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This paper develops a new scheme for improving an approximation method of a probability density func-
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1 Introduction

An approximation for a probability density function is a very interesting topic in various research fields.
In fact, it seems so useful that a precise analytical approximation for a density would lead to substantial
reduction of computational burden so that the subsequent analyses could be very easily implemented. Par-
ticularly, in finance the approximations for the densities of the asset prices have drawn much attention for
at least more than two decades since fast and precise computation is so important in terms of competition
and risk management: for instance, it is crucial in evaluation of derivatives.

An example among a large number of the related researches is an asymptotic expansion approach initiated
by [19] Yoshida [63] and [41], which is mathematically justified by Watanabe theory (Watanabe [59]) in
Malliavin calculus (e.g. Malliavin [28], Chapter V-8 in Ikeda and Watanabe [17], Nualart [32]). Actually,
the asymptotic expansion have been applied to a broad class of problems in finance: See for instance, [42],
[43], [20], [21], [22], [30], [35], [36], [37], [38], [39], [44], [45], [53], [54] [56], [57], [52], [46], [47], [48], Li [27],
Osajima [33].

For other approximation methods in mathematical finance/financial engineering see for example, Bayer
and Laurence [3], Ben Arous and Laurence [4], Gatheral, Hsu, Laurence, Ouyang, and Wang [14], Fouque,
Papanicolaou and Sircar [13], Henry-Labordere [25], Kusuoka and Osajima [23], Osajima [34], Siopacha and
Teichmann [40], and [10], [11], [12], [18], [55], [60], [61].

Although the asymptotic expansion up to the fifth order is known to be sufficiently accurate for op-
tion pricing (e.g. [37], [49], [50], [51]), one of the main criticisms against the method would be that the
approximate density function admits negative values typically at its tails that is, some region of the deep
Out-of-The-Money (OTM), which could create an arbitrage opportunity in option trading. Also, even if the
domain of a true density is restricted to be positive, the domain of its approximation may include negative
values unless an appropriate boundary condition is assigned. However, it seems that those and some other
problems exist, at least implicitly in other approximation methods.

This paper develops a new scheme for improving density approximation methods, which also contributes
to precise approximation of option values efficiently. Specifically, our scheme is inspired by the idea in a best
approximation method in an inner product space, and so called “Dykstra’s cyclic projections algorithm” is
applied for its implementation.

Firstly, we introduce an inner product with some appropriate weight function: the function is in fact a
density of a certain probability measure. Then, we represent a closed convex space satisfying the required
conditions in terms of the inner product. Thus, we are able to obtain the unique best approximation from
a given approximate density to the space in terms of the norm induced by the inner product, which is also
shown to be a better approximation for the true density than the original one measured by the norm.

More concretely, we put two basic conditions for a density function such that its total mass is one and its
range is nonnegative. It should be noted that if we consider the density of the underlying asset price under a
risk-neutral or a forward probability measure, the nonnegative density is necessary for arbitrage-free option
prices.

Also, we put calibration conditions for the underlying asset prices and option values. That is, the average
value under the approximate density of the underlying asset price at maturity should be equal to the current
underlying forward price, which is generally known in advance. Moreover, as it is known that the asymptotic
expansion method gives precise approximate values of the options close to ATM, a new approximate density
may be matched to the density obtained by the asymptotic expansion method for a certain range close to
ATM. In addition, option prices around ATM based on the asymptotic expansion method may be used for
calibration by a new approximate density.

Further, if we have some information on the tail behavior of the target density such as those in Lee [26]
and Benaim et al. [5], we may set tail conditions which will be given concretely in the next section.

We reflect those conditions in terms of an appropriate inner product space. Then, by using the corre-
sponding norm we implement the best approximation from the density obtained by the asymptotic expansion
to the closed convex space created by the required conditions. Consequently, we get a better estimate (in
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terms of the norm) for the true density of the underlying asset price than the one based on the original
asymptotic expansion. In computation, we utilize so called Dykstra’s cyclic projections algorithm. (e.g. see
pp.207-214 of Deutsch [8] for the detail.)

