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Abstract

The daily return and the realized volatility are simultaneously modeled in the stochastic volatility model with
leverage and long memory. The dependent variable in the stochastic volatility model is the logarithm of the
squared return, and its error distribution is approximated by a mixture of normals. In addition, we incorporate
the logarithm of the realized volatility into the measurement equation, assuming that the latent log volatility
follows an Autoregressive Fractionally Integrated Moving Average (ARFIMA) process to describe its long
memory property. Using a state space representation, we propoggcséeneBayesian estimation method
implemented using Markov chain Monte Carlo method (MCMC). Model comparisons are performed based
on the marginal likelihood, and the volatility forecasting performances are investigated using S&P500 stock
index returns.

Keywords: ARFIMA, Leverage &ect, Long memory, Markov Chain Monte Carlo, Mixture sampler,
Realized volatility, Realized stochastic volatility model, State space model

1. Introduction

The realized volatility is defined as the sum of the squared intraday returns over a specified time interval
such as a day (e.g., Andersen and Bollerslev (1998) and Bdfridielsen and Shephard (2001)). This
measure would provide a consistent estimator of the latent volatility under the ideal market assumption. The
theory of the realized volatility is discussed in Barn@dtielsen and Shephard (2002) and Meddahi (2002),
and there have been extensive studies on its time series structure and performance in volatility prediction (e.g.,
Andersen et al. (2003), Andersen et al. (2007), Andersen et al. (2004), Koopman et al. (2005) and Maheu and
McCurdy (2007)).

In the real market, however, two major problems arise in measuring the daily realized volatility using
high frequency return data: (1) the presence of non-trading hours and (2) market microstructure noise in
transaction prices. The first problem arises because the stock market is usually open for only part of the day.
For example, the Tokyo Stock Exchange (TSE) is open for 4.5 hours a day and there is a lunch break. If
we calculate the realized volatility as the sum of the squared intraday returns when the market is open, we
may underestimate the latent one-day volatility. To avoid this underestimation, Hansen and Lunde (2005)
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proposed a scale realized volatility that adjusts the realized volatility by the ratio of the variance of the daily
return to the mean of the realized volatility.

Market microstructure noise has various causes, including bid-ask spread and variation in trade sizes
(see O’Hara (1995) and Hasbrouck (2007) for details) and can cause the realized volatility to be a biased
estimator of the latent volatility. As the sample time interval approaches zero, the bias owing to microstructure
noise is expected to increase significantly. At-Sahalia et al. (2005) and Bandi and Russell (2008) propose
a procedure to determine the optimal sampling interval, and Zhang et al. (2005) propose a bias adjusting
method by assigning fierent weights to the realized volatilities calculated usirfiedent time intervals. In
addition, Barnddt-Nielsen et al. (2008) derive the Realized Kernel (RK) as a consistent estimator of the
latent volatility using high frequency data with noise.

Whereas, the intraday returns are heavily contaminated by microstructure noise, the daily returns are
less subject to the noise. The daily returns could, therefore, provide additional information to eliminate the
bias owing to microstructure noise and non-trading hours simultaneously. Takahashi et al. (2009) propose
an extension of the stochastic volatility (SV) model to include such simultaneous modeling of the daily
returns and realized volatility known as the Realized Stochastic Volatility (RSV) model. Hansen et al. (2012)
implement a similar simultaneous modeling approach within the GARCH framework, called the Realized
GARCH model, and demonstrate the superior, performance of the proposed model compared to GARCH
(using daily returns only). Maheu and McCurdy (2011) consider the simultaneous modeling of S&P500 and
IBM data and show that this approach outperforms the conventional EGARCH model.

Two important properties of the stochastic volatility and realized volatility have been discussed in previous
empirical studies: (i) the leveragdfect and (ii) long memory. The leveragffext refers to the correlation
between the return at tinteand the logarithm of the volatility at time+ 1 and has been well established in
empirical studies of stock returns (see, e.g., the survey by Shephard (2005)). To account for |letectge e
Melino and Turnbull (1990), for example, use the GMM (generalised methods of moments), and Harvey
and Shephard (1996) use the QML (quasi-maximum likelihood method) with the Kalman filter for their
estimation. Bayesian estimations have been described in various studies (e.g., Jacquier et al. (2004), Omori
et al. (2007), Omori and Watanabe (2008)). Takahashi et al. (2009) further propose a Bayesian estimation
method for the RSV model with leverage where they use a single realized measure, while multiple realized
measures are used in Venter and de Jongh (2013) and Koopman and Scharth (2013). Superposition model, in
which the logarithm of the volatility is a sum of latent factor processes, is proposed to describe the long-range
dependence of the volatility in Dobrev and Szerszen (2010) with jumps in latent processes, and in Koopman
and Scharth (2013) with a correlation between returns and measurement errors.

The long memory property of the realized volatility has also been investigated in many empirical stud-
ies using the high frequency data (e.g., Andersen, Bollerslev, Diebold, and Ebens (2001)) and Raggi and
Bordignon (2012) modeled the realized volatility with long memory and Markov switching dynamics using
a Bayesian estimation method for the state space model. The SV model with long memory is discussed in
Breidt et al. (1998) using the frequency domain approach (spectral likelihood estimator) and in So (2002)
using a Bayesian approach with the state space model (So (1999)). Ruiz and Veiga (2008) investigate the
statistical property of the stochastic volatility model with leverage and long memory (but without using the
realized volatility), and compare with those of FIEGARCH models. Further, the autocorrelation function of
powered absolute returns and their cross-correlations with original returns are deriadarePal. (2009).

This paper extends the RSV model by incorporating both the leverféggtin the SV model and the
long memory property of the realized volatility, and proposes a higfligient Bayesian estimation method
with a Markov Chain Monte Carlo (MCMC) implementation. Instead of the block sampler used in Takahashi



et al. (2009), we employ the mixture sampler, a highfiyceent Bayesian estimation method proposed by
Kim et al. (1998) and Omori et al. (2007). In these methods, we take the logarithm of the squared asset
return as a dependent variable to obtain linear measurement equations and approximate the error distribution
by a mixture of normal distributions. In addition to the transformed stochastic volatility model, we assume
an Autoregressive Fractionally Integrated Moving Average (ARFIMA) process for the logarithm of the log
volatility to describe the long memory property of the realized volatility.

The paper is organized as follows. In Section 2, we introduce our model and its motivation. Section
3 describes the Bayesian estimation procedure based on the state space representation and Markov chain
Monte Carlo methods. We illustrate our proposed method through numerical examples using simulated data
in Section 4. In Section 5, we present our empirical studies using S&P500 realized volatility and realized
kernels, perform model comparisons based on the marginal likelihood, and investigate the volatility forecast
performances. We conclude in Section 6.

2. Realized stochastic volatility with leverage and long memory

2.1. Realized stochastic volatility with leverage
The simple stochastic volatility model with leverage is given by

vit = exph/2)g, t=212,...,n, ()
ha=p+o(hh—p)+m, t=1,...,n, (2)

[;tt]~ iid. N[(g], [p(lrﬂ p{%”)] Il < 1, 3)
hy ~ (. o?/(1 - ¢7)), (4)

whereyy; is a stock return at time The parametes measures the correlation betwegmandrn, and, when
negative, captures the increase in volatility following a drop in equity returns (e.g., Black (1976), Nelson
(1991), Yu (2005)). The volatility clustering is described by the first order autoregressive process (8) with
meanu for the hy,; (the log volatility at timet + 1). Because it is dlicult to evaluate the likelihood function
using the high dimensional numerical integration, Bayesthoient estimation methods have been proposed
in previous studies (e.g., Omori et al. (2007), Omori and Watanabe (2008)).

Furthermore, to incorporate the information contained in the realized volatility, Takahashi et al. (2009)
propose simultaneous modeling of the daily returns and realized volatility by introducing an additional mea-
surement equation

ya=é+h+w, t=12....n u ~ iid N(O,o0o?2), (5)

whereysy is the logarithm of the realized volatility at timieandu, is assumed to be independentoands;.

