
CIRJE Discussion Papers can be downloaded without charge from:

http://www.cirje.e.u-tokyo.ac.jp/research/03research02dp.html

Discussion Papers are a series of manuscripts in their draft form. They are not intended for

circulation or distribution except as indicated by the author. For that reason Discussion Papers may

not be reproduced or distributed without the written consent of the author.

CIRJE-F-889

Optimal Bandwidth Selection for Differences of
Nonparametric Estimators with an Application to

the Sharp Regression Discontinuity Design

Yoichi Arai
National Graduate Institute for Policy Studies (GRIPS)

Hidehiko Ichimura
University of Tokyo

June 2013



Optimal Bandwidth Selection for Differences of

Nonparametric Estimators with an Application to

the Sharp Regression Discontinuity Design∗

Yoichi Arai†and Hidehiko Ichimura‡

Abstract

We consider the problem of choosing two bandwidths simultaneously for

estimating the difference of two functions at given points. When the asymptotic

approximation of the mean squared error (AMSE) criterion is used, we show

that minimization problem is not well-defined when the sign of the product

of the second derivatives of the underlying functions at the estimated points

is positive. To address this problem, we theoretically define and construct

estimators of the asymptotically first-order optimal (AFO) bandwidths which

are well-defined regardless of the sign. They are based on objective functions

which incorporate a second-order bias term. Our approach is general enough

to cover estimation problems related to densities and regression functions at

interior and boundary points. We provide a detailed treatment of the sharp

regression discontinuity design.
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1 Introduction

Given a particular nonparametric estimator, it is well recognized that choosing an

appropriate smoothing parameter is a key implementation issue about which vari-

ous methods have been proposed. Among myriad developments in nonparametric

estimation methods, those in program evaluation highlight the need to estimate the

difference of two functions at particular points rather than an unknown function it-

self. Examples include applications of the average treatment effect (ATE), the local

average treatment effect (LATE), and the regression discontinuity design (RDD).

The standard approach in empirical researches is to estimate two functions by

kernel-type nonparametric estimators. Two bandwidths are required to estimate two

functions and are selected independently by using the plug-in or the cross-validation

method proposed to estimate a single function. For example, Ludwig and Miller

(2005, 2007) and DesJardins and McCall (2008) used the cross-validation and the

plug-in method, respectively, in the context of the sharp RDD. One notable exception

is the bandwidth selection procedure proposed by Imbens and Kalyanaraman (2012)

(hereafter IK) developed for the RDD estimator to choose the same bandwidth to

estimate two functions on both sides of a discontinuity point. The bandwidth proposed

by IK is obtained by minimizing the asymptotic approximation of the mean squared

error (AMSE) with regularization.

In this paper, we propose to choose two bandwidths simultaneously to estimate

the difference of two functions based on minimizing a version of the AMSE. Empirical

studies using the RDD estimators by DesJardins and McCall (2008), Lee (2008) and

Ludwig and Miller (2005, 2007) among others reveal that the curvatures on the right-

and left-side of the threshold often differ. Since we should allow this possibility in

general, it is natural to choose two bandwidths simultaneously for both sides of the

threshold. Although a simultaneous choice of two bandwidths seems natural, it has

not yet been considered in either the econometrics or the statistics literature. We show

that this natural approach leads to a nonstandard problem. To illustrate the main

issue of the problem, we consider estimating the difference of densities evaluated at two
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distinct points by kernel density estimator with a second-order kernel function because

density estimation problems are the simplest, but have all the essential features that

we explore.

We show that when the sign of the product of the second derivatives of the

density functions at two distinct points is negative, the bandwidths that minimize

the AMSE are well-defined. But when the sign of the product is positive, the trade-

off between bias and variance, which is a key aspect of optimal bandwidth selection,

breaks down, and the AMSE can be made arbitrarily small without increasing the

bias component. This happens because there exists a specific ratio of bandwidths that

can remove the bias term completely, and we can make the variance arbitrarily small

by choosing large values of the bandwidths keeping the ratio constant.

To address this problem, we theoretically define asymptotically first-order op-

timal (AFO) bandwidths based on objective functions which incorporates a second-

order bias term. The AFO bandwidths are defined as the minimizer of the standard

AMSE when the sign is negative while they are the minimizer of the AMSE with a

second-order bias term subject to the restriction that the first-order bias term is equal

to zero when the sign is positive. We construct an estimator which is shown to be

asymptotically equivalent to the AFO bandwidths.

We investigate the problems of nonparametric estimation of the difference of

regression functions at interior and boundary points. The nonparametric regression

estimators we consider are LLR estimators proposed by Stone (1977) and investigated

by Fan (1992). An important application of the boundary cases is the sharp RDD.

We show that the essential features of the problems are exactly the same as those for

the estimation problem of the difference of densities and the results are generalized

to cover these cases.

We conducted a simulation study to investigate the finite sample properties of

the proposed method. We concentrated on the case of the sharp RDD, which is most

empirically relevant. Our experiment showed that the proposed method performs well

for all six designs considered in the paper and particularly well for designs in which

there exists a large difference in the absolute magnitudes of the second derivatives.
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More specifically, the proposed bandwidths are more stable and perform better than

existing bandwidths in terms of the root mean squared error.

The remainder of the paper is organized as follows. In Section 2, all the es-

sential features of our approach are presented through the estimation problem of the

difference of densities at given points. We generalize the proposed method to the

estimation problem of regression functions at interior and boundary points with em-

phasis on the sharp RDD in Section 3. In Section 4, we demonstrate the finite sample

behavior of our approach via a simulation study. Section 5 concludes. Omitted dis-

cussions, an algorithm to implement the proposed method for the sharp RDD and all

proofs for main results are provided in the supplemental material (Arai and Ichimura,

2013).

2 Nonparametric Estimation of Differences of Den-

sities

2.1 The AMSE for Differences of Kernel Density Estimators

We consider estimating a difference of a density function at two given points, i.e.,

f(x1)− f(x2), for x1 6= x2, where f is a Lebesgue density.1 Let {X1, X2, . . ., Xn} be

a random sample from a univariate distribution with the Lebesgue density f . Then,

f(x1) − f(x2) is estimated by f̂h1
(x1) − f̂h2

(x2), where f̂hj
(xj) is the kernel density

estimator of f given by f̂hj
(xj) =

∑n
i=1K ((xj −Xi)/hj) /(nhj), where K is a kernel

function, and hj is a bandwidth used to estimate the density f at xj for j = 1, 2. For

simplicity we use the same kernel function K to estimate both f̂h1
(x1) and f̂h2

(x2).

In this paper, we propose a simultaneous selection method of two distinct

bandwidths based on an approximate MSE in a broad sense. In the standard con-

text of kernel density estimation, numerous methods have been proposed to choose

1Throughout this section, we consider the difference of kernel density estimators for a “single”
density at two distinct points. A straightforward generalization shows that we can apply the dis-
cussions in this section to bandwidth choices for the difference of kernel density estimators of two
distinct densities, f and g, at two points, x and y; i.e., f(x)− g(y) based on the two random samples
{X1, . . . , Xn} and {Y1, . . . , Yn}.
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a bandwidth. One of the most popular and frequently used methods is to choose

a bandwidth based on the AMSE.2 The MSE for the difference of the two density

estimators is defined by

MSEn(h) = E

{

[(

f̂h1
(x1)− f̂h2

(x2)
)

−
(

f(x1)− f(x2)
)]2

}

,

where the expectation is taken using f as the density for the observations.3 A standard

approach is to obtain the AMSE, ignoring higher-order terms, and to choose the

bandwidths that minimize that. To do so, we make the following assumptions. (The

integral sign
∫

refers to an integral over the range (−∞,∞) unless stated otherwise.)

ASSUMPTION 1 K(·) : R → R is a symmetric second-order kernel function that

is continuous with compact support; i.e., K satisfies the following:
∫

K(u)du = 1,
∫

uK(u)du = 0, and
∫

u2K(u)du 6= 0.

Let D be an open set in R, k be a nonnegative integer, f (k)(·) be the kth

derivative of f(·) and Ck be the family of k times continuously differentiable functions

on R. Let Fk(D) be the collection of functions f such that f ∈ Ck and

∣

∣f (k)(x)− f (k)(y)
∣

∣ ≤ Mk |x− y|α , ε < f(z) < M, x, y, z ∈ D,

for some positive Mk, ε and M such that 0 < ε < M < ∞ and some α such that

0 < α ≤ 1.

ASSUMPTION 2 The density f is an element of F2(Dj) where Dj is an open neigh-

borhood of xj for j = 1, 2.

ASSUMPTION 3 The positive sequence of bandwidths is such that hj → 0 and

nhj → ∞ as n → ∞ for j = 1, 2.

2As IK emphasize, the bandwidth selection problem in the context of the RDD as well as the other
problems considered in this paper are how to choose local bandwidths rather than global bandwidths.
Thus, bandwidth selection based on either the asymptotic mean “integrated” squared errors or the
cross-validation criterion can never be optimal.

3Throughout the paper, we use “h” without a subscript to denote a combination of h1 and h2;
e.g., MSEn(h1, h2) is written as MSEn(h).
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Assumptions 1, 2 and 3 are standard in the literature of kernel density estima-

tion. Under Assumptions 1, 2 and 3, standard calculation yields

MSEn(h) =
{µ2

2

[

f (2)(x1)h
2
1 − f (2)(x2)h

2
2

]

}2

+
ν0
n

{

f(x1)

h1

+
f(x2)

h2

}

+ o

(

h4
1 + h2

1h
2
2 + h4

2 +
1

nh1

+
1

nh2

)

,

where µj =
∫

ujK(u)du and νj =
∫

ujK2(u)du (see, e.g., Prakasa Rao, 1983, Section

2.1). This suggests that we choose the bandwidths to minimize the following AMSE:

AMSEn(h) =
{µ2

2

[

f (2)(x1)h
2
1 − f (2)(x2)h

2
2

]

}2

+
ν0
n

{

f(x1)

h1
+

f(x2)

h2

}

. (1)

However, this procedure may fail. To see why, let h1, h2 ∈ H , where H = (0,∞), and

consider the case in which f (2)(x1)f
(2)(x2) > 0. Now choose h2 = [f (2)(x1)/f

(2)(x2)]
1/2h1.

Then, we have

AMSEn(h) =
ν0
nh1

{

f(x1) + f(x2)

[

f (2)(x2)

f (2)(x1)

]1/2
}

.

This implies that the bias component can be removed completely from the AMSE by

choosing a specific ratio of bandwidths and the AMSE can be made arbitrarily small

by choosing a sufficiently large h1.

One reason for this nonstandard behavior is that the AMSE given in (1) does

not account for higher-order terms. If non-removable higher-order terms for the bias

component are present, they should punish the act of choosing large values for band-

widths. In what follows, we incorporate a second-order bias term into the AMSE

assuming densities are smooth.

ASSUMPTION 4 The density f is an element of F4(Dj) where Dj is an open neigh-

borhood of xj for j = 1, 2.

In the literature of kernel density estimation, it is common to employ higher-

order kernel functions when the density is four times differentiable because it is known

to reduce bias (see, e.g., Silverman, 1986, Section 3.6). However, we have several
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reasons for confining our attention to the second-order kernel functions. First, as

shown later, we can achieve the same bias reduction without employing higher-order

kernel functions when the sign of the product of the second derivatives is positive.

When the sign is negative, Assumption 4 is unnecessary. Second, even when we use

a higher-order kernel functions, we end up with an analogous problem. For example,

the first-order bias term is removed by using higher-order kernel functions, but when

the signs of the fourth derivatives are the same, the second-order bias term can be

eliminated by using an appropriate choice of bandwidths.

The next lemma shows the asymptotic property of the MSE under the smooth-

ness condition. This straightforward extension of the standard result (see, e.g.,

Prakasa Rao, 1983, Section 2.1) is presented without proof.

LEMMA 1 Suppose Assumptions 1, 3 and 4 hold. Then, it follows that

MSEn(h) =
{µ2

2

[

f (2)(x1)h
2
1 − f (2)(x2)h

2
2

]

+
µ4

4!

[

f (4)(x1)h
4
1 − f (4)(x2)h

4
2

]

+ o
(

h4
1 + h4

2

)

}2

+
ν0
n

{

f(x1)

h1
+

f(x2)

h2

}

+ o

(

1

nh1
+

1

nh2

)

. (2)

Given the expression of Lemma 1, one might be tempted to proceed with an

approximate MSE including the second-order bias term:

{µ2

2

[

f (2)(x1)h
2
1 − f (2)(x2)h

2
2

]

+
µ4

4!

[

f (4)(x1)h
4
1 − f (4)(x2)h

4
2

]

}2

+
ν0
n

{

f(x1)

h1
+

f(x2)

h2

}

.

(3)

We show that a straightforward minimization of this approximate MSE does not

overcome the problem discussed earlier. That is, the minimization problem is not

well-defined when f (2)(x1)f
(2)(x2) > 0. In particular, we show that one can make

the order of the bias term O(h2k
1 ), with k being an arbitrary positive integer, by

choosing h2
2 = C(h1, k)h

2
1 and C(h1, k) = C0 + C1h

2
1 + C2h

4
1 + C3h

6
1 + . . . + Ckh

2k
1 for

some constants C0, C1, . . ., Ck when the sign of the product of the second derivatives

is positive. Given that bandwidths are necessarily positive, we must have C0 > 0,

although we allow C1, C2, . . ., Ck to be negative.

