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Abstract 
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generalization of timing game with behavioral types explored by Matsushima (2013b). 
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1. Introduction 

 

The emergence and long persistence of the bubble in a market for a company’s 

stock would be socially harmful, because even if the company is unproductive, it can 

raise huge funds by issuing new shares during the bubble. The policy maker generally 

cannot identify whether the booming company is unproductive. Hence, it is important to 

answer the question about how the policy maker deters such harmful bubbles without 

this identification. 

This paper shows that the availability of credit default swap (in short CDS) could 

be a powerful policy method for deterring harmful bubbles. We define CDS as a 

financial instrument for bubble-contingent claim such that the seller of a CDS pays a 

promised monetary amount to its purchaser if and only if the bubble crashes. The 

purchaser of a CDS can receive this payment irrespective of whether he (or she) has 

underlying assets that are defaulted because of the bubble’s crash.1 

This paper assumes that a seller of a CDS is required to hold the full reserve for the 

payment of this CDS to the purchaser, and that the payment of a CDS is utilized for the 

purchaser’s debt obligation. Based on these assumptions, we show that the availability 

of CDS to trade can deter bubbles if the total payment of CDS grows less rapidly than 

the market value of the personal capital for the purchasers of CDS, i.e., the arbitrageurs 

who pursue speculative benefits. 

If an arbitrageur purchases no CDS and fails to sell his shareholding before the 

bubble’s crash, he (or she) is exempted from his debt obligation because of the 

non-recourse nature of debt contracts. On the other hand, if he purchases CDSs and fails 

to sell before the crash, he is not exempted from his entire debt obligation; he has to 

utilize the payment of the CDSs for paying off his debt obligation. This makes the 

instantaneous gain from timing the market greater, i.e., incentivizes any arbitrageur to 

time the market earlier, when CDS is available to trade than when CDS is not available. 

                                                 
1 We should distinguish CDS from ‘covered’ CDS the purchaser of which needs to have underlying 
default assets for receiving the payment. The definition of CDS in this paper corresponds to 
so-called ‘naked’ CDS. See Fostel and Geanakoplos (2012). We should also distinguish CDS from 
insurance contract against own default risks. See Section 3. 
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We assume, in an implicit manner, that, besides these arbitrageurs, there are many 

positive feedback traders (noise traders) who have a plenty of personal capital but are 

slaves of euphoria; they misperceive the fundamental value of the company and 

reinforce their misperception through time as long as the market share price matches 

their misperception. It is important to assume that the positive feedback traders are 

unaware of their own euphoria; they neither expect the share price to increase nor slump 

even if they actually, unconsciously, reinforce their misperception through time. In 

contrast, the arbitrageurs are well aware of the positive feedback traders’ euphoria and 

expect future speculative benefits as well as the bubble’s crash risk. 

Because of such awareness heterogeneity, the arbitrageurs can borrow money from 

the positive feedback traders with no premium for purchasing the newly issued shares. 

The arbitrageurs can also purchase CDSs from the positive feedback traders with no 

premium. 

In order to deter harmful bubbles, the policy maker must determine whether CDS is 

available to trade and the upper limit of leverage ratio that regulates the arbitrageurs’ 

borrowing activities. We show that, in a wide class of environments, irrespective of 

whether the company is unproductive, it is the best policy determination that CDS is 

made available and the regulation on leverage ratio is weakened. 

With a high leverage ratio (a weak regulation), the market value of the positive 

feedback trader’s shareholdings and their loan are sufficient, crowding out the reserve 

for the total payment of CDS. This decreases the arbitrageurs’ relative future benefits 

from riding the bubble to the instantaneous gain from timing the market, and therefore, 

can incentivize the arbitrageurs to time the market at early times. 

Based on these observations, we show that with a sufficient leverage ratio, the total 

payment of CDS grows less rapidly than the total personal capital of the positive 

feedback traders. Hence, the bubble is less likely to emerge and persist for a long time 

when CDS is available than when CDS is not available. We further show that the higher 

the leverage ratio is, the less likely the bubble is to emerge and persist for a long time. 

Moreover, provided the growth rate of the positive feedback traders’ personal capital is 

sufficient, the expected social cost, i.e., the expected amount of the raised funds, 

induced by the bubble decreases as the leverage ratio increases. These are in contrast 

with the case that CDS is not available. In this case, the higher the leverage ratio is, the 
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more likely the bubble is to emerge and persist for a long time; the greater the expected 

social cost induced by the bubble is. 

In order to describe strategic aspects in the stock market, we formulate a timing 

game with behavioral types as a generalization of Matsushima (2013b). There are 

multiple arbitrageurs as the players of this game, who decide whether to ride the bubble 

or to time the market at any time during the bubble in a bounded time interval [0,1] . 

The arbitrageur who times the market at the earliest wins the game and obtains the 

winner payoff, which is greater than the loser payoff. The winner payoff is increasing 

through time. The important assumption is that each arbitrageur is almost certainly 

rational, but, with a small but positive probability, he is behavioral in the sense that he 

never time the market on his own accord, i.e., he is committed to ride the bubble. Based 

on this assumption, this paper shows a non-trivial necessary and sufficient condition for 

the existence of Nash equilibrium, namely the bubble-crash equilibrium, according to 

which, any arbitrageur never time the market at the initial time, i.e., the bubble emerges 

as a Nash equilibrium outcome. This paper also shows that almost the same condition as 

the above guarantees that the bubble-crash strategy profile is the unique Nash 

equilibrium. We further show a necessary and sufficient condition for the existence of a 

Nash equilibrium namely the no-bubble equilibrium, according to which, any rational 

arbitrageur certainly times the market at the initial time. 

