(γ1γ2)}. Since the second-order expansion given in
Theorem 2.1 is a function of ∆(j)2, we begin by obtaining a consistent estimator of ∆(j)2.

Define ∆̂(j)2 by

∆̂(j)2 = (1− c)D(j)− c

γ1γ2
, (2.7)

for D(j) given in (1.3). Then, the estimator ∆̂(j)2 is expanded as

∆̂(j)2 = ∆(j)2 +
D1√
n
+

D2

n
+Op(n

−3/2),

where

D1 =−
√
2v2 (c+∆(j)2γ1γ2)√

1− cγ1γ2
+

√
2
√
cv1

γ1γ2
+

2∆(j)u1√
γ1γ2

,

D2 =− 1

(1− c)γ1γ2
− ∆(j)2

1− c
+

2
(

c
γ1γ2

+∆(j)2
)

1− c
v22 +

1

γ1γ2
u2
1

− 2
√
2∆(j)√

1− c
√
γ1γ2

v2u1 −
2
√
c√

1− cγ1γ2
v1v2

for u1 and u2 given in Lemma 6.1 and v1 and v2 defined above (6.1).

We consider to substitute the consistent estimator into the limiting term Φ((Uα)V
−1/2
0 )

or Φ(UαV
−1/2
0 ) in Theorem 2.1. Let Ûα = −2−1(1−c)−1∆̂(j)2 and V̂0 = (1−c)−3{∆̂(j)2+

c/(γ1γ2)}. For the term Φ(UαV
−1/2
0 ), however, the estimator Φ(ÛαV̂

−1/2
0 ) is not a sec-

ond order unbiased estimator of Φ(UαV
−1/2
0 ), since Φ(UαV

−1/2
0 ) = O(1). Since ∆̂(j)2 =

∆(j)2 +D1/
√
n+D2/n+Op(n

−3/2), it is noted that

Ûα =Uα + c1

(
D1√
n
+

D2

n

)
+Op(n

−3/2),

V̂0 =V0 + c2

(
D1√
n
+

D2

n

)
+Op(n

−3/2),

for c1 = −{2(1− c)}−1 and c2 = (1− c)3. Then, it follows from (2.1) that

ÛαV̂
−1/2
0 =UαV

−1/2
0 + V

−1/2
0

(
c1

D1√
n
− Uα

2V0

c2
D1√
n

)
+ V

−1/2
0

{
c1
D2

n
− Uα

2V0

c2
D2

n
+

3Uα

8V 2
0

c22
D2

1

n
− 1

2V0

c1c2
D2

1

n

}
+Op(n

−3/2),

which imples that

E[Φ(ÛαV̂
−1/2
0 )] = Φ(UαV

−1/2
0 ) +

1

n
ϕ(UαV

−1/2
0 )K(∆(j)) +O(n−3/2), (2.8)

where

K(∆(j), γ1, γ2, c) =
1

V
1/2
0

c1E[
√
nD1 +D2]−

U0

2V
3/2
0

c2E[
√
nD1 +D2]−

Uα

2V
3/2
0

c21E[D2
1]

+
Uα

8V
5/2
0

(
3− U2

α

V0

)
c22E[D2

1]−
1

2V
3/2
0

(
1− U2

α

V0

)
c1c2E[D2

1].

7



Combining (2.3) and (2.8), we can see that the approximation of E[L1(j)] is expressed as

E[L1(j)] =Φ(UαV
−1/2
0 ) +

1

n
ϕ(UαV

−1/2
0 )H(∆(j), γ1, γ2, c) +O(n−3/2)

=E[Φ(ÛαV̂
−1/2
0 )] +

1

n
ϕ(UαV

−1/2
0 ){H(∆(j), γ1, γ2, c)−K(∆(j), γ1, γ2, c)}+O(n−3/2).

To calculate the moments in K(∆(j), γ1, γ2, c), note that E[D1] = 0,

E[D2] =
∆(j)2

1− c
+

c

(1− c)γ1γ2
,

E[D2
1] =

2∆(j)4

1− c
+

4∆(j)2

(1− c)γ1γ2
+

2c

(1− c)γ2
1γ

2
2

.

Replacing the unknown parameter ∆(j) in H(∆(j), γ1, γ2, c)−K(∆(j), γ1, γ2, c) with the

consistent estimator ∆̂(j), we obtain the second order asymptotically unbiased estimator
of γ1(j) given by

R̂1(j) = Φ(Û0V̂
−1/2
0 ) +

1

n
ϕ(Û0V̂

−1/2
0 ){H(∆̂(j), γ1, γ2, c)−K(∆̂(j), γ1, γ2, c)}. (2.9)

Since the second order asymptotically unbiased estimator of R2(j) can be obtained by
interchanging γ1 with γ2 in (2.9), we get

R̂2(j) = Φ(ÛαV̂
−1/2
0 ) +

1

n
ϕ(ÛαV̂

−1/2
0 ){H(∆̂(j), γ2, γ1, c)−K(∆̂(j), γ1, γ2, c)}. (2.10)

Combining (2.9) and (2.10), we obtain the second order asymptotically unbiased estimator
of R(j) given by

MEC = R̂(j) =
1

2

(
R̂1(j) + R̂2(j)

)
, (2.11)

which can be used for variable selection. We here call R̂(j) the Misclassification Error
Criterion (MEC). The best subset of variables among J is suggested as j which minimizes

R̂(j) among J .