Furthermore, numerical experiments for pricing plain-vanilla options under Black-Scholes([6]) and SABR
([15], [16]) models demonstrate the validity of our scheme. In fact, our scheme improves the third order
asymptotic expansion preserving the required conditions such as nonnegative densities under an appropriate
forward measure.

We finally remark that our scheme is general and flexible enough to be applied to approximation methods
other than the asymptotic expansion approach. For example, it is well known that the density of the
approximation formula for SABR model (Hagan et al. [15], [16]) has the negative values for the left tail.
Hence, a number of researches have been going on in order to extend SABR model with fixing the problem
of the negative densities. (For instance, see [1], [2], [9].) we note that our scheme is a candidate for handling
this issue, too.

The organization of the paper is as follows: After the next section describes the setup of the problem,
Section 3 provides a concrete formulation of our method as well as the algorithm for the implementation.
Section 4 shows numerical examples under Black-Scholes and SABR models. Section 5 concludes.

2 Setup

Let St be the spot price of the underlying asset at time t ∈ [0, T ] and consider a density f of ST , where
ST takes a value in I ⊆ R, such as I = R, [0,+∞) or (0,+∞). Clearly, the density function f of the price
ST must satisfy the following property. Hereafter, η stands for a density function under a risk-neutral or an
appropriate forward probability measure.

Property 1. (Density Condition) : for a function η on I ⊆ R,
(1)

∫
I
η(x)dx = 1

(2) η ≥ 0.

Suppose that we have an approximation f̃ of the density function f by some method such as asymptotic
expansion scheme. Note that the approximation f̃ does not necessarily have the properties 1. Actually, it
has been found through our numerical experience under Black-Scholes model that f̃ possibly takes a negative
value at its tail, namely ”deep out of the money.”

Also, generally the forward price is given independently of models, and hence the average value of the
underlying asset price at T should be equal to the given forward price with maturity T . Moreover, it is
known that the asymptotic expansion method provides rather precise approximations for the values close
to At-The-Money(ATM) options. Thus, it is reasonable that the option prices around ATM under a new
approximate density function are calibrated to those computed based on the asymptotic expansion, and that
a new density is equal to the one obtained by the asymptotic expansion for a certain range around ATM of
the underlying asset price. We call those properties by Calibration Condition:

Property 2. (Calibration Condition)

(3)
∫
I
xη(x)dx = S0

(4)
∫
I
(x−Kn)+η(x)dx = CKn for some given strikes {Kn}Nn=1

(5) η = f̃ on some subset I0 of I

Here, the risk-free interest rate as well as the dividend rate of the underlying asset are assumed to be zero
for simplicity. CKn denotes the option price with strike Kn and maturity T computed by the asymptotic
expansion method.

3



In contrast to the accuracy around ATM, the values of the approximated density f̃ may not be reliable
around deep out of the money. However, how fast a density decreases to zero is known under some models
or through a moment formula for the implied volatility. Namely, the following quantities are known:

p̃ := sup{p > 0 : ESp
T < +∞} (2.1)

q̃ := sup{q > 0 : ES−q
T < +∞} (2.2)

under some models or through the moment formula derived by Lee [26]:

p̃ =
1

2βR
+

βR

8
+

1

2
, q̃ =

1

2βL
+

βL

8
− 1

2
, (2.3)

where

βR := lim sup
x→+∞

IV 2(x)

|x|/T , (2.4)

βL := lim sup
x→−∞

IV 2(x)

|x|/T . (2.5)

Here, IV (x) is an implied volatility function in terms of the log-moneyness that is, x = log (S0/K).
Now, let us assume that p̃ and q̃ are known, and suppose χ : I −→ (0,+∞) be a density function which

has the same order of the tail condition as f :∫ +∞

S0

xpχ(x)dx < +∞ (p < p̃),

∫ S0

0

x−qχ(x)dx < +∞ (q < q̃). (2.6)

Then, it seems natural to impose the following condition:

Property 3. (Tail Condition)

(6) η has the same tail slopes as χ.