Based on these characterization results, we argue that the greater the relative future 

benefits for each arbitrageur are, the more likely the bubble is to emerge and persist for 

a long time, and that their relative future benefits crucially depend on whether CDS is 

available and on the stock market environments such as the leverage ratio cap and the 

degree of the positive feedback traders’ enthusiasm. 

 The findings of this paper can be considered theoretical contributions to the limited 

arbitrage literature (De Long et al. (1990), Shleifer and Vishny (1992), Abreu and 

Brunnermeier (2003), Matsushima (2013b), and others), where the interaction between 

rational arbitrageurs and positive feedback traders were intensively studied. 

 Abreu and Brunnermeier (2003) formulated a stock market as a timing game among 

arbitrageurs, where a particular aspect of informational asymmetry namely sequential 
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awareness was assumed. Matsushima (2013b) demonstrated an alternative model of 

timing game by replacing sequential awareness with behavioral types. 

 The main departure of this paper from Matsushima (2013b) and the other works is 

to permit the company to raise funds during the bubble, permit arbitrageurs to make 

debt contracts with positive feedback traders, and permit arbitrageurs to purchase CDS 

from positive feedback traders. With these permissions, the awareness heterogeneity 

needs to be explicitly treated. 

 Besides the limited arbitrage literature, there are various theoretical approaches for 

understanding the phenomenon of bubbles and crashes, such as overlapping generation 

models (Tirole (1985), Martin and Ventura (2012), Hirano and Yanagawa (2010), and 

others) and prior heterogeneity (Harrison and Kreps (1978), Simsek (2012), Maekawa 

(2013), and others).2 

Fostel and Geanakoplos (2012)) studied prior heterogeneity where traders have 

different beliefs about future price movement even if they share the same information.3 

Fostel and Geanakoplos argued that unexpected introduction of CDS increases default 

risks. This paper does not assume prior heterogeneity but awareness heterogeneity. In 

contrast with prior heterogeneity, arbitrageurs have the option to solve awareness 

heterogeneity. Moreover, with prior heterogeneity, traders disagree only in terms of 

default risk, while, with awareness heterogeneity, they disagree in terms of not only 

default risk but also share price growth. 

In summary, this paper demonstrates a theoretical ground for considering credit 

default swap as a powerful policy method to deter harmful bubbles. The organization of 

this paper is as follows. Section 2 demonstrates a formulation for timing game with 

behavioral types. Section 3 introduces the basic model, where CDS is not available, and 

the CDS model, where CDS is available. Section 4 explains the fine details of the stock 

market formulation. Sections 5 and 6 make further investigations about the basic model 

and the CDS model. Section 7 considers the social cost induced by the bubble. Section 8 

concludes. 

 

                                                 
2 For a general survey about bubbles and crashes, see Brunnermeier and Oehmke (2013). 
3 See also Geanakoplos (2010) and Che and Sethi (2010). 
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2. Timing Games with Behavioral Types 

 

 Fix a finite set of arbitrageurs (players) {1,2,..., }N n , where 2n  . We define a 

timing game with behavioral types as follows. Let [0,1]iA   denote the set of all pure 

strategies for each arbitrageur i N . By selecting i ia A , arbitrageur i  plans to time 

the market at time ia  during a bounded time interval [0,1] . A mixed strategy, in short 

a strategy, for arbitrageur i  is defined as a cumulative distribution : {0}i iq A R  , 

where ( )iq t  implies the probability that arbitrageur i  times the market at or before 

time t , which is non-decreasing and right-continuous in t  and satisfies (1) 1iq  . Let 

us denote by iQ  the set of all strategies for arbitrageur i . Let ii N
Q Q


   and 

( )i i Nq q Q  . We write i iq a  if arbitrageur i  selects pure strategy ia  with 

certainty. 

 Let us fix an arbitrary real number (0,1)  . We assume that each arbitrageur is 

rational with a probability 1 0  , while he (or she) is behavioral with a probability 

0  . If an arbitrageur is rational, he will conform to his selected strategy iq . If he is 

behavioral, he will not conform to iq  and instead never time the market on his own 

accord. Whether each arbitrageur is rational or behavioral is determined independently, 

and is unknown to the other arbitrageurs. 

 Consider an arbitrary pure strategy profile ( )i i N ii N
a a A A 
    , and an arbitrary 

non-empty subset of arbitrageurs H N . Suppose that any arbitrageur in H  is 

rational, while any arbitrageur in \N H  is behavioral. We denote by min j
j H

a


  the 

earliest time at which a rational arbitrageur selects, i.e., the time at which the timing 

game ends, i.e., the bubble crashes. We denote by { | }jl j H a     the number of 

rational arbitrageurs who select this ending time  . 

 With a probability 
1

l
, each rational arbitrageur i H , who selects  , becomes 

the winner of the timing game, and earns the winner payoff denoted by ( )iv  . We 
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assume that ( )iv   is differentiable in  . With regard to the remaining probability 

1l

l


, he loses the timing game, and earns the loser payoff denoted by ( )iv  . Any 

arbitrageur who does not select   loses the timing game. Hence, the expected payoff 

for any rational arbitrageur i H  can be given by 

   
1 1

( , ) ( ) ( )i i i

l
v H a v v

l l
 

    if ia  , 

and 

 ( , ) ( )i iv H a v      if ia  . 

We assume that the winner payoff is greater than the loser payoff, and the winner payoff 

is non-decreasing: 

( ) ( )i iv t v t  and 
( )

( ) 0i
i

v t
v t

t

  


. 