3 Asymptotic Properties of MEC

3.1 Decomposition into fitting and penalty terms

A feature of variable selection procedures like AIC and Cp is that they are decomposed
into the two terms: ‘fitting’ term and ‘penalty’ term for model complexity. It is interesting
to investigate whether MEC has a similar feature.

It is noted that Φ (−D(j)/2) decreases as the cardinality of variable set ♯(j) increases,
namely, Φ (−D(j1)/2) > Φ (−D(j2)/2) if ♯(j2) > ♯(j1). This means that Φ (−D(j)/2) is
regarded as a fitting term. Thus, MEC is decomposed as

MEC(j) = Φ (−D(j)/2) + b̂(j), (3.1)

8



where b̂(j) = R̂(j)− Φ (−D(j)/2). Let b(j) = R(j)− E[Φ (−D(j)/2)]. Then it is noted
that b̂(j) is a second order asymptotically unbiased estimator of b(j), namely E[b̂(j)] =
R(j)− E[Φ (−D(j)/2)] +O(n−3/2).

In this subsection, we express the bias b(j) with an explicit formula, and show that
b(j) works as dimensionality penalty under the high dimensional or large sample situation.
We evaluate E[Φ(−D(j)/2)] since the explicit formula of R(j) is provided in subsection
2.1. Using Lemma 5.1, we can approximate D(j) stochastically as

D(j)2 = E0 +
E1√
n
+

E2

n
, (3.2)

where

E0 =
1

(1− c)

(
∆(j)2 +

c

γ1γ2

)
,

E1 = −
√
2v2 (c+∆(j)2γ1γ2)

(1− c)3/2γ1γ2
+

√
2
√
cv1

γ1γ2(1− c)
+

2∆(j)u1√
γ1γ2(1− c)

,

E2 = − 1

(1− c)2γ1γ2
− ∆(j)2

(1− c)2
+

2
(

c
γ1γ2

+∆(j)2
)

(1− c)2
v22 +

1

γ1γ2(1− c)
u2
1

− 2
√
2∆(j)

(1− c)3/2
√
γ1γ2

v2u1 −
2
√
c

(1− c)3/2γ1γ2
v1v2

Using the stochastic expansion (3.2), we can see that

E

[
Φ

(
−D(j)

2

)]
= Φ(m0) +

1

n
ϕ(m0)E

[
m1 +m2 −

1

2
m0m

2
1

]
+O(n−3/2),

where

m0 = −1

2
E

1/2
0 , m1 = −1

4
E

−1/2
0

E1√
n
, m2 =

1

16
E

−3/2
0

E2
1

n
− 1

4
E

−1/2
0

E2

n
.

We can obtain the expectations of m1, m2 and m2
1 using the moments E[E1] = 0,

E[E2] =
(3− 2c)c+∆(j)2γ1γ2

(1− c)2γ1γ2
,

E[E2
1 ] =

2 (c+∆(j)2γ1γ2 (∆(j)2γ1γ2 + 2))

(1− c)3γ2
1γ

2
2

.

Thus, it is observed that

E

[
Φ

(
−D(j)

2

)]
= Φ(m0) +

1

n
ϕ(m0)M(∆(j)2, γ1, γ2, c) +O(n−3/2),

where

M(∆(j)2, γ1, γ2, c) =
1

16
E

−3/2
0 E[E2

1 ]−
1

4
E

−1/2
0 E[E2] +

1

64
E

−1/2
0 E[E2

1 ].
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Then, we can get a second-order approximation of the bias term b(j). Define b(g1,g2)(j)
by

b(g1,g2)(j) = Φ (∆1(j))− Φ (∆2(j))

+
1

n
{ϕ(∆1(j))H(∆(j), rg1 , rg2 , c)− ϕ (∆2(j))M(∆(j), γ1, γ2, c)} ,

where

∆1(j) = −
√
1− c∆2(j)

2
√
∆2(j) + c/(γ1γ2)

,

∆2(j) = − 1

2
√
1− c

√
∆2(j) + c/(γ1γ2).

Theorem 3.1 Under the assumptions (A1)-(A3),

b(j) =
1

2

(
b(1,2)(j) + b(2,1)(j)

)
+O(n−3/2).

From Theorem 3.1, an expression of the bias b(j) implies that b(j) depends on ♯(j)
through c = limn,p→∞ ♯(j)/n. Concedring the limiting term of b(j), namely, Φ (∆1(j))−
Φ (∆2(j)), it can be seen that it increases in ♯(j) through c for j ∈ {j|∆2(j) = ∆2}, since
∆1(j) is increases in c, ∆1(j) is decreases in c.