To gain insight, consider choosing C(h1, 1) = C0+C1h
2
1, where C0 = f (2)(x1)/f

(2)(x2).
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In this case, the sum of the first- and second-order bias terms is

µ2

2

[

f (2)(x1)− C(h1, 1)f
(2)(x2)

]

h2
1 +

µ4

4!

[

f (4)(x1)− C(h1, 1)
2f (4)(x2)

]

h4
1

=
{

−
µ2

2
C1f

(2)(x2) +
µ4

4!

[

f (4)(x1)− C2
0f

(4)(x2)
]

}

h4
1 +O(h6

1).

By choosing C1 = µ4

[

f (4)(x1)− C2
0f

(4)(x2)
]

/
[

12µ2f
(2)(x2)

]

, one can make the order

of bias O(h6
1). Next, consider C(h1, 2) = C0 + C1h

2
1 + C2h

4
1, where C0 and C1 are as

determined above. In this case,

µ2

2

[

f (2)(x1)− C(h1, 2)f
(2)(x2)

]

h2
1 +

µ4

4!

[

f (4)(x1)− C(h1, 2)
2f (4)(x2)

]

h4
1

= −
{µ2

2
C2f

(2)(x2) +
µ4

12
C0C1f

(4)(x2)
}

h6
1 +O(h8

1).

Hence, by choosing C2 = −µ4C0C1f
(4)(x2)/[6µ2f

(2)(x2)], one can make the order

of bias term O(h8
1). Similar arguments can be formulated for arbitrary k and the

resulting approximate MSE is given by

ν0
nh1

{

f(x1) + f(x2)

[

f (2)(x2)

f (2)(x1)

]1/2
}

+O
(

h2k
1

)

.

The discussion above is summarized in the following lemma.

LEMMA 2 Suppose Assumptions 1, 3 and 4 hold. Then there exist a combination

of h1 and h2 such that the approximate MSE including the second-order bias term

defined in (3) becomes

ν0
nh1

{

f(x1) + f(x2)

[

f (2)(x2)

f (2)(x1)

]1/2
}

+O
(

h2k
1

)

.

for an arbitrary positive integer k.

This implies that one can make the approximate MSE arbitrarily small by

appropriate choices of h1 and k, leading to non-existence of the optimal solution. It is

straightforward to generalize this discussion to the case of the AMSE with higher-order

bias terms.
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2.2 AFO Bandwidths

We observed that the optimal bandwidths that minimize the AMSE are not well-

defined when the sign of the product of the second derivatives is positive. We also

discovered that simply introducing higher-order bias terms does not help to avoid

disappearance of the trade-off. Hence, we propose a new optimality criterion termed

“asymptotic first-order optimality”.

First, we discuss the case in which f (2)(x1)f
(2)(x2) < 0. Remember that the

standard AMSE is given by equation (1). In this situation, the square of the first-

order bias term cannot be removed by any choice of the bandwidths and dominates

the second-order bias term asymptotically. This implies that there is a bias-variance

trade-off. Hence, it is reasonable to choose the bandwidths that minimize the AMSE

given in (1). This case will turn out to be similar to the existing bandwidth selection

methods considered by DesJardins and McCall (2008) and Imbens and Kalyanaraman

(2012) in the sense that the order of the bandwidths is n−1/5, although they differ from

the bandwidths considered here by constant multiples, reflecting the simultaneous

selection of two bandwidths.

When f (2)(x1)f
(2)(x2) > 0, by choosing h2

2 = C0h
2
1 with C0 = f (2)(x1)/f

(2)(x2),

the bias component with the second-order term becomes

{µ4

4!

[

f (4)(x1)− C2
0f

(4)(x2)
]

}

h4
1 + o

(

h4
1

)

.

unless f (2)(x2)
2f (4)(x1) = f (2)(x1)

2f (4)(x2). With this bias component, there exists a

bias-variance trade-off and the bandwidths can be determined. The above discussion is

formalized in the following definition and the resulting bandwidths are termed “AFO

bandwidths.”

DEFINITION 1 The AFO bandwidths for the difference of densities minimize the

AMSE defined by

AMSE1n(h) =
{µ2

2

[

f (2)(x1)h
2
1 − f (2)(x2)h

2
2

]

}2

+
ν0
n

{

f(x1)

h1

+
f(x2)

h2

}

(4)
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when f (2)(x1)f
(2)(x2) < 0, and their explicit expressions are given by h∗

1 = θ∗n−1/5

and h∗
2 = λ∗h∗

1, where

θ∗ =

{

ν0f(x1)

µ2
2f

(2)(x1)
[

f (2)(x1)− λ∗2f (2)(x2)
]

}1/5

and λ∗ =

{

−
f(x2)f

(2)(x1)

f(x1)f (2)(x2)

}1/3

.

When f (2)(x1)f
(2)(x2) > 0, the AFO bandwidths for the difference of densities mini-

mizes the AMSE defined by

AMSE2n(h) =
{µ4

4!

[

f (4)(x1)h
4
1 − f (4)(x2)h

4
2

]

}2

+
ν0
n

{

f(x1)

h1

+
f(x2)

h2

}

(5)

subject to the restriction f (2)(x1)h
2
1−f (2)(x2)h

2
2 = 0 under the assumption of f (2)(x2)

2f (4)(x1) 6=

f (2)(x1)
2f (4)(x2), and their explicit expressions are given by h∗∗

1 = θ∗∗n−1/9 and

h∗∗
2 = λ∗∗h∗∗

1 , where

θ∗∗ =

{

72ν0[f(x1) + f(x2)/λ
∗∗]

µ2
4

[

f (4)(x1)− λ∗∗4f (4)(x2)
]2

}1/9

and λ∗∗ =

{

f (2)(x1)

f (2)(x2)

}1/2

.

Definition 1 is stated with assuming that the first- and the second-order bias

terms do not vanish simultaneously, i.e., f (2)(x2)
2f (4)(x1) 6= f (2)(x1)

2f (4)(x2).
4 This

type of assumption is made for the optimal bandwidth selection for the standard

kernel density estimation at a point; namely f (2)(x) 6= 0.5

The proposed bandwidths are called the AFO bandwidths because theAMSE2n(h)

is minimized under the restriction that the first-order bias term is removed when the

sign is positive. It is worth noting that the order of the optimal bandwidths exhibits

4Uniqueness of the AFO bandwidths in each case is verified in Arai and Ichimura (2013).
5Definition 1 can be generalized to cover the excluded case in a straightforward manner if

we are willing to assume the existence of the sixth derivative of f and if f (4)(x2)
3f (6)(x1)

2 6=
f (4)(x1)

3f (6)(x2)
2. This case corresponds to the situation in which the first- and the second-order

bias terms can be removed simultaneously by choosing appropriate bandwidths and the third-order
bias term works as a penalty for large bandwidths. When f is continuously differentiable an infinite
number of times, the excluded case becomes f (2j)(x2)

j+1f (2(j+1))(x1)
j = f (2j)(x1)

j+1f (2(j+1))(x2)
j

for all integers j. Another excluded case by Definition 1 is when f (2)(x1)f
(2)(x2) = 0. However,

it is possible to extend the idea of the AFO bandwidths when both f (2)(x1) = 0 and f (2)(x2) = 0
hold and when the fourth and the sixth derivatives satisfy certain assumptions. This generalization
corresponds to that in Definition 1 (i) and (ii) with f (2)(x1), f

(2)(x2), f
(4)(x1), f

(4)(x2) and other
parameters being replaced by f (4)(x1), f

(4)(x2), f
(6)(x1), f

(6)(x2) and corresponding parameters.
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dichotomous behavior depending on the sign of the product of the second derivatives.

Let h∗ and h∗∗ be (h∗
1, h

∗
2) and (h∗∗

1 , h∗∗
2 ), respectively. It is easily seen that the orders

of AMSE1n(h
∗) and AMSE2n(h

∗∗) are Op(n
−4/5) and Op(n

−8/9), respectively. This

implies that, when the sign is positive, the AFO bandwidths reduce bias without

increasing variance and explains why we need not use higher-order kernel functions

even when the fourth derivative of f(·) exists.6

We provide a discussion on relationships between the AFO bandwidths and

other potential bandwidths. First, as we saw, the bandwidths that minimize the

AMSE given in equation (1) become rate-optimal under Assumption 2 when the sign

is negative but the minimization problem is not well-defined when the sign is positive.

Second, the bandwidths based on a fourth-order kernel function suffer from the

same issue. When the sign of the product of the fourth derivatives is negative, the

bandwidths are well-defined and become rate-optimal under Assumption 4. But the

minimization problem is not well-defined when the sign is positive.

Third, when we minimize the AMSE given in equation (1) under the restriction

that two bandwidths are the same, the bandwidth is well-defined irrespective of the

sign of the second derivatives under Assumption 2. However, when the sign of the

product of the second derivatives is negative, the restriction is unnecessary. When the

sign is positive, the restriction works to determine a bandwidth under Assumption 2

although there is no particular reason for imposing the restriction. Under Assumption

4, it is not rate-optimal.

In contrast , when the sign of the product of the second derivatives is negative,

the AFO bandwidths are well-defined and become rate-optimal under Assumption 2.

When the sign is positive, the AFO bandwidths become rate-optimal under Assump-

tion 4, achieving the same bias reduction as the approach with a fourth order kernel

function does.

Next, we show that the asymptotically higher-order optimal bandwidths can be

proposed under a sufficient smoothness condition. To be concise, we only discuss the

asymptotically second-order optimal (ASO) bandwidths when f (2)(x1)f
(2)(x2) > 0 un-

6The advantages of not using higher-order kernel functions also lies in that one need not worry
about having negative values for density estimates.
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der the assumption that f is six times continuously differentiable in the neighborhood

of xj with f(xj) > 0 for j = 1, 2.

Consider choosing C(h1, 1) = C0 +C1h
2
1, where C0 = f (2)(x1)/f

(2)(x2). In this

case, the bias component is

µ2

2

[

f (2)(x1)− C(h1, 1)f
(2)(x2)

]

h2
1 +

µ4

4!

[

f (4)(x1)− C(h1, 1)
2f (4)(x2)

]

h4
1

+
µ6

6!

[

f (6)(x1)− C(h1, 1)
3f (6)(x2)

]

h6
1 + o

(

h6
1

)

=
{

−
µ2

2
C1f

(2)(x2) +
µ4

4!

[

f (4)(x1)− C2
0f

(4)(x2)
]

}

h4
1

+
{µ6

6!

[

f (6)(x1)− C3
0f

(6)(x2)
]

−
µ6

12
C0C1

}

h6
1 + o

(

h6
1

)

where the equality follows by the definition of C0. By choosing

C1 = µ4

[

f (4)(x1)− C2
0f

(4)(x2)
]

/
[

12µ2f
(2)(x2)

]

,

one can make the order of bias component O(h6
1). The ASO bandwidths h∗∗

1 can be

determined by minimizing the following AMSE

AMSE3n(h) =
{µ6

6!

[

f (6)(x1)− C3
0f

(6)(x2)
]

−
µ6

12
C0C1

}2

h6
1 +

ν0
nh1

[

f(x1) +
f(x2)

C
1/2
0

]

and h∗∗
2 can be obtained by the relationship h∗∗

2
2 =

(

C0 + C1h
∗∗
1

2
)

h∗∗
1

2 when f (2)(x2)
2f (4)(x1) 6=

f (2)(x1)
2f (4)(x2), (µ6/6!)

[

f (6)(x1)− C3
0f

(6)(x2)
]

6= (µ6/12)C0C1 and C0+C1h
∗∗
1

2 > 0.

The ASO bandwidths are of order n−1/13. A potential drawback of the ASO band-

widths is that they are not well-defined when C0 + C1h
∗∗
1

2 ≤ 0. Similar arguments

can be formulated for arbitrary k with a sufficient smoothness condition. This implies

that one can make the bias component arbitrarily small by choosing h1 and k.

If one believes that the underlying function is very smooth (say, six times

continuously differentiable), it would be reasonable to consider the ASO bandwidths.

However, we typically avoid imposing strong assumptions on the density because the

true smoothness is almost always unknown. In addition, the following discussion

shows that implementing the ASO bandwidths require the estimation of the sixth

12



derivatives, which is very challenging in practice. Thus we concentrate on the AFO

bandwidths in this paper.

2.3 Feasible Automatic Bandwidth Choice

The AFO bandwidths are clearly not feasible because they depend on unknown quan-

tities such as f(·), f (2)(·), f (4)(·) and, most importantly, on the sign of the product of

the second derivatives.

An obvious plug-in version of the AFO bandwidths can be implemented by

estimating the second derivatives, f̂ (2)(x1) and f̂ (2)(x2). Depending on the estimated

sign of the product, we can construct the plug-in version of the AFO bandwidths

provided in Definition 1. We refer to these as “the direct plug-in AFO bandwidths”.