 We define the payoff function ( , ) :iu Q R   for each arbitrageur i N  as the 

expected value of ( , )iv H a  when he is rational, which is expressed as 

(1)   
:

( , ) [ ( , ) | , ]i i
H N i H

u q E v H a q 
 

  .4 

A strategy profile q Q  is said to be a Nash equilibrium associated with   if 

 ( , ) ( , , )i i i iu q u q q   for all i N  and all i iq Q . 

 We define the probability that the timing game ends, i.e., the bubble crashes, at or 

before [0,1]t  as 

   ( ; , ) 1 {1 (1 ) ( )}i
i N

D t q q t 


    . 

In case ( ; , )D t q   is differentiable in t , we can define the hazard rate of the timing 

game’s end at [0,1]t  as 

 
( ; , )

( )
1 ( ; , )

D t q
t

D t q








, 

                                                 
4 [ | , ]E q   denotes the expectation operator conditional on ( , )q  . 
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where 
( : , )

( : , )
D t q

D t q
t

  


. For each i N , we define the probability that the 

timing game ends at or before time t , provided arbitrageur i  has never timed the 

market before, by 

 
\{ }

( ; , ) 1 {1 (1 ) ( )}i i j
j N i

D t q q t 


    . 

In case ( ; , )i iD t q   is continuous in t , we can rewrite (1) for iq t  as 

   
0

( , , ) ( ) ( : , ) ( ){1 ( : , )}
t

i i i i i i i iu t q v dD q v t D t q


      
   . 

Hence, the first-order condition for Nash equilibrium is given by 

(2)   { ( ) ( )} ( : , ) ( ){1 ( : , )}i i i i i i iv t v t D t q v t D t q      , 

where 
( : , )

( : , ) i i
i i

D t q
D t q

t

 


 


. 

 Throughout this paper, we assume that the timing game is symmetric: 

1( ) ( )iv t v t  and 1( ) ( )iv t v t  for all i N  and all [0,1]t . 

We define the relative future benefit at time t  as 

   1

1 1

)
(

( ) ( )
(

)v t

v t
R

v t
t




 . 

 A strategy profile q Q  is said to be symmetric if 

 1iq q  for all i N . 

Note that if a strategy profile q Q  is symmetric, then 

(3)    1

1

(1 ) ( )
( )

1 (1 ) ( )

n q t
t

q t







 
, 

and, from (2), 

(4)    ( ) ( )
1

n
t R t

n
 


. 

Hence, the hazard rate ( )t  is proportional to the relative future benefit 1( )R t . 

 We specify a symmetric and continuous strategy profile ( )q q Q   , namely the 

bubble-crash strategy profile, as follows: 

(5)    
1

1

1
1 {1 (1 ) ( )}exp[ ( ) ]

1( )
1

t
q R d

nq t
 

   




   




 
 

  for all [ ,1]t   , 
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and 

   1( ) 0q t   for all [0, )t   , 

where we name ( ) [0,1)      the critical time, which is uniquely defined as either 

(6)   0   and 
11

exp[ ( ) ]
1

R d
n  

  


 
  

, 

or    

   0   and 
1

1 0

1
{1 (1 ) (0)}exp[ ( ) ]

1
q R d

n 
   


   

  . 

According to the bubble-crash strategy profile q , no arbitrageur times the market 

before the critical time  . After the critical time  , the timing game randomly ends, 

i.e., the bubble crashes randomly, according to the hazard rate given by 

( ) ( )
1

n
t R t

n
 


. It must be noted that the greater the relative future benefit ( )R   is, 

the greater the critical time   and the hazard rate ( )t  are, i.e., the more likely the 

bubble is to persist for a long time. Note that q q   satisfies the first order condition 

for Nash equilibrium (2) for each ( ,1)t   . 

 The following proposition shows a necessary and sufficient condition for the 

bubble-crash strategy profile q  to be a Nash equilibrium, and also shows a necessary 

and sufficient condition for q  to be a unique Nash equilibrium. The proposition is 

regarded as a generalization of Proposition 1, Theorem 2, and Theorem 3 in 

Matsushima (2013b). 

  

Proposition 1: The bubble-crash strategy profile q  is a Nash equilibrium if and only 

if 

   
1

0

1
exp[ ( ) ]

1
R d

n 
  


 

  . 

It is a unique Nash equilibrium if the strict inequality holds, i.e., 

   
1

0

1
exp[ ( ) ]

1
R d

n 
  


 

  . 

 

Proof: See Appendix A. 
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 It follows from Proposition 1 that the greater the relative future benefits ( )R t  are, 

the lesser   is required for the inequalities in Proposition 1, i.e., the more likely the 

bubble-crash strategy profile q  is to be a Nash equilibrium; the more likely the bubble 

is to persist for a long time. 

 If the bubble-crash strategy profile q  is a Nash equilibrium, then almost surely it 

is the unique Nash equilibrium. If it is a Nash equilibrium, then the critical time   

satisfies (6); no arbitrageur times the market at the initial time 0, i.e., 

   ( ) 0iq     for all i N . 

 We further specify another symmetric strategy profile ˆ ˆ( )i i Nq q  , namely the 

no-bubble strategy profile, as 

   ˆ (0) 1iq   for all i N . 

The following proposition shows a necessary and sufficient condition for the 

non-bubble strategy profile *q  to be a Nash equilibrium. The proposition is a 

generalization of Proposition 4 in Matsushima (2013b). Let us define the overall 

relative future benefit by 

   1 1

1 1

(1) (0)

(0) (0)

v v
R

v v





. 

 

Proposition 2: The no-bubble strategy profile q̂  is a Nash equilibrium if and only if 

   
1 1

( 1)! 1 1
( )

!( 1 )! 1
l

l n

n
R

l n l l


  

 


   . 