This model makes it possible to use the realized volatility calculated from all available returns without any
additional adjustment such as selecting the optimal sampling frequency to compute the realized volatility.
The bias adjustment terng, accounts for the ffects of the market microstructure noise and non-trading
hours simultaneously. When it is negative (positive), the realized volatility is considered to underestimate
(overestimate) the latent volatility. We refer to this model as the Realized Stochastic Volatility (RSV) model
(e.g., Koopman and Scharth (2013), Dobrev and Szerszen (2010), Venter and de Jongh (2013)). Although
we could extend the model by replacihgwith yh; in (5), wherey is another adjustment cfirsient, this
extension does not necessarily improve the model fit in the empirical studies in Section 5.3. We therefore
adopt the measurement equation (5) for the logarithm of the realized volatility by sgtting



Takahashi et al. (2009) compared the simultaneous models using naive and scaled realized volatilities
based on the marginal likelihood, and demonstrated thatfteeteof non-trading hours is more important
than that of microstructure noise.

2.2. Realized stochastic volatility with superposition

Koopman and Scharth (2013) consider superpositions of independent ARMA processes as the volatility
process in RSV framework.

K
yu =exp(d hi/e, t=12....n, 6)
j=1
K
Vor =&+ hic+w, t=12...,n, @)
j=1
higr =p+ (b —p) +m1e, t=1,....n, 8
hipwi=ojhjt+n,  J=2...,K t=1...,n, 9)
hy ~ (u, 02, /(1= ¢9)), hj ~ (0,02 /(1 - ¢)), i=2...,K (10)

This model can describe the long memory property of the log volatility process. We will explain about
this property in the next subsection. We also include the leverfigetéo the each independent volatility
processes. In this literature, we call this model as realized stochastic model with superposition (RSV-SP).

Koopman and Scharth (2013) argue that the dependence bedveeeiy, may not be negligible due to the
discretization &ects and jumps when the realized measure is based on a finite sample. We could consider,
for example, a linear dependence by incorporating an additional correlation between these errors, but it is
still not clear how to model the nonlinear dependence structure. Detail investigation of such a dependence
problem is left for our future work.

2.3. The long memory property of the realized volatility

In empirical studies, the realized volatilities often display long memory properties, and the ARFIMA
process is frequently used to express this characteristic (Andersen et al. (2003), Giot and Laurent (2004),
Koopman et al. (2005), Raggi and Bordignon (2012)). The ARFIMA(p,d,q) process is defined by

- Do) (e —p) = OL)m,  t=01,....n, (11)
wheren; denotes white noisd, is the lag operator such thathy, = hj, (L) = 1 - ¢1L —... — ¢,LP, and
O(L) =1-6,L—-...-64L% Whend = 1, it is referred to as the ARIMA(p,1,q) process and is nonstationary.
We observe that in general

S dd-1)---(d-j+1) i - i
-0 = 1+ . (L)) =1+ > yLl (12)
j- .
Yo =1, Vi = T j=0. (13)

We assume that & d < 1 because the estimates of the memory parametere typically found to fall
between 0 and 1 in empirical studies of the realized volatilities. The process is statiodary &5 and
nonstationary ifl > 0.5.

Long memory stochastic volatility models where the latent log volatility is assumed to follow an ARFIMA
process have also been discussed in several studies without explicitly utilizing the information contained in



the realized volatilities (e.g., Breidt et al. (1998), So (2002), Ruiz and Veiga (2008)). Koopman and Scharth
(2013) implement a superposition model in the RSV framework, describing the long range behavior of the
log volatility process. However, in this paper, we consider a straightforward description of the long range
behavior by adapting the ARFIMA process directly in the RSV framework. To incorporate the long memory

property of the realized volatility into the stochastic volatility model, we consider the following state space

model, referred to as the Realized Stochastic Volatility with Long Memory model (RSV-LM(p,d,q)):

vit = exph/2)¢, t=212,...,n, (14)
yx=E+he+w, t=12,...,n, (15)
(1- Do) — 1) = OL)r,  t=0,1,....n, (16)
& 0 1 0 poy
u|~ iid.NJfo], | 0 o2 0 || a7
Ul 0 oy 0 o3

In this paper, we focus on three specific cases of appearing frequently in empirical studies: RSV-LM(0,d,0),
RSV-LM(0,d,1) and RSV-LM(1,d,0). We therefore assume th@t) = 1 — ¢L and®(L) = 1 - 6L, where

|#| < 1 and|g] < 1. We assume thak is independent ofe{, n;) because the measurement error is dominated
by the computing the realized volatilities. However, it is straightforward to extend our model to incorporate
a correlation between and the other error terms.

3. Highly efficient Bayesian estimation

This section describes the highlffieient Bayesian estimation of the parameter using the MCMC method.
Following the mixture sampler approach (e.g., Kim et al. (1998), Omori et al. (2007)), we first represent the
RSV-LM model in linear Gaussian state space form to utilifieient estimation procedures such as filtering,
smoothing and prediction.

3.1. The gicient auxiliary mixture sampler

The mixture sampler proposed by Kim et al. (1998) and Omori et al. (2007) is well-known #iscéané
MCMC sampling method for SV models. Its basic idea is to transform the nonlinear measurement equation
into a linear equation and to approximate the distribution of the non-normal disturbances by a mixture of
normals. We first transformy, to (y;;, 6t) in Equation (14) as follows.

logy?, =+ ¢, € =loge, (18)
[(yzt = 0) = I(yx < 0), (19)

Yit
6t

fort=1,2,...,n. Because; is the logarithm of the chi-square random variable with one degree of freedom,
its probability density is given by

1 € —explg’)
f(er) = exp( ‘ ) (20)
Y V2n 2
We approximate this density by mixtures of normal densities as follows:
K
(&) = D i fglm;, v8), (21)
j=1



where fy(g|m, v?) denotes the probability density of a normal distribution with meaand variances?,
N(m,v?). As the conditional distribution of; givene; ands; is

o, 07y, 61, € ~ N(Gporyexple /2), o5(L - p?), (22)

where the mean is a nonlinear functione)f we furthermore employ a linear approximation of expg).
We therefore approximate the distribution ef,@;) by a bivariate mixture normal distribution givép

K
o€ o 7, 00) = ) Py (el Imy, v2)

j=1

x fn[mlowoyexp/2)(a; + bj(e - m)), oo(1 - p?)]. (23)
This approximation is generally quite accurate and there is litfferdince between the true and approximated
probability densities. Omori et al. (2007) propose the approximation kvith10 and provide their selected

pj = Pr(s = j) and mixture component parametens; (v, a;,b;) for j = 1,...,10; we reproduced this
parameter list in Table 1.

Table 1: The values ofj, m;, 2, ;. bj

p; m; vz aj b;

0.00609 1.92677 0.11265 1.01418 0.50710
0.04775 1.34744 0.17788 1.02248 0.51124
0.13057 0.73504 0.26768 1.03403 0.51701
0.20674 0.02266 0.40611 1.52070 0.52604
0.22715 -0.85173 0.62699 1.08153 0.54076
0.18842  -1.97278 0.98583 1.13114 0.56557
0.12047  -3.46788 1.57469 1.21754 0.60877
0.05591  -5.55246 2.54498 1.37454 0.68728
0.01575 -8.68384 4.16491 1.68327 0.84163
0 0.00115 -14.65000 7.33342 2.50097 1.25049

P OO~NOORWNERE|—

3.2. Linear Gaussian state space representation

Givens = {sy, ..., Sy}, we obtain a linear Gaussian measurement equation. Notinky thaE (h|hy_1, he_o,.. )+
n—1, we define a dependent vector and a state vector,

-1
E(htlht—l’ ht—27 .- ')

w=@} e =| EMcalhinhoa..) |, (24)
2t .