To make it clear that b(j) works as a penalty of the cardinality ♯(j), we consider the
large sample framework (A0). Then, it is observed

E[L1(j)] = Φ

(
−∆(j)

2

)
+

1

n
ϕ

(
−∆(j)

2

){
1

4∆(j)γ1

(
∆(j)2

4
+ 3(♯(j)− 1)

)
+

1

4∆(j)γ2

(
∆(j)2

4
− ♯(j) + 1

)
+

1

4
∆(j)(♯(j)− 1)

}
+ o(n−1),

E

[
Φ

(
−D(j)

2

)]
= Φ

(
−∆(j)

2

)
+

1

n
ϕ

(
−∆(j)

2

)(
∆(j)3

32
− ♯(j)

4∆(j)γ1γ2
− ∆(j)♯(j)

4

+
∆(j)

16γ1γ2
+

1

4∆(j)γ1γ2
− ∆(j)

8

)
+ o(n−1).

Then, we get the following proposition.

Proposition 3.1 Under the assumptions (A0), (A2) and (A3),

b(j) =
1

n
ϕ

(
−∆(j)

2

){
♯(j)

∆(j)r1
+

∆(j)♯(j)

2
− 1

∆(j)r1
−
(
∆3(j)

32
+

∆(j)

8

)}
+ o(n−1).

Thus, the limiting term of b(j), j ∈ {j|∆2(j) = ∆2} increases as ♯(j) increases.

The arguments given in this subsection shows that MEC R̂(j) is decomposed into the
”fitting term” and the ”penalty term”, which is the same feature as in variable selection
procedures like AIC and Cp.
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3.2 Asymptotic optimality of MEC

In this subsection, we show that MEC has an asymptotic optimality in the high-dimensional
setting (A1). The optimality is related to Li (1987), who showed that Mallows’ Cp is
asymptotically equivalent to the squared error loss in a linear regression model, and that
the estimator selected by Cp asymptotically achieves the smallest possible squared error
loss in the class of model average estimators. The squared error loss corresponds to the
conditional misclassification error rate L(j) in the classification problem, where

L(j) = 2−1{L1(j) + L2(j)}.

Thus, we shall verify that R̂(j) is asymptotically equivalent to the conditional misclas-
sification error rate L(j), and that MEC asymptotically achieves the smallest possible
conditional misclassification error rate.

The primary goal of this section is to demonstrate that under reasonable conditions,
MEC is asymptotically optimal in the sense that∣∣∣∣∣ L(ĵ)

infj∈J L(j)

∣∣∣∣∣ p−→ 1, (3.3)

where ĵ is the best selection satisfying MEC(ĵ) = minj∈J MEC(j). It can be seen that
sufficient conditions for (3.3) are given by

(i) sup
j∈J

∣∣∣∣L(j)R(j)
− 1

∣∣∣∣ p−→ 0,

(ii) sup

∣∣∣∣∣R̂(j)− L(j)

R(j)

∣∣∣∣∣ p−→ 0.

(3.4)

We shall check conditions (i) and (ii) using chebyshev’s inequality. For any ε > 0,

Pr

(
sup
j∈J

∣∣∣∣L(j)R(j)
− 1

∣∣∣∣ > ε

)
≤

∑
j∈J

E[|L(j)−R(j)|2m]
R(j)2mε2m

≤
∑
j∈J

(
E[|L1(j)−R1(j)|2m]

1
2m + E[|L2(j)−R2(j)|2m]

1
2m

)2m( 1

2R(j)ε

)2m

≤ sup
j∈J

(
E[|L1(j)−R1(j)|2m]

1
2m + E[|L2(j)−R2(j)|2m]

1
2m

)2m∑
j∈J

(
1

2R(j)ε

)2m

11



and

Pr

(
sup
j∈J

∣∣∣∣∣R̂(j)− L(j)

R(j)
− 1

∣∣∣∣∣ > ε

)

≤
∑
j∈J

E[|R̂(j)− L(j)|2m]
R(j)2mε2m

≤
∑
j∈J

(
E[|R̂1(j)− L1(j)|2m]

1
2m + E[|R̂2(j)− L2(j)|2m]

1
2m

)2m( 1

2R(j)ε

)2m

≤ sup
j∈J

(
E[|R̂1(j)− L1(j)|2m]

1
2m + E[|R̂2(j)− L2(j)|2m]

1
2m

)2m∑
j∈J

(
1

2R(j)ε

)2m

.

Thus, we need to evaluate E[|Li(j)−Ri(j)|2m] and E[|R̂i(j)− Li(j)|2m] for i = 1, 2.

Lemma 3.1 Assume either condition (A0) or condition (A1). Under conditions (A2)
and (A3), it holds that

E[|
√
n(Li(j)−Ri(j))|2m] < ∞, E[|

√
n(R̂i(j)− Li(j))|2m] < ∞.

