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Abstract

Consider the problem of testing a linear hypothesis of regression coefficients in
a general linear regression model with an error term having a covariance matrix
involving several nuisance parameters. Three typical test statistics of Wald, Score
and Likelihood Ratio (LR) and their Bartlett adjustments have been derived in the
literature when the unknown nuisance parameters are estimated by maximum like-
lihood (ML). On the other hand, statistical inference in linear mixed models has
been studied actively and extensively in recent years with applications to small-
area estimation. The marginal distribution of the linear mixed model is included in
the framework of the general linear regression model, and the nuisance parameters
correspond to the variance components and others in the linear mixed model. Al-
though the restricted ML (REML), minimum norm quadratic unbiased estimator
(MINQUE) and other specific estimators are available for estimating the variance
components, the Bartlett adjustments given in the literature are not correct for
those estimators other than ML.

In this paper, using the Taylor series expansion, we derive the Bartlett adjust-
ments of the Wald, Score and modified LR tests for general consistent estimators
of the unknown nuisance parameters. These analytical results may be harder to
calculate for a model with a complicate structure of the covariance matrix. Thus,
we propose the simple parametric bootstrap methods for estimating the Bartlett ad-
justments and show that they have the second order accuracy. Finally, it is shown
that both Bartlett adjustments work well through simulation experiments in the
nested error regression model.

Key words and phrases: Asymptotic power function, Bartlett adjustment, gen-
eral consistent estimator, likelihood Ratio(LR) test, linear mixed model, linear re-
gression model, nested error regression model(NERM), parametric Bootstrap, re-
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stricted maximum likelihood(REML) estimator, restricted general consistent esti-
mator, score test, Wald test.

1 Introduction

The linear mixed models (LMM) and the empirical best linear unbiased predictor (EBLUP)
have been actively studied and extensively recognized useful in many applications includ-
ing small-area estimation. Especially, the problem of selecting the explanatory variables
has received much attention in recent years, and the Akaike Information Criterion (AIC)
and the conditional AIC have been studied by Vaida and Blanchard (2005), Srivastava
and Kubokawa (2010), Kubokawa (2011b) and others. To investigate whether the se-
lected variables are significant, we need to consider the hypothesis testing for regression
parameters. The standard F test statistic based on the ordinary least squares statistics
is known to have a serious drawback of having incorrect type I error (size). To fix this
problem, Wu, Holt and Holmes (1988), Rao, Sutradhar and Yue (1993), Rao and Wang
(1995) and Kubokawa and Erdembat (2010) proposed modified procedures, but they are
not guaranteed to have second-order corrections analytically. Thus, we want to derive
Bartlett corrections so that the adjusted test statistics have second-order corrections in
type I errors (Bartlett (1937)).

This problem was resolved by Rothenberg (1984) in a general linear regression model
with an error term having a covariance matrix involving several unknown nuisance pa-
rameters, since the marginal distribution of the linear mixed model is in the framework of
the general linear regression model. In fact, Rothenberg (1984) derived Bartlett adjust-
ments of the Wald, Score and Likelihood Ratio (LR) test statistics in the general linear
regression model. However, their Bartlett adjustments are limited to the case that the nui-
sance parameters are estimated by Maximum Likelihood (ML). In the linear mixed model
with variance components, one can use the Restricted ML (REML), Minimum Norm
Quadratic Unbiased Estimator (MINQUE) and other specific estimators for the variance
components. For example, simple estimators proposed by Prasad and Rao (1990) and Fay
and Herriot (1979) are available for specific linear mixed models. However, the Bartlett
adjustments given by Rothenberg (1984) are not correct for those estimators other than
ML.

In this paper, we consider an extension of the results of Rothenberg (1984), which is
based on ML, to the case of general consistent estimators. That is, we treat the classical
Wald, Score and LR test statistics based on the general consistent estimators of the
nuisance parameters, and we want to derive their Bartlett corrections. However, we are
faced with the following difficulties:

(I) The null hypothesis is a linear constraint of the regression coefficients, and the score
and LR test statistics use an estimator which restricts the general consistent estimators
on the linear constraint. How can we construct such an estimator restricting the general
estimator on the null hypothesis?

(II) When we substitute the general consistent estimators instead of ML into the LR
test statistic, the corresponding Bartlett adjustment produces many additional terms,
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which implies that the Bartlett adjustment yields a large variance.
(III) The Bartlett adjustments are hard to compute in a model with a covariance

matrix having a complicate structure, since they include various kinds of differentiations
of the covariance matrix with respect to unknown parameters, and the second-order bias
and variance of the general consistent estimators. In general, it is a painful task to derive
the second-order bias of consistent estimators analytically.

For the query (I), we suggest the use of an equation induced from the Taylor series
expansion of the likelihood function. For maximum likelihood estimators, a relation be-
tween the unrestricted ML and the ML restricted on the null hypothesis can be expressed
as an explicit equation through the likelihood function. To construct a restricted estima-
tor for the general consistent estimator, we use the same equation where the consistent
estimator is substituted instead of ML.

For (II), we suggest the use of the modified LR which is defined by the average of the
Wald and the score test statistics. The modified LR is asymptotically identical to the
original LR when the nuisance parameters are estimated by ML.

For (III), we propose the parametric bootstrap method for estimating the Bartlett
adjustments of the three test statistics and show that this approach guarantees the second-
order correction. Using the parametric bootstrap, we do not have to derive differentiations
of the covariance matrix and the second-order bias and variance of the general consistent
estimators. Rayner (1990) proposed another types of the parametric bootstrap methods
for estimating the Bartlett corrections for the three test statistics, where the estimators
of the nuisance parameters are limited to ML. Although his approach works for LR test,
we cannot obtain the second-order adjustments of the Wald and score test statistics via
his parametric bootstrap method.

The paper is organized as follows: In Section 2, we propose three kinds of test statis-
tics for linear hypothesis of regression parameters in a general linear regression model.
These test statistics are the Wald, score and modified likelihood ratio tests based on the
general consistent estimators. In Section 3, we give analytical expressions of the Bartlett
adjustments for those three tests. The parametric bootstrap methods for estimating the
Bartlett corrections are given in Section 4. Section 5 gives an application to the nested
error regression model, which has been used in the context of the small-area estimation.
In Section 6, we investigate numerical performances of the proposed three test statistics
modified by the Bartlett adjustments by simulation. It is shown that the type I errors
(size) for the test statistics with Bartlett adjustments are much improved. The paper is
concluded in Section 7, and all the proofs are given in Appendix.

2 Test Statistics in a General Linear Regression Model

Consider the general linear regression model given by

y = Xβ + ϵ, (2.1)
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where y is an N × 1 vector of observations, X is an N × p (N ≥ p) known matrix of
explanatory variables with rank p, β is a p× 1 unknown vector of regression coefficients,
ϵ is an N × 1 vector of random errors having NN(0,Σ(θ)) for a q-dimensional vector θ
of unknown parameters.

Let R be an r× p (p ≥ r) constant matrix with rank r and let r be an r-dimensional
constant vector. Then we consider the problem of testing the null hypothesis H0 against
the alternative hypothesis H1, namely

H0 : Rβ = r vs H1 : Rβ ̸= r. (2.2)

Given θ, the generalized least squares estimator of β is

β̂(θ) = (X ′Σ(θ)−1X)−1X ′Σ(θ)−1y.

The nuisance parameter θ can be estimated by ML, REML and moment methods. In
a variance components model, θ corresponds to a vector of variance components, which
can be estimated by various methods including MINQUE and Henderson’s methods. In
specific linear mixed models, various specific estimators like the Fay-Herriot estimator are
also available. In this paper, we consider a general consistent estimator, denoted by θ̂,
for θ. Then β is estimated by β̂(θ̂).

For the testing problem (2.2), we look at the three classical test statistics based on

the consistent estimator θ̂.

