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Abstract

In estimation of ratio of variances in two normal distributions with unknown
means, it has been shown in the literature that simple and crude ratio estimators
based on two sample variances are dominated by shrinkage estimators using infor-
mation contained in sample means. Of these, a natural double shrinkage estimator
is the ratio of shrinkage estimators of variances, but its improvement over the crude
ratio estimator depends on loss functions, namely, the improvement has not been
established except the Stein loss function.

In this paper, this dominance property is shown for some convex loss functions
including the Stein and quadratic loss functions in the general framework of dis-
tributions with positive parameters and shrinkage estimators. The resulting new
finding is that the generalized Bayes estimator of the ratio of variances dominates
the crude ratio estimator relative to the quadratic loss. The paper also shows that
the dominance property of the double shrinkage estimator holds for estimation of
the difference of variances, but it does not hold for estimation of the product and
sum of variances. Finally, it is demonstrated that the double shrinkage estimators
for the ratio, product, sum and differences of variances are connected to estima-
tion of linear combinations of the normal positive means, and the dominance and
non-dominance results of the double shrinkage estimators coincide with the corre-
sponding dominance results in estimation of linear combinations of means.

Key words and phrases: Decision theory, generalized Bayes estimator, improved
estimation, minimaxity, quadratic loss, ratio, Stein estimator, Stein loss, variance.

1 Introduction

The estimation of a scale parameter in the presence of another nuisance parameters has
been studied in the literature since Stein (1964) established the surprising result that in a
normal population with unknown means, the estimator of the variance based on the sample
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variance with the optimal multiple, which is the best affine equivariant, is inadmissible
and improved on by the Stein truncated estimator using information contained in the
sample mean. Of these, Brown (1968), Brewster and Zidek (1974), Strawderman (1974)
and Shinozaki (1995) developed other types of improved estimators. Since most improved
estimators are smaller than or equal to the best affine equivariant, we call here them
shrinkage estimators, and a class of improved and shrinkage estimators was derived by
Kubokawa (1994a).

An inherited problem is the estimation of ratio ρ = θ2/θ1 for two scale parameters θ1
and θ2. A possible improvement is the single shrinkage estimators θ̂∗2/θ̂1 and θ̂2/θ̂

∗
1, where

θ̂∗2 and 1/θ̂∗1 are shrinkage estimators of θ2 and 1/θ1, respectively, improving on the crude
estimators θ̂2 and 1/θ̂1. The dominance results of such single shrinkage estimators were
shown by Gelfand and Dey (1988) and Ghosh and Kundu (1996). An interesting issue is
whether the single shrinkage estimators can be further improved on by a double shrinkage
estimator. For the quadratic loss function Lq(ρ̂/ρ) = (ρ̂/ρ − 1)2 for estimator ρ̂ of ρ,
Kubokawa(1994b) demonstrated that the single shrinkage estimators can be improved on
by a double shrinkage estimator of the form

ρ̂∗∗ = θ̂∗2/θ̂1 + θ̂2/θ̂
∗
1 − θ̂2/θ̂1.

For the Stein loss function Ls(ρ̂/ρ) = ρ̂/ρ− log(ρ̂/ρ)−1, Kubokawa and Srivastava (1996)
and Iliopoulos and Kourouklis (1999) showed that the single shrinkage estimators can be
improved on by another type of a double shrinkage estimator

ρ̂∗ = θ̂∗2/θ̂
∗
1.

Bobotas, Iliopoulos and Kourouklis (2012) developed a very nice unified theory, and
clarified conditions on loss functions under which the single shrinkage estimators can be
dominated by ρ̂∗ and/or ρ̂∗∗. We are inspired from these dominance results to raise the
following queries about the double shrinkage estimators.

(I) The double shrinkage estimator ρ̂∗ has a natural form, but it could not be shown
that ρ̂∗ dominates the single shrinkage estimators relative to the quadratic loss. Does this
suggest that ρ̂∗ cannot dominate the crude ratio estimator θ̂2/θ̂1? That is, we want to
investigate whether the dominance property of ρ̂∗ over θ̂2/θ̂1 holds for the quadratic loss.

(II) As the related problems, we can consider estimation of the product θ1θ2, the
difference θ1 − θ2 and the sum θ1 + θ2. Can we extend the dominance property of double
shrinkage ratio estimators to the estimation of such parameters? That is, we want to
investigate whether their double shrinkage estimators dominate the corresponding crude
estimators.

The objective of this paper is to reply to these queries. In Section 2, we show the
dominance of ρ̂∗ over the crude ratio estimator relative to some convex loss functions in-
cluding the Stein and quadratic loss functions. It is noted that the dominance results hold
in quite general setups as given in (A1), (A2), (A3) and (A4), namely, we do not assume
any distributional assumptions except that θ̂∗i ≤ θ̂i and θ̂∗i dominates θ̂i in estimation of
θi for i = 1, 2. The dominance results will be applied in Section 3 to two sample problems
of normal populations.
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The query (II) is studied in Section 4. For estimation of the difference θ1 − θ2, we
can get a similar dominance result as in the case of the ratio estimation. For estimation
of the product θ1θ2 and the sum θ1 + θ2, however, the corresponding double shrinkage
estimators cannot necessarily dominate the crude estimators. Especially, the generalized
Bayes estimator θ̂GB

1 θ̂GB
2 of the product never dominates the crude estimator θ̂1θ̂2 although

the generalized Bayes estimator θ̂GB
i can dominate θ̂i in the framework of estimation of

the individual parameter θi.

The above explanations mean that the estimation of the ratio and difference of two
positive parameters has a different dominance story from the estimation of the product
and sum. In Section 5, using the same arguments as in Rukhin (1992), we show that the
double shrinkage estimators of the ratio, product, sum and difference are connected to
estimation of the sum and difference of positive normal means. It is confirmed that the
dominance and non-dominance results derived in this paper coincide with the decision-
theoretic properties given by Kubokawa (2012) in the framework of estimation of the sum
and difference of positive normal means.

2 General Dominance Results in Estimation of Ratio

of Positive Parameters

Let θ1 and θ2 be positive unknown parameters. For i = 1, 2, let θ̂i and θ̂∗i be positive
estimators of θi satisfying the following assumptions:

(A1) (θ̂1, θ̂
∗
1) is independent of (θ̂2, θ̂

∗
2).