E(heem-1lhe-1, heo, .. )

so thath; is a sum of the first two elements of, Let Q,, 1, andl,, denote & x 1 zero vector, & x 1 vector
with all elements equal to one, and anx m identity matrix. Then, using the MA model of an ARFIMA



process for the state equation based on the finite trunchtion

ht+1

p+ L)L - L) e (L)
M+ Z Yine-j
j=0

M
M+ Z ‘/’jﬂt—j, d/O = 19 'ﬁ = (!l’l’ cee ’d/M)/’ (25)

=0

Q

we can represent the RSV-LM model as the following linear Gaussian state space model:

ﬁthﬁ+Ztat+Gtu;‘, t=12...,n, (26)
a’H]_:Wtﬂ+Tta’t+HtU:, t=0,1,....,n-1, (27)
@o=0, U ~iid. N(Os;lg), (28)
where
ms 0 O 1 1 1 Q,
X = N , B=|¢&l, 4= -1,
0 10 11 0,
Sypo,as eXpMs /2) Owm 0 O
W, = s * Om+1 , Ty= Om+1 Im-1 |»
Om 1 1/
O\

S 0 O o = Sipo,bsVsexps/2) 0 oy /1-p?
"7 lo o, 0 YT Ow Om om |

For the initial latent log volatilityh;, we assume that

0

Om+1 1

Wo = (0M+1

], Ho = (OM+1 Om+1 0’;71M+1)~
for simplicity. If h follows an ARFIMA(1,d,0) process, then the ¢eienty; is given by
Vi=¢ +718 L+ Tiab + v (29)
where
So=1 Fa= i:—‘i&j, i>o0

Conditional ons, we obtain the linear Gaussian state space representation, and can therefore generate sam-
ples from the conditional posterior distributions using the simulation smoother and augmented Kalman filter
(de Jong (1991)). As we shall see in the next subsection, by integrating out the latent state variables and mean
parametep using the augmented Kalman filter, we generate posterior samples in a higtigre way.

1The state equation expressed by the ARFIMA process contains infinite past disturbance terms. Even if we truncat®lit using
(> +/n) past disturbances to implement the maximum likelihood estimation, the consistency and asymptotic normality of the maximum
likelihood estimator are established for a stationary ARFIMA process (Chan and Palma (1998)).



3.3. MCMC implementation

Lets = {sii,, ¥ = {¥{}L;, h = {hl,, 6 = {6}, and set the prior probability densitie&) andn(y)
for ¢ = (¢.6.072.d,p, %) andy = (¢, ). We draw samples from the posterior distribution with probability
densityr(, ¢, h, sly) using the MCMC technique. We summarize the sampling steps as follows.

1. Set the initial value of, ¢, s.
2. Generates/Z, ¢, h, y*, 6.
3. Generate{, ¢, h)|s, y*, d.

(a) Generatée|s,y*,d.

(b) Generatep|Z, S, Y, 6.
(c) Generatd|, ¢, S, Y5, 6.

4. Return to step 2.

We will describe each sampling step in detail below.

Generation of sThe posterior probability mass function ®fgiven¢, ¢, h,y*, § is given by

7T(S[ = ”90’4,’ h’yk’é) &
Pr(s; = j)vj‘lexp{—(ft

- m;)? _ [t = époryexpm;/2){a + bj(e - mj)}]z}
2V]2 202(1 - p?)

where
& =Y - m=hgr—p—g(h—p).

We can generate a sample from this discrete distribution using the inverse distribution method.

Generation ofZ, ¢, h). The conditional posterior probability density function 6f¢, h) is

(.. NSy, 6) «c a(dIs Y, 6)n(eld, sy, S)n(hle. £, S Y, 6), (30)

where

n(Zlsy".0) e f(y'IL, s.0)n(L), (1)

andf is the conditional likelihood of the approximated model. We note that the conditional posterior proba-
bility density z(Z|s, y*, §) is marginalized over both andy. By implementing the augmented Kalman Filter

(de Jong (1991)), we can integrate olt() to obtain the conditional likelihood(y*|Z, s, 6) (see Appendix
Appendix B for the details). Using this likelihood and the prior probability density, we use the Metropolis-
Hastings algorithm (MH, e.g., Chib and Greenberg (1995)) to generate posterior samples of parameters as
follows.

(a) Generate ~ n(Z]s, Y, 9).

To generate in the regionR = {y : |#| < 1,10 < 1, 0'5 >0,-1/2 <d < 1,|o| < 1,02 > 0}, we consider
the transformatiog™ = (log(1+ ¢) — log(1 - ¢), log(1 + 6) — log(1 - 6), Iog(o-,zl), log(1+ 2d) — log(1—



d), log(1+ p) — log(1- p),log(c-2))’. First we compute the mod_é";, of the conditional posterior density
of 7, n(¢T|s, y*, 6), numerically, and then construct the proposal density based on the Taylor expansion
around the mode:

~ . , e 1 e, ~
logn(’sy,6) ~ logn(Z'Isy",6)+Gx (¢ =N + S = L) gppn (& - )

Q

1 .
const.— E(f - 1) M - )
= —gnes pe =L+ 200,
where

_ dlogn({fIs y, o) _ d?logn({fIs Yy, 6)
Y = g5 | %= P
4 7= dstdg =g

We generate a candidafé ~ N(u., £;) and conduct MH algorithm.
(b) Given/, generate = (&, 1) ~ N(p1,C1) wherep; andC; are defined in Appendix Appendix B.

(c) Given¢ andg, generatér simultaneously using a simulation smoother by Durbin and Koopman (2002)),
which is known to be stable when the dimension of the state vector is high. We generate state dis-
turbances{u;}, from the posterior distribution and substitute them into the state equation to dbtain
recursively.

4. lllustrative example using simulated data

To illustrate our proposed estimation method, we consider the RSV-LM (1,d,0) model with the true pa-
rameters are set equal to

02, o02=05=016 d=086,

04 pu=1 ¢=0,

and generate 2,000 observations. As suggested by Kim et al. (1998) and Omori et al. (2007), yje-take
Iog(yi +¢) wherec = 10 is the dfset used to handle very small valuesyﬁf Let Beta(a,b) denote the beta
distribution with parameters (a,b) and meslfa + b), and let IG(a,b) denote the inverse Gamma distribution
with parameters (a,b) and mebf{a— 1). The prior densities are assumed to be as follows:

4 ~ N(O1), iz‘p ~Beta(11), o2~ IG(5/2 0.05/2)
£ ~ N(O,1), 1% ~Beta(11), o2~ IG(5/2,0.05/2),
1 +32d ~ Beta(1 1), (32)

based on previous empirical studies, (e.g., Takahashi et al. (2009)) where we also account for the nonsta-
tionary case by setting1/2 < d < 1 as,d is sometimes observed to vary between 0.5 and 0.6 in empirical
studies.

The number of iterations in our MCMC implementation is set t6QD after 500 samples are discarded
as the burn-in period. The number of truncation ldgsijs set to 50.



Table 2: RSV-LM (1,d,0) model for the simulated data

Param. True Mean Stdev 95% interval IF
¢ 0.2 0.268 0.083 [0.112,0.438] 4.9
0-,2] 0.16 0.146 0.022 [0.104,0.193] 6.6
d 0.6 0592 0.029 [0.532,0.647] 1.7
0 -0.4 -0.350 0.033 [-0.414,-0.284] 3.2
a2 0.16 0.170 0.014 [0.139,0.198] 6.0
u 1 0949 0.121 [0.722,1.194] 1.6
& 0 0.005 0.033 [-0.060,0.070] 5.9

Table 2 shows the true values, posterior means, posterior standard deviations, posterior 95% credible
intervals and infiiciency factors (IFf. The estimation result shows that our estimates are close to the true
values of the parameters and that all of the 95% credible intervals include these true values. We note that
the indficiency factors are extremely low @ 7) in comparison to the values using other approaches (see,
e.g., Omori and Watanabe (2008), where thdfioency factors are 68 433 for the multi-move sampler
and 103~ 3507 for the single move sampler). This result demonstrates that our proposed estimation method
is highly dficient and that we have successfully extended the work of Omori et al. (2007) to the RSV-LM
model without loss of samplingfciency.