[1] Wald test. The Wald test statistic is given by W = V (θ̂), where

V (θ) = (Rβ̂(θ)− r)′(R(X ′Σ(θ)−1X)−1R′)−1(Rβ̂(θ)− r).

[2] Score test. The score test statistic is described by S = V (θ̃), where θ̃ is a

restricted estimator of θ induced from θ̂ under the constraint Rβ = r. The problem is
how we should construct the consistent and restricted estimator from θ̂. An important
point is that we should take the restricted estimator θ̃ so that θ̃ is independent of β̂(θ)
under the constraint Rβ = r. Otherwise, it may be very difficult to evaluate the moments
for deriving the Bartlett corrections. We here suggest the use of the restricted estimator
given by

θ̃ = θ̂ −Λ(θ̂)

 V(1)(θ̂)
...

V(q)(θ̂)

 , (2.3)

where V(i)(θ) = (∂/∂θi)V (θ) and Λ(θ) = 2−1E[(θ̂ − θ)(θ̂ − θ)′] + o(N−1). This equation
is motivated from the relation between the unrestricted maximum likelihood estimator
θ̂M and the restricted ML θ̃M under the constraint Rβ = r. That is, the restricted ML is
expressed based on the unrestricted ML θ̂M as

θ̃M = θ̂M −Λ(θ̂M)

 V(1)(θ̂M)
...

V(q)(θ̂M)

 ,
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where the derivation of this equation is given in Appendix. Along this line, we define the
restricted estimator induced from θ̂ by (2.3). It is noted that θ̃ is independent of β̂(θ) if

θ̂ is independent of β̂(θ).

[3] Modified likelihood ratio test. The likelihood ratio (LR) test statistic is defined
by

LR(θ̂, θ̃) = −2{L(β̃(θ̃), θ̃)− L(β̂(θ̂), θ̂)},

where L(β,θ) is the log likelihood function, and β̃(θ) is the restricted general least squares

estimator satisfying Rβ̃(θ) = r. In general, the Bartlett correction of LR(θ̂, θ̃) produces

many additional terms which can vanish in the case of ML θ̂M and θ̃M. This implies that
the Bartlett adjustment of LR(θ̂, θ̃) yields a larger variance. Thus, we suggest the use of
the modified LR test statistic

mLR = mLR(θ̂, θ̃) = (W + S)/2 = (V (θ̂) + V (θ̃))/2, (2.4)

which is the average of the Wald and score test statistics. It is noted that mLR is
asymptotically identical to LR for ML, namely

LR(θ̂M, θ̃M) = (V (θ̂M) + V (θ̃M))/2 + op(N
−1) = mLR(θ̂M, θ̃M) + op(N

−1).

Under the null hypothesis, all the three test statistics are asymptotically distributed as
the chi-square distribution χ2

r with r degrees of freedom, since both estimators θ̂ and θ̃ are
consistent. However, as numerically shown in Section 6, all the three testing procedures
have the incorrect type I errors. Thus, we need to derive the Bartlett corrections for the
three test statistics in the next section.

3 Bartlett Adjustments via Analytical Approach

We now derive the Bartlett corrections for the test statistics W , S and mLR, so that
the type I errors of the corresponding tests with the Bartlett adjustments are identical
to the nominal significance level up to the second-order O(N−1). To this end, we use the
following notations

(
Σ(θ)−1

)
(i)

=
∂ (Σ(θ)−1)

∂θi
, (Σ(θ)−1)(ij) =

∂ (Σ(θ)−1)

∂θi∂θj
,

col(ai) =

 a1
...
aq

 , mat(aij) =

 a11 · · · a1q
...

...
aq1 · · · aqq

 ,

∇ =(∂/∂y1, . . . , ∂/∂yN)
′.

Without confusion, we use the simple notations Σ and Σ−1 by dropping (θ) in Σ(θ) and
Σ(θ)−1.
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The aim of this paper is to extend the results of Rothenberg (1984), which is limited

to ML for θ, to the case of the general consistent estimators θ̂ for θ. We assume the
following conditions for θ.

Assumption 1

[1] θ̂ = θ̂(y) satisfies that θ̂(−y) = θ̂(y) and θ̂(y +Xα) = θ̂(y) for any p-dimensional
vector α.

[2] θ̂ − θ is expanded as

θ̂ − θ = θ̂
†
+ θ̂

††
+ op(N

−1),

where θ̂
†
= (θ̂†1, . . . , θ̂

†
q)

′ = Op(N
−1/2), θ̂

††
= (θ̂††1 , . . . , θ̂

††
q )

′ = Op(N
−1) and every

element of Σ∇θ̂†i is of Op(N
−1).

We begin by looking at the Wald test statistic W . Since W = V (θ̂) is based on

the unrestricted consistent estimator θ̂, the second-order correction terms are easier to
calculate than the other tests S and mLR. It is noted that W can be decomposed as

W = V (θ̂) = (x+ s)′ (I − S)−1 (x+ s) , (3.1)

where x, s and S are denoted by

x =H
{
Rβ̂(θ)− r

}
,

s =HR
{
β̂(θ̂)− β̂(θ)

}
,

S =−HR
{
(X ′Σ(θ̂)−1X)−1 − (X ′Σ−1X)−1

}
R′H ,

for H = (R(X ′Σ−1X)−1R′)−1/2. It is noted that s and S are location-invariant statistic

since θ̂ is a location-invariant from Assumption 1 [1]. Then form Kackar and Harville

(1984), it is seen that x ∼ N (0, I) and that x is independent of (θ̂, s,S). In fact, the

independence follows from Basu’s theorem and Assumption 1 [1], since β̂(θ) is a complete

sufficient statistic for β, and (θ̂, s,S) is an ancillary statistic for β. The independence is
useful for evaluating moments in order to derive the Bartlett correction.

The score test is defined by S = V (θ̃) for a restricted estimator θ̃. In general, a

restricted estimator cannot be guaranteed to be independent of β̂(θ), which implies that
the moments for deriving the Bartlett correction are difficult to evaluate. Thus, we use
the restricted estimator given in (2.3), namely,

θ̃ = θ̂ −Λ(θ̂)col(V(i)(θ̂)).

Since θ̃ is a function of θ̂, θ̃ is still independent of β̂(θ). Since Λ(θ) = O(N−1), it is seen

that θ̃ − θ̂ = Op(N
−1). Using the Taylor series expansion and the relation (2.3), we can

approximate the score test statistic as

S = V (θ̃) = W + col(V(i)(θ̂))
′(θ̃ − θ̂) + op(N

−1)

= W − col(V(i)(θ̂))
′Λ(θ̂)col(V(i)(θ̂)) + op(N

−1),
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since W = V (θ̂). Similarly, the modified LR test statistic defined in (2.4) is expressed as

mLR = (W + S)/2 = W − 1

2
col(V(i)(θ̂))Λ(θ̂)col(V(i)(θ̂)) + op(N

−1).

The cumulative distribution functions of the test statistics P (W ≤ x), P (LR ≤ x),
P (S ≤ x) are approximated as Fr(x)+O(N−1) under the null hypothesis for a distribution
function Fr(x) of the χ

2
r distribution. This means that the significance levels of the three

test statistics are not identical to the nominal significance χ2
r,α in the sense of second-order.

Thus, we need to derive their Bartlett corrections. Define a(θ), b(θ) and c(θ) by

a(θ) =EH0 [s
′s] ,

b(θ) =
1

2
EH0

[
tr
(
S2
)
+

1

2
(tr (S))2

]
,

c(θ) =EH0

[
tr (S) + tr

(
S2
)]

,

(3.2)

where EH0 [·] denotes the expectation under the null hypothesis. Based on these functions,
we obtain the test statistics with the Bartlett adjustments, given by

W BC = W

(
1− 1

r

(
a(θ̂)− b(θ̂) + c(θ̂)

)
− x

r(r + 2)
b(θ̂)

)
,

mLRBC = mLR

(
1− 1

r

(
−b(θ̂) + c(θ̂)

))
,

SBC = S

(
1− 1

r

(
−a(θ̂)− b(θ̂) + c(θ̂)

)
+

x

r(r + 2)
b(θ̂)

)
.