(Proof) Using stochastic expansions of U , V and ∆̂(j), it follows that

√
n(L1(j)−R1(j)) = ϕ (∆1(j))

(
U1√
V0

− UαV1

2V
3/2
0

)
+ op(1),

√
n(R̂i(j)−Ri(j)) = −ϕ (∆1(j))

1

V0

(
1

2(1− c)
+

Uα

V0(1− c)3

)
D1 + op(1).

We begin by expanding the statistic
√
n(L1(j) − R1(j)) stochastically. Using (5.1)

and (5.2), we can expand the statistic
√
n(L1(j)−R1(j)) as

√
n(L1(j)−R1(j)) = ϕ (∆1(j))

(√
(1− c)c

γ1γ2

{c(4γ2 − 2) + ∆(j)2γ1γ2(4γ2 − 1)}
2
√
2 (c+∆(j)2γ1γ2)

3/2
v1

+

√
1

γ1γ2

c(1− 2γ2)√
2
√

c+∆(j)2γ1γ2
v2 +

∆(j)2
√
(1− c)cγ1γ2

2
√
2
√

c+∆(j)2γ1γ2
v3

−
c∆(j)2

√
γ1γ2

2
√
2
√

c+∆(j)2γ1γ2
v4 +

∆(j) {2c(γ2 − 1) + ∆(j)2γ1γ2(2γ2 − 1)}
2(1− c)−1/2 (c+∆(j)2γ1γ2)

3/2
u1

−
√
c∆(j)γ2√

c+∆(j)2γ1γ2
u2 +

√
1− cu3 −

√
cu4

)
+ op(1). (3.5)

It should be noted that the above statistic is a linear combination of independent random
variables ui and vi with finite 2m-th moment under the assumptions (A1)-(A3). Thus,
for any m ∈ R, E[|

√
n(Li(j)−Ri(j))|2m] < ∞ under the assumptions (A1)-(A3).

12



We here treat the case that p is a fixed constant and p/n tends to zero, i.e. (A0).
Substitute c = 0 in (3.5), we obtain a stochastic expansion of the statistics

√
n(L1(j) −

R1(j)) given by

√
n(L1(j)−R1(j)) =

γ2 − γ1
2
√
γ1γ2

u1 + u3 + op(1).

This shows that the above statistic is a linear combination of independent random vari-
ables u1 and u3 with finite 2m-th moment under the large sample framework (A0). Thus,
for any m ∈ R, E[|

√
n(Li(j)−Ri(j))|2m] < ∞ under the large sample framework (A0).

We next evaluate the statistic
√
n(R̂i(j)−Ri(j)), which can be carried out similarly.

Using (5.1) and (5.2), we can expand the statistic
√
n(R̂i(j)−Ri(j)) as

√
n(R̂i(j)−Ri(j)) = −ϕ (∆1(j))

1

V0

(
1

2(1− c)
+

Uα

V0(1− c)3

)(
−
√
2 (c+∆(j)2γ1γ2)√

1− cγ1γ2
v2

+

√
2
√
c

γ1γ2
v1 +

2∆(j)
√
γ1γ2

u1

)
+ op(1). (3.6)

It should be noted that above statistic is linear combination of independent random
variables u1, v1 and v2 with finite 2m-th moment under the assumptions (A1)-(A3).

Thus, for any m ∈ R, E[|
√
n(R̂i(j) − Ri(j))|2m] < ∞ under the assumptions (A1)-(A3).

In addition, consider the case of the large sample framework (A0). Substitutint c = 0 in

(3.6), we obtain the stochastic expansion of the statistic
√
n(R̂i(j)−Ri(j)) given by

√
n(R̂i(j)−Ri(j)) =

γ2 − γ1
2
√
γ1γ2

u1 + u3 + op(1).

the above statistic is a linear combination of independent random variables u1 and u3

with finite 2m-th moment under the large sample framework (A0). Thus, for any m ∈ R,
E[|

√
n(R̂i(j) − Ri(j))|2m] < ∞ under the large sample framework (A0). Therefore, the

proof of Lemma 3.1 is complete.

Combining Lemma 3.1 and (3.4) gives the sufficient condition for the asymptotic
optimality (3.3), given by

(C1)
∑
j∈J

(
1

2
√
nR(j)

)2m

→ 0.

Hence, we obtain the following theorem.

Theorem 3.2 Assume either condition (A0) or condition (A1). Under conditions (A2),
(A3) and (C1), MEC is asymptotically optimal in the sense that∣∣∣∣∣ L(ĵ)

infj∈J L(j)

∣∣∣∣∣ p−→ 1.
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It is noted that the condition (C1) holds if the cardinality of the family J satisfies ♯(J ) =
o(nm). For example, for the family of the subsets J = {{1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, 3, . . . , p}},
we have ♯(J ) = p, so that the condition ♯(J ) = o(nm) is satisfied under (A1). However,
when J consists of all the subsets of {1, . . . , p}, we have ♯(J ) = 2p, which does not satisfy
the condition. Thus, Theorem 3.2 implies that we should pay heed to cardinality of the
family J of candidate variable sets in the high-dimensional setting (A1).