5. Application to S&P500 returns data

5.1. Data

We apply our proposed model to the daily returns and realized volatility (or the realized kernel) of the
S&P500 stock index. The sample period is from January 3, 1996 to February 27, 2009, and the number of
observations i = 3,2632 Figure 1 shows a time series plot of the RY, and the mean level appears to
be slowly changing. The mean level began to increase at the lower level and remained near zero for the first
half of the sample period. It later began decreasing again but then increased sharply toward the end of second
half. Figure 2 shows a autocorrelation function of Rg. The autocorrelation of IoBV maintain high level
even in long lags. These behaviors suggests that the logarithm of the realized volatility has the long memory
property.

The summary statistics are also shown in Table 3. The distributions of ti®aead logRK are much
closer to a normal distribution than those of R¥ andRK. This indicates that our normality assumption for
the error term in (5) is plausible for our empirical analysis, and we defer the extension to a non-normal error
distribution to future work.

2The indficiency factor (IF, see, e.g., Chib (2001)) is defined by 2%, ps, Whereps is the sample autocorrelation at laglt
measures how well the MCMC chain mixes. It is the estimated ratio of the numerical variance of the posterior sample mean to the
variance of the sample mean from uncorrelated draws. When thicieecy factor is equal ttl, we must draw MCMC sampldd

times to generate one uncorrelated sample.
3These are obtained from the Oxford-Man Institute’s Realized Library (Heber et al. (2009)). The realized kernel is calculated using

the method of Barnddi-Nielsen et al. (2008) to account for microstructure noise.
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Figure 1: Time series plot of logV. Figure 2: Sample autocorrelation function of RY.

Table 3: Summary statistics. S&P500 returns.

Variable Mean Stdev Skew Kurt Max Min

R 0.005 1.312 -0.258 8.038 10.956 -9.469
RV 0.964 2.088 10.981 199.500 56.482 0.022
RK; 1.002 2.141 10.410 178.260 55.961 0.022

logRV, -0.656 0.992 0.556 3.830 4.033 -3.800
logRK; -0.621 1.000 0.530 3.777 4.024 -3.791

5.2. Estimation results
We estimate the following eight models:

¢ RSV model. The prior distributions are the same as in in Section 4 except that we assuggdt
Beta(20,1.5) as in the previous literature.

e RSV-SP model. As in Section 2.2, we consider the RSV model with superposition where the log
volatility is assumed to be the sum of two independent stationary AR(1) processes with le\Breige e
(see Omori et al. (2007)):

he = hy+hg,

hye = p+ga(he—p) +mu, o1l <1,

ha = ¢ohx+na, g2l <1, ¢1> ¢o,
& 0 1 02 P11 P20 2
:L -~ pl?,,ﬂ o (,%1 o |- <l load<l plepi<l,
n2t 0 p20p2 O 0 0',2,2

The prior distributions for, ¢;, af}l,g,pl, o2) are the same as in the RSV model. For the parameters
of the second AR(1) process, we assume- (1,)/2 ~ Beta(10,10), (& p2)/2 ~ Beta(lO,lO)p-,z72 ~
1G(5/2,0.0%2) with side constraintg, < ¢; andp? + p3 < 1 following Omori et al. (2007).

e RSV-LM models: RSV-LM-MA (0,d,0), (1,d,0), (0,d,1) and RSV-LM-AR (0,d,0), (1,d,0), (0,d,1) mod-
els. The prior distributions of the parameters are assumed to be the same as in Section 4. For the prior
distribution off, we assume (% 6)/2 ~ Beta(1,1).

The number of iterations is set to 1,500 and the initial 500 samples are discarded as the burn-in period,
taking account of the irféciency factors. As in the previous section, these factors are extremely smafi)(1
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and our MCMC estimation method is highlyfieient. This is because we use the mixture sampler, which
integrates out all of the latent volatility variables to compute the conditional likelihood and, furthermore, uses
the additional information based on the logarithm of the realized volatilities. We note that thismeiney

factors are even smaller overall than those obtained using the mixture sampler approach for the stochastic
volatility model with leverage, without using the realized volatilities (Omori et al. (2007)). We can therefore
perform the statistical inference even with a small number of the iterations and the short burn-in period
compared to previous studies.

The estimation results for the RSV model are shown in Tables 4 usirigMognd logRK; for y,. The
estimation results of RSV model are quite similar usingRdgand logRK;. The persistence parameter in the
volatility is found to be high¢ = 0.965 (0965)), and the negatiyeindicates the existence of leveragteets
(0 = —0.534 (-0.539)). We note that the posterior probability of a negative bias; £0.625 (-0.588)), in
the realized volatility (or the realized kernel) is greater than 0.975. This implies that the realized volatilities
underestimate the integrated volatilities because they do not account for the presence of non-trading hours
and microstructure noise. By introducing the tefnthe bias can be estimated and eliminated.

Hansen and Lunde (2005), for example, propose to correct the bias by computing the scaled realized
volatility (SRV). This ensures that the mean of the scaled realized volatilities (or the scaled realized kernels)
is equal to the sample variance of the daily returns. This may therefore be used to substantially reduce the
bias owing to overnight price changes. However, this is not necessary in our model because the bias itself
is estimated and eliminated. This result is consistent with the preceding empirical study by Takahashi et al.
(2009).

Table 4: Estimation results of RSV model

log RM log RV log RK
Mean Stdev 95% IF Mean Stdev 95% IF
Parameter
) 0.965 0.004 [0.956,0.973] 1.6 0.965 0.004 [0.957,0.973] 1.6
05 0.043 0.003 [0.036,0.051] 1.7 0.043 0.003 [0.037,0.051] 1.6
Jel -0.534 0.036 [-0.601,-0.461] 2.4 -0.539 0.035 [-0.607,-0.466] 2.4
o 0.183 0.006 [0.171,0.196] 1.3 0.189 0.006 [0.176,0.202] 1.4
u 0.105 0.096 [-0.079,0.303] 1.6 0.105 0.097 [-0.081,0.305] 1.6
& -0.625 0.027 [-0.679,-0.573] 6.0 -0.588 0.027 [-0.643,-0.538] 5.7

Table 5: Estimation results of RSV-SP model

log RM log RV log RK
Mean Stdev 95% IF Mean Stdev 95% IF
Parameter
o1 0.983 0.003 [0.977,0.988] 1.9 0.983 0.003 [0.977,0.989] 2.3
o 0.434 0.062 [0.314,0.553] 3.2 0.436 0.062 [0.317,0.553] 3.8
0-21 0.018 0.002 [0.013,0.024] 1.4 0.018 0.002 [0.013,0.024] 1.6
0'%2 0.079 0.010 [0.060,0.101] 5.8 0.081 0.010 [0.060,0.103] 5.4
01 -0.547 0.056 [-0.651,-0.431] 0.9 -0.551 0.056 [-0.655,-0.432] 1.5
02 -0.220 0.044 [-0.308,-0.141] 3.1 -0.223 0.044 [-0.312,-0.145] 2.9
a2 0.131 0.010 [0.110,0.151] 5.4 0.135 0.010 [0.113,0.156] 4.8
u 0.219 0.127 [-0.025,0.483] 2.0 0.219 0.129 [-0.031,0.485] 2.0
& -0.613 0.025 [-0.664,-0.565] 6.2 -0.576 0.025 [-0.627,-0.528] 5.7