(3.3)

To establish the second-order accuracy of the Bartlett adjustments, we assume the fol-
lowing conditions:

Assumption 2

[1] The elements of X, Z, G(θ), R(θ), are uniformly bounded, and p, r, M are bounded.

[2] X ′X/N , X ′ZX/N , X ′Z2X/N , X ′Σ−1X/N , X ′(Σ−1)(i)X/N , X ′ (Σ−1
)
(ij)

X/N

and X ′ (Σ−1
)
(i)

Σ(θ)
(
Σ−1

)
(j)

X/N converge to finite matrices as N → ∞.

[3] X ′Σ−1ϵ = Op(N
1/2) and X ′(Σ−1)(i)ϵ = Op(N

1/2) for ϵ = y −Xβ.

Define A(i), B(i) and B(ij) by

A(i) =HR((X ′Σ−1X)−1X ′Σ−1)(i),

B(i) =−HR(X ′Σ−1X)−1
(i)R

′H , (3.4)

B(ij) =−HR(X ′Σ−1X)−1
(ij)R

′H .

Then we get the following theorem which will be proved in Appendix.

7



Theorem 3.1 Let θ̂ be a general consistent estimator satisfying Assumption 1. Let θ̃
be the restricted estimator defined in (2.3). Under Assumption 2, the cumulative distri-
bution functions of the Wald, score and modified likelihood ratio test statistics with the
Bartlett adjustments P (W BC ≤ x), P (mLRBC ≤ x) and P (SBC ≤ x) are approximated as
Fr(x) + o(N−1) under the null hypothesis. Also, the functions a(θ), b(θ) and c(θ) are
approximated as

a(θ) =

q∑
i,j

tr (ΣA′
(i)A(j))EH0 [θ̂

†
i θ̂

†
j ] + o(N−1),

b(θ) =
1

2

q∑
i,j

{
tr (B(i)B(j)) +

1

2
tr (B(i))tr (B(j))

}
EH0 [θ̂

†
i θ̂

†
j ] + o(N−1), (3.5)

c(θ) =

q∑
i

tr (B(i))EH0 [θ̂
†
i + θ̂††i ] +

q∑
i,j

{1
2
tr (B(ij)) + tr (B(i)B(j))

}
EH0 [θ̂

†
i θ̂

†
j ] + o(N−1),

which are of order O(N−1).

The estimators a(θ̂), b(θ̂) and c(θ̂) are provided by substituting the estimator θ̂ into
the r.h.s. of (3.5). For this purpose, we need to derive the second-order bias EH0 [θ̂

†
i + θ̂††i ],

the limiting values of covariance CovH0(θ̂i, θ̂j) or EH0 [θ̂
†
i θ̂

†
j ], and A(i), B(i) and B(ij).

We next provide second-order approximations of the power functions of the Bartlett-
adjustment test statistics W BC, mLRBC and SBC at the point δ = Rβ − r. Let A(θ) =
Eδ [ss

′], B(θ) = 2−1Eδ

[
S2 + 2−1Str (S)

]
, C(θ) = Eδ

[
S + S2

]
and D(θ) = Eδ [S∆S]

for ∆ = δδ′, where Eδ[·] denotes the expectation under the alternative hypothesis at
δ = Rβ − r. We use the notations given by

λ1(θ̂) =tr
(
A(θ̂)∆

)
, λ3(θ̂) = tr

(
D(θ̂)∆

)
,

λ2(θ̂) =r−1
(
−b(θ̂) + c(θ̂)

)
tr (∆) + tr

((
B(θ̂)−C(θ̂)

)
∆
)
,

λ′
2(θ̂) =r−1a(θ̂)tr (∆)− tr

(
A(θ̂)∆

)
,

λ′
3(θ̂) =r−1b(θ̂)tr (∆)− tr

(
C(θ̂)∆

)
,

λ4(θ̂) =(r(r + 2))−1b(θ̂) (tr (∆))2 − tr
(
D(θ̂)∆

)
.

(3.6)

Then we obtain the following theorem which will be proved in Appendix.

Theorem 3.2 Under the same assumptions as in Theorem 3.1, the power functions of
the test statistics mLRBC, W BC and SBC at δ = Rβ − r are approximated as

P (mLRBC > x) = 1−Gr(x)− λ1(θ̂)gr+2(x)− λ2(θ̂)gr+4(x)− λ3(θ̂)gr+6 + o(N−1),

P (W BC > x) = P (mLRBC > x)− λ′
2(θ̂)gr+4(x)− λ′

3(θ̂)gr+6(x)− λ4(θ̂)gr+8(x) + o(N−1),

P (SBC > x) = P (mLRBC > x) + λ′
2(θ̂)gr+4(x) + λ′

3(θ̂)gr+6(x) + λ4(θ̂)gr+8(x) + o(N−1),
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where Gr(x) and gr(x) are the cumulative distribution and the probability density func-
tions, respectively, of a noncentral chi-squared random variable χ2

r(δ
′δ) with r degrees of

freedom and the noncentrality δ′δ.

4 Bartlett Adjustments via Parametric Bootstrap

As stated below Theorem 3.1, we need to derive the second-order bias and the covariance
matrix of θ̂. It is not easy to derive these moments for ML and REML of θ, and it is hard
to calculate a(θ), b(θ) and c(θ) for complicated models. A simple and useful method for
estimating the Bartlett adjustments is the parametric bootstrap.

Let θ̂ be a general consistent estimator of θ based on y, and let β̂(θ̂) and β̃(θ̂) be,
respectively, the generalized least squares estimator of β based on y and its restricted
estimator under the null hypothesis, where

β̃(θ) = β̂(θ)− (X ′X)−1R′(R(X ′X)−1R′)−1(Rβ̂(θ)− r). (4.1)

We first generate the parametric bootstrap sample under the null hypothesis. An N × 1
random vector y∗ given y has the general linear regression model

y∗ = Xβ̃(θ̂) + ϵ∗, (4.2)

whereX is the same matrix as given in (2.1), and given y, ϵ∗ is conditionally distributed as

ϵ∗|y ∼ NN(0,Σ(θ̂)). Let θ̂
∗
be a general consistent estimator of θ̂, where the calculation

of θ̂
∗
is the same as that of θ̂ except that θ̂

∗
is calculated based on y∗ instead of y.

Define s∗ and S∗ by

s∗ =ĤR
{
β̂

∗
(θ̂

∗
)− β̂

∗
(θ̂)
}
,

S∗ =− ĤR
{
(X ′Σ(θ̂

∗
)−1X)−1 − (X ′Σ(θ̂)−1X)−1

}
R′Ĥ ,

(4.3)

for β̂
∗
(θ) = (X ′Σ(θ)−1X)−1X ′Σ(θ)−1y∗ and Ĥ = (R(X ′Σ(θ̂)−1X)−1R′)−1/2. Based

on these variables, we can estimate a(θ), b(θ) and c(θ) given in (3.4) with their parametric
bootstrap estimators given by

a∗ =E∗[(s
∗)′s∗|y],

b∗ =
1

2
E∗
[
tr {(S∗)2}+ 1

2
(trS∗)2|y

]
, (4.4)

c∗ =E∗
[
tr (S∗) + tr {(S∗)2}|y

]
,

where E∗[·|y] denotes the expectation with respect to y∗ given y. Then, the Wald, the
modified likelihood ratio and the score test statistics with the Bartlett adjustments via
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the parametric bootstrap are described as

W BC

∗ = W

(
1− 1

r
(a∗ − b∗ + c∗)− x

r(r + 2)
b∗
)
,

mLRBC

∗ = mLR(1− 1

r
(−b∗ + c∗)), (4.5)

SBC

∗ = S(1− 1

r
(−a∗ − b∗ + c∗) +

x

r(r + 2)
b∗).