4 Numerical Results

In this section, we investigate numerical properties of MEC by Monte Carlo simulations.
The frequencies of selecting the true variables by selection procedures are calculated by
simulation with 10,000 iterations.

The mean vector of Π1 is set up by µ = ((1/2)1′
10,0

′
p−10)

′, the mean of Π2 is set up by
zero vector and the covariance matrix of both groups is set up by Ip since the expected
error rate R(j) only depends on Mahalanobis distance ∆(j) and (n, p). The data sets are
generated as follows:

x11, . . . ,x1N1 ∼ N (µ, Ip), x21, . . . ,x2N2 ∼ N (0, Ip)

in each step. In our numerical study, we consider the ten candidate variable sets ji given
by

ji = {1, 2, · · · , (10− i+ 1)} for i = 1, · · · , 5,
ji = {1, 2, · · · , (p− i+ 6)} for i = 6, · · · , 10.

In this setting, the variable set which minimizes R(j) is j1 in all the cases as seen from
Table 1.

Table 1. Values of R(j).

(p, N1, N2) R(j1) R(j2) R(j3) R(j4) R(j5) R(j6) R(j7) R(j8) R(j9) R(j10)
(50, 50, 50) 0.15 0.17 0.18 0.19 0.21 0.25 0.25 0.25 0.24 0.24
(50, 100, 100) 0.14 0.15 0.17 0.18 0.20 0.19 0.19 0.19 0.18 0.18
(100, 100, 100) 0.14 0.15 0.17 0.18 0.20 0.25 0.25 0.25 0.25 0.25
(100, 200, 200) 0.14 0.15 0.163 0.18 0.20 0.19 0.19 0.19 0.19 0.19

We investigate the frequencies of selecting the true variable set minimizing R(j) with
several variable selection procedures. In this experiment, we compare the performances
of AIC, BIC, Mc and MEC, where Mc is the large sample unbiased estimator suggested
by MacLachlan (1976,1980). The AIC, BIC and Mc for the model j are defined by

AIC(j) = −N log
1 + (N1N2)/(Nn)D(j)2

1 + (N1N2)/(Nn)D2
+N log |N−1W |+Np(1 + log 2π) + bA,

BIC(j) = −N log
1 + (N1N2)/(Nn)D(j)2

1 + (N1N2)/(Nn)D2
+N log |N−1W |+Np(1 + log 2π) + bB,

Mc(j) = Φ

(
−D(j)

2

)
+ ϕ

(
−D(j)

2

)(
♯(j)− 1

N1D(j)
+ 4(4♯(j)− 1)D(j)− D(j)3

32n

)
,
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where D2 = (x1 − x2)
′S−1(x1 − x2), bA = 2(2♯(j) + p − ♯(j) + p(p + 1)/2) and bB =

logN(2♯(j) + p− ♯(j) + p(p+ 1)/2) for N = N1 +N2.

Tables 2-5 reports frequencies of selecting each variable sets ji by the variable selection
procedures AIC, BIC, Mc and MEC. As seen from Tables 2-5, MEC is superior to the
other criteria. Concerning AIC and MEC, their frequencies of selecting the true variable
set get larger as the dimension p and sample size N(= N1 + N2) are larger. Tables 2
and 4 treat the case of p/N = 0.5, which means that N is relatively small. In this case,
the frequencies of selecting j1 by Mc is small. However, those values for Mc in Tables 3
and 5 are large. This arises from the reason that Mc is the variable selection criterion
derived under the large sample framework (A0). However, MEC is excellent in all the
cases, because it is derived under the high-dimensional setting.

Table 2. Comparison of frequencies of selecting ji for p = 50, N1 = N2 = 50.

ji j1 j2 j3 j4 j5 j6 j7 j8 j9 j10
AIC 72.2 13.7 3.2 0.7 0.2 2.6 1.7 1.6 1.4 2.7
BIC 50.1 22.5 13.3 8.0 6.1 0.0 0.0 0.0 0.0 0.0
Mc 12.6 2.2 0.6 0.1 0.0 41.1 18.0 10.2 6.7 8.5
MEC 79.6 15.3 3.5 0.8 0.2 0.1 0.1 0.1 0.1 0.2

Table 3. Comparison of frequencies of selecting ji for p = 50, N1 = N2 = 100.

ji j1 j2 j3 j4 j5 j6 j7 j8 j9 j10
AIC 96.6 2.3 0.1 0.0 0.1 0.2 0.0 0.1 0.2 0.4
BIC 85.1 12.1 2.3 0.4 0.1 0.0 0.0 0.0 0.0 0.0
Mc 84.0 1.9 0.0 0.0 0.0 3.4 2.5 2.3 2.0 3.9
MEC 97.1 2.5 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.2

Table 4. Comparison of frequencies of selecting ji for p = 100, N1 = N2 = 100.