 

Proof: See Appendix B. 

 

Note that the right-hand side of the inequality in Proposition 2 is decreasing in  . 

It follows from Proposition 2 that the smaller the overall relative future benefit R  is, 

the greater   is permitted for the inequalities in Proposition 2, i.e., the less likely the 

no-bubble strategy profile is to be a Nash equilibrium; the more likely the bubble is to 

emerge. 
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3. Basic Model and CDS Model 

 

 We demonstrate the basic model, in which credit default swap (in short CDS) is 

not available. If arbitrageur i  wins the associated timing game with the basic model, 

he receives the monetary value of his shareholding evaluated according to the bubble 

share price minus his debt obligation, i.e., he earns his personal capital, denoted by 

( )iW t , evaluated according to the bubble share price. If arbitrageur i  loses the timing 

game, he receives nothing; after the bubble’s crash, the market value of his shareholding 

declines to zero. Because of the non-recourse nature of debt contracts, he is exempted 

from his entire debt obligation. Hence, the winner payoff and loser payoff in the basic 

model are given by 

   ( ) ( )i iv t W t  and ( ) 0iv t  . 

On the symmetry assumption in that 

   1( ) ( )iW t W t  for all i N , 

the relative future benefit in the basic model, denoted by *( ) ( )R t R t , is given by 

   * 1

1

( )
( )

( )

W t
R t

W t


 , 

and the overall relative future benefit , denoted by *R R , is given by 

   * 1

1

(1)
1

(0)

W
R

W
  . 

The critical time and the hazard rate associated with the basic model are denoted by 

   *    and *( ) ( )t t  , 

respectively. 

 We further demonstrate the CDS model, in which CDS is available. Any 

arbitrageur purchases CDS from the positive feedback traders. Each arbitrageur i  

receives the payment from the seller of CDS, denoted by ( )iZ t , when the bubble 

crashes at time t , irrespective of whether he wins the timing game associated with the 

CDS model or not. If arbitrageur i  wins the timing game, he earns, not only his 

personal capital ( )iW t , but also the payment of CDS ( )iZ t . If he loses the timing game, 
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he earns the payment of CDS ( )iZ t , but is not exempted from his entire debt 

obligation. 

 His debt obligation is given by 

{ ( ) 1} ( )i iL t W t , 

where ( )iL t  denotes the leverage ratio defined as the market value of the arbitrageur’s 

stockholding divided by the market value of his personal capital. By utilizing the 

payment of CDS, any loser has to pay back to his debt holders the monetary amount of 

min[ ( ),{ ( ) 1} ( )]i i iZ t L t W t . 

Hence, the winner payoff and the loser payoff in the CDS model are given by 

   ( ) ( ) ( )i i iv t W t Z t  , 

and 

   ( ) max[ ( ) { ( ) 1} ( ),0]i i i iv t Z t L t W t   . 

On the symmetry assumption in that 

   1( ) ( )iW t W t , 1( ) ( )iZ t Z t , and 1( ) ( )iL t L t  for all i N , 

the relative future benefit in the CDS model, denoted by **( ) ( )R t R t , is given by 

   ** 1 1

1 1

( ) ( )
( )

( ) ( )

W t Z t
R t

W t Z t

 



    if 1 1 1{ ( ) 1} ( ) ( )L t W t Z t  , 

   ** 1 1

1 1

( ) ( )
( )

( ) ( )

W t Z t
R t

L t W t

 
      if 1 1 1{ ( ) 1} ( ) ( )L t W t Z t  , 

and the overall relative future benefit , denoted by **R R , is given by 

   ** 1 1

1 1

(1) (1)
1

(0) (0)

W Z
R

W Z


 


    if 1 1 1{ (0) 1} (0) (0)L W Z  , 

and 

   ** 1 1 1 1

1 1

(1) (1) { (0) (0)}

(0) (0)

W Z W Z
R

L W

  
   if 1 1 1{ (0) 1} (0) (0)L W Z  . 

The hazard rate and the critical time associated with the CDS model are denoted by 

   **( ) ( )t t   and **   , 

respectively. 

 It is clear from (4) and (6) that 

   * ** * **[ ( ) ( )] [ ( ) ( )]R t R t t t     
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   [ * **( ) ( )R t R t  for all [0,1]t ] * **[ ]   . 

and 

   [ * **( ) ( )R t R t  for all [0,1]t ] * **[ ]   . 

Hence, if the relative future benefits are greater (smaller) in the basic model than in the 

CDS model, then the bubble is more (less, respectively) likely to persist for a long time 

in the basic model than in the CDS model. If the overall relative future benefit is greater 

(smaller) in the basic model than the CDS model, i.e., 

   * **R R  ( * **R R ), 

then the bubble is more (less, respectively) likely to emerge in the basic model than in 

the CDS model. 

 The following theorem shows a characterization result concerning which is greater 

between the basic model and the CDS model in terms of relative future benefits and 

overall relative future benefit. This theorem generally says that the relative future 

benefits and overall relative future benefit are greater, and therefore, the bubble is more 

likely to emerge and persist for a long time, in the basic model than in the CDS model, 

provided the payment of CDS 1( )Z t  sufficiently grows through time compared with 

the arbitrageur’s personal capital 1( )W t . 

 

Theorem 3: For each [0,1]t , if 

   1 1 1{ ( ) 1} ( ) ( )L t W t Z t  , 

then 

* ** 1 1 1

1 1 1

( ) ( ) ( )
[ ( ) ( )] [ ]

( ) ( ) ( )

W t W t Z t
R t R t

W t W t Z t

  
  


. 