They are defined by

ĥD
1 = θ̂1n

−1/5
I{f̂ (2)(x1)f̂

(2)(x2) < 0}+ θ̂2n
−1/9

I{f̂ (2)(x1)f̂
(2)(x2) ≥ 0},

ĥD
2 = θ̂1λ̂1n

−1/5
I{f̂ (2)(x1)f̂

(2)(x2) < 0}+ θ̂2λ̂2n
−1/9

I{f̂ (2)(x1)f̂
(2)(x2) ≥ 0},

where I denotes the indicator function,

θ̂1 =







ν0f̂(x1)

µ2
2f̂

(2)(x1)
[

f̂ (2)(x1)− λ̂2
1f̂

(2)(x2)
]







1/5

, λ̂1 =

[

−
f̂(x2)f̂

(2)(x1)

f̂(x1)f̂ (2)(x2)

]1/3

, (6)

θ̂2 =











72ν0[f̂(x1) + f̂(x2)/λ̂2]

µ2
4

[

f̂ (4)(x1)− λ̂4
2f̂

(4)(x2)
]2











1/9

, and λ̂2 =

[

f̂ (2)(x1)

f̂ (2)(x2)

]1/2

. (7)

These bandwidths switch depending on the estimated sign. We can show that the

direct plug-in AFO bandwidths are asymptotically as good as the AFO bandwidths

in large samples. That is, we can prove that a version of Theorem 1 below also

holds for the direct plug-in AFO bandwidths. However, our unreported simulation

experiments show a poor performance of the direct plug-in AFO bandwidths under

the designs described in Section 4 since they misjudge the rate of the bandwidths

whenever the sign is misjudged. Hence we do not pursue the direct plug-in approach
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further.

Instead, we propose an alternative procedure for choosing bandwidths that

switch between two bandwidths more smoothly. To propose feasible bandwidths, we

present a modified version of the AMSE (MMSE) defined by

MMSEn(h) =
{µ2

2

[

f (2)(x1)h
2
1 − f (2)(x2)h

2
2

]

}2

+
{µ4

4!

[

f (4)(x1)h
4
1 − f (4)(x2)h

4
2

]

}2

+
ν0
n

{

f(x1)

h1

+
f(x2)

h2

}

.

A notable characteristic of the MMSE is that the bias component is represented by

the sum of the squared first- and the second-order bias terms. A key characteris-

tic of the MMSE is that its bias component cannot be made arbitrarily small by

any choices of bandwidths even when the sign is positive, unless f (2)(x2)
2f (4)(x1) =

f (2)(x1)
2f (4)(x2). Thus, either term can penalize large bandwidths regardless of the

sign, in which case, the MMSE preserves the bias-variance trade-off. More precisely,

when f (2)(x1)f
(2)(x2) < 0, the square of the first-order bias term serves as the leading

penalty and that of the second-order bias term becomes the second-order penalty. On

the other hand, when f (2)(x1)f
(2)(x2) > 0, the square of the second-order bias term

works as the penalty and that of the first-order bias term becomes the linear restric-

tion that shows up in the definition of the AFO bandwidths. In fact, the bandwidths

that minimize the MMSE are asymptotically equivalent to the AFO bandwidths. This

claim can be proved rigorously as a special case of the following theorem.

We propose a feasible bandwidth selection method based on the MMSE. The

proposed method for bandwidth selection can be considered as a generalization of the

traditional plug-in method (see, e.g., Wand and Jones, 1994, Section 3.6). Let f̂(·),

f̂ (2)(·) and f̂ (4)(·) be some consistent estimators of f(·), f (2)(·) and f (4)(·). Consider

the following plug-in version of the MMSE denoted by M̂MSE:

M̂MSEn(h) =
{µ2

2

[

f̂ (2)(x1)h
2
1 − f̂ (2)(x2)h

2
2

]}2

+
{µ4

4!

[

f̂ (4)(x1)h
4
1 − f̂ (4)(x2)h

4
2

]}2

+
ν0
n

{

f̂(x1)

h1
+

f̂(x2)

h2

}

. (8)
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Let (ĥ1, ĥ2) be a combination of bandwidths that minimizes the MMSE and ĥ be

(ĥ1, ĥ2). In the next theorem, we show that (ĥ1, ĥ2) is asymptotically as good as

the AFO bandwidths in the sense of Hall (1983) (see equation (2.2) of Hall, 1983).

We remark that constructing the MMSE does not require prior knowledge of the sign.

Moreover the next theorem shows that the proposed bandwidths automatically adjust

to each situation asymptotically.

THEOREM 1 Suppose that the conditions stated in Lemma 1 hold. Assume further

that, for j = 1, 2, f̂(xj), f̂ (2)(xj) and f̂ (4)(xj) satisfy f̂(xj) → f(xj), f̂ (2)(xj) →

f (2)(xj) and f̂ (4)(xj) → f (4)(xj) in probability, respectively. Let ĥ be a combination of

bandwidths that minimizes the MMSE defined in (8). Then, the following hold.

(i) When f (2)(x1)f
(2)(x2) < 0,

ĥ1

h∗
1

→ 1,
ĥ2

h∗
2

→ 1, and
M̂MSEn(ĥ)

MSEn(h∗)
→ 1

in probability.

(ii) When f (2)(x1)f
(2)(x2) > 0 and f (2)(x2)

2f (4)(x1) 6= f (2)(x1)
2f (4)(x2),

ĥ1

h∗∗
1

→ 1,
ĥ2

h∗∗
2

→ 1, and
M̂MSEn(ĥ)

MSEn(h∗∗)
→ 1

in probability.

The first part of Theorem 1 (i) and (ii) implies that the bandwidths that

minimize the MMSE are asymptotically equivalent to the AFO bandwidths regardless

of the sign of the product.7 The second part shows that the minimized value of the

plug-in version of the MMSE is asymptotically the same as the MSE evaluated at the

AFO bandwidths. These two findings show that the bandwidths that minimize the

MMSE possess the desired asymptotic properties. These findings also justify the use

of the MMSE as a criterion function.

7Observe that the assumptions of Theorem 1 require pilot estimates of f(xj), f
(2)(xj) and f (4)(xj)

for j = 1, 2. We can use the standard kernel density and kernel density derivative estimators. See
Wand and Jones, 1994 for a basic treatment of density and density derivative estimation.
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3 Nonparametric Estimation for Differences of Re-

gression Functions

In this section, we extend the approach proposed in the previous section to the non-

parametric estimation of the difference of regression functions. The nonparametric

regression estimators that we consider are LLR estimators proposed by Stone (1977)

and investigated by Fan (1992). Let Yi be a scalar random variable, and let Xi be

a scalar variable having common density f(·). Throughout this section, we assume

that (X1, Y1), . . ., (Xn, Yn) are independent and identically distributed observations.

We use σ2(x) to denote the conditional variance of Yi given Xi = x. Suppose we are

interested in estimating the difference of the conditional expectation functions at two

points x1 and x2, i.e., m(x1)−m(x2) where m(x) = E(Yi|Xi = x). The LLR estimator

for the conditional mean function at x1 is the solution for α to the following problem:

min
α,β

n
∑

i=1

{Yi − α− β(Xi − x1)}
2K

(

Xi − x1

h1

)

,

where K(·) is a kernel function and h1 is a bandwidth. The solution to this minimiza-

tion problem can be expressed as





α̂h1
(x1)

β̂h1
(x1)



 = (X(x1)
′W (x1)X(x1))

−1
X(x1)

′W (x1)Y

whereX(x1) is an n×2 matrix whose ith row is given by (1, Xi−x1), Y = (Y1, . . . , Yn)
′,

W (x1) = diag(Kh1
(Xi − x1)) and Kh1

(·) = K(·/h1)/h1. The LLR estimator of m(x1)

can also be written as α̂h1
(x1) = e′1 (X(x1)

′W (x1)X(x1))
−1X(x1)

′W (x1)Y , where e1

is a 2×1 vector having one in the first entry and zero in the other entry. α̂h2
(x2) can be

obtained analogously. Denote α̂h1
(x1) and α̂h2

(x2) by m̂1(x1) and m̂2(x2), respectively.

Then the estimated difference of the regression functions is m̂1(x1)− m̂2(x2).

We first consider the case in which both x1 and x2 are interior points of the

support of f . Then, we consider the case in which they are near the boundary.

According to the standard discussion of LLR estimators, the basic characteristics
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of bias and variance for interior points are the same as those for boundary points.

However, essentially different behaviors arise because we take a second-order bias

term into consideration as we have done for density estimation.

3.1 Differences of LLR Estimators at Interior Points

In this subsection, we proceed under the following assumptions.

ASSUMPTION 5 The conditional variance σ2(·) is an element of F0(Dj) where Dj

is an open neighborhood of xj for j = 1, 2.

ASSUMPTION 6 The conditional mean function m(·) is an element of F2(Dj)

where Dj is an open neighborhood of xj for j = 1, 2.

Let m(j)(·) denote the jth derivative of m(·). Under Assumptions 1, 2, 3, 5

and 6, a straightforward extension of Theorem 1 in Fan (1992) shows

MSEn(h) = E
[

{

[m̂1(x1)− m̂2(x2)]− [m(x1)−m(x2)]
}2
∣

∣

∣
X
]

=
{µ2

2

[

m(2)(x1)h
2
1 −m(2)(x2)h

2
2

]

}2

+
ν0
n

{

σ2(x1)

h1f(x1)
+

σ2(x2)

h2f(x2)

}

+ o

(

h4
1 + h2

1h
2
2 + h4

2 +
1

nh1

+
1

nh2

)

,

where X = (X1, X2, . . . , Xn)
′. This implies that we encounter the same problem as

before when trying to minimize the AMSE based on this MSE. Hence, as in the case

of density estimation, we must consider the MSE with a second-order bias term. A

result concerning the higher-order approximation of the MSE is provided by Fan,

Gijbels, Hu, and Huang (1996). However, because their result is up to an order

that disappears when symmetric kernel functions are used, it is not sufficient for

our purpose. Hence, the next lemma, which is analogous to Lemma 1, generalizes

the higher-order approximation of Fan, Gijbels, Hu, and Huang (1996). We proceed

under the following assumption:

ASSUMPTION 7 The conditional mean function m(·) is an element of F4(Dj)

where Dj is an open neighborhood of xj for j = 1, 2.
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It is common to use local polynomial regression (LPR) estimators instead of

LLR estimators when the conditional mean function is four times continuously differ-

entiable. However, we proceed with the LLR estimators for exactly the same reason

that we employ second-order kernel functions rather than higher-order kernel func-

tions for the problem of density estimation.

LEMMA 3 Suppose Assumptions 1, 2, 3, 5 and 7 hold. Then, it follows that

MSEn(h) =
{µ2

2

[

m(2)(x1)h
2
1 −m(2)(x2)h

2
2

]

+
[

b(x1)h
4
1 − b(x2)h

4
2

]

+ o
(

h4
1 + h4

2

)

}2

+
ν0
n

{

σ2(x1)

h1f(x1)
+

σ2(x2)

h2f(x2)

}

+ o

(

1

nh1

+
1

nh2

)

,

where

b(x) =
1

4

{

m(2)(x)

f(x)2
(µ4 − µ2)

[

f (2)(x)f(x)− f (1)(x)2
]

+
m(4)(x)

6
µ4

}

.

Based on the MSE provided in Lemma 3, the AFO optimal bandwidths used

to estimate the difference of regression functions at two interior points are obtained

in the manner described in Definition 1.

DEFINITION 2 The AFO bandwidths for the difference of regression functions at

interior points minimize the AMSE defined by

AMSE1n(h) =
{µ2

2

[

m(2)(x1)h
2
1 −m(2)(x2)h

2
2

]

}2

+
ν0
n

{

σ2(x1)

h1f(x1)
+

σ2(x2)

h2f(x2)

}

when m(2)(x1)m
(2)(x2) < 0. Their explicit expressions are given by h∗

1 = θ∗n−1/5 and

h∗
2 = λ∗h∗

1, where

θ∗ =

{

ν0σ
2(x1)

µ2
2f(x1)m(2)(x1)

[

m(2)(x1)− λ∗2m(2)(x2)
]

}1/5

, and

λ∗ =

{

−
σ2(x2)f(x1)m

(2)(x1)

σ2(x1)f(x2)m(2)(x2)

}1/3

.

When m(2)(x1)m
(2)(x2) > 0, the AFO bandwidths for the difference of regression
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functions at interior points minimize the AMSE defined by

AMSE2n(h) =
{

b(x1)h
4
1 − b(x2)h

4
2

}2
+

ν0
n

{

σ2(x1)

h1f(x1)
+

σ2(x2)

h2f(x2)

}

subject to the restriction m(2)(x1)h
2
1 − m(2)(x2)h

2
2 = 0 under the assumption of

m(2)(x2)
2b(x1) 6= m(2)(x1)

2b(x2). Their explicit expressions are given by h∗∗
1 = θ∗∗n−1/9

and h∗∗
2 = λ∗∗h∗∗

1 , where

θ∗∗ =

{

ν0

8
[

m(4)(x1)− λ∗∗4m(4)(x2)
]2

[

σ2(x1)

f(x1)
+

σ2(x2)

λ∗∗f(x2)

]

}1/9

and λ∗∗ =

{

m(2)(x1)

m(2)(x2)

}1/2

.

The dichotomous behavior of the AFO bandwidths is evident.8 In this context,

the MMSE is defined by

MMSEn(h) =
{µ2

2

[

m(2)(x1)h
2
1 −m(2)(x2)h

2
2

]

}2

+
{

b(x1)h
4
1 − b(x2)h

4
2

}2

+
ν0
n

{

σ2(x1)

h1f(x1)
+

σ2(x2)

h2f(x2)

}

,

and its plug-in version is defined by

M̂MSEn(h) =
{µ2

2

[

m̂(2)(x1)h
2
1 − m̂(2)(x2)h

2
2

]

}2

+
{

b̂(x1)h
4
1 − b̂(x2)h

4
2

}2

+
ν0
n

{

σ̂2(x1)

h1f̂(x1)
+

σ̂2(x2)

h2f̂(x2)

}

, (9)

where m̂(2)(xj), b̂(xj), σ̂
2(xj) and f̂(xj) are consistent estimators of m(2)(xj), b(xj),

σ2(xj) and f(xj) for j = 1, 2, respectively. Let (ĥ1, ĥ2) be a combination of bandwidths

that minimizes the MMSE given in (9) and ĥ denote (ĥ1, ĥ2). The next theorem is

presented without proof because it is analogous to Theorem 1.