However, for ease of computation, the condition may be replaced with the following:

Property 4. (Weak Tail Condition)

(6-1) η ≤ χ on (0,KL] for some positive number KL

(6-2) η ≤ χ on [KR,+∞) for some positive number KR

Thus, we state our problem formally as follows:

Definition 1 (Problem). Find a new approximate density function f∗ for the target density f such that it
satisfies the properties 1, 2 and 4, and

||f − f∗|| ≤ ||f − f̃ ||, (2.7)

where the norm || · || will be defined in the next section.

3 Formulation and Algorithm

This section concretely formulates the previous discussion and provides an algorithm for the implementation.
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3.1 Formulation

Firstly, suppose a probability space (R,M, µ), where the measure µ is assumed to have a density which is
equal to χ given in the previous section on I and to 0 on Ic. Next, we define the set of square integrable
functions on (R,M, µ) denoted by H := L2(R,M, µ), and introduce an inner product for f, g ∈ H by

⟨f, g⟩ =
∫
I

f(x)g(x)χ(x)dx.

With this preparation, the properties (1) to (5), (6-1) and (6-2) in Section 2 are restated as follows:

(1) ⟨η/χ, 1I⟩ = 1

(2) ⟨η/χ, δx⟩ ≥ 0 for each x ∈ I

(3) ⟨η/χ, idI⟩ = S0

(4) ⟨η/χ, gKn⟩ = CKn

(5) ⟨η/χ, δx⟩ = f̃(x) for each x ∈ I0

(6-1) ⟨η/χ, δx⟩ ≤ χ(x) for each x ∈ (0,KL]

(6-2) ⟨η/χ, δx⟩ ≤ χ(x) for each x ∈ [KR,+∞),

where 1I , idI and gKn are elements of H such that 1I(x) = 1, idI(x) = x and gKn(x) = (x−Kn)+.
Next, let us define some subsets of H as KD, KC and KT which stand for the properties (1)-(2), (3)-(5)

and (6-1)-(6-2) above, respectively:

KD := {φ ∈ H | ⟨φ, 1I⟩ = 1} ∩
∩
x∈I

{φ ∈ H | ⟨φ, δx⟩ ≥ 0}, (3.1)

KC := {φ ∈ H | ⟨φ, idI⟩ = S0} ∩
∩

n≤N

{φ ∈ H | ⟨φ, gKn⟩ = CKn} ∩
∩

x∈I0

{φ ∈ H | ⟨φ, δx⟩ = f̃(x)} (3.2)

and

KT :=
∩

x∈(0,KL]

{φ ∈ H | ⟨η/χ, δx⟩ ≤ χ(x)} ∩
∩

x∈[KR,+∞)

{φ ∈ H | ⟨η/χ, δx⟩ ≤ χ(x)}. (3.3)

Moreover, define K as the intersection of KD, KC and KT :

K := KD ∩ KC ∩ KT , (3.4)

which is assumed to be nonempty.
Then, let φ̃ := f̃/χ /∈ K, and the best approximation set from φ̃ to K is defined as

PK(φ̃) := {φ∗ ∈ K | ||φ̃− φ∗|| = inf
η∈K

||φ̃− η||}. (3.5)

Note that the set PK(φ̃) has the only one element since K is a closed convex set in a Hilbert space. Hereafter,
we may use the notation PK(φ̃) for the unique element of PK(φ̃) without any confusion.

Thus, it is easily shown that PK(φ̃) is a better approximation for f/χ ∈ K than φ̃ := f̃/χ /∈ K, because
we have

||f/χ− PK(φ̃)||2 = ||f/χ− φ⊥||2 + ||φ⊥ − PK(φ̃)||2

≤ ||f/χ− φ⊥||2 + ||φ⊥ − φ̃||2

= ||f/χ− φ̃||2, (3.6)
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where φ⊥ is the foot of a perpendicular line through φ̃ and PK(φ̃) from f/χ.
Finally, we are able to obtain a better approximated density function as

f∗ := PK(φ̃)χ. (3.7)

This is actually better than the original one f̃ in the following sense:∫
I

|f(x)− f∗(x)|2 1

χ(x)
dx ≤

∫
I

∣∣∣f(x)− f̃(x)
∣∣∣2 1

χ(x)
dx. (3.8)

3.2 Algorithm

In order to compute (3.5), we applies an iterative algorithm called Dykstra’s algorithm. (See pp. 207-214 of
Deutsch [8] for the detail of the algorithm and its convergence discussion.)