For each [0,1]t , if 

   1 1 1{ (0) 1} (0) (0)L W Z  , 

then 

* **
1 1 1[ ] [{ ( ) 1} ( ) ( )]R R L t W t Z t     . 

If 

   1 1 1{ (0) 1} (0) (0)L W Z  , 

then 
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* ** 1 1 1

1 1 1

(1) (1) (1)
[ ] [ ]

(0) (0) (0)

W W Z
R R

W W Z


  


. 

If 

   1 1 1{ (0) 1} (0) (0)L W Z  , 

then 

* **
1 1 1 1 1[ ] [{ ( ) 1}{ (1) (0)} (1) (0)]R R L t W W Z Z      . 

 

Proof: The proof of this theorem is straightforward from the definitions of *( )R t , *R , 

**( )R t , and **R . 

Q.E.D. 

 

 We should distinguish the CDS model from the ‘covered’ CDS model, where 

covered CDS is available to trade, which pays its purchaser the difference between his 

debt obligation and the monetary value of his defaulted shareholding whenever the 

bubble crashes. This implies that the winner payoff and the loser payoff in the covered 

CDS model are the same as the winner payoff and the loser payoff in the basic model, 

respectively. 

 We should also distinguish the CDS model from the ‘insurance’ model, where any 

arbitrageur can make a full insurance contract with positive feedback traders against the 

crash risk of his own shareholding. In the insurance model, the loser payoff is the same 

as the winner payoff, and therefore, all arbitrageurs are incentivized to ride the bubble at 

all times: the bubble never crashes. 
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4. Stock Market 

 

 This section formulates the details of the market for a company’s stock. The 

company has no profitable business opportunity: its fundamental value is set at zero. 

We denote by ( ) 0S t   the total share that the company has issued up to time [0,1]t , 

where ( )S t  is non-decreasing in t . The company raises funds by issuing shares during 

the bubble. During a short time interval [ , ]t t   , the company issues approximately 

( )S t   number of shares. 

 We denote by ( ) 0iS t   the number of shares that arbitrageur i  possesses at time 

t  during the bubble, where ( )iS t  is non-decreasing in t . During a short time interval 

[ , ]t t   , arbitrageur i  purchases approximately ( )iS t   number of shares. 

 The share price grows during the bubble following a continuous and increasing 

function :[0,1] (0, )P   . The bubble persists as long as the arbitrageurs continue to 

hold 100n  % of the company’s stock or more, where 10 n  . Once the 

arbitrageurs’ total shareholdings fall to less than 100n  %, the bubble crashes 

immediately and the share price declines to zero. Even if no arbitrageur sells, the bubble 

automatically crashes just after termination time 1.5 

It is implicit to assume that there are many positive feedback traders who are slaves 

to euphoria. During the bubble, at any time [0,1]t , they misperceive the current share 

price ( )P t  as reflecting the correct fundamental value, and they further unconsciously 

reinforce their misperception according to P . However, once the arbitrageurs’ total 

shareholdings fall to less than 100n  %, the resultant selling pressure would force the 

positive feedback traders out of euphoria; they would become aware of the correct 

fundamental value, immediately bursting the bubble. 

It is substantial to make the assumption of awareness heterogeneity between 

arbitrageurs and positive feedback traders as follows. The positive feedback traders are 

unaware of their own euphoria, i.e., their reinforcement pattern and the bubble’s crash 

                                                 
5 For example, if the arbitrageurs expect the share price to stop growing after the termination time 1, 
the bubble automatically crashes just after termination time 1. 
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risk, while the arbitrageurs are well aware of the positive feedback traders’ euphoria. 

The positive feedback traders incorrectly expect the current share price to never change 

through time, even if they actually change their minds and reinforce their misperception. 

Hence, the positive feedback traders incorrectly neither expect the current share price to 

increase nor to stump. 

The company raises funds by issuing shares during the bubble, but within a limit. 

If the company issues too many shares for each arbitrageur to keep his shareholding not 

less than 100  %, the resultant selling pressure will burst the bubble. Hence, for the 

company to raise funds without causing the bubble’s crash, the arbitrageurs need to 

purchase the sufficient number of shares to keep their shareholdings not less than 

100n  %. 

In this case, an effective method would be for the company to encourage each 

arbitrageur to borrow money from the positive feedback traders. Because of the 

assumption of awareness heterogeneity, the positive feedback traders neither perceive 

the bubble’s crash risk nor any speculative merit. Hence, each arbitrageur can enter into 

short-term debt contracts with the positive feedback traders with no premium. 

We set an exogenous cap for the leverage ratio, denoted by 1L  . Since any 

arbitrageur is in a better position when he lets his leverage ratio be equal to this upper 

limit, he will have a debt obligation of 
1

( ) ( )i

L
P t S t

L


 to his debt holders at any time 

t  during the bubble, i.e., ( )iL t L . 

The personal capital ( )iW t  of each arbitrageur i  is expressed as the market value 

of his shareholding minus his debt obligation: 

(7)    
1 ( ) ( )

( ) ( ) ( ) ( ) ( ) .i
i i i

L P t S t
W t P t S t P t S t

L L


    

Since arbitrageur i  earns a capital gain { ( ) ( )} ( )iP t P t S t    from time t  to time 

t   , his personal capital increases approximately by this amount: 

   ( ) ( ) { ( ) ( )} ( )i i iW t W t P t P t S t       , 

which implies 

   ( ) ( ) ( )i iW t P t S t  . 

From (7), 
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( ) ( ) ( ) ( )

( ) i i
i

P t S t P t S t
W t

L

   . 