It is noted that a∗ = a(θ̂), b∗ = b(θ̂) and c∗ = c(θ̂), which are approximated as a∗ =
a(θ) + o(N−1), b∗ = b(θ) + o(N−1) and c∗ = c(θ) + o(N−1), since a(θ) = O(N−1),
b(θ) = O(N−1) and c(θ) = O(N−1). Thus, we obtain the following theorem.

Theorem 4.1 Let θ̂ be a general consistent estimator satisfying Assumption 1. Let θ̃ be
the restricted estimator defined in (2.3). Under Assumption 2, the cumulative distribution
functions of the Wald, score and modified likelihood ratio tests statistics with the Bartlett
adjustments via the parametric bootstrap P (W BC

∗ ≤ x), P (mLRBC
∗ ≤ x) and P (SBC

∗ ≤ x)
are approximated as Fr(x) + o(N−1) under the null hypothesis.

Rayner (1990) proposed another type of the Bartlett adjustments by the parametric
bootstrap. Although his approach established that the type I error of the adjusted LR
test is identical to the nominal significance level in the second-order, the type I errors of
the adjusted Wald and score tests remain second-order terms, namely, their cumulative
distributions are approximated as Fr(x) +O(N−1). Theorem 4.1 shows that our Bartlett
adjustments based on the parametric bootstrap provides the type I errors identical to the
nominal significance level in the second-order for all three test statistics.

Corresponding to Theorem 3.2, we can construct the second-order approximations
of the power functions based on the parametric bootstrap. To generate the parametric
bootstrap sample under the alternative hypothesis at the point δ = Rβ − r. An N × 1
random vector y∗ given y has the general linear regression model

y∗∗ = Xβ̂δ(θ̂) + ϵ∗∗, (4.6)

where β̂δ(θ̂) is the estimator of β satisfying δ = Rβ̂δ(θ̂) − r, and given y, ϵ∗∗ is con-

ditionally distributed as ϵ∗∗|y ∼ NN(0,Σ(θ̂)). Let θ̂
∗∗

be a general consistent estimator

of θ̂, where the calculation of θ̂
∗∗

is the same as that of θ̂ except that θ̂
∗∗

is calculated
based on y∗∗ instead of y.

Let s∗∗ and S∗∗ be the same as those of s∗ and S∗ except that the superscript ∗ in s∗

and S∗ is replaced with ∗∗. The variables a∗∗, b∗∗ and c∗∗ are similarly defined. Let A∗∗ =
E∗∗ [s

∗∗(s∗∗)′|y], B∗∗ = 2−1E∗∗ [(S
∗∗)2 + 2−1S∗∗tr (S∗∗)|y], C∗∗ = E∗∗ [S

∗∗ + (S∗∗)2|y]
and D∗∗ = E∗∗ [S

∗∗∆S∗∗|y] for ∆ = δδ′. Corresponding to (3.6), we use the notations
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given by

λ∗∗
1 =tr (A∗∗∆) , λ∗∗

3 = tr (D∗∗∆) ,

λ∗∗
2 =r−1 (−b∗∗ + c∗∗) tr (∆) + tr ((B∗∗ −C∗∗)∆) ,

λ∗∗′
2 =r−1a∗∗tr (∆)− tr (A∗∗∆) ,

λ∗∗′
3 =r−1b∗∗tr (∆)− tr (C∗∗∆) ,

λ∗∗
4 =(r(r + 2))−1b∗∗ (tr (∆))2 − tr (D∗∗∆) .

Theorem 4.2 Under the same assumptions as in Theorem 4.1, the power functions of
the test statistics mLRBC

∗ , W BC
∗ and SBC

∗ at δ = Rβ − r are approximated as

P (mLRBC

∗ > x) = Gr(x)− λ∗∗
1 gr+2(x)− λ∗∗

2 fr+4(x)− λ∗∗
3 fr+6 + op(N

−1),

P (W BC

∗ > x) = P (mLRBC

∗ > x)− λ∗∗′
2 fr+4(x)− λ∗∗′

3 gr+6(x)− λ∗∗
4 gr+8(x) + op(N

−1),

P (SBC

∗ > x) = P (mLRBC

∗ > x) + λ∗∗′
2 fr+4(x) + λ∗∗′

3 gr+6(x) + λ∗∗
4 gr+8(x) + op(N

−1).

The leading terms in the r.h.s. of the approximations given in Theorem 4.2 give us
the second-order approximations of the power functions of the adjusted test statistics.

5 An Application to a Linear Mixed Model

An important example of the general linear regression model (2.1) is a linear mixed model
given by

y = Xβ + ϵ, ϵ = Zv + u, (5.1)

where y is an N ×1 vector of observation, X is an N ×p design matrix that is fixed, Z is
an N ×M design matrix of random effect, β is a p× 1 unknown vector of the regression
coefficients, which are called fixed effects, v is an M × 1 vector of the random effects
distributed as NM(0,G(θ)), u is an N × 1 vector of errors distributed as NN(0,R(θ)),
θ is a q-dimensional vector of unknown nuisance parameters, and v and u are mutually
independent, G(θ) and R(θ) are the positive definite matrices. Then, we express a
marginal distribution of y as NN(Xβ,Σ(θ)), which is in the framework of (2.1), where

Σ(θ) = R(θ) +ZG(θ)Z ′.

In this section, we describe the test statistics with the Bartlett adjustments in a specific
linear mixed model. The model we treat here is the nested error regression model which
is often used for two stage sampling and the small area estimation. The model is given
by

yij = x′
ijβ + εij, εij = vi + uij, i = 1, . . . , k, j = 1, . . . , ni, (5.2)

where vi ∼ N (0, σ2
v), uij ∼ N (0, σ2

ε), and vi and uij are mutually independent. Let
X i = (xi1, xi2, . . . , xini

)′, X = (X ′
1,X

′
2, . . . ,X

′
k)

′ and Z = block diag(Jn1 ,Jn2 , . . . ,Jnk
),

where Jni
= jni

j ′ni
for jni

= (1, 1, . . . , 1)′ ∈ Rni . Also, let yi = (yi1, yi2, . . . , yini
)′, y =
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(y′
1,y

′
2, . . . ,y

′
k)

′, ui = (ui1, ui2, . . . , uini
)′, u = (u′

1,u
′
2, . . . ,u

′
k) and v = (v1, v2, . . . , vk).

Then, the model (5.2) is rewritten as

y = Xβ + ϵ, ϵ = Zv + u,

which shows that the model (5.2) is a special case of (5.1). In this model, Cov (ϵ) =
Σ(θ) = (block diag(Σ1(θ),Σ2(θ), . . . ,Σk(θ))) for θ = (θ1, θ2)

′ = (σ2
ε , σ

2
v)

′, whereΣi(θ) =
θ1Ini

+ θ2Jni
. It is easy to show that Σ−1

i (θ) = θ−1
1 (Ini

− θ2/(θ1 + niθ2)Jni
).

As an estimator of θ, we here deal with the Prasad-Rao estimator. Define the two
statistics S1 and S2 by

S1 = (y −XbE)
′E(y −XbE) = y′MEy,

S2 = (y −Xb)′(y −Xb) = y′MXy,

where E = block diag (E1,E2, . . . ,Ek), Ei = Ini
− n−1

i Jni
, ME = E − PE, PE =

EX(X ′EX)−1X ′E, b = (X ′X)−1X ′y and bE = (X ′EX)−1X ′Ey. Then the unbiased

estimator θ̂U given by Prasad and Rao (1990) is given by

θ̂U =

(
θ̂U1
θ̂U2

)
=

(
S1/ (N − k − p)(

S2 − (N − p) θ̂U1

)
/N1

)
,

where N1 = N − tr (PXZ) and PX = X(X ′X)−1X. The stochastic expansion of θ̂
U
in

Assumption 1 can be written as

θ̂U − θ̂ = θ̂
†
U + θ̂

††
U + op(N

−1),

where

θ̂
†
U =

(
(N − k)−1tr (E(ϵϵ′ −Σ(θ)))

N−1tr (ϵϵ′ −Σ(θ))− (N − k)−1tr (E(ϵϵ′ −Σ(θ)))

)
,

θ̂
††
U =

(
−(N − k)−1tr (PE(ϵϵ

′ −Σ(θ)))
−N−1tr (PX(ϵϵ′ −Σ(θ))) + (N − k)−1tr (PE(ϵϵ

′ −Σ(θ))).