The estimation results for the RSV-SP model are shown in Tables 5. For the RSV-SP model, the estimation
results are similar to those of RSV. The posterior mean of the persistence parameter for the second AR(1)
processg,, is smaller than that of first one. This indicate the second probgssprresponds to the transitory
component, while the first process;, corresponds to the persistent component. The degree of the leverage
effect in second AR(1) process is moderate but still seems to gxist £0.220 (-0.223)).
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Table 6: Estimation results of RSV-LM-MA and RSV-LM-AR models

log RM

RSV-LM-MA
(0,d,0)
2

Ty

=N

N

=g Q.dq&j:m‘: 3 a
o
o
N—r

&
RSV-LM-AR

(0,d,0)

o2

o
(=)
p—

N =N

o
'—\
N

=N

ME T O OIOMT QD OgESRMNE
N

log RV log RK

Mean Stdev 95%interval IF Mean Stdev 95%interval

0.127 0.010 [0.108,0.148] 3.4 0.127 0.010 [0.110,0.150]
0.610 0.016 [0.577,0.640] 2.0 0.610 0.016 [0.576, 0.640]
-0.385 0.030 [-0.443,-0.327] 2.3 -0.389 0.030 [-0.446, -0.332]
0.127 0.008 [0.109,0.143] 3.3 0.132 0.008 [0.114,0.149]
0.060 0.082 [-0.095,0.222] 1.4 0.058 0.082 [-0.097,0.224]
-0.614 0.026 [-0.663,-0.561] 7.6 -0.578 0.026 [-0.628,-0.525]
0.103 0.062 [-0.012,0.225] 1.6 0.100 0.062 [-0.017,0.225]
0.111 0.012 [0.088,0.138] 3.0 0.112 0.012 [0.089, 0.139]
0.594 0.020 [0.556,0.635] 1.4 0.594 0.020 [0.555, 0.636]
-0.402 0.031 [-0.468,-0.343] 1.7 -0.405 0.031 [-0.470, -0.345]
0.137 0.009 [0.116,0.154] 2.5 0.141 0.009 [0.120,0.158]
0.056 0.080 [-0.100,0.216] 1.5 0.055 0.079 [-0.098, 0.217]
-0.614 0.026 [-0.666,-0.565] 4.9 -0.578 0.026 [-0.630,-0.529]
-0.095 0.063 [-0.225,0.019] 2.2 -0.093 0.063 [-0.224,0.022]
0.112 0.012 [0.090,0.139] 3.0 0.114 0.012 [0.090,0.141]
0.599 0.018 [0.564,0.635] 1.0 0.599 0.018 [0.563,0.638]
-0.398 0.029 [-0.460,-0.340] 2.0 -0.402 0.030 [-0.464,-0.344]
0.136 0.009 [0.117,0.153] 3.0 0.140 0.009 [0.121,0.157]
0.057 0.079 [-0.100,0.214] 1.5 0.055 0.080 [-0.100, 0.214]
-0.613 0.025 [-0.664,-0.565] 4.6 -0.577 0.026 [-0.628,-0.528]
0.107 0.009 [0.090,0.127] 3.1 0.109 0.009 [0.090,0.129]
0.639 0.021 [0.599,0.679] 2.9 0.638 0.020 [0.599, 0.679]
-0.433 0.033 [-0.499,-0.372] 2.4 -0.437 0.033 [-0.503, -0.376]
0.141 0.008 [0.124,0.158] 2.9 0.146 0.008 [0.128,0.163]
0.066 0.161 [-0.249,0.385] 0.9 0.064 0.160 [-0.253,0.381]
-0.615 0.026 [-0.666,-0.562] 8.8 -0.579 0.026 [-0.629, -0.525]
0.053 0.063 [-0.066,0.178] 1.5 0.056 0.064 [-0.063,0.178]
0.100 0.011 [0.078,0.123] 3.3 0.101 0.011 [0.079,0.125]
0.629 0.023 [0.583,0.679] 1.8 0.628 0.023 [0.582,0.677]
-0.440 0.033 [-0.505,-0.373] 2.4 -0.445 0.033 [-0.509, -0.377]
0.145 0.009 [0.126,0.163] 3.2 0.150 0.009 [0.130, 0.168]
0.071 0.155 [-0.242,0.375] 1.2 0.068 0.155 [-0.245,0.371]
-0.614 0.025 [-0.665,-0.566] 4.9 -0.578 0.025 [-0.631,-0.530]
-0.053 0.069 [-0.193,0.068] 2.5 -0.057 0.068 [-0.193, 0.067]
0.101 0.012 [0.077,0.126] 5.3 0.101 0.012 [0.078,0.127]
0.630 0.023 [0.586,0.678] 2.7 0.629 0.023 [0.584, 0.678]
-0.438 0.033 [-0.503,-0.373] 4.5 -0.443 0.033 [-0.508, -0.375]
0.144 0.009 [0.126,0.162] 4.9 0.150 0.009 [0.129,0.168]
0.070 0.155 [-0.237,0.377] 1.0 0.068 0.155 [-0.245,0.371]
-0.614 0.026 [-0.665,-0.566] 5.0 -0.578 0.026 [-0.630, -0.530]
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For RSV-LM models, we use two flierent types of models such as AR and MA models. The estimation
results for the RSV-LM models are shown in Table 6 (the MA model (26)-(28) and the AR model (A.2)-
(A.4)).% The results using the logarithm B\, andRK; are very similar, as in the RSV models. The AR and
MA models also give similar results, aIthougﬁ andp are slightly smaller and ando? are a slightly larger
in the AR models.

The bias adjustment terngsare estimated to be negative, and the posterior probability of negative bias is
greater than 0.975 as in the RSV models. Furthermore, although the absolute values of the posterior means of
the correlation parametes, are slightly smaller than those of the RSV models, they are nevertheless found
to be negative in all models, indicating the existence of leveréigets in the long memory process.

The posterior means of the fractional parametare greater than 0.5, which suggests that log volatility
process may have the long memory and nonstationary properties. On the other hand, the RSV-LM models
are found to have lower values of the persistence parameter compared to the RSV models. For example,
the posterior means @f are 005 (AR models)~ 0.10 (MA models) in RSV-LM(1,d,0) models and those
of 8 in RSV-LM(0,d,1) models are-0.10 (MA models)~ —0.05 (AR models). The high autoregressive
impact (expressed hy) in the log volatility process in the RSV models therefore appears to be replaced by a
dependence on the long past disturbance terms (expresskdriihe RSV-LM models.

5.3. Model comparison

In this section, we perform a model comparison of the RSV, RSV-SP and RSV-LM models based on the
logarithm of the marginal likelihood. The marginal likelihood is defined as the integral of the likelihood with
respect to the prior density of the parameter(s). Following Chib (1995), we estimate the logarithm of the
marginal likelihood, logn(y), as

logm(y) = log f(y) + log () — logn(Jly), (33)

whered = (¢, ¢) and logf (y|9), logn () and logr(d]y) denote the likelihood, prior density and posterior
density. The prior density can be computed in a straightforward manner, but we must evaluate the likelihood
and posterior density using a Monte Carlo method for our models. To compute the likelihood, we use the
auxiliary particle filter of Pitt and Shephard (1999) with 8,000 particles. We repeat the computation of the
particle filter 10 times to calculate the numerical standard errors of the estimated likelihood. The posterior
density at? is evaluated using the MCMC method as in Chib (1995) and Chib and Jeliazkov (2001), with the
number of the reduced run is set to 1,000. The estimation results are shown in Tables 7 and 8 fdRthe log
and logRK;.

Similar results are obtained in both cases, using th&Mand logRK;. The RSV-LM models and the
RSV-SP model outperform the RSV model with respect to the marginal likelihood. This suggests that the
logarithm of the latent volatility process may have long memory properties. Among the RSV-LM and RSV-
SP models, the AR model of RSV-LM (RSV-LM-AR) outperforms other models and the RSV-SP model
outperforms the MA model of RSV-LM (RSV-LM-MA) overall. The RSV-LM-AR models may be able to
capture the long range dependence better than other models through their lagged log volatilities. On the other
hand, the marginal likelihoods for the three RSV-LM models (1.e., (0,d,0), (1,d,0), (0,d,1) models) are quite
similar taking account of the standard errors, for RSV-LM models usiniRi¢@nd RSV-LM-AR models
using logRK;. The RSV-LM-AR models appear to fit the data during this period equally well, and we could
not identify any clear dierence among these models. We therefore further compare the above models using
another criterion based on the volatility forecasting performance in the next subsection.

Remark 1We also estimated the RSV model with a multiplicativefiognt, 4, in front of the log volatility
hy (henceyy = & + Ah; + u;) using the logarithm oRV,. We found that the posterior mean.bf= 0.9516)
is close to one and that the logarithm of its marginal likelihoed<71316) is not improved. The data,
therefore, do not motivate an extension of the RSV model to include such a multiplicative parameter.

“4For the truncation lagyl = 60 is used in the state space representations for (26)-(28) and (A.2)-(A.4).
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Remark 2.When the number of observations is small, the RSV model may outperform the RSV-LM mod-
els. To outperform the RSV models with respect to marginal likelihood, we would need to take account of
suficiently large lags in the RSV-LM models.