Hence, from these equations, ( (0), (0), )P S L  uniquely determines arbitrageur 'i s  

shareholding; for every [0,1]t , 

   
( ) ( ) ( ) ( )

( ) ( ) i i
i

P t S t P t S t
P t S t

L

   , 

that is, 

   1( )
( ) (0)( )

(0)
L

i i

P t
S t S

P
 . 

 We assume symmetry in that the arbitrageurs possess the same number of shares at 

initial time: 1(0) (0)iS S  for all {1,..., }i n . In this case, the arbitrageurs possess the 

same number of shares through time: 

   1( ) ( )iS t S t  for all {1,..., }i n  and all [0,1]t . 

The company better keeps the number of shares that each arbitrageur possesses equal to 

100  %: 

   1( ) ( ) ( )iS t S t S t  . 

From the above observations, the total share can be expressed as 

(8)    1( )
( ) (0)( )

(0)
LP t

S t S
P

 , 

and the personal capital of each arbitrageur i  can be expressed as 

(9)   
( )

( ) (0) (0)( )
(0)

L
i

P t
W t P S

L P


 . 
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5. Basic Model: Specification 

 

 According to Section 4, we specify the details of the basic model as follows. If 

arbitrageur i  wins the timing game, he obtains a monetary amount ( ) ( )iP t S t  and 

repays his debt obligation 
1

( ) ( )i

L
P t S t

L


. Hence, the winner payoff, which is 

equivalent to his personal capital, is specified as 

 
1 ( )

( ) ( ) ( ) ( ) ( ) ( ) (0) (0)( )
(0)

L
i i i i

L P t
v t W t P t S t P t S t P S

L L P


    . 

It follows from Section 3 that 

(10)   * (
(

)
)

)

(

P
R

t

t
L

P
t


 , 

(11)   * (1)
( ) 1

(0)
LP

R
P

  . 

(12)   *( )
1

( )

( )

P tn

P
t

n t
L





, 

and 

(13)   
*

1( )
( )

(1)

L

nP

P

 


. 

From these equalities, it follows that the greater 
( )

( )

P t

P t


 is at any time [0,1]t , the 

greater the relative future benefits *( )R t , the overall relative future benefit *R , the 

hazard rate *( )t , and the critical time *  are. Hence, the more enthusiastic the 

positive feedback traders are, the more likely the bubble is to emerge and persist for a 

long time. 

 Let us denote 

* *( ) ( , )R t R t L , * *( )R R L , * *( ) ( , )t t L  , and * *( )L   . 

From (10), (11), (12), and (13), 

   
*( , )

0
R t L

L





, 

*( )
0

R L

L





, 

*( , )
0

t L

L





, and 

*( )
0

L

L







. 
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Hence, the greater the leverage ratio L  is, the more likely the bubble is to emerge and 

persist for a long time. 

 From (10), (11), (12), and (13), 

   * * *lim ( , ) lim ( ) lim ( , )
L L L

R t L R L t L
  

     and *lim ( ) 1
L

L


 . 

Hence, even if the positive feedback traders are not very enthusiastic, the bubble is 

likely to emerge and persist for a long time whenever the leverage ratio L  is sufficient. 
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6. CDS Model: Specification 

 

 According to Section 4, we specify the details of the CDS model as follows. The 

payment of CDS would depend on the total personal capital of the positive feedback 

traders (the sellers of CDS), which is denoted by ( ) 0B t  . We assume ( )B t  is 

differentiable and non-decreasing in t ; i.e., ( ) 0B t  . 

 The sellers of CDS, i.e., the positive feedback traders, are required to have full 

reserve to pay for the purchasers of CDS, i.e., the arbitrageurs. Therefore, ( )B t  must 

be equal to the sum of the market value of the positive feedback traders’ shareholdings 

(1 ) ( ) ( )n P t S t , their loan to arbitrageurs 
1

( ) ( )
L

n P t S t
L


, and their reserve for the 

payment of CDS 1( )nZ t : 

    1

1
( ) (1 ) ( ) ( ) ( ) ( ) ( )

L
B t n P t S t n P t S t nZ t

L
 

     

    1

( )
(1 ) (0) (0)( ) ( )

(0)
Ln P t

P S nZ t
L P


   , 

which implies 

(14)    1

1 1 ( )
( ) ( ) ( ) (0) (0)( )

(0)
LP t

Z t B t P S
n n L P


   . 

 Because of awareness heterogeneity, any arbitrageur can purchase CDS from the 

positive feedback traders with no premium. It is important to note that any arbitrageur 

never demands CDS beyond the right-hand side of (14); otherwise, the CDS demand 

pressure makes the premium for CDS positive, which makes the positive feedback 

traders aware of the bubble’s crash risk, dampening their euphoria. 

 For simplicity of arguments, we assume that ( )B t  is sufficient to keep the 

payment of CDS to each arbitrageur greater than his debt obligation: 

    1 1( ) ( 1) ( )Z t L W t  . 

Hence, according to Section 3, the winner payoff and the loser payoff in the CDS model 

are specified as 

 1 1 1( ) ( ) ( )v t W t Z t 
1 2 ( )

{ ( ) (1 ) (0) (0)( ) }
(0)

Ln P t
B t P S

n L P


   , 
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and 

   1 1 1( ) ( ) ( 1) ( )v t Z t L W t  
1 ( 2) ( )

[ ( ) {1 } (0) (0)( ) ]
(0)

LL n P t
B t P S

n L P


  . 

Note from (14) that 

(15)    1
1

1 ( )
( ) { ( ) ( ) ( ) (0)( ) }

(0)
LP t

Z t B t L n P t S
n P

      . 

We assume 

    1( ) 0Z t   for all [0,1]t . 