)
It can be easily seen that E[θ̂

†
U ] = E[θ̂

††
U ] = 0. From (5.4)-(5.6) of Prasad and Rao (1990),

E[θ̂
†
U(θ̂

†
U)

′] can be approximated as E[θ̂
†
U(θ̂

†
U)

′] = 2Λ(θ) +O(N−2), where

Λ(θ) =
θ21

N − k

(
1 −k/N

−k/N {k2 + (N − k)
∑k

i=1(1 + niθ2/θ1)
2}/N2

)
. (5.3)

The Wald, score and modified LR test statistics given in Section 2 are expressed as

W = V (θ̂
U
), S = V (θ̃

U
) and mLR = (W + S)/2 through V (·), which is written as

V (θ) =
1

θ1

(
Rβ̂α(θ)− r

)′
(X ′

RXR)
−1
(
Rβ̂α(θ)− r

)
,
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whereXR = Xα (X
′
αXα)

−1
R′ and β̂α(θ) = (X ′

αXα)
−1X ′

αyα forXαi = X i−αini
−1Jni

X i,
αi(θ) = 1−(1+niθ2/θ1)

−1/2 and yαi = yi−αini
−1Jni

yi. The restricted estimator induced

from θ̂
U
is provided by

θ̃
U
= θ̂

U
−Λ(θ̂

U
)col(V(i)(θ̂

U
)),

where Λ(·) is given in (5.3). It is noted that V(i)(θ) is expressed as

V(i)(θ) = −(yα −Xαβ)
′(2Mα + PR)Σ

−1/2Σ(i)Σ
−1/2PR(yα −Xαβ),

whereMα = IN−Xα (X
′
αXα)

−1
X ′

α, PR = XR (X ′
RXR)

−1
X ′

R andΣ
−1/2
i = θ

−1/2
1 (Ini

−
n−1
i αiJni

).
The test statistics with the analytical Bartlett adjustments are given in (3.3), where

the differentiations (3.4) are written as

A(i) = −(X ′
RXR)

−1/2X ′
RΣ

−1/2Σ(i)Σ
−1/2MαΣ

−1/2,

B(i) = −(X ′
RXR)

−1/2X ′
RΣ

−1/2Σ(i)Σ
−1/2XR(X

′
RXR)

−1/2,

B(ij) = (X ′
RXR)

−1/2X ′
RΣ

−1/2(Σ(i)Σ
−1/2MαΣ

−1/2Σ(j)

+Σ(j)Σ
−1/2MαΣ

−1/2Σ(i))Σ
−1/2XR(X

′
RXR)

−1/2,

where Σ(1)i = Ini
, Σ(2)i = Jni

.
Also, the test statistics with the Bartlett adjustments via the parametric bootstrap

are given in (4.5), where the restricted estimator β̃(θ) in (4.1) is expressed as

β̃α(θ) = β̂α(θ)− (X ′
αXα)

−1R′(X ′
RXR)

−1(Rβ̂α(θ)− r),

6 Simulation Study

In this section, we investigate the performances of the type I errors and the powers for the
three classical tests and the adjusted tests with the Bartlett corrections through a Monte
Carlo simulation.

In the simulation experiment, we use the nested error regression model (5.2), described
again as

yij = x′
ijβ + εij, εij = vi + uij, i = 1, . . . , k, j = 1, . . . , ni,

where uij is generated from N (0, 1). For vi, we use the setup proposed in Datta, Rao
and Smith (2005), namely, vi is generated from three different distributions: N (0, 1), the
double exponential distribution DExp(0, 1/

√
2) and the shifted exponential distribution

SExp(−1, 1). Using these three different distributions, we can examine the robustness on
the significance level of the proposed tests. Let p = 3, and β = (β0, β1, β2)

′ for β0 = 1.
For ni, we handle two patters: pattern A is (n1, n2, n3, n4) = (4, 4, 5, 6) with N = 19 and
pattern B is (n1, n2, . . . , n9) = (2, 2, 4, 4, 4, 5, 5, 5, 10) with N = 41. For xij, we consider
the case that (xi1, . . . ,xini

)′ = (jni
,X∗′

i ) for ni×(p−1) matrixX∗
i , whereX

∗
i is generated

as
X∗

i = jni
α′

i +W i,
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where W i is an ni × (p− 1) random matrix having Nni,p−1(0, (10Ini
)⊗ Ip−1), and αi is

a (p − 1)-dimensional vector having Np−1(0, 10Σα) for Σα = (1 − ρα)Ip−1 + ραjp−1j
′
p−1

and ρα = 0.6.

The null hypothesis we deal with in this simulation experiment is

H0 : β1 = β2 = 0,

and the nominal significance level is α = 0.05. We investigate the performance of the type
I errors (size) and powers of the crude tests given by W , mLR and S, the adjusted tests
given by W BC, mLRBC and SBC with the analytical Bartlett corrections, and the adjusted
tests given by W BC

∗ , mLRBC
∗ and SBC

∗ with the parametric bootstrap Bartlett corrections.

When the Prasad-Rao estimator is used for θ, Table 1 reports the average of the sizes
of the test statistics based on 10,000 replications were the size of the bootstrap sample
is 1,000. For both patterns A and B, the type I errors of the W and S tests are not
good, while the adjusted tests with the Bartlett corrections W BC, SBC, W BC

∗ and SBC
∗ give

significant improvements in terms of their sizes. For the modified LR test, the sizes of the
adjusted tests are better than those of mLR. When the ML and REML are used for θ,
we have similar observations as shown in Table 2, where the Monte Carlo simulation was
conducted with 1,000 times with a bootstrap sample of size 100, since it takes long time
in the simulation experiments for ML and REML estimators.

The powers of the test statistics based on the Prasad-Rao estimator of θ are reported
in Table 3 where the powers at two points β1 = β2 = 0.1 and β1 = β2 = 0.2 are computed
based on 10,000 replications with bootstrap samples of size 1,000. From the table, it is
revealed that the powers of the tests with the analytical Bartlett adjustments are close
to the powers of the tests with the parametric bootstrap adjustments. It is interesting to
point out that the adjusted score tests SBC and SBC

∗ are more powerful than the adjusted
LR tests mLRBC and mLRBC

∗ , which are a bit more powerful than the adjusted Wald tests
W BC and W BC

∗ .