ji j1 j2 j3 j4 j5 j6 j7 j8 j9 j10
AIC 96.2 2.2 0.1 0.0 0.0 0.5 0.3 0.2 0.2 0.3
BIC 84.2 12.5 2.6 0.6 0.1 0.0 0.0 0.0 0.0 0.0
Mc 13.3 0.4 0.0 0.0 0.0 42.0 18.7 10.6 6.9 8.1
MEC 97.5 2.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 5. Comparison of frequencies of selecting ji for p = 100, N1 = N2 = 200.

jj j1 j2 j3 j4 j5 j6 j7 j8 j9 j10
AIC 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BIC 99.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mc 96.9 0.1 0.0 0.0 0.0 0.6 0.6 0.5 0.4 0.9
MEC 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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We next investigate the relationship of MEC(j) and the conditional error probability
L(j) by comparing the probabilities of selecting the true variable sets. Table 6 reports
the frequencies of selecting the true variable sets with MEC(j) and L(j). This shows
confirms that both L(j) and MEC(j) select the true variable sets with high frequencies,
and this observation is related to the optimality (3.3).

Table 6. Comparison of frequencies of selecting the true variable sets

(p,N1, N2) (50, 50, 50) (50, 100, 100) (100, 100, 100) (100, 200, 200)
L(j) 88.8 97.7 97.7 100.0

MEC(j) 79.7 97.1 97.5 100.0

Finaly, we check unbiasedness of MEC and Mc. For each subset ji, i = 1, · · · , 10,
we compute the averages of L(j), MEC and Mc by Monte Carlo simulations. In Figures
1-4, the averages of L(j), MEC(j) and Mc(j) for each j are plotted as “○”, “●” and
“×”, respectively. As seen from the figures, MEC and Mc perform well for the subsets
ji, i = 1, · · · , 5, while Mc is poor for the subsets ji, i = 6, · · · , 10. It is noted that
the dimensions of the subsets ji, i = 1, · · · , 5 are not so large, but the dimensions of
ji, i = 6, · · · , 10 are large. This is why Mc was the variable selection procedure derived
in the large sample framework. MEC has good accuracies in both cases. Thus we conclude
that MEC is more flexible than Mc concerning the sample size and dimension.
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5 Concluding Remarks

In this paper, we have suggested the new variable selection criterion MEC in linear dis-
criminant analysis for high dimensional data. This is derived as a second-order unbiased
estimator of the misclassification error probability. We have confirmed that MEC is de-
composed into the “fitting term” and the “dimensionality penalty term” like AIC and
Mallows’ Cp. Moreover, we have shown that MEC is asymptotically optimal in the sense
of achieving the smallest possible conditional probability of misclassification in candidate
variable sets. Also, the superiority of MEC has been verified in the sense of selecting the
true variable sets by simulation.

It may be important to point out that the optimality (3.3) given in Theorem 3.2 is guar-
anteed by condition (C1), or ♯(J ) = o(nm). This codition always holds in the large sample
framework (A0), but it is not necessarily satisfied in the high-dimensional situation (A1).
For example, for the family of the subsets J = {{1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, 3, . . . , p}},
we have ♯(J ) = p, so that the condition ♯(J ) = o(nm) is satisfied under (A1). However,
when J consists of all the subsets of {1, . . . , p}, we have ♯(J ) = 2p, which does not satisfy
the condition. Thus, Theorem 3.2 implies that we should pay heed to cardinality of the
family J of candidate variable sets in the high-dimensional setting (A1).

6 Appendix

In this section, we derive the stochastic expansions for the statistics U and V . For the
purpose, we prepare some stochastic expressions of required quadratic forms.

6.1 Stochastic expression of quadratic forms

Lemma 6.1 Let z ∼ Np(τe1, Ip), g ∼ Np(0, Ip) and W ∼ Wp(n, Ip). Then, it holds that

(i) z′W−1z =
(u1 + τ)2 + ṽ1

ṽ2
,

(ii) z′W−2z =
(u1 + τ)2 + ṽ1

ṽ22

(
1 +

ṽ3
ṽ4

)
,

(iii) τe′
1W

−1z =
τ

ṽ2

{
u1 + τ +

(
ṽ1ṽ3
ṽ4

) 1
2 u2√

ṽ5 + u2
2

}
,

(iv) z′W−1g =
{(u1 + τ)2 + ṽ1}

1
2

ṽ2

{
u3 − u4

(
ṽ3
ṽ4

) 1
2

}
,

where, e1 = (1, 0, 0, · · · , 0). Here, ui ∼ N (0, 1), i = 1, 2, 3, 4, ṽ1 ∼ χ2
p−1, ṽ2 ∼ χ2

N−p−1,
ṽ3 ∼ χ2

p−1, ṽ4 ∼ χ2
N−p and ṽ5 ∼ χ2

p−2 and these variables are mutually independent.