The relative future benefit and the overall relative future benefit are specified as 

(16)   ** 1 1

1

( ) ( )
( )

( )

W t Z t
R t

LW t

 
  

   
( ) ( )

( ) ( )(0) (0)( )
(0)

1
{ ( 2 ) }

L

B t P t
P t P tP S
P

L n
L n




 





 

and 

(17)   ** 1 1 1 1

1

(1) (1) { (0) (0)}

(0)

W Z W Z
R

LW

  
  

    

2 (1)
(1) (0) (1 ) (0) (0){( ) 1}

(0)
(0) (0)

Ln P
B B P S

L P
n P S





   
 . 

 We decompose the increase in positive feedback traders’ personal capital ( )B t   

into two parts, i.e., the capital gain (1 ) ( ) ( )n P t S t    and the exogenous increase 

( )h t  : 

(18)   1( )
( ) (1 ) ( ) ( ) ( ) (1 ) ( ) (0)( ) ( )

(0)
LP t

B t n P t S t h t n P t S h t
P

          . 

From (9), (15), and (18), it follows that 

   [ 1 1( 1) ( ) ( )L W t Z t   ] 1( )
[ ( ) ( 1)(1 ) ( ) (0)( ) ]

(0)
LP t

h t L n P t S
P

     . 

Hence, if the leverage ratio L  is sufficient, the positive feedback traders are 

enthusiastic, i.e., ( )P t  and 
( )

(0)

P t

P
 are sufficient, and the rates of exogenous increase 
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in positive feedback traders’ personal capital, ( )h t , are insufficient, then the inequality 

of 

   1( )
( ) ( 1)(1 ) ( ) (0)( )

(0)
LP t

h t L n P t S
P

     

is likely to hold. Hence, from Theorem 3, if the leverage ratio is sufficient, the positive 

feedback traders are enthusiastic, and the rates of exogenous increase in positive 

feedback traders’ personal capital are insufficient, then the relative future benefit in the 

basic model is greater than in the CDS model, i.e., * **( ) ( )R t R t ; the bubble is more 

likely to persist for a long time in the basic model than in the CDS model. 

 In the same manner, if the leverage ratio is insufficient, the positive feedback 

traders are not very enthusiastic, and the rates of exogenous increase in positive 

feedback traders’ personal capital are sufficient, then the relative future benefit in the 

basic model is lesser than in the CDS model, i.e., * **( ) ( )R t R t ; the bubble is less 

likely to persist for a long time in the basic model than in the CDS model. 

 From (9), (15), and (18), it follows that 

   1 1 1 1[( 1){ (1) (0)} (1) (0)]L W W Z Z     

   
1

0

1 (1)
[ ( ) (1 ) (0) (0){( ) 1}]

(0)
L

t

L P
h t dt n P S

L P





    . 

Hence, if the leverage ratio L  is sufficient, the positive feedback traders are 

enthusiastic, i.e., 
(1)

(0)

P

P
 is sufficient, and the overall exogenous increase in positive 

feedback traders’ personal capital 
1

0
( )

t
h t dt

  is insufficient, then the inequality of 

   
1

0

1 (1)
( ) (1 ) (0) (0){( ) 1}

(0)
L

t

L P
h t dt n P S

L P





    

is likely to hold. Hence, from Theorem 3, if the leverage ratio is sufficient, the positive 

feedback traders are enthusiastic, and the overall exogenous increase in positive 

feedback traders’ personal capital is insufficient, then the overall relative future benefit 

in the basic model is greater than in the CDS model, i.e., * **R R ; the bubble is more 

likely to emerge in the basic model than in the CDS model. 
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 In the same manner, if the leverage ratio is insufficient, the positive feedback 

traders are not very enthusiastic, and the overall exogenous increase in positive 

feedback traders’ personal capital is sufficient, then the overall relative future benefit in 

the basic model is lesser than in the CDS model, i.e., * **R R ; the bubble is less likely 

to emerge in the basic model than in the CDS model. 

We examine about the impact of the increase in leverage ratio as follows. 

 

Theorem 4: Suppose 1L n  . Then, 

   
**( , )

0
R t L

L





 and 

**( )
0

R L

L





. 

 

Proof: From (16) and (18), 

   ** ( ) ( )
( , ) (1 )

( )(

1

) (0) (0)(
)

}
)

(0

{
L

P t h t

L n
R t L n L

P tP t P S
P





   . 

Hence, from 1L n  , 

   
*

2

* 1
{

( , ) ( ) ( )
(1 )

( )( ) (0) (
}

0)( )
(0)

L

R t L P t h t
n L

P tL P t P SL n
P





   


 

   

( )
( ) log( )

( ) (0)
( )( ) (0) (0)( )

0

(

1
{ }

0)
L

P t
h t

P t P
P tP t P S
P

L n


  . 

From (17) and (18), 

   
0

**

11 (1)
(0) (0){( ) 1} ( )

(0)
(0) (0)

( )

L

t

n L P
P S h t dt

L P
P

L
S

R
n




 
 




. 

Hence, from 1L n  , 

    
**

2

( ) 1 1 (1)
[ (0) (0){( )

(0) (0)
1}

(0)
LR L n P

P S
L S Ln P P




 
  


 

    
1 (1) (1)

log( ) (0) (0)( ) ] 0
(0) (0)

Ln L P P
P S

L P P

 
  . 