(A2) θ̂∗1 and θ̂∗2 are shrinkage estimators of θ̂1 and θ̂2, respectively, satisfying that
θ̂∗1 ≤ θ̂1 and θ̂∗2 ≤ θ̂2, where the strict inequalities hold with positive probabilities.

Consider the estimation of ratio of the positive parameters ρ = θ2/θ1. To evaluate an
estimator ρ̃ of ρ, we begin by treating the risk function relative to the Stein loss function
Ls(ρ̃/ρ) for Ls(t) = t− log(t)− 1, namely the risk function is given by

Rs(ω, ρ̃) = Eω[ρ̃/ρ− log(ρ̃/ρ)− 1] = Eω[ρ̃θ1/θ2 − log(ρ̃θ1/θ2)− 1],

where ω is a collection of unknown parameters. When θ̂2 and 1/θ̂1 are improved on by
θ̂∗2 and 1/θ̂∗1, respectively, as estimators of θ2 and 1/θ1, we want to investigate whether
ρ̂ = θ̂2/θ̂1 can be improved on by the double shrinkage estimator ρ̂∗ = θ̂∗2/θ̂

∗
1 relative to

the Stein loss. To establish the dominance property for the Stein loss function, we assume
the following conditions for θ̂i and θ̂∗i :

(A3) Eω[θ̂2/θ2] = 1, Eω[θ1/θ̂1] = 1 and

Eω[Ls(θ̂2/θ2)] ≥ Eω[Ls(θ̂
∗
2/θ2)], Eω[Ls(θ1/θ̂1)] ≥ Eω[Ls(θ1/θ̂

∗
1)]

for any ω.

Theorem 2.1 Assume conditions (A1), (A2) and (A3). Then, the double shrinkage es-
timator ρ̂∗ = θ̂∗2/θ̂

∗
2 dominates the estimator ρ̂ = θ̂2/θ̂1 relative to the Stein loss, namely,

Rs(ω, ρ̂) ≥ Rs(ω, ρ̂
∗) (2.1)
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for any ω.

Proof. For notational simplicity, let Xi = θ̂i/θi and Yi = θ̂∗i /θi for i = 1, 2. Assump-
tion (A3) is expressed as Eω[X2] = 1, Eω[1/X1] = 1 and

Eω[X2 − log(X2)− 1] ≥Eω[Y2 − log(Y2)− 1],

Eω[1/X1 + log(X1)− 1] ≥Eω[1/Y1 + log(Y1)− 1],
(2.2)

for any ω. Since Eω[X2] = 1 and Eω[1/X1] = 1, the inequalities in (2.2) imply that

Eω[log(Y2)] ≥Eω[Y2 + log(X2)− 1],

−Eω[log(Y1)] ≥Eω[1/Y1 − log(X1)− 1].
(2.3)

The difference of the risk functions of ρ̂ and ρ̂∗ is written as

∆s(ω) =Rs(ω, ρ̂)−Rs(ω, ρ̂
∗)

=Eω[X2/X1 − log(X2/X1)− 1]− Eω[Y2/Y1 − log(Y2/Y1)− 1]

=Eω[1− log(X2/X1)− Y2/Y1 + log(Y2)− log(Y1)],

since Eω[X2/X1] = Eω[X2]Eω[1/X1] = 1 from (A1) and (A3). Applying the inequalities
in (2.3) for Eω[log(Y2)] and −Eω[log(Y1)], we can evaluate the risk difference ∆s(ω) as

∆s(ω) ≥Eω[1− log(X2/X1)− Y2/Y1 + Y2 + log(X2)− 1 + 1/Y1 − log(X1)− 1]

=Eω[−Y2/Y1 + 1/Y1 + Y2 − 1]

=Eω[1− Y2]Eω[1/Y1 − 1].

From (A2), it follows that Y1 ≤ X1 and Y2 ≤ X2, which imply that Eω[1 − Y2] ≥
Eω[1 − X2] = 0 and Eω[1/Y1 − 1] ≥ Eω[1/X1 − 1] = 0. Hence, it is concluded that
∆s(ω) ≥ 0 for any ω. □

The dominance property given in Theorem 2.1 can be provided as a simple conclusion
of Kubokawa and Srivastava (1996), Iliopoulos and Kourouklis (1999) and Bobotas, et al .
(2012). However, Theorem 2.1 proves (2.1) without any distributional assumptions as
long as (A1), (A2) and (A3) are assumed.

We next treat the quadratic loss function Lq(ρ̃/ρ) for Lq(t) = (t − 1)2. In this case,
instead of (A3), we assume the following condition:

(A4) Eω[(θ̂2/θ2)
2] = Eω[θ̂2/θ2], Eω[(θ1/θ̂1)

2] = Eω[θ1/θ̂1] and

Eω[Lq(θ̂2/θ2)] ≥ Eω[Lq(θ̂
∗
2/θ2)], Eω[Lq(θ1/θ̂1)] ≥ Eω[Lq(θ1/θ̂

∗
1)]

for any ω.

Theorem 2.2 Assume conditions (A1), (A2) and (A4). Then, the double shrinkage es-
timator ρ̂∗ = θ̂∗2/θ̂

∗
2 dominates the estimator ρ̂ = θ̂2/θ̂1 relative to the quadratic loss,

namely,
Rq(ω, ρ̂) ≥ Rq(ω, ρ̂

∗) (2.4)

for any ω.
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Proof. For Xi = θ̂i/θi and Yi = θ̂∗i /θi, i = 1, 2, assumption (A4) is expressed as
Eω[X

2
2 ] = Eω[X2], Eω[1/X

2
1 ] = Eω[1/X1] and

Eω[(X2 − 1)2] ≥Eω[(Y2 − 1)2],

Eω[(1/X1 − 1)2] ≥Eω[(1/Y1 − 1)2],
(2.5)

for any ω. Since Eω[X
2
2 ] = Eω[X2] and Eω[1/X

2
1 ] = Eω[1/X1], the inequalities in (2.5)

imply that

Eω[Y
2
2 ] ≤Eω[2Y2 −X2],

Eω[1/Y
2
1 ] ≤Eω[2/Y1 − 1/X1].