In particular, let K̃ be a convex set obtained by discretization of K, which is an intersection of finite
many closed convex sets Ki (i = 1, 2, · · · , r) in the Hilbert space H:

K̃ = ∩r
i=1Ki. (3.9)

Here, we assume K̃ to be nonempty.
First, for each n ∈ N, let [n] denote n mod r; that is,

[n] := {1, 2, · · · , r} ∩ {n− kr : k = 0, 1, 2, · · · }. (3.10)

For instance, [1] = 1, [2] = 2, · · · , [r] = r, [r + 1] = 1, · · · , [2r] = r, · · · .
Next, for φ̃ ∈ H, set

φ0 := φ̃, e−(r−1) = · · · = e−1 = e0 = 0,

φn := PK[n]
(φn−1 + en−r),

en := φn−1 + en−r − φn

= φn−1 + en−r − PK[n]
(φn−1 + en−r). (3.11)

Then, we have

lim
n→+∞

||φn − PK(φ̃)|| = 0. (3.12)

See Theorem 9.24 (Boyle-Dykstra Theorem) in p. 213 of Deutsch [8] for the proof.

4 Numerical Example

This section examines the validity of our method through numerical experiments under Black-Scholes and
SABR models.

4.1 Black-Scholes Model

Firstly, let us consider Black-Scholes model, where an analytical formulas for the density of the underlying
asset price and option values are known. Under Black-Scholes model, the dynamics of the underlying price
process under an appropriate forward measure is given as follows:

dSt = σStdWt, (4.1)
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where σ is a constant. Clearly, the density function of ST , f(x) is given by a log-normal:

f(x) =
1√
2π

1

xσ
√
T
e
− (log x−m)2

2σ2T , (4.2)

where m := logS0 − 1
2
σ2T . For this case, we take χ(x) for I := (0,+∞) as follows:

χ(x) =


AL

1√
2π

1

xσ
√

T
e
− (log x−m)2

2σ2T x ∈ (0,KL)

f3(x) x ∈ [KL,KR)

AR
1√
2π

1

xσ
√
T
e
− (log x−m)2

2σ2T x ∈ [KR,+∞),

(4.3)

and KL, KR, AL and AR positive constants and f3 stands for the density function obtained by the third
order asymptotic expansion.

With this setup, we calculate option values in the three different ways below:

(a) exact Black-Scholes formula (Benchmark)

(b) asymptotic expansion up to the third order

(c) our algorithm with Ki = 80, 100, 120 (N = 3 in KC of (3.2)) and f∗ = f̃ on [70, 150),

where we set f̃ = f3 and specify Black-Scholes model parameters as S0 = 100, σ = 0.15, T = 2, KL = 70
and KR = 150; AL and AR are determined so that χ is continuous at KL and KR, respectively.

The results for the option prices and the density functions obtained by three different methods above are
shown in Table 2 and Figure 1-3, respectively.

In the table, the comparison between the third order expansion (b) and our method (c) shows that our
method improves accuracies for the deep OTM prices, where the strike prices are in the range of 10-50 and
160-200. On the other hand, for the strikes in the range of 60-150, both methods provide the same order of
good accuracies: it is plausible because in our method (c) the option values around ATM and the density
between 70 and 150 of the underlying asset price are calibrated to those based on the third order expansion.

Although Figure 1 shows that both the third order expansion and our method produce good approxi-
mations in total, the close look at the left tail in Figure 2 reveals that the third order expansion suffers the
negative densities in the range of 31-48 of the underlying asset price. It also puts very small but nonzero
densities on the negative underlying asset values, which is not the case for the log-normal model with a
positive initial value.