(Proof) Fujikoshi (2000) has derived the stochastic expressions (i)-(iii). In this proof,
we prove the stochastic expression (iv). Let P be the random orthogonal matrix with its
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first column proportional to z i.e. PP ′ = Ip. Then PWP ′ ∼ Wp(n, Ip) and

(PWP ′)−1 =

(
{y′(I − ΠY )y}−1 ∗

−{y′(I − ΠY )y}−1(Y ′Y )−1Y ′y Y ′(I − Πy)Y

)
,

where ΠY = Y (Y ′Y )−1Y ′ and Πy = y(y′y)−1y′. At first, we obtain the stochastic
expressions (i)-(iii) by using Fujikoshi (2000). The parts (i)-(iii) can be expressed as

z′W−1z =
z′z

y′(I − ΠY )y
,

z′W−2z =
z′z

(y′(I − ΠY )y)
2

(
1 +

y′Y (Y ′Y )−2Y ′y

y′ΠY y
y′ΠY y

)
,

τe′
1W

−1z =
τ

y′(I − ΠY )y

{
τ + e′

1u+
(
−(z′

2z2)
1/2P ′

2e1

)′
(Y ′Y )−1Y ′y

}
.

From Fujikoshi (2002), we have

(−(z′
2z2)

1/2P ′
2e1)

′(Y ′Y )−1Y ′y

(z′
2z2)e′

1P2P ′
2e1y′Y (Y ′Y )−2Y ′y

=
u2√

u2
2 + v5

,

where

u1 = e′
1u ∼ N (0, 1), u2 ∼ N (0, 1), ṽ1 = u′ (Ip−1 − (w′w)−1ww′)u ∼ χ2

p−1,

ṽ2 = y′(I − ΠY )y ∼ χ2
N−p−1, ṽ3 = y′ΠY y ∼ χ2

p−1,

ṽ4 = y′ΠY y(y
′Y (Y ′Y )−2Y ′y)−1 ∼ χ2

N−p, ṽ5 = y′ΠY y(y
′Y (Y ′Y )−2Y ′y)−1 ∼ χ2

p−2.

Next, we prove (iv). The part (iv) denotes

z′W−1g =
(z′z)

1
2

y′(I − ΠY )y

(
u3 −

y′Y (Y ′Y )−1g2

(y′Y (Y ′Y )−2Y y)
1
2

×
(
y′Y (Y ′Y )−2Y y

y′Y (Y ′Y )−1Y ′y

) 1
2

(y′Y (Y ′Y )−1Y ′y)
1
2

)
,

where g = (u3, g
′
2)

′. On the other hand, we note that

u3 = e′
1g ∼ N (0, 1), u4 = (y′Y (Y ′Y )−2Y y)−

1
2y′Y (Y ′Y )−1g2 ∼ N (0, 1).

Then, the variables ui, i = 1, 2, 3, 4 and vi, i = 1, 2, 3, 4, 5 are mutually independent.

6.2 Stochastic expansions of U and V

To expand U and V stochastically, define random variables z1 and z2 by

z1 =

√
N1N2

N
Σ(j)−1/2(x1(j)− x2(j)),

z2 =
1√
N
Σ(j)−1/2(N1x1(j) +N2x2(j)−N1µ1(j)−N2µ2(j)),

W =nΣ(j)−1/2S(j)Σ(j)−1/2.
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It is seen that z1, z2 andW are mutually independently distributed as z1 ∼ Np(τ (j), I♯(j)),

z2 ∼ Np(0, I♯(j)) andW ∼ Wp(n, I♯(j)), respectively, where τ (j) =
√

(N1N2)/NΣ(j)−1/2(µ1(j)−
µ2(j)). Using these variables, we can rewrite U and V as

U =− (N1 −N2)n

2N1N2

z′
1W

−1z1 +
n√
N1N2

z′
1W

−1z2 −
n

N1

τ (j)′W−1z1,

V =
n2N

N1N2

z′
1W

−2z1.

Let Γ be an orthogonal matrix with its first column proportional to τ (j) i.e. ΓΓ′ = Ip.
Then ΓWΓ′ ∼ Wp(n, Ip), Γz1 ∼ Np(τe1, I♯(j)), Γz2 ∼ Np(0, I♯(j)) and W ∼ Wp(n, I♯(j)),
respectively, where τ 2 = (N1N2)/N∆(j)2. For simplicity, we denote the statistics ΓWΓ′,
Γz1 and Γz2 by W , z1 and z2, respectively. We can rewrite the statistics U and V as

U =− (N1 −N2)n

2N1N2

z′
1W

−1z1 +
n√
N1N2

z′
1W

−1z2 −
n

N1

τe′
1W

−1z1,

V =
n2N

N1N2

z′
1W

−2z1.

Using Lemma 6.1, we express U and V as

U =− (N1 −N2)n

2N1N2

(u1 + τ)2 + ṽ1
ṽ2

+
n√
N1N2

{(u1 + τ)2 + ṽ1}
1
2

ṽ2

{
u3 − u4

(
ṽ3
ṽ4

) 1
2

}

− n

N1

τ

ṽ2

{
u1 + τ +

(
ṽ1ṽ3
ṽ4

) 1
2 u2√

ṽ5 + u2
2

}
,

V =
n2N

N1N2

(u1 + τ)2 + ṽ1
ṽ22

(
1 +

ṽ3
ṽ4

)
.