7 Concluding Remarks

In this paper, we have derived the Bartlett corrections of the Wald, score and modified
likelihood ratio (LR) tests using two kinds of techniques, namely the analytical method
via the Taylor series expansion and the numerical method via the parametric bootstrap.
We have also shown that the three test statistics with these Bartlett adjustments have
the second-order corrections in their type I errors. Although the analytical Bartlett cor-
rections were provided by Rothenberg (1984) in the case that the nuisance parameters are
estimated by the maximum likelihood (ML), we have extended his results to the case that
the nuisance parameters are estimated by general consistent estimators. The nuisance
parameters correspond to variance components in specific linear mixed models, and vari-
ous estimators of the variance components including REML, MINQUE and other specific
unbiased estimators are available. For these estimators other than ML, the results in this
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Table 1: Comparison of the type I error (size, %) of the original W , mLR and S tests
and the adjusted tests with the analytical and parametric bootstrap Bartlett corrections
where θ is estimated by the Prasad-Rao estimator and the nominal level is 5 %

Prasad-Rao estimator
W W BC W BC

∗ mLR mLRBC mLRBC
∗ S SBC SBC

∗
vi ∼ N (0, 1)

pattern A 10.7 5.86 5.85 6.42 5.44 5.33 1.72 5.60 5.47
pattern B 6.95 4.99 4.79 5.39 4.96 4.91 3.64 4.99 5.07

vi ∼ DExp(0, 1/
√
2)

pattern A 10.2 5.47 5.52 6.70 5.77 5.60 1.87 5.65 5.57
pattern B 6.95 5.06 4.86 5.35 5.04 5.15 3.67 5.03 5.29

vi ∼ SExp(−1, 1)
pattern A 10.2 5.36 5.42 6.21 5.42 5.33 1.74 5.30 5.24
pattern B 6.62 4.86 4.76 5.24 4.83 4.98 3.68 4.89 5.52

Table 2: Comparison of the type I error (size, %) of the original W , mLR and S tests
and the adjusted tests with the analytical and parametric bootstrap Bartlett corrections
where θ is estimated by the ML and REML estimators and the nominal level is 5 %

ML and REML estimator
W W BC W BC

∗ mLR mLRBC mLRBC
∗ S SBC SBC

∗
vi ∼ N (0, 1)

pattern B ML 9.5 5.1 5.5 6.6 5.2 5.3 3.3 4.7 4.2
pattern B REML 7.7 4.6 4.5 5.0 5.0 4.7 1.7 4.7 5.1

vi ∼ DExp(0, 1/
√
2)

pattern B ML 9.5 5.9 5.8 6.9 5.8 5.6 3.9 5.1 5.0
pattern B REML 7.8 5.1 4.7 5.1 4.9 5.1 2.1 4.9 5.6

vi ∼ SExp(−1, 1)
pattern B ML 10.4 5.6 6.1 7.9 5.8 6.5 3.6 5.8 5.7
pattern B REML 8.1 5.3 5.0 5.3 5.3 5.6 2.7 6.1 6.3

paper can provide the Bartlett corrections of the W , S and mLR tests. In fact, we have
treated the simple unbiased estimators given by Prasad and Rao (1990) in the nested error
regression model, which has been used in the two-stage sampling and the small-area esti-
mation, and through simulation experiments we have shown that the test statistics with
the Bartlett adjustments via the analytical and parametric bootstrap methods provide
significant improvements in the type I errors.

The above description implies that the testing procedures proposed in this paper pos-
sess a couple of merits from a practical aspect. One is that we can use any computationally
simpler estimators among consistent estimators of the nuisance parameters. In general,
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Table 3: Comparison of the powers (%) of the adjusted W , mLR and S tests with the
analytical and parametric bootstrap Bartlett corrections where θ is estimated by the
Prasad-Rao estimator and the nominal level is 5 %

Prasad-Rao estimator
W BC W BC

∗ mLRBC mLRBC
∗ SBC SBC

∗
β1 = β2 = 0.1 vi ∼ N (0, 1)
pattern A 56.89 57.05 64.80 61.28 64.80 66.36
pattern B 58.36 58.39 62.03 62.87 65.82 67.14
β1 = β2 = 0.2
pattern A 98.70 98.75 98.97 98.98 99.13 99.24
pattern B 98.98 99.00 99.21 99.20 99.24 99.32

β1 = β2 = 0.1 vi ∼ DExp(0, 1/
√
2)

pattern A 57.56 58.00 61.68 62.67 66.00 67.97
pattern B 59.25 59.61 63.24 64.31 67.34 69.49
β1 = β2 = 0.2
pattern A 98.56 98.59 98.89 99.01 99.11 99.26
pattern B 98.85 98.91 99.11 99.20 99.33 99.44

β1 = β2 = 0.1 vi ∼ SExp(−1, 1)
pattern A 58.13 58.42 62.29 63.70 66.60 68.91
pattern B 59.25 59.52 62.67 63.69 66.65 69.01
β1 = β2 = 0.2
pattern A 98.79 98.84 99.03 99.12 99.21 99.33
pattern B 98.93 98.97 99.18 99.23 99.32 99.41

ML and REML require numerical iterations to get the solutions, and the solutions are
sometimes instable as well as it takes time to get them. Since the Prasad-Rao estimator
is given as an explicit form, it is easier to compute the test statistics. Another merit is
that we can compute the Bartlett correction numerically with the parametric bootstrap,
namely, we do not have to derive the second-order bias, variance and covariance of the
general consistent estimators. This is really useful, since we can obtain the bootstrap
Bartlett adjustments with the second-order corrections for any consistent estimator in
any complicated model (2.1).

A Appendix

A.1 Derivation of the restricted estimator (2.3) and the consis-
tency

We begin by deriving the relation between the ML θ̂M and the restricted ML θ̃M under
the null hypothesis. Note that V (θ̂M) = −2(L(β̃(θ̂M), θ̂M) − L(β̂(θ̂M), θ̂M)). From the

definition of ML, it follows that col(L(i)(β̂(θ̂M), θ̂M)) = 0, which implies that the partial
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derivative of V (θ̂M) with respect to θ̂M is expressed as

col(V(i)(θ̂M)) = −2col(L(i)(β̃(θ̂M), θ̂M)).

From the definition of the restricted ML, it follows that col(L(i)(β̃(θ̃M), θ̃M)) = 0, so that

the Taylor series expansion of col(L(i)(β̃(θ̂M), θ̂M)) around θ̃M gives

−2col(L(i)(β̃(θ̂M), θ̂M)) =mat(−2L(ij)(β̃(θ̃M), θ̃M))(θ̂M − θ̃M) +Op(N
−1/2)

=Ω(θ)(θ̂M − θ̃M) +Op(N
−1/2),

under the null hypothesis, where Ω(θ) = mat(−2E[L(ij)(β̃(θ),θ)]). Since Ω(θ) = O(N),

θ̂M − θ̃M = Ω−1(θ)col(V (i)(θ̂M)) +Op(N
−3/2). (A.1)

It is here noted that E[θ̂
†
M(θ̂

†
M)

′] = 2Ω−1(θ)+o(N−1), where θ̂M−θ = θ̂
†
M+op(N

−1/2).

In fact, the Taylor series expansion of col(L(i)(β̂(θ̂M), θ̂M)) around θ gives

0 =− 2col(L(i)(β̃(θ̂M), θ̂M))

=− 2col(L(i)(β̃(θ),θ)) +mat(−2L(ij)(β̃(θ),θ))(θ̂M − θ) + op(N
1/2),

which yields that θ̂M − θ = Ω−1(θ)col(NL(i)(β̃(θ),θ)) + op(N
−1/2). From Kubokawa

(2011a), it follows that E[θ̂
†
M(θ̂

†
M)

′] = E[(θ̂M−θ)(θ̂M−θ)′]+op(N
−1) = 2Ω−1(θ)+o(N−1).

Substituting θ̂M into Ω(θ) in (A.1), we get the restricted ML given by

θ̃M = θ̂M −Ω−1(θ̂M)col(V (i)(θ̂M)), (A.2)

where Ω−1(θ) = 2−1E[(θ̂M − θ)(θ̂M − θ)′] + o(N−1) = 2−1E[θ̂
†
M(θ̂

†
M)

′] + o(N−1).

The general restricted estimator θ̃ can be provided by replacing θ̂M with θ̂ in (A.2),
namely,

θ̃ = θ̂ −Λ(θ̂)col(V (i)(θ̂)),

where Λ(θ) = 2−1E[θ̂
†
(θ̂

†
)′]. The consistency of θ̃ under the null hypothesis follows from

the fact that θ̂ → θ and Λ(θ) = O(N−1).

A.2 Proofs of Theorems 3.1 and 3.2

We begin by preparing the following two lemmas which will be useful for proving these
theorems.