On the other hand, our method keeps the density nonnegative due to the property (2) in Section 3,
reflected in KD of (3.1). Moreover, by construction it does not put any densities on the negative underlying
asset prices.

Furthermore, Figure 3 for the right tail of the density clarifies that our method improves the approxima-
tion, especially around 160 of the underlying price.

Consequently, we can conclude that our scheme works very well for this case.

4.2 SABR Model

The second example takes SABR model as a stochastic volatility model, where the underlying price process
under a forward measure follows:

dSt = σtS
c
t dW

1
t (4.4)

dσt = εσtdW
2
t , (4.5)

where ε > 0, c ∈ (0, 1] and W 1 and W 2 are Brownian motions with a constant correlation ρ. Firstly, let us
consider the case for c = 1 and ρ < 0. According to the result by Benaim et al. [5], it holds that in

p̃ =
1

1− ρ2
, q̃ = 0. (4.6)
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In this case, the left tail is so fat that any moment is infinite, that is E(S−q
T ) = +∞ for q > 0. Hence, taking

the observation into consideration, we may set χ for I := (0,+∞) as follows:

χ(x) =


γx+AL x ∈ (0,KL)
f3(x) x ∈ [KL,KR)
β(x− α)−p̃ x ∈ [KR,+∞),

(4.7)

where KL, KR, AL, α, β and γ are positive constants and f3 stands for the density function obtained by
the third order asymptotic expansion.

Next, let us consider the case for c < 1. For this case, it is known that ST can reach 0 with positive
probability. According to the result by Benaim et al. [5], it holds that

p̃ = +∞, q̃ = 0. (4.8)

Then, while the density decreases so fast to zero on the right tail, the left tail is so fat that any moment is
infinite: E(Sp

T ) < +∞ for p > 0 and E(S−q
T ) = +∞ for q > 0. Thus, taking this observation into account,

we may specify χ for I := [0,+∞) in the following:

χ(x) =


AL x = 0,
f3(x) x ∈ (0,KR)

AR
1√
2π

1

xσ̃
√
T
e
− (log x−m)2

2σ̃2T x ∈ [KR,+∞),

(4.9)

where AL is a positive constant and m = logS0− 1
2
σ̃2T . Note that we do not impose the weak tail condition

(6-1) for this case.
With this setup, we calculate OTM option prices by the following methods:

(a) Monte Carlo simulation (Benchmark)

(b) asymptotic expansion up to the fifth order

(c) asymptotic expansion up to the third order

(d) our algorithm with Ki = 80, 100, 120 (N = 3 in KC of (3.2)), and f∗ = f̃ on [KL,KR) for c = 1 and on
(0,KR) for c =

1
2
, where f̃ is equivalent to (c) the third order expansion.

For both cases of c = 1 and c = 1
2
, we set f̃ = f3, KR = 150 and AL = f̃(0). Moreover, for the case of

c = 1, we set KL = 50; γ is determined so that χ is continuous; α and β are determined by χ(x) = f̃(x)
for some two points around x = KR so that the function χ decreases so fast to zero as the function f̃ does
around x = KR. For the case of c = 1

2
, we set σ̃ = 0.45, which is the same level as the implied volatility

around KR; AR is determined so that χ is continuous. We set the other parameters as in Table 1 below.
The results for the option values by four methods (a)-(d) above are given in Table 3 for c = 1 and Table

4 for c = 1
2
. Also, the density functions obtained by four methods (a)-(d) are shown in Figure 4 - 6 for c = 1

and Figure 7 - 9 for c = 1
2
.

Table 3 for c = 1 shows that comparing to the third order expansion (c), our method (d) provides the
better approximations for 12 out of 20 cases: it substantially improves the accuracies for the deep OTM
prices for the strikes in the range of 10-50 and 160-200, while the accuracies of (c) and (d) are comparable
in the range of 60-150, which is expected because in our method (d) the option values around ATM and the
density between 50 and 150 of the underlying asset price are calibrated to those based on the third order
expansion.