THEOREM 2 Suppose that the conditions stated in Lemma 3 hold. Assume further

that, for j = 1, 2, m̂(2)(xj), b̂(xj), f̂(xj) and σ̂2(xj) satisfy m̂(2)(xj) → m(2)(xj),

b̂(xj) → b(xj), f̂(xj) → f(xj) and σ̂2(xj) → σ2(xj) in probability, respectively. Then,

8Uniqueness of the AFO bandwidths for the difference of regression functions at interior points
can be verified in the same manner as that of density functions.
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the following hold.

(i) When m(2)(x1)m
(2)(x2) < 0,

ĥ1

h∗
1

→ 1,
ĥ2

h∗
2

→ 1, and
M̂MSEn(ĥ)

MSEn(h∗)
→ 1

in probability.

(ii) When m(2)(x1)m
(2)(x2) > 0 and m(2)(x2)

2b(x1) 6= m(2)(x1)
2b(x2)

ĥ1

h∗∗
1

→ 1,
ĥ2

h∗∗
2

→ 1, and
M̂MSEn(ĥ)

MSEn(h∗∗)
→ 1

in probability.

Analogous remarks to those made for Theorem 1 apply for Theorem 2.

3.2 Differences of LLR Estimators Near the Boundary

Next, we consider estimating the difference of functions at given points near the

boundary by using the difference of local linear estimators of functions. Recall that

the results for cases in which the estimand is the difference of a density function or a

regression curve at interior points can be generalized to cases where the estimand is

the difference of two distinct densities or regression curves. As we make clear later,

this also applies to the difference of regression curves near boundary points. However,

for boundary cases, there are more cases to consider because a boundary point can

be either the left or the right boundary. Here we consider the problem of the sharp

RDD because of its empirical relevance. Define m1(z) = E(Yi|Xi = z) for z ≥ x

and m2(z) = E(Yi|Xi = z) for z < x. Suppose that the limits limz→x+m1(z) and

limz→x−m2(z) exist where z → x+ and z → x− mean taking the limits from the right

and left, respectively. Denote limz→x+m1(z) and limz→x−m2(z) by m1(x) and m2(x),

respectively. The parameter of interest in the analysis of the sharp RDD is given by

τ(x) = m1(x)−m2(x).
9 For estimating these limits, the LLR is particularly attractive

9See Hahn, Todd, and Van Der Klaauw (2001).

20



because it exhibits the automatic boundary adaptive property (Fan and Gijbels, 1992

and Hahn, Todd, and Van Der Klaauw, 2001). The LLR estimator for m1(x) is given

by α̂h,1(x), where

(

α̂h1,1(x), β̂h1,1(x)
)

= argmin
α,β

n
∑

i=1

{Yi − α− β(Xi − x)}2K

(

Xi − x

h1

)

1{Xi≥x},

where K(·) is a kernel function and h1 is a bandwidth. The solution can be expressed

as




α̂h1,1(x)

β̂h1,1(x)



 = (X(x)′W1(x)X(x))
−1

X(x)′W1(x)Y,

where W1(x) = diag(Kh1,1(Xi − x)) and Kh1,1(·) = K(·/h1)1{·≥0}/h1, and X(x) and

Y are as defined in the previous subsection. Similarly, the LLR estimator for m2(x),

denoted by α̂h2,2(x), can be obtained by replacing W1(x) with W2(x), where W2(x) =

diag(Kh2,2(Xi−x)) and Kh2,2(·) = K(·/h2)1{·<0}/h2. Denote α̂h1,1 and α̂h2,2 by m̂1(x)

and m̂2(x), respectively. Then, τ(x) is estimated by τ̂ (x) = m̂1(x) − m̂2(x), and its

conditional MSE given X is given by

MSEn(h) = E
[

{(m̂1(x)− m̂2(x))− (m1(x)−m2(x))}
2 |X

]

.

Define the conditional variance function σ2
1 and σ2

2 analogously. Also define σ2
1(x) =

limz→x+ σ2
1(z), σ

2
2(x) = limz→x− σ2

2(z), m
(2)
1 (x) = limz→x+m

(2)
1 (z),m

(2)
2 (x) = limz→x−m

(2)
2 (z),

m
(3)
1 (x) = limz→x+m

(3)
1 (z), m

(3)
2 (x) = limz→x−m

(3)
2 (z), µj,0 =

∫∞

0
ujK(u)du and

νj,0 =
∫∞

0
ujK2(u)du for nonnegative integer j. We proceed under the following

assumption.

ASSUMPTION 8 The density f is an element of F1(D) where D is an open neigh-

borhood of x.

ASSUMPTION 9 Let δ be some positive constant. The conditional mean function

m1 and the conditional variance function σ2
1 are elements of F3(D1) and F0(D1),

respectively, where D1 is a one-sided open neighborhood of x, (x, x + δ), and m1(x),

m
(2)
1 (x), m

(3)
1 (x) and σ2

1(x) exist and are bounded. Similarly, m2 and σ2
2 are elements
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of F3(D2) and F0(D2), respectively, where D2 is a one-sided open neighborhood of x,

(x− δ, x), and m2(x), m
(2)
2 (x), m

(3)
2 (x) and σ2

2(x) exist and are bounded.

Under Assumptions 1, 3, 8 and 9, we can easily generalize the result obtained

by Fan and Gijbels (1992) to get

MSEn(h) =

{

b1
2

[

m
(2)
1 (x)h2

1 −m
(2)
2 (x)h2

2

]

}2

+
v

nf(x)

{

σ2
1(x)

h1

+
σ2
2(x)

h2

}

+ o

(

h4
1 + h2

1h
2
2 + h4

2 +
1

nh1
+

1

nh2

)

,

where

b1 =
µ2
2,0 − µ1,0µ3,0

µ0,0µ2,0 − µ2
1,0

, and v =
µ2
2,0ν0,0 − 2µ1,0µ2,0ν1,0 + µ2

1,0ν2,0

(µ0,0µ2,0 − µ2
1,0)

2
.

Again, it is evident that the trade-off between bias and variance can break down when

we try to minimize the AMSE based on this MSE. Thus, we need to consider the MSE

that includes a second-order bias term. The next lemma presents the MSE with a

second-order bias term for the boundary points.

LEMMA 4 Suppose Assumptions 1, 3, 8 and 9 hold. Then, it follows that

MSEn(h) =

{

b1
2

[

m
(2)
1 (x)h2

1 −m
(2)
2 (x)h2

2

]

+
[

b2,1(x)h
3
1 − b2,2(x)h

3
2

]

+ o
(

h3
1 + h3

2

)

}2

+
v

nf(x)

{

σ2
1(x)

h1
+

σ2
2(x)

h2

}

+ o

(

1

nh1
+

1

nh2

)

,

where

b2,j(x) = (−1)j+1

{

c1

[

m
(2)
j (x)

2

f (1)(x)

f(x)
+

m
(3)
j (x)

6

]

− c2
m

(2)
j (x)

2

f (1)(x)

f(x)

}

c1 =
µ2,0µ3,0 − µ1,0µ4,0

µ0,0µ2,0 − µ2
1,0

, and c2 =
(µ2

2,0 − µ1,0µ3,0) (µ0,0µ3,0 − µ1,0µ2,0)

(µ0,0µ2,0 − µ2
1,0)

2
.

The result given above is essentially different from the one at interior points

because the second-order bias terms now involve h3 rather than h4. This is because

the terms that disappear because of the symmetry of the kernel functions remain for
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a one-sided kernel. Based on the MSE provided in Lemma 4, the AFO bandwidths

for estimating the difference of regression functions at the boundary points can be

defined.

DEFINITION 3 The AFO bandwidths for the difference of regression functions at

the boundary points minimize the AMSE defined by

AMSE1n(h) =

{

b1
2

[

m
(2)
1 (x)h2

1 −m
(2)
2 (x)h2

2

]

}2

+
v

nf(x)

{

σ2
1(x)

h1
+

σ2
2(x)

h2

}

.

when m
(2)
1 (x)m

(2)
2 (x) < 0. Their explicit expressions are given by h∗

1 = θ∗n−1/5 and

h∗
2 = λ∗h∗

1, where

θ∗ =







vσ2
1(x)

b21f(x)m
(2)
1 (x)

[

m
(2)
1 (x)− λ∗2m

(2)
2 (x)

]







1/5

and λ∗ =

{

−
σ2
2(x)m

(2)
1 (x)

σ2
1(x)m

(2)
2 (x)

}1/3

.

When m
(2)
1 (x)m

(2)
2 (x) > 0, the AFO bandwidths for the difference of regression func-

tions at the boundary points minimize the AMSE defined by

AMSE2n(h) =
{

b2,1(x)h
3
1 − b2,2(x)h

3
2

}2

+
v

nf(x)

{

σ2
1(x)

h1
+

σ2
2(x)

h2

}

subject to the restrictionm
(2)
1 (x)h2

1−m
(2)
2 (x)h2

2 = 0 under the assumption ofm
(2)
2 (x)3b2,1(x)

2 6=

m
(3)
1 (x)3b2,2(x)

2. Their explicit expressions are given by h∗∗
1 = θ∗∗n−1/7 and h∗∗

2 =

λ∗∗h∗∗
1 , where

θ∗∗ =

{

v [σ2
1(x) + σ2

2(x)/λ
∗∗]

6f(x)
[

b2,1(x)− λ∗∗3b2,2(x)
]2

}1/7

and λ∗∗ =

{

m
(2)
1 (x)

m
(2)
2 (x)

}1/2

.

Again, it is evident that the AFO bandwidths exhibit the dichotomous behav-

ior.10 However, the most important difference between these bandwidths and those

for interior points is that when the sign is positive, the order of the bandwidths is

n−1/7.

10Uniqueness of the AFO bandwidths for the difference of regression functions at the boundary
points can be verified in the same manner as that of density functions.
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In the present context, the MMSE used to construct feasible automatic band-

widths is defined by

MMSEn(h) =

{

b1
2

[

m
(2)
1 (x)h2

1 −m
(2)
2 (x)h2

2

]

}2

+
{

b2,1(x)h
3
1 − b2,2(x)h

3
2

}2

+
v

nf(x)

{

σ2
1(x)

h1

+
σ2
2(x)

h2

}

,

and its plug-in version is defined by

M̂MSEn(h) =

{

b1
2

[

m̂
(2)
1 (x)h2

1 − m̂
(2)
2 (x)h2

2

]

}2

+
{

b̂2,1(x)h
3
1 − b̂2,2(x)h

3
2

}2

+
v

nf̂(x)

{

σ̂2
1(x)

h1
+

σ̂2
2(x)

h2

}

, (10)

where m̂
(2)
j (x), b̂2,1(x), b̂2,2(x), σ̂

2
j (x) and f̂(x) are consistent estimators of m

(2)
j (x),

b2,1(x), b2,1(x), σ
2
j (x) and f(x) for j = 1, 2, respectively. Let (ĥ1, ĥ2) be a combination

of bandwidths that minimizes this plug-in version of the MMSE and ĥ denote (ĥ1, ĥ2).

Then, the next theorem shows that the bandwidths that minimize the MMSE are

again asymptotically as good as the AFO bandwidths. The proof of Theorem 3 is

similar to that of Theorem 1 and it is provided in Arai and Ichimura (2013).

THEOREM 3 Suppose that the conditions stated in Lemma 4 hold. Assume further

that, for j = 1, 2, m̂
(2)
j (x), b̂2,j(x), f̂(x) and σ̂2

j (x) satisfy m̂
(2)
j (x) → m

(2)
j (x), b̂2,j(x) →

b2,j(x), f̂(x) → f(x) and σ̂2
j (x) → σ2

j (x) in probability for j = 1, 2, respectively. Then,

the following hold.

(i) When m
(2)
1 (x)m

(2)
2 (x) < 0,

ĥ1

h∗
1

→ 1,
ĥ2

h∗
2

→ 1, and
M̂MSEn(ĥ)

MSEn(h∗)
→ 1

in probability.

(ii) When m
(2)
1 (x)m

(2)
2 (x) > 0 and m

(2)
2 (x)3b2,1(x)

2 6= m
(2)
1 (x)3b2,2(x)

2

ĥ1

h∗∗
1

→ 1,
ĥ2

h∗∗
2

→ 1, and
M̂MSEn(ĥ)

MSEn(h∗∗)
→ 1
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in probability.

The remarks made for Theorem 1 essentially apply for Theorem 3. Similar to

Theorems 1 and 2, Theorem 3 requires pilot estimates for m
(2)
j (x), b2,j(x), f(x) and

σ2
j (x). A detailed explanation of how to obtain the pilot estimates is given in Arai

and Ichimura (2013).