Table 7: Logarithm of marginal likelihood (using log RV).
Standard errors are in parentheses.

Model Likelihood  Prior Posterior ~ Marg. Lik.  Ranking
RSV -7107.2(0.4) -12.08 10.90(0.1) -7130.3(0.5) 8
RSV-SP -7061.9 (0.6) -17.06 13.67(0.1) -7092.6 (0.7) 4
RSV-LM-MA
(0,d,0) -7088.5 (0.6) -15.08 12.58(0.1) -7116.1(0.7) 7
(1,d,0) -7087.7 (0.7) -15.28 12.26(0.1) -7115.2(0.8) 6
(0,d,1) -7086.7 (0.8) -15.26 11.89(0.1) -7113.9(0.9) 5
RSV-LM-AR
(0,d,0) -7052.3 (0.6) -15.02 11.41(0.1) -7078.7 (0.7) 1
(1,d,0) -7052.6 (0.7) -14.97 12.71(0.1) -7080.2(0.8) 3
(0,d,1) -7051.7 (0.7) -14.97 12.59(0.1) -7079.2(0.8) 2

Table 8: Logarithm of marginal likelihood (using log RK).

Model Likelihood Prior Posterior Marg. Lik.  Ranking
RSV -7143.0 (0.4) -12.13 10.81(0.1) -7165.9(0.5) 8
RSV-SP -7093.3(0.6) -17.10 13.70(0.1) -7124.1(0.7) 4
RSV-LM-MA
(0,d,0) -7124.6 (0.5) -15.16 12.56(0.1) -7152.3(0.6) 7
(1,d,0) -7120.1 (0.5) -15.36 12.48(0.1) -7147.9(0.6) 6
(0,d,1) -7118.3(0.7) -15.35 11.90(0.1) -7145.6(0.8) 5
RSV-LM-AR
(0,d,0) -7088.2 (0.4) -15.07 11.15(0.1) -7114.4(0.5) 3
(1,d,0) -7085.8 (0.5) -15.02 12.71(0.1) -7113.5(0.6) 2
(0,d,1) -7085.7 (0.5) -15.02 12.58(0.1) -7113.3(0.6) 1

Model comparison result. S&P500 returns.
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Table 9: Bayes factors. The figure are log (base 10) of Bayes factors for the row model against the column model.

Model MA SP AR
(0,d,0) (1,d,00 (0,d,1) (0,d,0) (1,d,00 (0,d,1)
log RV
RSV -6.16 -6.55 -7.12 -16.37 -22.40 -21.75 -22.19
MA(0,d,0) -0.39 -0.95 -10.20 -16.24 -1559 -16.02
MA(1,d,0) -0.56 -9.81 -15.85 -15.20 -15.63
MA(0,d,1) -9.25 -15.28 -14.63 -15.07
RSV-SP -6.03 -538 -581
AR(0,d,0) 0.65 0.21
AR(1,d,0) -0.43
log RK
RSV -590 -7.81 -8.81 -18.15 -22.36  -22.75 -22.84
MA(0,d,0) -1.91 -2.90 -12.24 -16.45 -16.85 -16.93
MA(1,d,0) -0.99 -10.33 -14.54 -14.93 -15.02
MA(0,d,1) -9.33 -13.55 -13.94 -14.02
RSV-SP -421  -460 -4.69
AR(0,d,0) -0.39  -0.47
AR(1,d,0) -0.08

5.4. Volatility forecast performance

In addition to the above model comparison using marginal likelihoods which measures the goodness of
fit for the in-sample period, we investigate the predictive performance of our models based on the volatil-
ity forecasting for the out-of-sample period. By generating the volatilities from their posterior predictive
distribution, we compare the performance of the models with respect to several loss functions as described
in Patton (2011) (see, e.g., Poon and Granger (2003) and Andersen et al. (2006) for recent comprehensive

reviews of the volatility forecast).

Generation of volatilities from the posterior predlctlve distributiobet N denote the number of MCMC
iterations used in the parameter estimation, andgl@t @71 1 ,) denote the posterior sample f {hy};_,) at
thei-th iteration ( = ,N). Then, theK-step-ahead volatility forecast is obtained by adding several steps

to each MCMC iteration:
1. For each MCMC iteratiom=1,..., N:

(a) Initialisek = 1.
(@)

(b) Generatdh), Jty7 . ety gkt 60,
)

(c) Generate/?), [{y}fL;, (h )k, (y et 60,

(d) If k<K, letk+1 — kand go to Step (b). Otherwise, sayf, = exph’,) as a random sample
of theK-step-ahead variance from its posterior predictive distribution.

2. The estimate of the conditional varianeg, , is obtained by
N

Z n+K
i=1

Robust loss functions based on volatility proxidg2atton (2011) derived the functional form of the loss
function for comparing volatility forecasts using imperfect volatility proxies, such that the forecasts are robust
to the presence of noise in the proxies. A loss functigiis called “robust” if the ranking of any two (possibly
imperfect) volatility forecastsy;;, andgy, by expected loss is the same whether the ranking is performed

On+k =

Z|H

16



using the true conditional variance?, or some conditionally unbiased volatility proxy?.” Patton (2011)
showed that RMSEand QLIKE type loss functions,

RMSE : L(62,a) = /(62 - g (34)

~2 ~2
QLIKE : L(G2 ) = % ~log % _1 (35)

are robust with respect to the forecast ereef,—"g;, and standardized forecast erro2/g; respectively,
whereg, denotes a volatility forecast of the conditional variange We note that these loss functions are
also invariant with respect to a rescaling of the data. Therefore, even if we use a conditionally unbiased
volatility proxy (e.g., the realized variances computed using 5 minute returns for liquid stocks and 30 minute
returns for less liquid stocks), these loss function can produce a correct ranking of the volatility forecasts.

We use the sum of the realized volatility (or the realized kernel), computed using 5 minute returns and
squared overnight returns, as a conditionally unbiased volatility proxy. Further sensitivity analysis using
other types of realized measures may be interest because microstructure noise could decrease the predictive
accuracy (see, e.g., Andersen et al. (2011), Ghysels and Sinko (2011), Asai et al. (2012), Koopman and
Scharth (2013)), but we defer this analysis to future work.

Volatility forecast comparisondiVe consider eight models: RSV, RSV-SP, RSV-LM-MA-(1,d,0), RSV-LM-
MA-(0,d,1), RSV-LM-MA-(0,d,0), RSV-LM-AR-(1,d,0), RSV-LM-AR-(0,d,1) and RSV-LM-AR-(0,d,0) (us-

ing the truncation lagVl = 40). Two prediction periods are considered: (I) April 30, 2007 — July 31, 2008
(the number of predictions, is 318) and (1) April 30, 2007 — February 27, 2009 462), where prediction
period Il includes the financial crisis of September 2008 with high volatilities. Using a rolling window of
n = 1,500 (.e. using the 1500 most recent observations for each estimation and forecast), we estimate
the model parameters and compute khstep-ahead volatility forecasti (= 1,5, 10), with the number of
MCMC iterations set toN = 300.

%in Patton (2011), he showed MSE loss functlos 1(62 - g;)? as a robust loss function
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Table 10: RMSE of volatility forecasts (3®pr/2007 — 31Ju)2008): The highest performance for each period and proxy is shown in
bold font.

Volatility proxy RV RK
Forecast horizon 1 5 10 1 5 10
Model
RSV 0.963 1.231 1.584 1.000 1.268 1.612
RSV-SP 0.881 1.074 1.151 0.922 1.119 1.197
RSV-LM-MA
(0,d,0) 0.860 1.023 1.109 0.905 1.074 1.160
(1,d,0) 0.879 0.977 1.032 0.925 1.031 1.085
(0,d,1) 0.844 1.009 1.089 0.890 1.061 1.140
RSV-LM-AR
(0,d,0) 0.905 1.092 1.183 0.946 1.137 1.228
(1,d,0) 0.897 1.073 1.162 0.938 1.120 1.208
(0,d,1) 0.892 1.082 1.170 0.934 1.127 1.215

Table 11: QLIKE of volatility forecasts (38pr/2007 — 31Juj2008): The highest performance for each period and proxy is shown in
bold font.