(2.6)

The difference of the risk functions of ρ̂ and ρ̂∗ is written as

∆q(ω) =Rq(ω, ρ̂)−Rq(ω, ρ̂
∗)

=Eω[X
2
2/X

2
1 − 2X2/X1 + 1]− Eω[Y

2
2 /Y

2
1 − 2Y2/Y1 + 1]

=Eω[−X2/X1 − Y 2
2 /Y

2
1 + 2Y2/Y1],

since Eω[X
2
2/X

2
1 ] = Eω[X

2
2 ]Eω[1/X

2
1 ] = Eω[X2]Eω[1/X1] from (A1) and (A4). Applying

the inequalities in (2.6) for Eω[Y
2
2 ] and Eω[Y

2
1 ], we get that

Eω[Y
2
2 /Y

2
1 ] =Eω[Y

2
2 ]Eω[1/Y

2
1 ]

≤Eω[2Y2 −X2]Eω[2/Y1 − 1/X1]

=Eω[(2Y2 −X2)(2/Y1 − 1/X1)]

from the independence between (X1, Y1) and (X2, Y2). Thus, the risk difference ∆q(ω) is
evaluated as

∆q(ω) ≥Eω[−X2/X1 + 2Y2/Y1 − (2Y2 −X2)(2/Y1 − 1/X1)]

=2Eω[−Y2/Y1 +X2/Y1 + Y2/X1 −X2/X1]

=2Eω[X2 − Y2]Eω[1/Y1 − 1/X1].

From (A2), it follows that Y1 ≤ X1 and Y2 ≤ X2, which imply that Eω[X2 − Y2] ≥ 0 and
Eω[1/Y1 − 1/X1] ≥ 0. Hence, it is concluded that ∆q(ω) ≥ 0 for any ω. □

The dominance property (2.4) of the double shrinkage estimator ρ̂∗ relative to the
quadratic loss is a new finding which we want to show. This gives an answer to the query
(I) raised in Section 1. It is interesting to note that Theorem 2.2 proves (2.4) without any
distributional assumptions as long as (A1), (A2) and (A4) are assumed.

Remark 2.1 Theorems 2.1 and 2.2 imply that the crude ratio estimator ρ̂ = θ̂2/θ̂1 can be
improved on by the single shrinkage estimators ρ̂∗1 = θ̂2/θ̂

∗
1 and ρ̂∗2 = θ̂∗2/θ̂1 relative to the

Stein and the quadratic loss functions. An interesting query is whether the single shrinkage
estimators can be further improved on by the double shrinkage estimator ρ̂∗ = θ̂∗2/θ̂

∗
1.

This dominance property is correct for the Stein loss. In fact, the same arguments as in
the proof of Theorem 2.1 can be used to verify that the single shrinkage and improved
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estimators are dominated by the double shrinkage estimator. This is an extension of
Kubokawa and Srivastava (1996) and Iliopoulos and Kourouklis (1999) to the general
framework.

For the quadratic loss, however, the same arguments as in the proof of Theorem 2.2 do
not work to show the stronger dominance property. Thus, we could not answer whether
the stronger dominance property holds or not for the quadratic loss. In stead of ρ̂∗ = θ̂∗2/θ̂

∗
1,

Kubokawa (1994b) and Bobotas, et al . (2012) showed that the double shrinkage estimator
of the form

ρ̂∗∗ = θ̂∗2/θ̂1 + θ̂2/θ̂
∗
1 − θ̂2/θ̂1

dominates the single shrinkage and improved estimators θ̂∗2/θ̂1 and θ̂2/θ̂
∗
1 relative to the

quadratic loss. □

Remark 2.2 The dominance property of the double shrinkage estimator can be con-
firmed for other loss functions. For example, consider the log-transformed quadratic loss
function LLTQ(ρ̃/ρ) for LLTQ(t) = (log t)2. In this case, instead of (A3) and (A4), it is

assumed that for i = 1, 2, Eω[log(θ̂i/θi)] = 0 and

Eω[LLTQ(θ̂i/θi)] ≥ Eω[LLTQ(θ̂
∗
i /θi)],

for any ω. Then, under assumptions (A1) and (A2), it can be shown that the estimator
ρ̂ = θ̂2/θ̂1 is dominated by ρ̂∗ = θ̂∗2/θ̂

∗
1 relative to the log-transformed quadratic loss

function.

When we consider the dual Stein loss function LDS(ρ̃/ρ) for LDS(t) = t + t−1 − 2 =
Ls(t)+Ls(t

−1), instead of (A3) and (A4), we assume that for i = 1, 2, Eω[θ̂i/θi] = Eω[θi/θ̂i]
and

Eω[LDS(θ̂i/θi)] ≥ Eω[LDS(θ̂
∗
i /θi)],

for any ω. Then, under assumptions (A1) and (A2), it can be shown that the estimator
ρ̂ = θ̂2/θ̂1 is dominated by ρ̂∗ = θ̂∗2/θ̂

∗
1 relative to the dual Stein loss function.

As shown above, the dominance property of the double shrinkage estimator holds for
the Stein, quadratic, log-transformed quadratic and dual Stein loss functions. These re-
sults suggest the interesting conjecture that the dominance property would be established
relative to convex loss functions. This will be studied as a future work. □

3 Applications to Estimation of Ratio of Normal Vari-

ances

We now apply the results given in the previous section to the estimation of ratio of the
variances in two normal distributions. Let X i and Vi, i = 1, 2, be mutually independent
random variables such that X i ∼ Npi(µi, σ

2
i Ipi) and Vi/σ

2
i ∼ χ2

ni
. In the framework of

estimating each σ2
i , i = 1, 2, a crude estimator is of the form σ̂2M

i = ciVi for the optimal
constant ci, which is given in terms of minimizing an estimation error. The estimator
σ̂2M
i can be improved on by shrinkage estimators σ̂2∗

i using information contained in
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X i. Typical shrinkage and improved estimators have been provided by Stein (1964),
Brown (1968), Brewster and Zidek (1974) and Strawderman (1974). These procedures
for improvement can be used to give double shrinkage estimators in estimation of the
variance ratio ρ = σ2

2/σ
2
1. In fact, Kubokawa and Srivastava (1996) and Iliopoulos and

Kourouklis (1999) established that the double shrinkage estimator ρ̂∗ = σ̂2∗
2 /σ̂2∗

1 dominates
ρ̂M = σ̂2M

2 /σ̂2M
1 relative to the Stein loss function. This dominance result is also an

application of Theorem 2.1. For the quadratic loss function, on the other hand, the
double shrinkage estimator suggested by Kubokawa (1994b) and Bobotas, et al . (2012) is
of the form

ρ̂∗∗ = σ̂2∗
2 /σ̂2

1 + σ̂2
2/σ̂

2∗
1 − σ̂2

2/σ̂
2
1, (3.1)

which is different from ρ̂∗ = σ̂2∗
2 /σ̂2∗

1 . Theorem 2.2 shows that the ratio of shrinkage
estimators produces the improvement even for the quadratic loss. Thus, we shall provide
some double shrinkage estimators for ρ = σ2

2/σ
2
1 relative to the quadratic loss function

Lq(ρ̂/ρ̂) for Lq(t) = (t− 1)2.