Fan and Gijbels (1996, Section 4.3) points out that replacing constants de-

pending on a kernel function with finite sample approximations can improve finite

sample performance. This leads to the following version of the estimated MMSE:

̂MMSEE
n (h) =

{

b̃1,1(x)− b̃1,2(x)
}2

+
{

b̃2,1(x)− b̃2,2(x)
}2

+ σ̂2
1(x)ṽ1(x) + σ̂2

2(x)ṽ2(x),

(11)

where

b̃1,j(x) =
m̂

(2)
1 (x)

2
e′1S̃

−1
n,0,j c̃n,2,j,

b̃2,j(x) =

{

m̂
(2)
1 (x)

2
·
f̂ (1)(x)

f̂(x)
+

m̂
(3)
j (x)

3!

}

e′1S̃
−1
n,0,jcn,3,j −

m̂
(2)
1 (x)

2
·
f̂ (1)(x)

f̂(x)
e′1S̃

−1
n,0,jSn,1,jS̃

−1
n,0,j c̃n,2,j,

ṽj(x) = e′1S
−1
n,0,jTn,0,jS

−1
n,0,je1, S̃n,0,j = Sn,0,j −

f̂ (1)(x)

f̂(x)
Sn1,j, c̃n,2,j = cn,2,j −

f̂ (1)(x)

f̂(x)
cn,3,j,

Sn,k,j =





sn,k,j sn,k+1,j

sn,k+1,j sn,k+2,j



 , Tn,k,j =





tn,k,j tn,k+1,j

tn,k+1,j tn,k+2,j



 , cn,k,j =





sn,k,j

sn,k+1,j



 ,

sn,k,j =
n

∑

i=1

Kh,j(Xi − x)(Xi − x)k, tn,k,j =
n

∑

i=1

K2
h,j(Xi − x)(Xi − x)k, (12)

for j = 1, 2. Let (ĥE
1 , ĥ

E
2 ) minimize the MMSE defined by (11), and let ĥE denote

(ĥE
1 , ĥ

E
2 ). Then, the following extension of Theorem 3 holds.

COROLLARY 1 Suppose that the conditions stated in Lemma 4 hold for each case.

Also assume that the second derivative of the density f exists in the neighborhood of x.

Then, the results for ĥ1, ĥ2 and ̂MMSEn(ĥ) also hold for ĥE
1 , ĥ

E
2 and ̂MMSEE

n (ĥ
E).

It is also possible to use the heteroskedasticity-robust variance estimator for

the variance component (Eicker, 1967, Huber, 1967 and White, 1980). In this case,
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the estimated MMSE is defined by

̂MMSER
n (h) =

{

b̃1,1(x)− b̃1,2(x)
}2

+
{

b̃2,1(x)− b̃2,2(x)
}2

+ ω̃1(x) + ω̃2(x), (13)

where

ω̃j(x) = e′1S
−1
n,0,jT̃n,0,jS

−1
n,0,je1, T̃n,k,j =





t̃n,k,j t̃n,k+1,j

t̃n,k+1,j t̃n,k+2,j



 ,

t̃n,k,j =

n
∑

i=1

ǫ̃2iK
2
h,j(Xi − x)(Xi − x)k, ǫ̃i = Yi − Ỹi,

and Ỹi are the fitted values from the third-order LPR used to estimate the second

derivatives. Let (ĥR
1 , ĥ

R
2 ) minimize the MMSE defined by (13), and let ĥR denote

(ĥR
1 , ĥ

R
2 ). Then, the following extension of Theorem 3 holds. Its proof is not presented

because it is standard given the results in Corollary 1.

COROLLARY 2 Suppose that the conditions stated in Lemma 4 hold for each case.

Also assume that the second derivative of the density f exists in the neighborhood of x.

Then, the results for ĥ1, ĥ2 and ̂MMSEn(ĥ) also hold for ĥR
1 , ĥ

R
2 and ̂MMSER

n (ĥ
R).

4 Simulation

To investigate the finite sample performance of the proposed method, we conducted

simulation experiments. We focused on the case of the sharp RDD because it is the

most empirically relevant case and because there are competing bandwidth selection

methods in the literature.

4.1 Simulation Designs

The objective of the RDD application is to estimate τ(x) defined in Section 3.2. We

consider six designs. Five of them are the ones studied by Calonico, Cattaneo, and

Titiunik (2012) (hereafter CCT) and IK, and the other is a modification of CCT’s

Design 3. The designs investigated are given in Figure 1.
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1. Lee (2008) Data (Design 1 of IK and CCT)

m1(z) = 0.52 + 0.84z − 3.0z2 + 7.99z3 − 9.01z4 + 3.56z5

m2(z) = 0.48 + 1.27z + 7.18z2 + 20.21z3 + 21.54z4 + 7.33z5

2. Ludwign and Miller (2007) Data (Design 2 of CCT)

m1(z) = 0.26 + 18.49z − 54.8z2 + 74.3z3 − 45.02z4 + 9.83z5

m2(z) = 3.70 + 2.99z + 3.28z2 + 1.45z3 + 0.22z4 + 0.03z5

3. Constant Additive Treatment Effect (Design 3 of IK)

m1(z) = 1.42 + 0.84z − 3.0z2 + 7.99z3 − 9.01z4 + 3.56z5

m2(z) = 0.42 + 0.84z − 3.0z2 + 7.99z3 − 9.01z4 + 3.56z5

4. Modified Version of Design 3 of CCT

m1(z) = 0.52 + 0.84z − 0.30z2 + 2.397z3 − 0.901z4 + 3.56z5

m2(z) = 0.48 + 1.27z − 28.72z2 + 20.21z3 + 23.694z4 + 10.995z5

5. Quadratic (Design 2 of IK)

m1(z) = 4.0z2

m2(z) = 3.0z2

6. Constant Additive Treatment Effect 2 (Design 4 of IK)

m1(z) = 0.52 + 0.84z + 7.99z3 − 9.01z4 + 3.56z5

m2(z) = 0.42 + 0.84z + 7.99z3 − 9.01z4 + 3.56z5

Figure 1. Simulation Design (The dotted line in the panel for Design 1 denotes the density
of the forcing variable. The supports for m1(z) and m2(z) are z ≥ 0 and z < 0, respectively.)
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For the first two designs, the sign of the product of the second derivatives

is negative. The ratio of the second derivative on the right to the one on the left in

absolute value is moderate for Design 1, whereas it is rather large for Design 2. For the

next two designs, the sign is positive. Design 3 has exactly the same second derivative

on both sides, and Design 4 has a relatively large ratio of second derivatives. The last

two designs are excluded cases of Theorem 3. The sign is positive, but the values of

the third derivatives are zero for Design 5. The values of the second derivatives are

zero for Design 6.

For each design, we consider a normally distributed additive error term with

mean zero and standard deviation 0.1295. We use data sets of 500 observations and the

results are drawn from 10,000 replications. The specification for the forcing variable

is exactly the same as that considered by IK.11 A detailed algorithm to implement

the proposed method is described in the supplemental material (Arai and Ichimura,

2013).

4.2 Results

The simulation results are presented in Tables 1, 2 and 3. Table 1 reports the results

for Designs 1 and 2. The first column explains the design. The second column reports

the method used to obtain the bandwidth(s). AFO is the infeasible AFO bandwidths.

MMSE-T is also the infeasible bandwidths that minimize the MMSE based on theo-

retical values. MMSE, MMSE-E and MMSE-R refer to the proposed methods based

on ̂MMSEn(h), ̂MMSEE
n (h) and

̂MMSER
n (h), respectively. IK corresponds to the

bandwidth denoted by ĥopt in Table 2 of IK.

The cross-validation bandwidth used by Ludwig and Miller (2005, 2007) is

denoted by LM; its implementation is described in Section 4.5 of IK.12 Note that

11In IK the forcing variable is generated by a Beta distribution. More precisely, let Zi have a Beta
distribution with parameters α = 2 and β = 4. Then, the forcing variable Xi is given by 2Zi − 1.

12MMSE-T, MMSE, MMSE-E, MMSE-R, and LM involve numerical optimization. For MMSE-T,
MMSE, MMSE-E and MMSE-R, the minimum of search region is determined by the 3rd nearest
neighbor from the discontinuity point on each side of the threshold. For the minimum of search region
on each side of the threshold for LM, we first obtain the 3rd nearest neighbor for each observation
point Xi in a direction away from the origin. Then the maximum taken for each side of the threshold
and the maximum of the two maximums is used for LM. The maximum of search region is one for
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the cross-validation bandwidth involves one ad hoc parameter although other meth-

ods presented here are fully data-driven.13 DM is the plug-in bandwidths used by

DesJardins and McCall (2008) as explained in Section 4.4 of IK.14

The third and fourth columns report the mean (labeled ‘Mean’) and standard

deviation (labeled ‘SD’) of the bandwidths for IK, LM, and DM. For the others, these

columns report the bandwidth obtained for the right sides of the threshold.15 The

fifth and sixth columns report the corresponding bandwidths on the left sides of the

threshold. The seventh and eighth columns report the bias (Bias) and the root mean

squared error (RMSE) for the sharp RDD estimate, denoted by τ̂ .

First, we look at the designs in which the signs of the second derivatives are

distinct. The top panel of Table 1, which reports the results for Design 1, demon-

strates that all methods perform similarly. DM performs only marginally better.

Given similar magnitude for the second derivatives in absolute value, choosing a sin-

gle bandwidth might be appropriate. The bottom panel of Table 1 reports the results

for Design 2, in which there exists a large difference in the magnitudes of the second

derivatives. Now MMSE, MMSE-E, MMSE-R perform significantly better than the

other methods, followed by LM. IK and DM perform very poorly.

Next, we examine designs in which the sign of the product of the second deriva-

tives is positive. The top panel of Table 2 show that all methods except AFO perform

reasonably well for Design 3. The bottom panel of Table 2 reports that MMSE,

MMSE-E and MMSE-R work quite well for Design 4, reflecting the advantage of

allowing distinct bandwidths. Remember that the second derivatives differ quite sub-

stantially.

Next, we look at the designs that do not satisfy the assumptions of Theorem

3. The top panel of Table 3 reports the results for Design 5. All methods perform

reasonably well. This may be because Design 5 is such a simple model and that the

all methods. Nine initial values of 0.1, 0.2 ,. . ., and 0.9 are tried for all methods.
13See Section 4.5 of IK for the ad hoc parameter δ used in the cross-validation method. δ is set to

0.5 as in IK.
14The plug-in method used by DesJardins and McCall (2008) is proposed by Fan and Gijbels

(1992, 1995).
15No SD concerning AFO or MMSE-T is presented for Designs 1-4. No result of AFO or MMSE-T

is presented for Designs 5 and 6 because the AFO and MMSE-T bandwidths are not well-defined.
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Bias and RMSE for the Sharp RDD, n=500

ĥ1 ĥ2 τ̂

DGP Method Mean SD Mean SD Bias RMSE

Design 1 AFO 0.262 0.196 0.024 0.054
MMSE-T 0.255 0.195 0.024 0.055
MMSE 0.389 0.191 0.381 0.159 0.033 0.057
MMSE-E 0.457 0.255 0.396 0.172 0.033 0.056
MMSE-R 0.434 0.268 0.380 0.186 0.033 0.058
IK 0.448 0.046 0.041 0.054
LM 0.424 0.118 0.037 0.054
DM 0.556 0.135 0.037 0.051

Design 2 AFO 0.091 0.232 0.057 0.087
MMSE-T 0.091 0.232 0.057 0.087
MMSE 0.076 0.005 0.187 0.026 0.039 0.085
MMSE-E 0.077 0.007 0.188 0.033 0.041 0.084
MMSE-R 0.062 0.027 0.172 0.075 0.041 0.085
IK 0.249 0.016 0.237 0.245
LM 0.129 0.013 0.078 0.107
DM 0.267 0.020 0.264 0.272

Bias and RMSE for the Sharp RDD, n=500

ĥ1 ĥ2 τ̂

DGP Method Mean SD Mean SD Bias RMSE

Design 3 AFO 0.345 0.345 -0.081 0.091
MMSE-T 0.345 0.345 -0.081 0.091
MMSE 0.372 0.213 0.209 0.056 -0.024 0.068
MMSE-E 0.393 0.227 0.181 0.033 -0.013 0.071
MMSE-R 0.363 0.241 0.159 0.058 -0.012 0.061
IK 0.163 0.012 -0.008 0.060
LM 0.112 0.008 -0.003 0.071
DM 0.204 0.041 -0.016 0.063

Design 4 AFO 0.896 0.082 0.031 0.071
MMSE-T 0.741 0.125 -0.007 0.053
MMSE 0.412 0.185 0.119 0.027 -0.032 0.074
MMSE-E 0.525 0.261 0.126 0.028 -0.029 0.071
MMSE-R 0.481 0.268 0.111 0.044 -0.021 0.071
IK 0.145 0.007 -0.070 0.096
LM 0.088 0.006 -0.025 0.085
DM 0.144 0.006 -0.070 0.095
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Bias and RMSE for the Sharp RDD, n=500

ĥ1 ĥ2 τ̂

DGP Method Mean SD Mean SD Bias RMSE

Design 5 MMSE 0.374 0.158 0.414 0.119 0.017 0.058
MMSE-E 0.375 0.183 0.368 0.093 0.004 0.058
MMSE-R 0.358 0.192 0.354 0.110 0.005 0.058
IK 0.410 0.062 0.005 0.036
LM 0.220 0.022 -0.003 0.051
DM 0.223 0.010 -0.003 0.049

Design 6 MMSE 0.298 0.084 0.214 0.044 -0.030 0.065
MMSE-E 0.302 0.088 0.188 0.032 -0.024 0.068
MMSE-R 0.273 0.112 0.168 0.058 -0.022 0.069
IK 0.162 0.012 -0.007 0.060
LM 0.118 0.009 -0.003 0.069
DM 0.241 0.075 -0.027 0.099

method of bandwidth selection may not matter much. The results for Design 6 are

given in the bottom panel of Table 3. All methods except DM perform reasonably

well.