Define variables v1, v2, v3 v4 and v5 by

v1 =
ṽ1 − (p− 1)√

2(p− 1)
, v2 =

ṽ2 − (N − p− 1)√
2(N − p− 1)

, v3 =
ṽ3 − (p− 1)√

2(p− 1)
, v4 =

ṽ4 − (N − p)√
2(N − p)

,

v5 =
ṽ5 − (p− 2)√

2(p− 2)
.

Note that vi is asymptotically distributed as N (0, 1) under condition (A1). Using Taylor
series expansion based on these variables, we can expand U stochastically as

U = U0 +
1√
n
U1 +

1

n
U2, , (6.1)
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where

U0 = − 1

2(1− c)

(
∆(j)2 +

c(γ1 − γ2)

γ1γ2

)
,

U1 =

√
γ1γ2

(
c

γ1γ2
+∆(j)2

)
(1− c)

√
γ1γ2

u3 −

√
c

√
γ1γ2

(
c

γ1γ2
+∆(j)2

)
(1− c)3/2

√
γ1γ2

u4

+

(
∆(j)2√

2(1− c)3/2
+

c√
2(1− c)3/2γ1γ2

−
√
2c

(1− c)3/2γ1

)
v2

+

−
∆(j)γ2

√
1

γ1γ2

1− c
+

2∆(j)
√
γ1γ2

(1− c)γ1
−

∆(j)
√
γ1γ2

(1− c)γ1γ2

 u1

−

√
c∆(j)γ2

√
1

γ1γ2

(1− c)3/2
u2 +

( √
2
√
c

(1− c)γ1
−

√
c√

2(1− c)γ1γ2

)
v1,

U2 =

 √
c
(
u3 −

√
cu4√
1−c

)
√
2(1− c)γ1γ2

√
c

γ1γ2
+∆(j)2

−
∆(j)u2

√
γ2
γ1√

2(1− c)3/2

+

√
cv2

(1− c)3/2γ1γ2
− 2

√
cv2

(1− c)3/2γ1

)
v1

+

−

√
2
(
u3 −

√
cu4√
1−c

)√
c

γ1γ2
+∆(j)2

(1− c)3/2
−

√
2∆(j)u1

√
γ2
γ1

(1− c)3/2

+

√
2∆(j)u1

(1− c)3/2
√
γ1γ2

+

√
2
√
c∆(j)u2

√
γ2
γ1

(1− c)2

 v2

+
∆(j)

(√
1− cu3 −

√
cu4

)
u1

(1− c)3/2
√
c+∆(j)2γ1γ2

−

(
u4

√
c+∆(j)2γ1γ2 +∆(j)γ2u2

)
v3

√
2− 2c(1− c)

√
γ1γ2

+

√
c
(
u4

√
c+∆(j)2γ1γ2 +∆(j)γ2u2

)
v4

√
2(1− c)2

√
γ1γ2

− v22 (−2cγ2 + c+∆(j)2γ1γ2)

(c− 1)2γ1γ2

+
∆(j)v5u2

√
γ2
γ1√

2(1− c)3/2
− (1− 2γ2)u

2
1

2(1− c)γ1γ2
+

1− 2γ2
2γ1γ2 − 2cγ1γ2

,

Here, ui, i = 1, . . . 4 and vj, j = 1, . . . , 5 are mutually independent and they are asymp-
totically distributed as N (0, 1).

Using similar arguments, we can expand V stochastically as

V = V0 +
V1√
n
+

V2

n
, (6.2)
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where

V0 =
1

(1− c)3

(
c

γ1γ2
+∆(j)2

)
,

V1 =

√
2
√
cv1

γ1γ2
+ 2u1

√
∆(j)2

γ1γ2

(1− c)3
+

c
(

c
γ1γ2

+∆(j)2
)(

− 2
√
2v2√

1−cc
+

√
2v3√
c
−

√
2v4√
1−c

)
(1− c)3

,

V2 =
1

(1− c)3
v22

(
6∆(j)2

1− c
+

6c

(1− c)γ1γ2

)

− 1

(1− c)3

4
√
2∆(j)v2u1

√
1

γ1γ2√
1− c

+
4
√
cv1v2√

1− cγ1γ2
− u2

1

γ1γ2
+

1

γ1γ2


+c

( √
2v3

(1− c)3
√
c
−

√
2v4

(1− c)7/2

)√
2
√
cv1

γ1γ2
−

2
√
2v2

(
c

γ1γ2
+∆(j)2

)
√
1− c

+2u1

√
∆(j)2

γ1γ2

)
+

c

(1− c)3

(
2v24
1− c

− 2v3v4√
1− c

√
c

)(
c

γ1γ2
+∆(j)2

)
.

It can be seen that the stochastic expansions of U and V under the large sample framework
(A0) is provided by replacing c in the limiting terms U0 and V0 with p/n, and by replacing
c in first and second terms U1, U2, V1 and V2 with 0.
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