We begin by explaining dominance results in estimation of the variance σ2
2 and the

reciprocal of variance 1/σ2
1 relative to the quadratic loss Lq(σ̂

2
2/σ

2
2) and Lq(σ

2
1/σ̂

2
1). The

minimax estimators of σ2
2 and 1/σ2

1 are σ̂
2M
2 = (n2+2)−1V2 and 1/σ̂2M

1 = (n1−4)/V1. Stein
(1964) discovered the surprising inadmissibility result of σ̂2M

2 , which can be improved on
by the truncated estimator

σ̂2ST
2 = min

{ V2

n2 + 2
,
V2 + ∥X2∥2

n2 + p2 + 2

}
,

where ∥u∥2 =
∑p

i=1 u
2
i for u = (u1, . . . , up)

t ∈ Rp. Similarly, 1/σ̂2M
1 can be improved on

by

1/σ̂2ST
1 = 1/min

{ V1

n1 − 4
,
V1 + ∥X1∥2

n1 + p1 − 4

}
.

Brewster and Zidek (1974) succeeded in deriving the generalized Bayes estimator improv-
ing on σ̂2M

2 and 1/σ̂2M
1 . Let ηi = 1/σ2

i , i = 1, 2. The hierarchical prior distribution which
they suggested is

µi|ηi, λi ∼Npi(0,
1− λi

λi

η−1
i Ipi),

λi ∼λ−1
i dλi, 0 < λi < 1,

ηi ∼η−1
i dηi,

for i = 1, 2. Let E[·|V2,X2] and E[·|V1,X1] be posterior expectations. The generalized
Bayes estimators of σ2

2 and 1/σ2
1 against the hierarchical prior are given by σ̂2GB

2 =
E[η2|V2,X2]/E[η22|V2,X2] = V2ϕ

GB
2 (W2) and σ̂1GB

1 = E[η−2
1 |V1,X1]/E[η−1

1 |V1,X1] =
V1ϕ

GB
1 (W1), where

ϕGB
2 (W2) =

1

n2 + p2 + 2

∫W2

0
λp2/2−1/(1 + λ)(n2+p2)/2+1dλ∫W2

0
λp2/2−1/(1 + λ)(n2+p2)/2+2dλ

,

ϕGB
1 (W1) =

1

n1 + p1 − 4

∫W1

0
λp1/2−1/(1 + λ)(n1+p1)/2−2dλ∫W1

0
λp1/2−1/(1 + λ)(n1+p1)/2−1dλ

,
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for Wi = ∥X i∥2/Vi.

Kubokawa (1994a) constructed unified classes of improved estimators of the form
σ̂2
i (ϕi) = Viϕi(Wi) for absolutely continuous function ϕi(·). In fact, σ̂2

i (ϕi) improves on
σ̂2M
i if ϕi(w) satisfies the conditions:
(C1) ϕi(w) is non-decreasing in w.
(C2) ϕi(w) ≥ ϕGB

i (w) for w > 0.
Since ϕTR

i (w) and ϕGB
i (w) satisfy these conditions, the Stein truncated and the generalized

Bayes estimators belong to the classes.

The class of improved estimators can be derived by using the method of Integral
expression of Risk Difference. Following Kubokawa (1994a, 98, 99), the risk difference
between the estimators σ̂2M

2 and σ̂2
2(ϕ2) can be expressed as

∆ =E[{(n2 + 2)−1Vi/σ
2
2 − 1}2]− E[{V2ϕ2(W2)/σ

2
2 − 1}2]

=2

∫ ∞

0

ϕ′
2(w2)

∫ ∞

0

{ϕ2(w2)x− 1}xFp2(w2x;λ2)fn2(x)dxdw2

=2

∫ ∞

0

ϕ′
2(w2)

∫ ∞

0

x2Fp2(w2x;λ2)fn2(x)dx{ϕ2(w2)− ϕ∗
2(w2;λ2)}dw2,

where fn2(x) is the density function of a central chi-square distribution χ2
n2

with n2 degrees
of freedom, Fp2(x;λ2) is the cumulative distribution function of a non-central chi-square
distribution χ2

p2
(λ2) with p2 degrees of freedom and noncentrality λ2, and ϕ∗

2(w2;λ2) is
given by

ϕ∗
2(w2;λ2) =

∫ ∞

0

xFp2(w2x;λ2)fn2(x)dx/

∫ ∞

0

x2Fp2(w2x;λ2)fn2(x)dx.

It can be verified that ϕ∗(w2;λ2) ≤ ϕ∗
2(w2; 0) and that ϕ∗

2(w2; 0) is identical to ϕGB
2 (w2).

This fact implies not only that the improvement can be established under conditions (C1)
and (C2), but also that the risk of the generalized Bayes estimator is equal to that of
(n2 + 2)−1V2 at λ2 = 0, namely,

Eλ2=0[{(n2 + 2)−1V2/σ
2
2 − 1}2] = Eλ2=0[{V2ϕ

GB
2 (W2)/σ

2
2 − 1}2] (3.2)

when λ2 = 0. This property is useful for investigating the improvement of the generalized
Bayes estimator of product of variances. A similar equation to (3.2) holds for estimation
of 1/σ2

1, namely,

Eλ1=0[{σ2
1/{V1/(n1 − 4)} − 1}2] = Eλ1=0[{σ2

1/{V1ϕ
GB
1 (W1)} − 1}2] (3.3)

Another improved estimators are the Strawderman-type estimators suggested by Straw-
derman (1974), Maruyama and Strawderman (2006) and Bobotas and Kourouklis (2010),
and are given by

σ̂2SR
2 =(1 +W2)V2/{(n2 + 2)(r2 + 1 +W2)},

σ̂2SR
1 =(1 +W1)V1/{(n1 − 4)(r1 + 1 +W1)},

(3.4)

for 0 < ri < r0i, i = 1, 2, where r01 and r02 are specified constants .
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Theorem 2.2 guarantees that the shrinkage and improved estimators of σ2
2 and 1/σ2

1

can produce the natural double shrinkage estimators which improve on the crude ratio
estimator ρ̂M = σ̂2M

2 /σ̂2M
1 . The double shrinkage and improved estimators with natural

forms are

ρ̂∗ST = σ̂2ST
2 /σ̂2ST

1 , ρ̂∗GB = σ̂2GB
2 /σ̂2GB

1 , ρ̂∗SR = σ̂2SR
2 /σ̂2SR

1 .