On the other hand, the fifth order expansion (b) still produces the best approximations, which is rea-
sonable since our new method is designed based on the third order expansion. In terms of the density
approximations, although Figure 5 shows that our method and the fifth order expansion look better than
the third order expansion in total, the examination of the left tail in Figure 5 reveals that the fifth order
expansion suffers the negative densities in some range below 5 of the underlying asset price, while our method
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does not suffer those for all the range by construction. Also, as in Black-Scholes model, the third and fifth
order expansions put some nonzero (negative) densities on the negative values of the underlying asset price,
which is not the case for the benchmark Monte Carlo and our method.

On the other hand, Figure 6 shows that the fifth order expansion has no problem for the right tail, and
our method improves the third order expansion around between 160 and 220 of the underlying asset price.

Moreover, we expect that applying our method to the fifth order expansion will improve the approxima-
tion accuracies of option prices with the conditions such as the nonnegative densities and no densities on
the negative underlying asset values.

In the approximation of the option values for c = 1
2
, Table 4 confirms that the similar observation holds

as for c = 1, except that our method improves the third order expansion more substantially than for c = 1,
and produces sufficient accuracies comparable to the fifth order expansion.

Further, thanks to the flexibility of our choice of χ(x) in (4.9), our density approximation is able to take
the absorption barrier at x = 0 into consideration, at least to a certain extent, which cannot be achieved by
the original asymptotic expansion method only: the asymptotic expansion itself puts nonzero densities on
some negative values of the underlying asset prices as in the cases of Black-Scholes and SABR with c = 1.
We observe these points in Figure 7 - 9. Note finally that the approximation is expected to become more
precise if we can add other accurate information such as for the probability of ST = 0 (e.g. Doust [9]) to K
in (3.4) through its inner product expression.

Table 1: Parameter

S0 c σ0 ε ρ T
100 0.5 or 1.0 0.5 0.3 -0.5 1

5 Conclusion

We have proposed a new improvement scheme of approximation methods for probability density functions,
of which applications contain option pricing and computation of Greeks in finance.

Particularly, we have made use of an idea of ”best approximation in an inner product space from a convex
set,” and applied an iterative algorithm called Dykstra’s algorithm for its implementation. Consequently,
we have obtained a better approximate density that satisfies a set of appropriate conditions including the
nonnegative density under a risk-neutral or a forward measure necessary for no arbitrage option prices.

Moreover, an application to an asymptotic method has confirmed the validity of our scheme through
numerical experiments under Black-Scholes and SABR models.

We finally remark that our scheme is general and flexible enough to be applied to other density approxi-
mation methods such as Hagan et al. [16], as well as to include some other accurate information for the true
density such as for the probability of the absorption at origin. Further applications and extensions along
the line are among our next research topics.
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Table 2: Option prices under Black-Scholes model

strike (a) (b) (c) (b)-(a) (c)-(a)
10 -0.00 0.00 0.00 0.001 0.000
20 0.00 0.01 0.00 0.005 -0.000
30 0.00 0.01 0.00 0.013 0.000
40 0.00 0.02 0.00 0.019 -0.000
50 0.00 0.01 0.00 0.011 -0.002
60 0.04 0.04 0.04 -0.006 -0.006
70 0.34 0.33 0.33 -0.010 -0.007
80 1.43 1.42 1.43 -0.004 -0.000
90 3.99 3.99 3.99 -0.001 0.002
100 8.45 8.45 8.45 -0.000 -0.000
110 4.75 4.75 4.74 0.001 -0.002
120 2.50 2.51 2.50 0.003 0.000
130 1.25 1.26 1.26 0.009 0.006
140 0.60 0.61 0.61 0.009 0.010
150 0.28 0.28 0.28 -0.001 0.007
160 0.12 0.11 0.13 -0.013 0.004
170 0.05 0.04 0.06 -0.017 0.002
180 0.02 0.01 0.02 -0.013 0.001
190 0.01 0.00 0.01 -0.008 0.000
200 0.00 0.00 0.00 -0.004 0.000
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Figure 1: Densities under Black-Scholes model (total)
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Figure 2: Densities under Black Scholes model (left tail)
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Figure 3: Densities under Black-Scholes model (right tail)
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Table 3: Option prices under SABR model with c = 1