Lemma A.1 Let X be an r-dimensional random vector having Nr(µ, I). For an r × 1
constant vector a and an r × r constant matrix A, one gets the the following expression:

E[etX
′Xg(a′XX ′a′,X ′AX)] = γ

r
2 etγµ

′µE[g(a′X̃X̃
′
a′, X̃

′
AX̃)],

where X̃ ∼ Nr(γµ, γI) for γ = 1/(1− 2t).
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Proof. Combining etX
′X and the density of the multivariate normal distribution, we

see that

E[etX
′Xg(a′XX ′a′,X ′AX)]

=

∫
etx

′xg(a′xx′a′,x′Ax)
1

(2π)r/2
exp

(
−(x− µ)′(x− µ)

2

)
dx

=

∫
g(a′xx′a′,x′Ax)

1

(2π)r/2
exp

tγµ′µ−

(
x− 1

2γ
δ
)′ (

x− 1
2γ
δ
)

2γ

 dx

=γ
r
2 etγµ

′µ

∫
g(a′xx′a′,x′Ax)

(
1

2πγ

)r/2

exp

(
−
(x− 1

2γ
δ)′(x− 1

2γ
δ)

2γ

)
dx

=γ
r
2 etγµ

′µE[g(a′X̃X̃
′
a, X̃

′
AX̃)],

which establishes Lemma A.1. □

Lemma A.2 Let X be a random vector having N (µ,Σ). Then, the following identities
are useful for evaluating moments.

(1) E[X ′AX] = tr (ΣA) + µ′Aµ
(2) E[X ′AXa′X] = tr (ΣA)a′µ+ µ′(ΣA+AΣ)a+ µ′Aµa′µ
(3) E[X ′AXX ′AX] = (tr (ΣA) + µ′Aµ)2 + 2tr (ΣA)2 + 4µ′AΣAµ

Proof. To evaluate moments, we use the following Stein identity given by Stein (1981)
for X ∼ N (µ,Σ):

E[(X − µ)′g(y)] = E[∇′{Σg(X)}], (A.3)

where g(X) = (g1(X), . . . , gN(X))′ is an absolutely continuous function and ∇ = ∂/∂X.
For (1), the Stein identity is used to evaluate E[X ′AX] as E[X ′AX] = E[(X−µ)′AX]+
µ′AE[X] = E[∇′ΣAX] + µ′Aµ = tr (ΣA) + µ′Aµ. For (2), the same argument is
applied to get

E[X ′AXa′X] =E[(X − µ)′AXa′X] + E[µ′AXa′X]

=E[∇′ΣAXa′X] + E[(X − µ)′Aµa′µ] + µ′AµE[a′X]

=E[tr (ΣA)a′X +X ′ΣAa] + E[∇′ΣAµa′X] + µ′Aµa′µ

=tr (ΣA)a′µ+ µ′(ΣA+AΣ)a+ µ′Aµa′µ.

For (3), it is similarly shown that

E[X ′AXX ′AX] =E[(X − µ)′AXX ′AX] + E[µ′AXX ′AX]

=E[∇′ΣAXX ′AX] + E[(X − µ)′AµX ′AX] + µ′AµE[X ′AX]

=tr (ΣA)E[X ′AX] + 2E[X ′AΣAX]

+ E[∇′ΣAµX ′AX] + µ′Aµ(tr (ΣA) + µ′Aµ)

=(tr (ΣA) + µ′Aµ)2 + 2tr (ΣA)2 + 4µ′AΣAµ,
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which proves Lemma A.2. □

[Expansion of the Wald test] We now derive the asymptotic expansion of the
Wald test statistic, which is expressed as W = (x+ s)′ (I − S)−1 (x+ s) from (3.1),

where x = H{Rβ̂(θ)− r}, s = HR{β̂(θ̂)− β̂(θ)} and S = −HR{(X ′Σ(θ̂)−1X)−1 −
(X ′Σ−1X)−1}R′H for H = (R(X ′Σ−1X)−1R′)−1/2. Let ϵ = y − Xβ. The Taylor

series expansions of S and s around θ̂ = θ give

S = −HR
(∑

i

(X ′Σ−1X)−1
(i) (θ̂

†
i + θ̂††i ) +

1

2

∑
i,j

((X ′Σ−1X)−1
(ij)θ̂

†
i θ̂

†
j)
)
R′H + op(N

−1),

and

s =HR
(∑

i

(X ′Σ−1X)−1X ′Σ−1)(i)ϵ(θ̂
†
i + θ̂††i )

+
1

2

∑
i,j

((X ′Σ−1X)−1X ′Σ−1)(ij)ϵθ̂
†
i θ̂

†
j)
)
+ op(N

−1),

both of which are of Op(N
−1/2) from Assumption 1. Since (I −S)−1 = I +S +S2 +RN

where every elements of RN is of order op(N
−1), the Wald test statistic is expanded as

W =(x+ s)′(I + S + S2)(x+ s) + op(N
−1)

=x′x+ (2s′x+ x′Sx) + (s′s+ 2s′Sx+ xS2x) + op(N
−1).

It is noted that 2s′x + x′Sx = Op(N
−1/2) and s′s + 2s′Sx + xS2x = Op(N

−1). Using
these facts and Lemma A.1, we can evaluate the moment generating function of W as

E[etW ] =E[etx
′xet(2s

′x+x′Sx)et(s
′s+2s′Sx+xS2x) + op(N

−1)]

=E[etx
′x(1 + t(2s′x+ x′Sx) + t(s′s+ 2s′Sx+ xS2x)

+
1

2
t2(2s′x+ x′Sx)2)] + o(N−1)

=tγ
r
2 e

γ−1
2

δ′δE[(1 + t(x̃′Sx̃+ s′s+ 2s′Sx̃+ x̃S2x̃)

+
1

2
t2(2s′x̃+ x̃′Sx̃)2)] + o(N−1),

where x̃ ∼ NN(γδ, γI). Since E[ϵ] = 0, it is noted that E[s] = 0. Lemma A.2 can be
used to simplify E[etW ] as

E[etW ] =γ
r
2 e

γ−1
2

δ′δE
[
1 +

γ − 1

2
(s′s+ tr (S) + tr (S2)) +

γ(γ − 1)

2
(tr (S∆) + tr (S2∆))

+
(γ − 1)2

2
tr (ss′∆) +

(γ − 1)2

4
(tr (S2) +

1

2
(tr (S))2)

+
γ(γ − 1)2

2
(tr (S2∆) +

1

2
tr (S∆)tr (S)) +

γ2(γ − 1)2

8
(tr (S∆))2

]
+ o(N−1),
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where ∆ = δδ′.

We need to investigate the order of the moments E[s′s], E[tr (S)], E[(tr (S))2] and
E[tr (S2)]. For the purpose, we use the notations given by

A(i) =HR((X ′Σ−1X)−1X ′Σ−1)(i),

B(i) =−HR(X ′Σ−1X)−1
(i)R

′H ,

B(ij) =−HR(X ′Σ−1X)−1
(ij)R

′H .

Under Assumption 1 [2], it is seen that

E[s′s] =

q∑
i,j

E[u′A′
(i)A(j)uθ̂

†
i θ̂

†
j ] + o(N−1)

=

q∑
i,j

E[∇′(ΣA′
(i)A(j)u)θ̂

†
i θ̂

†
j ] + o(N−1) (∵ Stein identity)

=

q∑
i,j

tr (ΣA′
(i)A(j))E[θ̂†i θ̂

†
j ] + 2

q∑
i,j

E[u′A′
jAiΣ(θ)(∇θ̂†i )θ̂

†
j ] + o(N−1)

=

q∑
i,j

tr (ΣA′
(i)A(j))E[θ̂†i θ̂

†
j ] + o(N−1), (A.4)

which is of order O(N−1). The same argument is used to show that

E[tr (S)] =

q∑
i

tr (B(i))E[θ̂†i + θ̂††i ] +
1

2

q∑
i,j

tr (B(ij))E[θ̂†i θ̂
†
j ] + o(N−1), (A.5)

which is of order O(N−1). Similarly,

E[(tr (S))2] =

q∑
i,j

tr (B(i))tr (B(j))E[θ̂†i θ̂
†
j ] + o(N−1), (A.6)

E[tr(S2)] =

q∑
i,j

tr (B(i)B(j))E[θ̂†i θ̂
†
j ] + o(N−1) (A.7)

both of which are of order O(N−1).