It is noted that ρ̂∗GB is the generalized Bayes estimator of ρ relative to the quadratic loss.
As given in (3.1), we have another types of double shrinkage and improved estimators,
which are denoted by ρ̂∗∗ST , ρ̂∗∗GB and ρ̂∗∗SR.

Figure 1 illustrates the risk functions of ρ̂∗M = σ̂2M
2 /σ̂2M

1 , ρ̂∗ST , ρ̂∗GB, ρ̂∗∗ST and
ρ̂∗∗GB relative to the quadratic loss, where n1 = n2 = 8, p1 = p2 = 10, σ2

1 = σ2
2 = 1,

µ1 = µ2 = µ(1, . . . , 1)t for µ taking values form 0 to 3. From this figure, it is seen that the
double shrinkage estimators ρ̂∗ST and ρ̂∗GB are better than ρ̂∗∗ST and ρ̂∗∗GB, respectively.
The generalized Bayes estimator ρ̂∗GB has the smallest risks of these estimators.
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0.30

0.35
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ρ̂**GB

ρ̂*GB

ρ̂**ST

ρ̂*ST

ρ̂*M ρ̂*ST ρ̂*GB ρ̂**ST ρ̂**GB 

Figure 1: Plots of risk functions of ρ̂∗M , ρ̂∗ST , ρ̂∗GB , ρ̂∗∗ST and ρ̂∗∗GB

4 Non-dominance and Dominance Results in Estima-

tion of Some Functions of Positive Parameters

In the previous sections, the dominance results of the double shrinkage estimator have
been shown for estimation of ratio of the positive parameters ρ = θ2/θ1. In this section,
we investigate whether similar dominance results hold in estimation of the product, sum
and difference of positive parameters.
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4.1 Non-dominance in estimation of product τ = θ1θ2

We first treat estimation of the product of the positive parameters τ = θ1θ2. Contrary to
our expectation, we shall show that similar dominance results do not hold.

Let τ̂ = θ̂1θ̂2 and τ̂ ∗ = θ̂∗1 θ̂
∗
2 be, respectively, a crude estimator and a double shrinkage

estimator of τ . An estimator τ̃ is evaluated relative to the Stein loss Ls(τ̃ /τ).

Theorem 4.1 Assume conditions (A1) and (A2) with Eω[θ̂i/θi] = 1 for i = 1, 2. Assume
that there exists a point ω0 such that

Eω0 [Ls(τ̂i/τi)] = Eω0 [Ls(τ̂
∗
i /τi)], i = 1, 2. (4.1)

Then, at the point ω0,
Rs(ω0, τ̂) < Rs(ω0, τ̂

∗),

namely, the double shrinkage estimator τ̂ ∗ = θ̂∗1 θ̂
∗
2 does not dominate the estimator τ̂ =

θ̂1θ̂2 relative to the Stein loss.

Proof. The same notations as in the proof of Theorem 2.1 are used. Condition (4.1)
implies that

Eω0 [log(Yi)] = Eω0 [Yi + log(Xi)− 1], (4.2)

for i = 1, 2. Using these equalities, we can write the difference of the risk functions of τ̂
and τ̂ ∗ as

∆s(ω0) =Eω0 [X1X2 − log(X1X2)− 1]− Eω0 [Y1Y2 − log(Y1Y2)− 1]

=Eω0 [−Y1Y2 + Y1 + Y2 − 1]

=− Eω0 [Y1 − 1]Eω0 [Y2 − 1].

From (A2), it follows that Eω[Yi − 1] ≤ Eω[Xi − 1] = 0 for i = 1, 2. This implies that
∆s(ω0) < 0 at ω0. □

As described in (3.2), the generalized Bayes estimator σ̂2GB
2 of σ2

2 has the same risk
to that of σ̂2M

2 when the noncentrality parameter λ2 is zero. Thus, condition (4.1) is
satisfied for σ̂2GB

2 . For σ2
1, we can provide the generalized Bayes estimator σ̃2GB

1 which
is given by replacing n2, p2, V2 and W2 in σ̂2GB

2 with n1, p1, V1 and W1, and condition
(4.1) is satisfied for σ̃2GB

1 . Hence, from Theorem 4.1 it follows that the generalized Bayes
estimator σ̃2GB

1 σ̂2GB
2 cannot dominate σ̃2M

1 σ̂2M
2 for σ̃2M

1 = V1/(n1 + 2), namely,

Rs(ω, σ̃
2M
1 σ̂2M

2 ) < Rs(ω, σ̃
2GB
1 σ̂2GB

2 ), (4.3)

when λ1 = 0 and λ2 = 0.

The non-dominance result under the Stein loss can be shown to hold for the quadratic
loss function Lq(τ̃ /τ) for Lq(t) = (t− 1)2.

Theorem 4.2 Assume conditions (A1) and (A2) with Eω[(θ̂i/θi)
2] = Eω[θ̂i/θi] for i =

1, 2. Assume that there exists a point ω0 such that

Eω0 [Lq(θ̂i/θi)] = Eω0 [Lq(θ̂
∗
i /θi)], i = 1, 2. (4.4)

10



Then, at the point ω0,
Rq(ω0, τ̂) < Rq(ω0, τ̂

∗),

namely, the double shrinkage estimator τ̂ ∗ = θ̂∗1 θ̂
∗
2 does not dominate the estimator τ̂ =

θ̂1θ̂2 relative to the quadratic loss.