In summary, for the designs that satisfy the assumptions of Theorem 3, MMSE,

MMSE-E and MMSE-R perform equally well except that MMSE-R works best for

Design 3. IK and DM exhibits disappointing performance for some designs. MMSE,

MMSE-E, MMSE-R and LM display stable performance for all designs. MMSE-R

performs significantly better than LM for Design 2, 3 and 4, and it is outperformed

by LM only marginally for Design 1. MMSE-R appears very promising.

5 Conclusion

In this paper, we have proposed a bandwidth selection method for the nonparametric

estimation of the difference of two functions at particular points. We showed that the

minimization problem of the AMSE exhibits dichotomous characteristics depending

on the sign of the product of the second derivatives of the underlying functions and

that the optimal bandwidths that minimize the AMSE are not well-defined when the

sign is positive. We introduced the concept of the AFO bandwidths, which are well-

defined regardless of the sign. We proposed a feasible version of these bandwidths
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that can be constructed without knowledge of the sign. The feasible bandwidths are

asymptotically as good as the AFO bandwidths. Our framework can accommodate

estimation problems relating to the differences of densities and differences of functions

at interior and boundary points. Our Monte Carlo experiment for the sharp RDD

showed that the proposed bandwidth selection method is practically useful.

Generalization of the proposed method is on our research agenda. First, we

intend to address the problem of estimating the ratio of the difference of two func-

tions. Special cases of this estimation problem are the LATE and the fuzzy RDD

estimator. This is nontrivial problem because one must choose four distinct band-

widths simultaneously . Second, we intend to generalize the proposed method to the

ATE estimator. This requires generalizing the results presented in Section 3.1. This

is important because it requires analyzing the difference of functions on the whole

support of covariates. We plan to address these issues in a separate paper.

Appendix A: Proofs

Proof of Theorem 1: Recall that the objective function is

M̂MSEn(h) =
{µ2

2

[

f̂ (2)(x1)h
2
1 − f̂ (2)(x2)h

2
2

]}2

+
{µ4

4!

[

f̂ (4)(x1)h
4
1 − f̂ (4)(x2)h

4
2

]}2

+
ν0
n

{

f̂(x1)

h1
+

f̂(x2)

h2

}

.

To begin with, we show that ĥ1 and ĥ2 satisfy Assumption 3. Let h1 and h2 be

sequences that satisfy Assumption 3. Then M̂MSEn(h) converges to zero in probabil-

ity by conditions of Theorem 1. Assume to the contrary that either one or both of ĥ1

and ĥ2 do not satisfy Assumption 3. Since f (4)(x1)[f
(2)(x2)]

2 6= f (4)(x2)[f
(2)(x1)]

2 by

assumption, f̂ (4)(x1)[f̂
(2)(x2)]

2 6= f̂ (4)(x2)[f̂
(2)(x1)]

2 with probability approaching 1.

Without loss of generality, we assume this as well. Then at least one of the first-order

bias term, the second-order bias term and the variance term of M̂MSEn(ĥ) does

not converge to zero in probability regardless of the sign of f (2)(x1)f
(2)(x2). Then

M̂MSEn(ĥ) > M̂MSEn(h) holds for some n. This contradicts the definition of ĥ.
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Hence ĥ satisfies Assumption 3.

We first consider the case in which f (2)(x1)f
(2)(x2) < 0. In this case, with

probability approaching 1, f̂ (2)(x1)f̂
(2)(x2) < 0, so that we assume this without loss

of generality. When this holds, note that the leading terms are the first term and

the last term since ĥ1 and ĥ2 satisfy Assumption 3. Define the plug-in versions of

AMSE1n(h) by

ÂMSE1n(h) =
{µ2

2

[

f̂ (2)(x1)h
2
1 − f̂ (2)(x2)h

2
2

]}2

+
ν0
n

{

f̂(x1)

h1

+
f̂(x2)

h2

}

.

Denote the minimizer of ÂMSE1n(h) by h̃1 and h̃2. As it is clear from Definition

1, we have h̃1 = θ̂1n
−1/5 ≡ C̃1n

−1/5 and h̃2 = λ̂1h̃1 ≡ C̃2n
−1/5 where θ̂1 and λ̂1 are

defined in (6). With this choice, ÂMSE1n(h) and hence M̂MSEn(h̃) converges at

the rate of n−4/5. Note that if ĥ1 or ĥ2 converges at the rate slower than n−1/5, then

the bias term converges at the rate slower than n−4/5. If ĥ1 or ĥ2 converges at the

rate faster than n−1/5, then the variance term converges at the rate slower than n−4/5.

These contradict the definition of ĥ. Thus the minimizer of M̂MSEn(h), ĥ1 and ĥ2

converges to 0 at rate n−1/5.

Thus we can write ĥ1 = Ĉ1n
−1/5 + op(n

−1/5) and ĥ2 = Ĉ2n
−1/5 + op(n

−1/5) for

some OP (1) sequences Ĉ1 and Ĉ2 that are bounded away from 0 as n → ∞. Using

this expression,

M̂MSEn(ĥ) = n−4/5
{µ2

2

[

f̂ (2)(x1)Ĉ
2
1 − f̂ (2)(x2)Ĉ

2
2

]}2

+
ν0
n4/5

{

f̂(x1)

Ĉ1

+
f̂(x2)

Ĉ2

}

+op(n
−4/5).

Note that

M̂MSEn(h̃) = n−4/5
{µ2

2

[

f̂ (2)(x1)C̃
2
1 − f̂ (2)(x2)C̃

2
2

]}2

+
ν0
n4/5

{

f̂(x1)

C̃1

+
f̂(x2)

C̃2

}

+OP (n
−8/5).
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Since ĥ is the optimizer, M̂MSEn(ĥ)/M̂MSEn(h̃) ≤ 1. Thus

{

µ2

2

[

f̂ (2)(x1)Ĉ
2
1 − f̂ (2)(x2)Ĉ

2
2

]}2

+ ν0

{

f̂(x1)

Ĉ1

+ f̂(x2)

Ĉ2

}

+ op(1)
{

µ2

2

[

f̂ (2)(x1)C̃
2
1 − f̂ (2)(x2)C̃

2
2

]}2

+ ν0

{

f̂(x1)

C̃1

+ f̂(x2)

C̃2

}

+OP (n−4/5)
≤ 1.

Since the denominator converges to

{µ2

2

[

f (2)(x1)C
∗2
1 − f (2)(x2)C

∗2
2

]

}2

+ ν0

{

f(x1)

C∗
1

+
f(x2)

C∗
2

}

,

where C∗
1 and C∗

2 are optimizers of

{µ2

2

[

f (2)(x1)C
2
1 − f (2)(x2)C

2
2

]

}2

+ ν0

{

f(x1)

C1

+
f(x2)

C2

}

with respect to C1 and C2. This implies that Ĉ1 and Ĉ2 also converge to the same

respective limit C∗
1 and C∗

2 because the inequality will be violated otherwise.

Next we consider the case in which f (2)(x1)f
(2)(x2) > 0. In this case, with

probability approaching 1, f̂ (2)(x1)f̂
(2)(x2) > 0, so that we assume this without loss

of generality.

When these conditions hold, let h2 = λ̂2h1 where λ̂2 is defined in (7). This

sets the first bias term of M̂MSEn(h) equal to zero. Define the plug-in versions of

AMSE2n(h) by

ÂMSE2n(h) =
{µ4

4!

[

f̂ (4)(x1)h
4
1 − f̂ (4)(x2)h

4
2

]}2

+
ν0
n

{

f̂(x1)

h1
+

f̂(x2)

h2

}

.

Choosing h1 to minimize ÂMSE2n(h), we define h̃1 = θ̂2n
−1/9 ≡ C̃1n

−1/9 and h̃2 =

λ̂2h̃1 ≡ C̃2n
−1/9 where θ̂2 is defined in (7). Then M̂MSEn(h̃) can be written as

M̂MSEn(h̃) = n−8/9
{µ4

4!

[

f̂ (4)(x1)C̃
4
1 − f̂ (4)(x2)C̃

4
2

]}2

+ ν0n
−8/9

{

f̂(x1)

C̃1

+
f̂(x2)

C̃2

}

.

In order to match this rate of convergence, both ĥ1 and ĥ2 need to converge at

the rate slower than or equal to n−1/9 because the variance term needs to converge at
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the rate n−8/9 or faster. In order for the first-order bias term to match this rate,

f̂ (2)(x1)ĥ
2
1 − f̂ (2)(x2)ĥ

2
2 ≡ B1n = n−4/9b1n,

where b1n = OP (1). Under the assumption that f (2)(x2) 6= 0, f̂ (2)(x2) is bounded away

from 0, with probability approaching 1. Assuming this without loss of generality, we

have ĥ2
2 = λ̂2

2ĥ
2
1 − B1n/f̂

(2)(x2). Then, it follows that

M̂MSEn(ĥ) =
{µ2

2
B1n

}2

+
{µ4

4!

[

f̂ (4)(x1)ĥ
4
1 − f̂ (4)(x2){λ̂

2
2ĥ

2
1 − B1n/f̂

(2)(x2)}
2
]}2

+
ν0
n

{

f̂(x1)

ĥ1

+
f̂(x2)

{λ̂2
2ĥ

2
1 − B1n/f̂ (2)(x2)}1/2

}

.

Suppose ĥ1 is of order slower than n−1/9. Then because f̂ (4)(x1)[f̂
(2)(x2)]

2−f̂ (4)(x2)[f̂
(2)(x1)]

2 6=

0 and this holds even in the limit, the second-order bias term is of order slower than

n−8/9. This contradicts the definition of ĥ1, implying that ĥ1 is of order n
−1/9. There-

fore we can write ĥ1 = Ĉ1n
−1/9+op(n

−1/9) for some OP (1) sequence Ĉ1 that is bounded

away from 0 as n → ∞ and as before ĥ2
2 = λ̂2

2ĥ
2
1−B1n/f̂

(2)(x2). Using this expression,

we can write

M̂MSEn(ĥ) = n−8/9
{µ2

2
b1n

}2

+ n−8/9
{µ4

4!

[

f̂ (4)(x1)Ĉ
4
1 + op(1)− f̂ (4)(x2){λ̂

2
2Ĉ

2
1 + op(1)− n−2/9b1n/f̂

(2)(x2)}
2
]}2

+ ν0n
−8/9

{

f̂(x1)

Ĉ1 + op(1)
+

f̂(x2)

{λ̂4
2Ĉ

2
1 + op(1)− n−2/9b1n/f̂ (2)(x2)}1/2

}

.

Thus b1n converges in probability to 0. Otherwise the first-order bias term remains

and that contradicts the definition of ĥ1.

Since ĥ is the optimizer, M̂MSEn(ĥ)/M̂MSEn(h̃) ≤ 1. Thus

op(1) +
{

µ4

4!

[

f̂ (4)(x1)Ĉ
4
1 − f̂ (4)(x2)λ̂

4
2Ĉ

2
1 + op(1)}

]}2

+ ν0

{

f̂(x1)

Ĉ1+op(1)
+ f̂(x2)

{λ̂4

2
Ĉ2

1
+op(1)}1/2

}

{

µ4

4!

[

f̂ (4)(x1)C̃4
1 − f̂ (4)(x2)C̃4

2

]}2

+ ν0

{

f̂(x1)

C̃1

+ f̂(x2)

C̃2

}
≤ 1.

If Ĉ1 − C̃1 does not converge to 0 in probability, then the ratio is not less than 1 at
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some point. Hence Ĉ1 − C̃1 = op(1). Therefore ĥ2/h̃2 converges in probability to 1 as

well.

The result above also show that M̂MSEn(ĥ)/MSEn(h
∗) converges to 1 in

probability in both cases. �

Proof of Lemma 3: A contribution to the MSE from a variance component is

standard. See Fan and Gijbels (1996) for the details. Here, we derive the contribution

made by the bias component. Denote γ̂ =
(

α̂h(x), β̂h(x)
)′

. The conditional bias is

given by

Bias(γ̂|X) = (X(x)′W (x)X(x))−1X(x)W (x)(m−X(x)γ),

where m = (m(X1), . . . , m(Xn))
′ and γ = (m(x), m(1)(x))′. Let sn,k =

∑n
i=1Kh(Xi −

x)(Xi − x)k. We use the following notation:

Sn,k =





sn,k sn,k+1

sn,k+1 sn,k+2



 , Sk =





µk µk+1

µk+1 µk+2



 , cn,k =





sn,k

sn,k+1



 , ck =





µk

µk+1



 .

(14)

Note that Sn,0 = X(x)′W (x)X(x). The argument made by Fan, Gijbels, Hu, and

Huang (1996) can be generalized to yield

sn,k = nhk

{

f(x)µk + hf (1)(x)µk+1 +
h2f (2)(x)

2
µk+2 + op

(

h2
)

}

. (15)

Then, it follows that

Sn,0 = nH

{

f(x)S0 + hf (1)(x)S1 +
h2f (2)(x)

2
S2 + op

(

h2
)

}

H,

where H = diag(1, h). By using the fact that

(A+ hB + h2C)−1 = A−1 − hA−1BA−1 − h2A−1CA−1 + h2A−1BA−1BA−1 + o
(

h2
)

,
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we obtain

S−1
n,0 = n−1H−1

{

1

f(x)
A0 −

hf (1)(x)

f(x)2
A1 −

h2f (2)(x)

2f(x)2
A2 +

h2f (1)(x)2

f(x)3
A3 + op

(

h2
)

}

H−1,

(16)

where

A0 =





1 0

0 µ−1
2



 , A1 =





0 1

1 0



 , A2 =





µ2 0

0 µ4/µ
2
2



 , A3 =





µ2 0

0 1



 .