strike (a) (b) (c) (d) (b)-(a) (c)-(a) (d)-(a)
10 0.00 0.00 -0.14 0.01 0.00 0.14 -0.00
20 0.05 0.03 -0.13 0.06 0.02 0.18 -0.02
30 0.25 0.23 0.09 0.28 0.02 0.16 -0.03
40 0.79 0.78 0.68 0.83 0.02 0.12 -0.04
50 1.86 1.86 1.80 1.93 0.00 0.06 -0.06
60 3.64 3.64 3.61 3.71 -0.00 0.03 -0.07
70 6.25 6.25 6.24 6.31 -0.01 0.01 -0.07
80 9.75 9.76 9.76 9.80 -0.01 -0.00 -0.05
90 14.17 14.17 14.17 14.20 -0.01 -0.01 -0.03
100 19.44 19.45 19.46 19.46 -0.01 -0.01 -0.01
110 15.54 15.53 15.54 15.55 0.01 0.00 -0.01
120 12.33 12.32 12.33 12.33 0.01 -0.01 -0.01
130 9.72 9.72 9.74 9.73 0.01 -0.02 -0.01
140 7.64 7.63 7.67 7.65 0.01 -0.03 -0.01
150 5.98 5.98 6.03 6.00 0.00 -0.05 -0.02
160 4.68 4.68 4.76 4.70 -0.00 -0.08 -0.03
170 3.65 3.65 3.76 3.68 -0.00 -0.11 -0.03
180 2.85 2.85 2.97 2.87 -0.00 -0.12 -0.02
190 2.23 2.22 2.35 2.24 0.00 -0.12 -0.01
200 1.74 1.73 1.84 1.72 0.01 -0.10 0.02
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Figure 4: Densities under SABR model with c = 1(total)
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Figure 5: Densities under SABR model with c = 1(left tail)
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Figure 6: Densities under SABR model with c = 1(right tail)
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Table 4: Option prices under SABR model with c = 1
2

strike (a) (b) (c) (d) (b)-(a) (c)-(a) (d)-(a)
10 0.13 0.15 0.28 0.15 -0.02 -0.15 -0.02
20 0.43 0.46 0.61 0.46 -0.02 -0.17 -0.03
30 0.98 1.00 1.16 1.00 -0.03 -0.18 -0.03
40 1.86 1.89 2.04 1.88 -0.03 -0.18 -0.02
50 3.19 3.21 3.35 3.21 -0.03 -0.16 -0.02
60 5.06 5.09 5.20 5.08 -0.02 -0.14 -0.01
70 7.58 7.60 7.69 7.60 -0.02 -0.11 -0.01
80 10.82 10.84 10.91 10.84 -0.02 -0.08 -0.02
90 14.84 14.86 14.90 14.87 -0.01 -0.06 -0.03
100 19.66 19.68 19.70 19.70 -0.01 -0.03 -0.03
110 15.30 15.29 15.29 15.27 0.02 0.01 0.03
120 11.67 11.66 11.64 11.64 0.01 0.03 0.03
130 8.73 8.72 8.69 8.71 0.01 0.04 0.02
140 6.42 6.41 6.36 6.40 0.01 0.06 0.02
150 4.64 4.62 4.56 4.62 0.01 0.08 0.01
160 3.29 3.28 3.21 3.28 0.01 0.09 0.01
170 2.30 2.29 2.21 2.27 0.01 0.09 0.03
180 1.59 1.57 1.49 1.54 0.01 0.09 0.04
190 1.08 1.07 0.99 1.03 0.01 0.09 0.05
200 0.72 0.72 0.65 0.67 0.01 0.08 0.05
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Figure 7: Densities under SABR model with c = 1
2 (total)
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Figure 8: Densities under SABR model with c = 1
2 (left tail)
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Figure 9: Densities under SABR model with c = 1
2 (right tail)
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