Proof. The same notations as in the proof of Theorem 2.2 are used. Condition (4.4)
implies that

Eω0 [Y
2
i ] = Eω0 [2Yi −Xi], i = 1, 2, (4.5)

at ω0. Then, the difference of the risk functions of τ̂ and τ̂ ∗ is written as

∆q(ω0) =Eω0 [(X1X2 − 1)2 − (Y1Y2 − 1)2]

=Eω0 [−X1X2 − Y 2
1 Y

2
2 + 2Y1Y2]

=Eω0 [−X1X2 − (21 −X1)(2Y2 −X2) + 2Y1Y2]

=− 2Eω0 [Y1 −X1]Eω[Y2 −X2].

From (A2), it follows that ∆q(ω0) < 0 at ω0. □

4.2 Dominance in estimation of difference ξ = θ1 − θ2

We next treat estimation of the difference of the positive parameters ξ = θ1 − θ2. Let
ξ = θ̂1 − θ̂2 and ξ̂∗ = θ̂∗1 − θ̂∗2 be, respectively, a crude estimator and a double shrinkage
estimator of ξ. An estimator ξ̂ is evaluated in terms of the mean squared error (MSE)
given by MSE(ω, ξ̂) = E[(ξ̂ − ξ)2]. Assume the following condition:

(A5) For i = 1, 2, Eω[(θ̂i/θi)
2] = Eω[θ̂i/θi] and Eω[{θ̂i/θi − 1}2] ≥ Eω[{θ̂∗i /θi − 1}2] for

any ω.

This condition implies that Eω[θ̂i/θi] ≤ 1. In fact, it is seen that 0 < Var(θ̂i/θi) =
E[(θ̂i/θi)

2] − {E[θ̂i/θi]}2 = E[θ̂i/θi] − {E[θ̂i/θi]}2 = E[θ̂i/θi](1 − E[θ̂i/θi]), which leads
to the inequality Eω[θ̂i/θi] < 1. Combining this inequality and condition (A2) gives the
condition

Eω[θ̂
∗
i /θi − 1] < Eω[θ̂i/θi − 1] < 0, (4.6)

which will be used for proving the following theorem.

Theorem 4.3 Assume conditions (A1), (A2) and (A5). In the estimation of the differ-
ence ξ = θ1 − θ2, the double shrinkage estimator ξ̂∗ = θ̂∗1 − θ̂∗2 dominates the estimator
ξ̂ = θ̂1 − θ̂2 in terms of MSE, namely,

MSE(ω, ξ̂) ≥ MSE(ω, ξ̂∗)

for any ω.

Proof. For Xi = θ̂i/θi and Yi = θ̂∗i /θi, i = 1, 2, it is noted that ξ̂ − ξ and ξ̂∗ − ξ are
written as ξ̂ − ξ = θ1(X1 − 1) − θ2(X2 − 1) and ξ̂∗ − ξ = θ1(Y1 − 1) − θ2(Y2 − 1). Thus,
the difference of MSEs of the estimators ξ̂ and ξ̂∗ is expressed as

∆(ω) =MSE(ω, ξ̂)−MSE(ω, ξ̂∗)

=θ21{Eω[(X1 − 1)2]− Eω[(Y1 − 1)2]}+ θ22{Eω[(X2 − 1)2]− Eω[(Y2 − 1)2]}
+ 2θ1θ2{Eω[Y1 − 1]Eω[Y2 − 1]− Eω[X1 − 1]Eω[X2 − 1]}.
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The first two terms are nonnegative from (A5). Also from (4.6), it follows that

Eω[Y1 − 1]Eω[Y2 − 1] ≥ Eω[X1 − 1]Eω[X2 − 1] > 0.

These facts show that ∆(ω) > 0 for any ω. □

For the model treated in Section 3, we can consider the double shrinkage estimators
ξ̂∗ST = σ̃2ST

1 − σ̂2ST
2 , ξ̂∗GB = σ̃2GB

1 − σ̂2GB
2 and ξ̂∗SR = σ̃2SR

1 − σ̂2SR
2 where σ̃2ST

1 , σ̃2GB
1 and

σ̃2SR
1 are provided by replacing n2, p2, V2 and W2 in σ̂2ST

2 , σ̂2GB
2 and σ̂2SR

2 with n1, p1, V1

and W1. Then, the improvements of the double shrinkage estimators can be guaranteed
by Theorem 4.3.

4.3 Non-dominance in estimation of the sum η = θ1 + θ2

Finally, we consider estimation of the sum of the positive parameters η = θ1 + θ2, and we
shall show that dominance results do not hold.

Let η̂ = θ̂1 + θ̂2 and η̂∗ = θ̂∗1 + θ̂∗2 be, respectively, a crude estimator and a double
shrinkage estimator of η. An estimator η̂ is evaluated in terms of the mean squared error
MSE(ω, η̂) = E[(η̂ − η)2].

Theorem 4.4 Assume conditions (A1) and (A2) with Eω[(θ̂i/θi)
2] = Eω[θ̂i/θi] for i =

1, 2. Assume that there exists a point ω0 such that the equalities (4.4) holds. Then, at the
point ω0,

MSE(ω0, η̂) < MSE(ω0, η̂
∗),

namely, the double shrinkage estimator η̂∗ = θ̂∗1 + θ̂∗2 does not dominate the estimator
η̂ = θ̂1 + θ̂2 in terms of MSE.

Proof. Using the same arguments as in the proof of Theorem 4.3, we can write the
difference of MSEs of the estimators η̂ and η̂∗ as

∆(ω) =MSE(ω, η̂)−MSE(ω, η̂∗)

=θ21{Eω[(X1 − 1)2]− Eω[(Y1 − 1)2]}+ θ22{Eω[(X2 − 1)2]− Eω[(Y2 − 1)2]}
− 2θ1θ2{Eω[Y1 − 1]Eω[Y2 − 1]− Eω[X1 − 1]Eω[X2 − 1]}.