Volatility proxy RV RK
Forecast horizon 1 5 10 1 5 10
Model
RSV 0.231 0.333 0.441 0.237 0.342 0.449
RSV-SP 0.205 0.295 0.346 0.213 0.304 0.356
RSV-LM-MA
(0,d,0) 0.202 0.294 0.354 0.209 0.305 0.367
(1,d,0) 0.204 0.284 0.329 0.211 0.295 0.340
(0,d,1) 0.200 0.291 0.348 0.207 0.301 0.359
RSV-LM-AR
(0,d,0) 0.211 0.302 0.357 0.217 0.311 0.367
(1,d,0) 0.209 0.300 0.351 0.216 0.309 0.362
(0,d,1) 0.211 0.303 0.355 0.217 0.312 0.365

For prediction period |, Tables 10 and 11 show the Root Mean Square Error (R\4GE }he values of the
QLIKE type loss function. For both the RMSE and the QLIKE function, the RSV-LM models outperform the
RSV model, suggesting that modelling the long memory property may improve the accuracy of the volatility
forecast. The RSV-SP model, which is also expected to describe the long memory property, outperforms
the RSV model for 1, 5, 10-step ahead forecasts, but the RSV-LM-MA models still outperform the RSV-
SP model. Among the RSV-LM models, the RSV-LM-MA models outperform the RSV-LM-AR models
in contrast to the model comparison results in Section 5.3. The performances of the RSV-LM-MA (0,d,1),
(1,d,0) and (0,d,0) models are quite similar. For one-step-ahead volatility forecasts, the RSV-LM-MA (0,d,1)
model appears to perform slightly better than other RSV-LM-MA models, whereas, for the longer forecast
horizons K = 5, 10), the RSV-LM-MA (1,d,0) model outperforms the other RSV-LM-MA models.

5The RMSE is computed a§/1/l lezl(a—rZHKj = Onek,j)? Whererfﬁm‘j andgn.k,j are theK-step ahead volatility proxy and the

estimate of the conditional variance for thh prediction { = 1,..., 1).
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Table 12: RMSE of volatility forecasts (B8pr/2007 — 27Fely2009): The highest performance for each period and proxy is shown in
bold font.

Volatility proxy RV RK
Forecast horizon 1 5 10 1 5 10
Model
RSV 2973 4.190 7578 2991 4.197 7.526
RSV-SP 2.998 3.279 3.464 3.004 3.321 3.518
RSV-LM-MA
(0,d,0) 2.695 2.898 3.373 2.735 3.007 3.491
(1,d,0) 2.686 2.903 3.408 2.730 3.018 3.527
(0,d,1) 2.640 2.867 3.390 2.686 2.979 3.510
RSV-LM-AR
(0,d,0) 3.189 3.472 3.598 3.185 3.3503.491
(1,d,0) 3.142 3.368 3.539 3.142 3.398 3.564
(0,d,1) 3.176 3.438 3.647 3.177 3.464 3.672

Table 13: QLIKE of volatility forecasts (38pr/2007 — 27Fely2009): The highest performance for each period and proxy is shown in
bold font.

Volatility proxy RV RK
Forecast horizon 1 5 10 1 5 10
Model
RSV 0.217 0.341 0.500 0.222 0.347 0.504
RSV-SP 0.199 0.309 0.407 0.204 0.315 0.416
RSV-LM-MA
(0,d,0) 0.188 0.313 0.474 0.194 0.324 0.488
(1,d,0) 0.189 0.309 0.469 0.195 0.320 0.483
(0,d,1) 0.186 0.312 0.471 0.192 0.323 0.485
RSV-LM-AR
(0,d,0) 0.207 0.306 0.399 0.211 0.313 0.407
(1,d,0) 0.204 0.304 0.394 0.209 0.311 0.402
(0,d,1) 0.207 0.306 0.402 0.212 0.312 0.409

For prediction period Il, Tables 12 and 13 show the values for the RMSE and QLIKE functions. The
values for the RMSE are higher than those in period | because they are sensitive to the volatile \RW&s of
In the case of the RMSE loss function, the RSV-LM-MA (0,d,1) model performs better than other RSV-LM
models for one-step-ahead forecasts, but the RSV and RSV-SP models outperform the RSV-LM-AR models.
This result appears to be inconsistent with the result below for the QLIKE loss function. However, we must
recall that a few outliers can severely deteriorate the values for the RMSE loss function. The result for the
QLIKE loss function may be more reliable because the QLIKE loss function is less sensitive to these volatile
values. For the longer forecast horizons, the values of the AR and MA models become more similar compared
to those for the one-step-ahead forecast, and the RSV-SP model performs as well as the RSV-LM models for
the 10-step ahead forecast. In the case of the QLIKE loss function, the RSV-LM models outperform the RSV
model, and, among the RSV-LM models, the RSV-LM-MA (0,d,1) model performs better than other RSV-
LM models for one-step-ahead volatility forecasts. However, for the longer forecast hoiizens, (L0), the
RSV-LM-AR (1,d,0) model outperform the other models. The RSV-SP model performs as well as RSV-LM-
AR models.

Overall, the RSV-LM-MA models show high predictive performance in both periods. In high volatility

"We omitted the value dR\4 on October 10, 2008 (56.482, see Figure 1) because it is too large to evaluate the loss functions.
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period (period Il), RSV-SP and RSV-LM-AR also perform well for the longer forecast horizons. The RSV-
LM models can describe the long memory property well via relatively small number of parameters while
maintaining the short step ahead predictive performance.

6. Conclusion

In this paper, we propose simultaneous modeling of the daily returns and realized volatility (or realized
kernel) including leverage and long memory. The state space representation of the new model is described,
and a highly éicient sampling algorithm is proposed to implement the MCMC estimation. We have shown
that the biases in the realized variances owing to both non-trading hours and market microstructure noise
can be estimated within our modeling framework. In empirical studies, the posterior distribution of the
leverage parametes, supports the presence of the leveraffea for the RSV and RSV-LM models. The
estimated fractional parametdr,of the ARFIMA process suggests that the volatilities have long memory and
nonstationary properties. It corresponds to the long range persistence of the realized volatilities and realized
kernels.

The RSV-LM models and RSV (RSV and RSV-SP) models are compared based on the marginal likelihood
and their volatility forecasts.In the marginal likelihood comparison, if we addficsntly large lags and a
high enough number of observations, the RSV-LM-AR models outperform the RSV models. Among the
RSV-LM models, the RSV-LM-AR models provide a superior fit to the data compared to the RSV-LM-MA
models. In the volatility forecast comparison based on RMSE and QLIKE type loss functions, the RSV-LM
models again outperform the RSV models. For the one-step-ahead forecast, the RSV-LM-MA (0,d,1) model
outperforms other models, but for the longer forecast horizons, the performance appears to depend on the
prediction period.
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Appendix

Appendix A. RSV-LM-AR model

Since
o) o)A - (wa—p) = m
we let
e = p+ ) Wit =)+,
=1
M M
~P—Zm%+2mmﬁwm Y= 0w (A1)
=1 =1
Then the RSV-LM-AR model is given by
Vi = XB+Ziar + Gy, t=12,...,n, (A.2)
C&'H]_:Wtﬁ-l-Tta’t-}-HtU:, t=0,1,....,n=-1, (A3)
ap=0, U ~iid. N(0sl3), (A.4)

wherea; = (h, hi-1, ..., h-m+1)” and

1
0 O 1 O
52 g ol ek &)

M
_ 5tp0-7]aslexp(m51/2) 1- Z Ui _ /4
VVt - OMfl OM j=1 ) Tt - IMfl OMf_‘]_ )
Om-1
G = v 0 O H, = Swo,bsvsexpms/2) 0 o, /1-p? '
0 Oy 0/’ OM_1 OM—l 0M—l