This matrix structure is simplified considerably by using a symmetric kernel function.

Next, we consider X(x)W (x)(m−X(x)β). A Taylor expansion of m(·) yields

X(x)W (x)(m−X(x)β) =
m(2)(x)

2
cn,2 +

m(3)(x)

3!
cn,3 +

m(4)(x)

4!
cn,4 + op

(

nh4
)

. (17)

The definition of cn,j in (14), in conjunction with (15), yields

cn,k = nhkH

{

f(x)ck + hf (1)(x)ck+1 +
h2f (2)(x)

2
ck+2 + op

(

h2
)

}

.

Combining this with (16) and (17) and extracting the first element gives

Bias(α̂h(x)|X) =
h2m(2)(x)

2
µ2+

h4

4

{

m(2)(x)

f(x)2
(µ4 − µ2)

(

f (2)(x)f(x)− f (1)(x)2
)

+
m(4)(x)

3!
µ4

}

.

This expression gives the required result. �

Proof of Lemma 4: Again, we consider the contribution made by the bias com-

ponent because that of the variance component is standard. We present the proof

only for α̂h,1(x). The proof for α̂h,2 is parallel and hence is omitted. Denote γ̂1 =
(

α̂h,1(x), β̂h,1(x)
)′

. The conditional bias is given by

Bias(γ̂1|X) = (X(x)′W1(x)X(x))−1X(x)W1(x)(m1 −X(x)γ1),

where m1 = (m1(X1), . . . , m1(Xn))
′ and γ1 = (m1(x), m

(1)
1 (x))′. Note that Sn,0,1 =

X(x)′W1(x)X(x). The argument made by Fan, Gijbels, Hu, and Huang (1996) can
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be generalized to yield

sn,k,1 = nhk
{

f(x)µk,0 + hf (1)(x)µk+1,0 + op (h)
}

. (18)

Then, it follows that

Sn,0,1 = nH
{

f(x)S0,1 + hf (1)(x)S1,1 + op (h)
}

H,

where H = diag(1, h). By using the fact that (A+hB)−1 = A−1−hA−1BA−1+ o (h),

we obtain

S−1
n,0,1 = n−1H−1

{

1

f(x)
A0,1 −

hf (1)(x)

f(x)2
A1,1 + op (h)

}

H−1, (19)

where

A0,1 =





µ2,0 −µ1,0

−µ1,0 µ−1
0,0



 ,

A1,1 =
1

µ0,0µ2,0 − µ2
1,0





−µ1,0(µ
2
2,0 − µ1,0µ3,0) µ2,0(µ

2
2,0 − µ1,0µ3,0)

µ2,0(µ
2
2,0 − µ1,0µ3,0) µ3

1,0 − 2µ0,0µ1,0µ2,0 + µ2
0,0µ3,0



 .

Next, we consider X(x)W1(x)(m1 − X(x)γ1). A Taylor expansion of m1(·)

yields

X(x)W1(x)(m1 −X(x)γ1) =
m

(2)
1 (x)

2
cn,2,1 +

m
(3)
1 (x)

3!
cn,3,1 + op

(

nh3
)

. (20)

The definition of cn,k,j in (12), in conjunction with (18), yields

cn,k,1 = nhkH
{

f(x)ck,1 + hf (1)(x)ck+1,1 + op (h)
}

. (21)

Combining this with (19) and (20) and extracting the first element gives

Bias(α̂h,1(x)|X) =
h2b1m

(2)
1 (x)

2
+ b2,1(x)h

3
1.
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This expression gives the required result. �

Proof of Corollary 1: Observe that equations (18) and (21) imply

e′1S̃
−1
n,0,j c̃n,2,j → b1, e′1S̃

−1
n,0,jcn,3,j → (−1)j+1c1,

e′1S̃
−1
n,0,jSn,1,jS̃

−1
n,0,j c̃n,2,j → (−1)j+1c2 and e′1S

−1
n,0,jTn,0,jS

−1
n,0,je1 → v

in probability uniformly. With these properties, each step of the proof of Theorem 3

is valid even if M̂MSEn(h) is replaced by ̂MMSEE
n(h), thus completing the proof

of Corollary 1. �
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Supplement to “Optimal Bandwidth Selection for
Differences of Nonparametric Estimators with an

Application to the Sharp Regression Discontinuity
Design”

Yoichi Arai and Hidehiko Ichimura

A Introduction

In this supplemental material, we present omitted discussions, an algorithm to imple-

ment the proposed method for the sharp RDD and proofs for the main results.

B Uniqueness of the AFO Bandwidths for the Dif-

ference of Densities

In this section, we verify the uniqueness of the AFO bandwidths for the difference of

densities.

(i) When f (2)(x1)f
(2)(x2) < 0, the first-order conditions are given by

∂AMSE1n(h)

∂h1

∣∣∣∣
h1=h∗1,h2=h

∗
2

= µ2
2f

(2)(x1)h
∗
1

[
f (2)(x1)h

∗
1
2 − f (2)(x2)h

∗
2
2
]
− ν0
n

f(x1)

h∗1
2 = 0,

∂AMSE1n(h)

∂h2

∣∣∣∣
h1=h∗1,h2=h

∗
2

= −µ2
2f

(2)(x2)h
∗
2

[
f (2)(x1)h

∗
1
2 − f (2)(x2)h

∗
2
2
]
− ν0
n

f(x2)

h∗2
2 = 0.

Solving these gives the explicit forms of h∗1 and h∗2.

To show that h∗1 and h∗2 are global minimizers, it is sufficient to show that

AMSE1n(h) is strictly convex with respect to h1 and h2. For strict convexity, we

1



must show that the Hessian matrix is positive definite; i.e. that

∂2AMSE1n(h)

∂h21
> 0,

∂2AMSE1n(h)

∂h21
· ∂

2AMSE1n(h)

∂h22
−
[
∂2AMSE1n(h)

∂h1∂h2

]2
> 0.

Given that f (2)(x1) and f (2)(x2) have different signs, it follows that

∂2AMSE1n(h)

∂h21
= µ2

2f
(2)(x1)

[
f (2)(x1)h

2
1 − f (2)(x2)h

2
2

]
+ 2

[
µ2f

(2)(x1)h1
]2

+
2ν0f(x1)

nh31
> 0,

because f(·), µ2, ν0, n, h1 and h2 are all positive. We can also show that

∂2AMSE1n(h)

∂h21
· ∂

2AMSE1n(h)

∂h22
−
[
∂2AMSE1n(h)

∂h1∂h2

]2
=

{
µ2
2f

(2)(x1)
[
f (2)(x1)h

2
1 − f (2)(x2)h

2
2

]
+ 2

[
µ2f

(2)(x1)h1
]2

+
2ν0f(x1)

nh31

}
×
{
−µ2

2f
(2)(x2)

[
f (2)(x1)h

2
1 − f (2)(x2)h

2
2

]
+ 2

[
µ2f

(2)(x2)h2
]2

+
2ν0f(x2)

nh32

}
−
[
2µ2

2f
(2)(x1)f

(2)(x2)h1h2
]2
.

Note that if we ignore the first and third terms in the two brackets of the first term on

the right-hand side, what is left coincides with the last term on the right-hand side.

However, both the first and third terms are positive as discussed earlier. Thus, the

difference of the two terms are positive.

(ii) Next, we consider the case where f (2)(x1)f
(2)(x2) > 0. With the restriction

that f (2)(x1)h
2
1 − f (2)(x2)h

2
2 = 0, AMSE2n(h) can be written as

AMSE2n(h) =
{µ4

4!

[
f (4)(x1)− λ∗∗4f (4)(x2)

]
h41

}2

+
ν0
nh1

{
f(x1) +

f(x2)

λ∗∗

}
.

The first-order condition becomes

dAMSE2n(h)

dh1

∣∣∣∣
h1=h∗∗1

=
1

72
µ2
4

{
f (4)(x1)− λ∗∗4f (4)(x2)

}2
h∗∗1

7− ν0

nh∗∗1
2

{
f(x1) +

f(x2)

λ∗∗

}
= 0.

Solving this with respect to h∗∗1 yields the expression of Definition 1. To see that

2



AMSE2n(h1) has a unique minimum, observe that

d2AMSE2n(h)

dh21
=

7

56
µ2
4

{
f (4)(x1)− λ∗∗4f (4)(x2)

}2
h61 +

2ν0
h31

{
f(x1) +

f(x2)

λ∗∗

}
.

Both terms on the right-hand side being positive proves strict convexity. �

C Implementation for the Sharp RDD

In this section, we provide a detailed procedure to implement the proposed method

for the sharp RDD. To obtain the proposed bandwidths, we need pilot estimates of

the density and its first derivative, the second and third derivatives of the regression

functions, and the conditional variances at the discontinuity point. We obtain these

pilot estimates in a number of steps. Before we describe them, note that the discon-

tinuity points for all designs are at x = 0. When the discontinuity point is at x = c

rather than x = 0, one proceeds by replacing Xi with Xi − c in the following steps.

C.1 Step 1: Obtain pilot estimates for the density f(0) and

its first derivative f (1)(0)

We calculate the density of the forcing variable at the discontinuity point f(0), which

is estimated by using the kernel density estimator with an Epanechnikov kernel.1 A

pilot bandwidth for kernel density estimation is chosen by using the normal scale rule,

given by σ̂ · (15φ(c)/(nφ(2)(c)2))1/5 evaluated at c = 0, where σ̂ is the square root of

the sample variance of Xi and φ(·) is the normal density (see Wand and Jones, 1994

for the normal scale rules). The first derivative of the density is estimated by using

the method proposed by Jones (1994). The kernel first derivative density estimator

is given by
∑n

i=1 L((c − Xi)/h)/(nh2), where L is the kernel function proposed by

Jones (1994), L(u) = −15u(1−u2)1{|u|<1}/4 and c is the evaluation point (zero in our

experiments). Again, a pilot bandwidth is obtained by using the normal scale rule,

1IK estimated the density in a simpler manner (see Section 4.2 of IK). We used the kernel density
estimator to be consistent with the estimation method used for the first derivative. Our unreported
simulation experiments produced similar results for both methods.
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given by σ̂ · (105φ(c/σ̂)/(nφ(3)(c/σ̂))1/7 evaluated at c = 0.1.2

C.2 Step 2: Obtain pilot bandwidths for estimating the sec-

ond and third derivatives m
(2)
j (0) and m

(3)
j (0) for j = 1, 2

We next estimate the second and third derivatives by using the third-order LPR.

We obtain pilot bandwidths for the LPR based on the estimated fourth derivatives

m
(4)
1 (0) = limx→0+m

(4)(x) and m
(4)
2 (0) = limx→0−m

(4)(x). Following IK, we use

estimates that are not necessarily consistent by fitting global polynomial regressions.

In doing so, we construct a matrix whose ith row is given by [1 Xi X
2
i X

3
i X

4
i ]. It

turns out that the matrix has an average condition number (the ratio of the largest

eigenvalue to the smallest.) of 28.80. This number suggests potential multicollinearity,

which typically makes the polynomial regression estimates very unstable. Hence, we

use the ridge regression proposed by Hoerl, Kennard, and Baldwin (1975). This is

implemented in two steps. First, using observations for which Xi ≥ 0, we regress

Yi on 1, Xi, X
2
i , X3

i and X4
i to obtain the standard OLS coefficients γ̂1 and the

variance estimate ŝ21. This yields the ridge coefficient proposed by Hoerl, Kennard,

and Baldwin (1975): r1 = (5ŝ21)/(γ̂
′
1γ̂1). Using the data with Xi < 0, we repeat

the procedure to obtain the ridge coefficient, r2. Let Y be a vector of Yi, and let

X be the matrix whose ith row is given by [1 Xi X
2
i X

3
i X

4
i ] for observations with

Xi ≥ 0, and let Ik be the k × k identity matrix. The ridge estimator is given by

β̂r1 = (X ′X + r1I5)
−1X ′Y , and β̂r2 is obtained in the same manner. The estimated

fourth derivatives are m̂
(4)
1 (0) = 24 · β̂r1(5) and m̂

(4)
2 (0) = 24 · β̂r2(5), where β̂r1(5) and

β̂r2(5) are the fifth elements of β̂r1 and β̂r2, respectively. The estimated conditional

variance is σ2
r1 =

∑n1

i=1(Yi− Ŷi)2/(n1−5), where Ŷi denotes the fitted values, n1 is the

number of observations for which Xi ≥ 0, and the summation is over i with Xi ≥ 0.

σ2
r2 is obtained analogously. The plug-in bandwidths for the third-order LPR used to

2The normal scale rules do not work when the evaluation point is zero because the third derivative
of the normal density at zero is equal to zero. Hence, we use c = 0.1. The following results are robust
to the value of c, unless c differs greatly from zero.
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estimate the second and third derivatives are calculated by

hν,j = Cν,3(K)

(
σ2
rj

f̂(0) · m̂(4)
j (0) · nj

)1/9

,

where j = 1, 2 (see Fan and Gijbels, 1996, Section 3.2.3 for information on plug-in

bandwidths and the definition of Cν,3). We use ν = 2 and ν = 3 for estimating the

second and third derivatives, respectively.