The first two terms are zero at ω0 from condition (4.4). Also from (4.6), it follows that
Eω[Y1− 1]Eω[Y2− 1] ≥ Eω[X1− 1]Eω[X2− 1] > 0, which implies that ∆(ω0) < 0 at ω0. □

A similar argument given around (4.3) is used to give an example of the non-dominance
result in Theorem 4.4. That is, a double shrinkage estimator η̂∗ = σ̃2GB

1 + σ̂2GB
2 cannot

dominate η̂ = (n1+2)−1V1+(n2+2)−1V2, where σ̃
2GB
1 and σ̂2GB

2 are the generalized Bayes
estimators of σ2

1 and σ2
2 relative to q(σ̂

2
i /σ

2
i ).
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5 A Connection to Estimation of Positive Normal

Means

In this section, we explain that the double shrinkage estimators for normal variances are
connected to estimation of restricted means in normal distributions. This fact was estab-
lished by Rukhin (1992). We here use the same arguments to explain how the dominance
and non-dominance results treated in the previous sections link to the corresponding
results derived by Kubokawa (2012) for estimation of positive normal means.

We first illustrate a one sample model with the following canonical form: X and V
are mutually independent random variables such that X ∼ Np(µ, σ

2I) and V/σ2 ∼ χ2
n.

The Stein truncated estimator of σ2 relative to the Stein loss is σ̂2ST = min{σ̂2M , (V +
∥X∥2)/(n+p)} improving on σ̂2M = V/n. The generalized Bayes and improved estimator
is given by

σ̂2GB =
V

n+ p

∫W

0
λp/2−1/(1 + λ)(n+p)/2dλ∫W

0
λp/2−1/(1 + λ)(n+p)/2+1dλ

. (5.1)

To approximate these estimators, we assume the following conditions:

(R1) Both p and n tend to infinity under the condition that n = O(pδ) for 0 < δ < 1.

(R2)
√
n∥µ∥2/(pσ2) →

√
2ξ as (n, p) → ∞, where ξ is a positive constant.

Theorem 5.1 Assume conditions (R1) and (R2). Then,
√
n(σ̂2M−σ2)/σ2 → −

√
2(Y−ξ)

in distribution, where Y is a random variable having N (ξ, 1) for ξ > 0. Also,
√
n(σ̂2ST − σ2)/σ2 →−

√
2(max{Y, 0} − ξ),

√
n(σ̂2GB − σ2)/σ2 →−

√
2(ξ̂GB − ξ),

where ξ̂GB =
∫∞
0

ξ exp{−(Y −ξ)2/2}dξ/
∫∞
0

exp{−(Y −ξ)2/2}dξ, which is the generalized
Bayes estimator of ξ against the uniform prior over the half real line ξ > 0.

Proof. This theorem was established by Rukhin (1992) in the asymptotics of making
n → ∞ after making p → ∞, which is slightly different from (R1). Thus, we provide
the proof under (R1) and (R2) instructively. Without any loss of generality, we can
assume that σ2 = 1. Let Z = (V − n)/

√
2n. Since Z → N (0, 1), it is seen that√

n(V/n− 1) =
√
2Z = −

√
2{(−Z + ξ)− ξ} → −

√
2(Y − ξ). We next note that

U ≡
√
n
(V + ∥X∥2

n+ p
− V

n

)
(5.2)

=−
√
n
p(
√
2nZ + n)

(n+ p)n
+
√
n
∥X − µ∥2 + 2µt(X − µ) + ∥µ∥2

n+ p

=−
√
2

pZ

n+ p
+

√
npA+ 2

√√
2npξpB +

√
2pξp

n+ p
,

where A = (∥X − µ∥2 − p)/
√
p, B = µt(X − µ)/∥µ∥ and ξp =

√
n∥µ∥2/(

√
2p). Since

B ∼ N (0, 1), A → N (0, 1) and ξp → ξ, it is seen from conditions (R1) and (R2) that

U →
√
2(−Z + ξ) =

√
2Y. (5.3)
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Thus,
√
n(σ̂2ST − 1) =

√
n(σ̂2M − 1) +

√
nmin{0, U} → −

√
2(Y − ξ) + min(0,

√
2Y ) =

−
√
2{max(Y, 0)− ξ}.
To evaluate the generalized Bayes estimator given in (5.1), make the transformation

1

1 + λ
=

V

n+ p

(
1− t√

n

)
with

dλ

(1 + λ)2
=

V dt

(n+ p)
√
n
.

Then, the range of λ in the integrals is changed from 0 < λ < W to T1 < t < T2, where

T1 =
√
n
(
1− n+ p

V

)
, T2 =

√
n
(
1− n+ p

V (1 +W )

)
.

Thus, the generalized Bayes estimator σ̂2GB in (5.1) can be rewritten as

σ̂2GB =

∫ T2

T1

{
1− (n+ p)−1V

(
1− t/

√
n
)}p/2−1(

1− t/
√
n
)n/2−1

dt∫ T2

T1

{
1− (n+ p)−1V

(
1− t/

√
n
)}p/2−1(

1− t/
√
n
)n/2

dt

,

so that
√
n(σ̂2GB − 1) is expressed as

√
n(σ̂2GB − 1) =

∫ T2

T1

{
1− (n+ p)−1V

(
1− t/

√
n
)}p/2−1

t
(
1− t/

√
n
)n/2−1

dt∫ T2

T1

{
1− (n+ p)−1V

(
1− t/

√
n
)}p/2−1(

1− t/
√
n
)n/2

dt

. (5.4)

We here investigate limiting values of the end points T1 and T2. It is observed that

T1 =
√
n
(
1− n+ p√

2nZ + n

)
=

√
2nZ − p√
2Z +

√
n
→ −∞. (5.5)

For T2, from (5.3), W is expressed as

W = ∥X∥2/V = (n+ p)U/(
√
nV ) + p/n,

which is used to rewrite T2 as

T2 =

√
nV (1 +W )−

√
n(n+ p)

V (1 +W )
=

√
nV + (n+ p)U +

√
n(p/n)V −

√
n(n+ p)

V + (n+ p)U/
√
n+ (p/n)V

=
V
√
n+ U −

√
n

U/
√
n+ V/n

=

√
2Z + U

U/
√
n+

√
2/nZ + 1

→
√
2Z +

√
2(−Z + ξ) =

√
2ξ. (5.6)

We now evaluate the integrant in (5.4). Note that

1− V

n+ p

(
1− t√

n

)
=
p−

√
2nZ

n+ p
+

√
2Z +

√
n

n+ p
t

=
p−

√
2nZ

n+ p

(
1 +

√
2Z +

√
n

p−
√
2nZ

t
)

=
p−

√
2nZ

n+ p

(
1 +

√
2Z +

√
n

p
t+Op(n/p

2)
)
.
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Then the integrals in (5.4) can be rewritten as