Taking the above observations into account, we can evaluate the moment generating
function of the Wald test statistic as

E[etW ] =γ
r
2 e

γ−1
2

δ′δ
(
1 +

γ − 1

2
(a+ c) +

(γ − 1)2

2
(b+ tr (A∆))

+
γ(γ − 1)2

2
tr (B∆) +

γ(γ − 1)2

2
tr (C∆) +

γ2(γ − 1)2

2
tr (D∆)

)
+ o(N−1)
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where a = E [s′s], b = 2−1E
[
tr
(
S2
)
+ 2−1 (tr (S))2

]
, c = E

[
tr (S) + tr

(
S2
)]
, A =

E[ss′], B = E
[
S2 + 2−1Str (S)

]
, C = E

[
S + S2

]
and D = 4−1E [S∆S]. Let Gr(x) be

the distribution of the non-central chi-square distribution with r degree of freedom and
the noncentrality δ′δ. Note that Gr+k(x)−Gr+k−2(x) = −2gr+k(x). Then, the inversion
of the Laplace transformation provides

P (W > x) =1−Gr(x) + (a− b+ c− tr (A∆))gr+2(x)

+ (b+ tr ((A−B +C)∆))gr+4(x)

+ (tr ((B −D)∆))gr+6(x) + tr (D∆)gr+8(x) + o(N−1). (A.8)

[Bartlett correction of the Wald test] To derive the Bartlett correction, we use
the asymptotic expansion (A.8) under the null hypothesis, namely, δ = 0. In this case,
the asymptotic expansion is expressed as

P (W ≤ x) = Fr(x)−
x

r

(
a− b+ c+

x

r + 2
b

)
fr(x) + o(N−1),

which also implies that

P

(
W ≤ x

(
1 +

h

N

))
= Fr(x) +

hx

N
fr(x)−

x

r
fr(x)

(
a− b+ c+

x

r + 2
b

)
+ o(N−1).

If the second term is equal to the third term in the r.h.s. of the equality, then the
second-order term O(N−1) vanishes. Thus,

h

N
=

1

r

(
a− b+ c+

z

r + 2
b

)
= O(N−1).

It is also noted that P (W ≤ x (1 + h/N)) = P (W (1− h/N) ≤ x) + o(N−1). Thus, we
get the Bartlett correction of Wald statistic given by

W BC = W

(
1− 1

r

(
a(θ̂)− b(θ̂) + c(θ̂)

)
− x

r(r + 2)
b(θ̂)

)
,

whose distribution function is approximated as

P (W BC ≤ x) = Fr(x) + o(N−1).

The power distribution of the adjusted Wald test statistic can be derived from (A.8).

[Expansion and Bartlett correction of the score test] We next derive the
asymptotic expansion of the score test statistic. The moment generating function of the
score test statistic can be approximated as

E
[
etS
]
=E

[
et(W−col(V(i))

′Λcol(V(i))+op(N−1))
]

=E[etW ]− E[tetx
′xcol(V(i))

′Λcol(V(i))] + o(N−1), (A.9)
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since λ ≡ col(V(i))
′Λcol(V(i)) = Op(N

−1). It is noted that V(i) is expressed as

V(i) = 2u′MΣΣ(Σ−1)(i)XQx+ x′Q′X ′(Σ−1)(i)XQx,

for Q = (X ′Σ−1X)−1R′H and MΣ = Σ−1 − Σ−1X(X ′Σ−1X)−1X ′Σ−1. Then, it is
observed that

E
[
tetx

′xλ
]
=
t

2

q∑
i,j

E
[
etx

′xθ̂†i θ̂
†
j(x

′B(i)xx
′B(j)x+ 4x′A(i)uu

′A′
(j)x)

]
=
tγ

r
2

2
e

γ−1
2

δ′δ

q∑
i,j

E
[
θ̂†i θ̂

†
j(x̃

′B(i)x̃x̃
′B(j)x̃++4x̃′A(i)ΣA′

(j)x̃)
]

=
tγ

r
2

2
e

γ−1
2

δ′δ

q∑
i,j

E
[
θ̂†i θ̂

†
j(γ

2tr (B(i))tr (B(j)) + 2γ3tr (B(i)∆)tr (B(j))

+ γ4tr (B(i)∆)tr (B(j)∆) + 2γ2tr (B(i)B(j)) + 4γ3tr (B(i)B(j)∆)

+ 4γtr (ΣA′
(i)A(j)) + 4γ2tr (ΣA′

(i)A(j)∆))
]
.

Using the observations (A.4), (A.5), (A.6) and (A.7), we can evaluate E
[
tetx

′xλ
]
as

E
[
tetx

′xλ
]
=γ

r
2 e

γ−1
2

δ′δ
{
(γ − 1)a+ (γ − 1)(b+ tr (A∆)) + (γ − 1)2(b+ tr (A∆))

+ γ2(γ − 1)tr (B∆) + γ3(γ − 1)tr (D∆)
}
. (A.10)

Combining (A.9) and (A.10) gives

E[etS] =γ
r
2 e

γ−1
2

δ′δ
{
1 +

γ − 1

2
(−a+ c)− (γ − 1)(b+ tr (A∆))− (γ − 1)2

2
(b+ tr (A∆))

− γ(γ2 − 1)

2
tr (B∆) +

γ(γ − 1)

2
tr (C∆)− γ2(γ2 − 1)

2
tr (D∆)

}
+ o(N−1).

By an inversion formula, the distribution of the score test statistic can be approximated
as

P (S > x) =1−Gr(x) + (−a− b+ c− tr (A∆))gr+2(x)− (b+ tr ((A−B +C)∆))gr+4(x)

− (tr ((B +D)∆))gr+6(x)− tr (D∆)gr+8(x) + o(N−1).

The Bartlett correction of the score test can be derived from the above expansion
under null hypothesis. Similar to the case of the Wald test, it is seen that

P (S ≤ x) = Fr(x)−
x

r

(
−a− b+ c− x

r + 2
b

)
fr(x) + o(N−1),

which provides the Bartlett correction

SBC = S

(
1− 1

r

(
−a(θ̂)− b(θ̂) + c(θ̂)

)
+

x

r(r + 2)
b(θ̂)

)
.
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Thus, it can be confirmed that P (SBC ≤ x) = Fr(x) + o(N−1). Similar to the case of
the Wald test statistic, the asymptotic power functions of the score test statistic can be
derived.

[Expansion and Bartlett correction of the modified LR test] Finally, we derive
the Bartlett correction of the modified LR test statistic. The generating function of the
modified LR test statistic can be approximated as

E
[
etLR

]
=E

[
et(W−λ/2+op(N−1))

]
=E[etW ]− 1

2
E[tetx

′xλ] + o(N−1).

Combining (A.9) and (A.10) gives

E
[
etLR

]
=γ

r
2 e

γ−1
2

δ′δ
{
1 +

γ − 1

2
c− γ − 1

2
(b+ tr (A∆))

− γ(γ − 1)

2
tr (B∆) +

γ(γ − 1)

2
tr (C∆)− γ2(γ − 1)

2
tr (D∆)

}
+ o(N−1),

so that an inversion formula yields the expansion

P (LR > x) =1−Gr(x) + (−b+ c− tr (A∆))gr+2(x)

+ tr ((−B +C)∆)gr+4(x)− tr (D∆)gr+6(x) + o(N−1).

From the argument under null hypothesis, it follows that the Bartlett correction is given
by

LRBC = LR

(
1− 1

r

(
−b(θ̂) + c(θ̂)

))
,

and we can confirm that P (LRBC ≤ x) = Fr(x)+ o(N−1). Similar to the case of the Wald
test statistic, the asymptotic power functions of the modified LR test statistics can be
derived.
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