For the initial latent log volatilityh;, we assume

Wo = (Om | Ow | 1M),+u=( o 0 “">

Ov-1 Om-1 Im-z

for simplicity. If h follows ARFIMA(1,d,0) process, the ciienty; is given by

l,b]_ = ¢ + d’ lr[/j-*-l = :}7]+1 - ¢5}]» ] = O» (AS)
where
- - j—d. .
y1=4d, 7j+1=j+—17j, j=0,
or, using (1- L)% = Z fa+1) (=L)X,

£ T(k+Dr(d-k+1)

r(d+1) L, @+

wj:FDH%FU+1ﬁw—j+D ruﬁm-j+2ﬁ’ j=12...M
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Appendix B. Augmented Kalman filter
We first implement Kalman filter to compute the logarithm of the likelihood given y*, sands.
1. Setay = WoB, Py = HoHj.
2. Fort=1,2,...,n, compute
a1 = WA+ T+ K@, Pt = TPl + HiJ, (B.1)

and

€& = Ytk - X -24a, D= ZtPtZtl + GIG;,
Ki = (TePZy + HiG)OD Y, Le = Ti = KeZy, & = Hy — KGy,

whereg's are independent predictive errors agd- N(O, Dy). Then the log likelihood is given by

NI =

n . 1Y,
log f(y'l¢.£.5.6) = ~5log2r~ 3 > logIDil - 5 > &Di"e. (B.2)
t=1

Next we apply the augmented Kalman Filter to compute the log likelihood marginalizeg ¢see de Jong
(1991), Nakajima and Omori (2009)). Noting tiat b + By wherep = (£, 1)’ and

1 0 O
b=[{0], B=|1 0f,
0 0 1

we implement the augmented Kalman Filter as follows.
1. Seta; = Wob, A; = -WB.
2. Fort=1,2,...,n, compute

ft = y; - th—Ztat*, a::rl = Vth+Tta: + th’(,
Ft = XtB— ZtAr, A?+1 = —VVtB-i-TtA;F + KtFt. (B3)

Since the log likelihood giveny, ¢) is given by
log f(y*| 0) = " og 2r 1zn1|o Dy
g @, {’ S - 2 g 2 & gDt
1 n n , n
- E{Z fi Dt_lft - 2(2 F Dt_lft) pto (Z FtDt_lpt)QO},
t=1 t=1 t=1
the conditional posterior distribution gfgiven{, s,6,y" is ¢l, s, 6,¥* ~ N(¢1, C1), where
n -1
Cr= (q;l +F D{lFt)
t=1
n
p1= Cl(cal(po + Z Ft Dt_l ft)

t=1

whereyg, Cy are the mean and variance of the normal priorfo¥Ve set each of them as follows.

, 10
Yo = (0’ 0) 5 CO = (O 1)
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Thus the log likelihood marginalized overis computed as

Iog f(y<|§’ 8,6) = |Og f(y*|‘10’ .Z’ Své‘) + |Og7T(§0|§, 876) - IOgﬂ'(‘PM» 3369 )f)

n 14 1 1
=-3log2r - = > log|Dy - = log|Col + 5 log|Cy|
2 2 Z‘ 2 2
1 n
- E{Z £/D7, + 0y Colgo - ¢1C;1<p1}. (B.4)
t=1

Appendix C. Auxiliary particle filter

Appendix C.1. RSV model

We describe the auxiliary particle filter (e.g. Pitt and Shephard (1999)) to calculate the log likelihood for
the RSV model:

yit = expty/2)e, t=1,2,...,n (C1)
Vor=&+he+uw, t=12,...,n (C.2)
ht+1:ﬂ+¢(ht_ﬂ)+77t, t:O71"--’n (C3)

& 0 1 0 poy,
[ut] ~ iid. N(O,Q), 0= {o], g:{po o2 0 ] (C.4)
2

M 0 op 0 oy

Letd = (¢, 0',2],p, &,02). Then the conditional probability density functions of the observation equation and
the state equation are

1 1 1 1
f(yilhe, 9) = 27r_0'ueXp{_§ht - Eﬁ,tEXp(—ht) - ZT_S(yz,t -&- ht)z}, (C.5)

1 exd_ (1 — ,ut+l)2)
V2r(l - p?)o, 2(1-p?oz /

whereput 1 = u+ ¢(he — p) + po,expthe/2)y:.

f(heealye, he, e, 9) =

(C.6)

We generaté-th particle ( = 1,..., 1) using an importance function given by
g(h[+17 h“yt+1, M, 7-9) o f(yt+1|ﬂit+1’ 79) f (ht+1|yt’ h::, M, ﬂ) f\(thU M, 19)
o f(heralye, b s D)9V, 1 ),

where

f(Yeralied, 1 9) F(Nilye 11, 9)
Yoy F Wl 1 ) F(ilye . 9)

. 1 1. 1 . 1 .
f(Veralu, 1, 9) = 27r_a'ueXp{_§'ul”1 - EYit+1eXp(—ﬂlt+1) - F(yz,wl -&- #{+1)2},
u

g(hit|yt+la,u’ 9) =

fiy = p+ (N, — ) + poyexpEhi/ 2y
To compute the likelihood via the auxiliary particle filter,
1. Fort =1, generatdl, ~ N(u, 0?/(1 - ¢%)),i=1,2,...,1.

(a) Calculatew; = f(yi|n’, ) andW = F(yah!, ), (whereF is the distribution function ofy given
Vi), and record

| |
VV]_::II—-ZWi, VT/]_::II—-ZVV, (C7)

i=1 i=1



(b) Let f(hlys, p. ) =7 =wi/ ¥} wji=12....1.

2. Generatelf, h{,,) (i = 1,...,1) usingg(1, helyess, . 9).

(a) Calculate

_ f (yt+l|h::+19 ﬁ) f (h{_‘_llyt’ h{a M, ﬂ) fA(h“yt, M, ﬁ) _ f (yt+1|hi+1, ﬂ) fA(tht, M, ﬁ)

[ i i ; , (C.8)
g(ht+1’ ht|yl+17 ﬂ’ ﬁ) g(htlytJrl’ #9 1-9)
F(Yialhi . 9) f(hilye, i, 9
W = Vsl t+il ) F(htlye, p )’ o1l (C.9)
a(hlyts1, 1, )
and record
_1s _1¢
tzl—EWi, tZI—Zl\M (ClO)
1= 1=

(b) Let f(h, Iy, ®) = 7, = Wi/ By wy, i =121,
3. Ift<n,lett « t+1andreturn to Step 2.
As | — oo, W1 LA f(VeealVe 1, 9) andVT/t+1_—p> F(Yualyn, . 9). ThusYf, logw; is the consistent estimator

of Y1, log f(yilyi-1. 1. 9). The sequence of and its reflected versiori\® — 1/2| can be used to check for
model fit as these are approximately i.i.d. standard uniform if the model is correctly specified.

Appendix C.2. RSV-LM model
RSV-LM model given by

yit = exphy/2e, t=1,2....n (C.11)
Yor=é+he+uw, t=12,...,n (C.12)
o) (L)L - L)1 —p) =m, t=0,1,...,n (C.13)
& 0 1 0 poy
u|~ iid, N(O,Q), o=lo|, @a=| 0 o2 o] (C.14)
UR 0 o, O 0'5

For RSV-LM-MA model, we use an MA representation of the state equation:

M
M1 = p+ Z Yinej =1+ v+, vie= (et - mem)’ (C.15)
=0

To implement the auxiliary particle filter, we generaith particle givenvi = (7} ,....,7 ,,)’ using the
importance function as in the previous subsection where
fy1 = 1+ poexpEhy/2)ye + vy (C.16)

We can calculate the weight (C.8) by using the conditional probability density functions of the observation
and the state equation (C.5), (C.6).
For RSV-LM-AR models, we use a AR representation of the state equation:

M M M
h = (1—ZW1]M+Z¢’jhtj+1+7h=[1—zll/j]ﬂ+$'1/t+7h,
i1 i1

=1

vi=(,....hmer). (C.17)
We generatéth particle givens = (hi,..., hLMH)’ using the importance function in the previous subsection
where
M1 = [1 - Z dfj]u +poexpEhy/2)y + y'n. (C.18)
j=1
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