√
n(σ̂2GB − 1) =

∫ T2

T1

{
1 + (

√
2Z +

√
n)t/p+Op(n/p

2)
}p/2−1

t
(
1− t/

√
n
)n/2−1

dt∫ T2

T1

{
1 + (

√
2Z +

√
n)t/p+Op(n/p2)

}p/2−1(
1− t/

√
n
)n/2

dt

. (5.7)

It is here demonstrated that(p
2
− 1

)
log

{
1 +

√
2Z +

√
n

p
t+Op(n/p

2)
}
+
(n
2
− 1

)
log

{
1− t√

n

}
=
1

2

{
(
√
2Z +

√
n)t+Op(n/p)−

√
nt− t2

2
+O(n−1/2)

}
=− 1

4
(t−

√
2Z)2 +

Z2

2
+Op(n/p) +O(n−1/2). (5.8)

Combining (5.5), (5.6), (5.7) and (5.8), we can show that

√
n(σ̂2GB − 1) →

∫ √
2ξ

−∞ t exp{−(t−
√
2Z)2/4}dt∫ √

2ξ

−∞ exp{−(t−
√
2Z)2/4}dt

≡ D.

Making the transformation
√
2ξ − t =

√
2µ with −dt =

√
2dµ gives

D =

∫∞
0
(
√
2ξ −

√
2µ) exp{−(ξ − µ− Z)2/2}dt∫∞

0
exp{−(ξ − µ− Z)2/2}dt

=−
√
2
{∫∞

0
µ exp{−(Y − µ)2/2}dt∫∞

0
exp{−(Y − µ)2/2}dt

− ξ
}
,

which proves Theorem 5.1. □
We now apply Theorem 5.1 to a two sample model with the canonical forms: for i =

1, 2, X i and Vi are mutually independent random variables such that X i ∼ Np(µi, σ
2
i Ip)

and Vi/σ
2
i ∼ χ2

n. Similarly to (R2), assume the following condition for i = 1, 2:

(R2′)
√
n∥µi∥2/(pσ2

i ) →
√
2ξi as (n, p) → ∞, where ξi is a positive constant.

Theorem 5.2 Assume conditions (R1) and (R2′). Then,

√
n
( σ̂2GB

2

σ̂2GB
1

− σ2
2

σ2
1

)σ2
1

σ2
2

→−
√
2
{
(ξ̂GB

2 − ξ̂GB
1 )− (ξ2 − ξ1)

}
,

√
n
(
σ̂2GB
1 σ̂2GB

2 − σ2
1σ

2
2

)
/(σ2

1σ
2
2) →−

√
2
{
(ξ̂GB

1 + ξ̂GB
2 )− (ξ1 + ξ2)

}
,

√
n
{
(σ̂2GB

1 − σ̂2GB
2 )− (σ2

1 − σ2
2)
}
→−

√
2
{
(σ2

1 ξ̂
GB
1 − σ2

2 ξ̂
GB
2 )− (σ2

1ξ1 − σ2
2ξ2)

}
,

√
n
{
(σ̂2GB

1 + σ̂2GB
2 )− (σ2

1 + σ2
2)
}
→−

√
2
{
(σ2

1 ξ̂
GB
1 + σ2

2 ξ̂
GB
2 )− (σ2

1ξ1 + σ2
2ξ2)

}
,

where ξ̂GB
i =

∫∞
0

ξi exp{−(Yi−ξi)
2/2}dξi/

∫∞
0

exp{−(Yi−ξi)
2/2}dξi for a random variable

Yi having N (ξi, 1), i = 1, 2.
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Proof. It is first demonstrated that

√
n
( σ̂2GB

2 /σ2
2 − 1 + 1

σ̂2GB
1 /σ2

1 − 1 + 1
− 1

)
=
√
n(σ̂2GB

2 /σ2
2 − 1)−

√
n(σ̂2GB

1 /σ2
1 − 1) + op(1).

Here from Theorem 5.1, it is noted that
√
n(σ̂2GB

i − σ2
i )/σ

2
i → −

√
2(ξ̂GB

i − ξi). Then, the
first approximation in Theorem 5.2 can be derived. Next, it is observed that

√
n
{
(σ̂2GB

1 /σ2
1 − 1 + 1)(σ̂2GB

1 /σ2
2 − 1 + 1)

}
=
√
n(σ̂2GB

1 /σ2
1 − 1) +

√
n(σ̂2GB

2 /σ2
2 − 1) + op(1),

which can yield the second approximation. Also,

√
n
{
(σ̂2GB

1 − σ̂2GB
1 )− (σ2

1 − σ2
2)
}
=σ2

1

√
n(σ̂2GB

1 /σ2
1 − 1)− σ2

2

√
n(σ̂2GB

2 /σ2
2 − 1),

which can be approximated as −
√
2{(σ2

1 ξ̂
GB
1 − σ2

2 ξ̂
GB
2 ) − (σ2

1ξ1 − σ2
2ξ2)}. The fourth

approximation can be confirmed similarly. □

Theorem 5.2 implies that the generalized Bayes estimators of the ratio and product of
normal variances can be approximated as the generalized Bayes estimators of the difference
and sum of the normal positive means. Kubokawa (2012) considered the estimation of
the linear combination of ξ1 and ξ2, namely,

a1ξ1 + a2ξ2,

where a1 and a2 are known and non-zero constants. Then Kubokawa (2012) derived the
condition for the improvement of the generalized Bayes estimator, given in the following
proposition:

Proposition 5.1 In estimation of a1ξ1 + a2ξ2, the generalized Bayes estimator a1ξ̂
GB
1 +

a2ξ̂
GB
2 dominates a1Y1 + a2Y2 in terms of MSE if and only if a1a2 < 0.

Hence from Proposition 5.1, it follows that the generalized Bayes estimators of the
difference ξ1 − ξ2 and σ2

1ξ1 − σ2ξ2 for known σ2
1 and σ2

2 can dominate the corresponding
estimators Y1−Y2 and σ2

1Y1−σ2
2Y2, respectively. However, the generalized Bayes estimators

of the sum ξ1+ξ2 and σ2
1ξ1+σ2ξ2 for known σ2

1 and σ2
2 cannot dominate the corresponding

estimators Y1 + Y2 and σ2
1Y1 + σ2

2Y2. These facts coincide with the results derived in the
previous sections.
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