C.3 Step 3: Estimation of the second and third derivatives

m
(2)
j (0) and m

(3)
j (0) as well as the conditional variances

σ̂2
j (0) for j = 1, 2

We estimate the second and third derivatives at the threshold by using the third-

order LPR with the pilot bandwidths obtained in Step 2. Following IK, we use the

uniform kernel, which yields constant values of C2,3 = 5.2088 and C3,3 = 4.8227. To

estimate m̂
(2)
1 (0), we construct a vector Ya = (Y1, . . . , Yna)′ and an na × 4 matrix,

Xa, whose ith row is given by [1 Xi X
2
i X

3
i ] for observations with 0 ≤ Xi ≤ h2,3,

where na is the number of observations with 0 ≤ Xi ≤ h2,3. The estimated second

derivative is given by m̂
(2)
1 (0) = 2 · β̂2,1(3), where β̂2,1(3) is the third element of β̂2,1

and β̂2,1 = (Xa
′Xa)

−1XaYa. We estimate m̂
(2)
2 (0) in the same manner. Replacing h2,3

with h3,3 leads to an estimated third derivative of m̂
(3)
1 (0) = 6 · β̂3,1(4), where β̂3,1(4) is

the fourth element of β̂3,1, β̂3,1 = (Xb
′Xb)

−1XbYb, Yb = (Y1, . . . , Ynb
)′, Xb is an nb × 4

matrix whose ith row is given by [1 Xi X
2
i X

3
i ] for observations with 0 ≤ Xi ≤ h3,3,

and nb is the number of observations with 0 ≤ Xi ≤ h3,3. The conditional variance at

the threshold σ2
1(0) is calculated as σ̂1(0) =

∑n2

i=1(Yi− Ŷi)2/(n− 4), where Ŷi denotes

the fitted values from the regression used to estimate the second derivative.3 β̂2,2 and

β̂3,2 can be obtained analogously.

3One can use the fitted values from the regression used to estimate the third derivatives, having
replaced na with nb. However, because these values produce simulation results that are almost
identical to those produced by the fitted values described in the main text, we present the latter.
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C.4 Step 4

The final step is to plug the pilot estimates into the MMSE given by (10) and to

use numerical minimization over the compact region to obtain ĥ1 and ĥ2. Unlike

AMSE1n(h) and AMSE2n(h) subject to the restriction given in Definition 3, the

MMSE is not necessarily strictly convex, particularly when the sign of the product is

positive. In conducting numerical optimization, it is important to try optimization

with several initial values, so as to avoid finding only a local minimum. (ĥE1 , ĥ
E
2 ) and

(ĥR1 , ĥ
R
2 ) can be computed using the MMSE given by (11) and (13), respectively.

D Proof of Theorem 3

Recall that the objective function is:

M̂MSEn(h) =

{
b1
2

[
m̂

(2)
1 (x)h21 − m̂

(2)
2 (x)h22

]}2

+
[
b̂2,1(x)h31 − b̂2,2(x)h32

]2
+

ν

nf̂(x)

{
σ̂2
1(x)

h1
+
σ̂2
2(x)

h2

}
.

To begin with, we show that ĥ1 and ĥ2 satisfy Assumption 3. If we choose

a sequence of h1 and h2 to satisfy Assumption 3, then M̂MSEn(h) converges to 0.

Assume to the contrary that either one or both of ĥ1 and ĥ2 do not satisfy Assump-

tion 3. Since m
(2)
2 (x)3b2,1(x)2 6= m

(2)
1 (x)3b2,2(x)2 by assumption, m̂

(2)
2 (x)3b̂2,1(x)2 6=

m̂
(2)
1 (x)3b̂2,2(x)2 with probability approaching 1. Without loss of generality, we as-

sume this as well. Then at least one of the first-order bias term, the second-order bias

term and the variance term of M̂MSEn(ĥ) does not converge to zero in probability.

Then M̂MSEn(ĥ) > M̂MSEn(h) holds for some n. This contradicts the definition

of ĥ. Hence ĥ satisfies Assumption 3.

We first consider the case in which m
(2)
1 (x)m

(2)
2 (x) < 0. In this case, with

probability approaching 1, m̂
(2)
1 (x)m̂

(2)
2 (x) < 0, so that we assume this without loss of

generality. When this holds, note that the leading terms are the first term and the

last term of M̂MSEn(ĥ) since ĥ1 and ĥ2 satisfy Assumption 3. Define the plug-in
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version of AMSE1n(h) provided in Definition 3 by

ÂMSE1n(h) =

{
b1
2

[
m̂

(2)
1 (x)h21 − m̂

(2)
2 (x)h22

]}2

+
ν

nf̂(x)

{
σ̂2
1(x)

h1
+
σ̂2
2(x)

h2

}
.

Let the minimizer of ÂMSE1n(h) by h̃1 and h̃2. Also define

θ̂1 =

 vσ̂2
1(x)

b̂21f̂(x)m̂
(2)
1 (x)

[
m̂

(2)
1 (x)− λ̂21m̂

(2)
2 (x)

]


1/5

and λ̂1 =

{
− σ̂

2
2(x)m̂

(2)
1 (x)

σ̂2
1(x)m̂

(2)
2 (x)

}1/3

.

A calculation yields h̃1 = θ̂1n
−1/5 ≡ C̃1n

−1/5 and h̃2 = θ̂1λ̂1n
−1/5 ≡ C̃2n

−1/5. With

this choice, ÂMSE1n(h̃) and hence M̂MSEn(h̃) converges at the rate of n−4/5. Note

that if ĥ1 or ĥ2 converges at the rate slower than n−1/5, then the bias term converges

at the rate slower than n−4/5. If ĥ1 or ĥ2 converges at the rate faster than n−1/5,

then the variance term converges at the rate slower than n−4/5. Thus the minimizer

of M̂MSEn(h), ĥ1 and ĥ2 converges to 0 at rate n−1/5.

Thus we can write ĥ1 = Ĉ1n
−1/5 + op(n

−1/5) and ĥ2 = Ĉ2n
−1/5 + op(n

−1/5) for

some OP (1) sequences Ĉ1 and Ĉ2 that are bounded away from 0 and ∞ as n → ∞.

Using this expression,

M̂MSEn(ĥ) = n−4/5
{
b1
2

[
m̂

(2)
1 (x)Ĉ2

1 − m̂
(2)
2 (x)Ĉ2

2

]}2

+
ν

n4/5f̂(x)

{
σ̂2
1(x)

Ĉ1

+
σ̂2
2(x)

Ĉ2

}
+ op(n

−4/5).

Note that

M̂MSEn(h̃) = n−4/5
{
b1
2

[
m̂

(2)
1 (x)C̃2

1 − m̂
(2)
2 (x)C̃2

2

]}2

+
ν

n4/5f̂(x)

{
σ̂2
1(x)

C̃1

+
σ̂2
2(x)

C̃2

}
+OP (n−8/5).
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Since ĥ is the optimizer, M̂MSEn(ĥ)/M̂MSEn(h̃) ≤ 1. Thus

{
b1
2

[
m̂

(2)
1 (x)Ĉ2

1 − m̂
(2)
2 (x)Ĉ2

2

]}2

+ ν

f̂(x)

{
σ̂2
1(x)

Ĉ1
+

σ̂2
2(x)

Ĉ2

}
+ op(1){

b1
2

[
m̂

(2)
1 (x)C̃2

1 − m̂
(2)
2 (x)C̃2

2

]}2

+ ν

f̂(x)

{
σ̂2
1(x)

C̃1
+

σ̂2
2(x)

C̃2

}
+OP (n−4/5)

≤ 1.

Note that the denominator converges to

{
b1
2

[
m

(2)
1 (x)C∗21 −m

(2)
2 (x)C∗22

]}2

+
ν

f(x)

{
σ2
1(x)

C∗1
+
σ2
2(x)

C∗2

}
,

where C∗1 and C∗2 are the unique optimizers of

{
b1
2

[
m

(2)
1 (x)C2

1 −m
(2)
2 (x)C2

2

]}2

+
ν

f(x)

{
σ2
1(x)

C1

+
σ2
2(x)

C2

}
,

with respect to C1 and C2. This implies that Ĉ1 and Ĉ2 also converge to the same

respective limit C∗1 and C∗2 because the inequality will be violated otherwise.

Next we consider the case with m
(2)
1 (x)m

(2)
2 (x) > 0. In this case, with prob-

ability approaching 1, m̂
(2)
1 (x)m̂

(2)
2 (x) > 0, so that we assume this without loss of

generality.

When these conditions hold, define

θ̂2 =


v
[
σ̂2
1(x) + σ̂2

2(x)/λ̂2

]
6f̂(x)

[
b̂2,1(x)− λ̂32b̂2,2(x)

]2


1/7

and λ̂2 =

{
m̂

(2)
1 (x)

m̂
(2)
2 (x)

}1/2

.

and let h2 = λ̂2h1. This sets the first-order bias term of M̂MSEn(h) equal to 0.

Define the plug-in version of AMSE2n(h) by

ÂMSE2n(h) =
{
b̂2,1(x)h31 − b̂2,2(x)h32

}2

+
v

nf̂(x)

{
σ̂2
1(x)

h1
+
σ̂2
2(x)

h2

}

Choosing h1 to minimize ÂMSE2n(h), we define h̃1 = θ̂2n
−1/7 ≡ C̃1n

−1/7 and h̃2 =
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λ̂2h̃1 ≡ C̃2n
−1/7. Then M̂MSEn(h̃) can be written as

M̂MSEn(h̃) = n−6/7
{
b̂2,1(x)C̃3

1 − b̂2,2(x)C̃3
2

}2

+ n−6/7
ν

f̂(x)

{
σ̂2
1(x)

C̃1

+
σ̂2
2(x)

C̃2

}
.

In order to match this rate of convergence, both ĥ1 and ĥ2 need to converge at

the rate slower than or equal to n−1/7 because the variance term needs to converge at

the rate n−6/7 or faster. In order for the first-order bias term to match this rate,

m̂
(2)
1 (x)ĥ21 − m̂

(2)
2 (x)ĥ22 ≡ B1n = n−3/7b1n,

where b1n = OP (1) so that under the assumption that m
(2)
2 (x) 6= 0, with probability

approaching 1, m̂
(2)
2 (x) is bounded away from 0 so that assuming this without loss

of generality, we have ĥ22 = λ̂22ĥ
2
1 − B1n/m̂

(2)
2 (x). Substituting this expression to the

second term and the third term, we have

M̂MSEn(ĥ) =

{
b1
2
B1n

}2

+
{
b̂2,1(x)ĥ31 − b̂2,2(x){λ̂22ĥ21 −B1n/m̂

(2)
2 (x)}3/2

}2

+
ν

nf̂(x)

{
σ̂2
1(x)

ĥ1
+

σ̂2
2(x)

{λ̂22ĥ21 −B1n/m̂
(2)
2 (x)}1/2

}
.

Suppose ĥ1 is of order slower than n−1/7. Then because m̂
(2)
2 (x)3b̂2,1(x)2 6= m̂

(2)
1 (x)3b̂2,2(x)2

and this holds even in the limit, the second-order bias term is of order slower than

n−6/7. If ĥ1 converges to 0 faster than n−1/7, then the variance term converges at the

rate slower than n−6/7. Therefore we can write ĥ1 = Ĉ1n
−1/7 + op(n

−1/7) for some

OP (1) sequence Ĉ1 that is bounded away from 0 and ∞ as n → ∞ and as before

ĥ22 = λ̂22ĥ
2
1 −B1n/m̂

(2)
2 (x). Using this expression, we can write

M̂MSEn(ĥ) = n−6/7
{
b1
2
b1n

}2

+ n−6/7
{[
b̂2,1(x)Ĉ3

1 + op(1)− b̂2,2(x){λ̂22Ĉ2
1 + op(1)− n−1/7b1n/m̂(2)

2 (x)}3/2
]}2

+ n−6/7
ν

f̂(x)

{
σ̂2
1(x)

Ĉ1 + op(1)
+

σ̂2
2(x)

{λ̂22Ĉ2
1 + op(1)− n−1/7b1n/m̂(2)

2 (x)}1/2

}
.
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Thus b1n converges in probability to 0. Otherwise the first-order bias term remains

and that contradicts the definition of ĥ1.

Since ĥ is the optimizer, M̂MSEn(ĥ)/M̂MSEn(h̃) ≤ 1. Thus

op(1) +
{[
b̂2,1(x)Ĉ3

1 − b̂2,2(x){λ̂22Ĉ2
1 + op(1)}3/2

]}2

+ ν

f̂(x)

{
σ̂2
1(x)

Ĉ1+op(1)
+

σ̂2
2(x)

{λ̂22Ĉ2
1+op(1)}1/2

}
{
b̂2,1(x)C̃3

1 − b̂2,2(x)C̃3
2

}2

+ ν

f̂(x)

{
σ̂2
1(x)

C̃1
+

σ̂2
2(x)

C̃2

} ≤ 1.

If Ĉ1 − C̃1does not converge to 0 in probability, then the ratio is not less than 1 at

some point. hence Ĉ1 − C̃1 = op(1). Therefore ĥ2/h̃2 converges in probability to 1 as

well.

The result above also shows that M̂MSEn(ĥ)/MSEn(h∗) converges to 1 in

probability in both cases. �
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