Q.E.D. 
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 Theorem 4 states that provided the leverage ratio L  is not insufficient, i.e., 

1L n  , as the greater the leverage ratio L  is, the less likely the bubble is to emerge 

and persist for a long time. This is in contrast with the basic model. A high leverage 

ratio fosters the bubble when CDS is not available, while it does deter the bubble when 

CDS is available. The increase in leverage ratio L  enhances the future loan to the 

arbitrageurs, which crowds out the future reserve for CDS, decreasing the relative future 

benefit. This is the driving force for a high leverage ratio to deter the bubble in the CDS 

model. 
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7. Social Cost 

 

Since the company has no profitability, we can define the social cost of the bubble 

as the total funds that the company raises during the bubble, i.e., from the initial time 0 

to time t  at which the bubble crashes, which can be expressed as 

   
0

( , ) ( ) ( )
t

C t L P S d


  


 
1 ( )

(0) (0) {( ) 1}
(0)

LL P t
P S

L P


  . 

We clarify whether the expected social cost induced by the bubble-crash strategy profile 

q , i.e., 

1

0
( , ) ( ; , )

t
C t L dD t q 

  , 

is decreasing in leverage ratio L  in the CDS model. Note that ( , )C t L  is increasing in 

L , while the relative future benefit **( , )R t L  is decreasing in L . Hence, if 
**( , )R t L

L




 

is sufficient compared with 
( , )C t L

L




, then the expected social cost induced by q  

decreases as L  increases. 

 Importantly, the values of social cost ( , )C t L  are irrelevant to the rates of 

exogenous increase in positive feedback traders’ personal capital ( )h t , while  

**( , )R t L

L




 is increasing in ( )h t , which diverges to infinity as ( )h t  increases. Hence, 

we can conclude that if the rates of exogenous increase in positive feedback traders’ 

personal capital ( )h t  are sufficient, then a high leverage ratio not only decreases the 

critical time and the hazard rate, but also decreases the expected social cost induced by 

q . 
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8. Conclusion 

 

This paper generalized the timing game with behavioral types explored by 

Matsushima (2013b), and applied it to the stock market of a company that is 

unproductive but raises wasteful funds during the bubble that is driven by the positive 

feedback traders’ euphoria. We assumed awareness heterogeneity between arbitrageurs 

and positive feedback traders in terms of reinforcement and bubble’s crash risk. We 

permitted arbitrageurs to borrow money from positive feedback traders with no 

premium. We also permitted arbitrageurs to purchase credit default swap (CDS) defined 

as bubble-contingent claim from positive feedback traders with no premium. 

We demonstrated a theoretical ground for considering CDS as a powerful policy 

method to deter harmful bubbles, even if the policy maker cannot identify whether the 

company is unproductive. We showed that the bubble is less likely to emerge and 

persist in the CDS model than in the basic model. A high leverage ratio deters the 

mergence and long persistence of bubble in the CDS model, while it facilitates the 

mergence and long persistence of bubble in the basic model. In the CDS model, a high 

leverage ratio could decrease the expected social cost induced by the company’s 

fund-raising during the bubble. 
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Appendix A: Proof of Proposition 1 

 

 From q , for every ˆ [ ,1]   , we specify a symmetric strategy profile 

ˆ ˆ( )i i Nq q Q 
   as follows: 

   ˆ
1 1( ) ( )q t q t    for all ˆ[ ,1]t  , 

and 

   ˆ
1 1 ˆ( ) ( )q t q    for all ˆ[0, )t  . 

According to ˆq , any rational arbitrageur times the market at the initial time 0 with 

probability 1 ˆ( )q  . After the initial time 0, he never times the market until time ̂ . 

After time ̂ , he conforms to q . 

 

Proposition A-1: A symmetric strategy profile q Q  is a Nash equilibrium if and only 

if there exists ˆ [ ,1]    such that 

  ˆq q , 

and 

(A-1)  1 1 1 1ˆ(0, , ) ( , , )u q u q     whenever ˆ 1   and 1(0) 0q  , 

and 

(A-2)  1 1 1 1ˆ(0, , ) ( , , )u q u q     whenever ˆ 1  . 

 

Proof: We set any symmetric Nash equilibrium q Q  arbitrarily. It is clear that the 

inequality (A-2) is necessary and sufficient for the Nash equilibrium property if ˆ 1  , 

i.e., 1q q . We assume that 1q q , i.e., 1(0) 1q  . 

 We show that 1( )q   is continuous. Let us suppose that 1( )q   is not continuous. 

Then, there will exist 0    such that 1 1lim ( ) ( )q q
 

 


 . From symmetry, it follows 

that by selecting any time that is slightly earlier than   , any arbitrageur can 

dramatically increase his winning probability. This implies that no arbitrageur selects 

  , which is a contradiction. 

 Let us specify 
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    1 1ˆ max{ (0,1] : ( ) (0)}q q     . 

We show that 1( )q   is increasing in ˆ[ ,1] . Suppose that 1( )q   is not increasing in 

ˆ[ ,1] . From the continuity of 1q  and the specification of ̂ , we select ˆ, [ ,1]     

such that    , 1 1( ) ( )q q   , and the selection of    is a best response. Since no 

arbitrageur selects any time   in ( , )   , it follows from the continuity of q  that by 

selecting time    instead of   , any arbitrageur can increase his winner payoff 

without decreasing his winning probability, which is a contradiction. 

 Any selection ˆ[ ,1]   must be a best response, because 1( )q   is increasing in 

ˆ[ ,1] . This implies that the first-order condition holds for all ˆ[ ,1]  , i.e., ˆq q . 

Given that ˆ 1  , it is clear from the fact that the winner payoff ( )iv t  is increasing that 

ˆq  is a Nash equilibrium if and only if 

1 1 1 1ˆ(0, , ) ( , , )u q u q     whenever 1(0) 0q  . 

This implies that (A-1) is necessary and sufficient. 

Q.E.D. 

 

The first part of Proposition 1 is proved as follows. From Proposition A-1, 1  , 

and q q  , it follows that q  is a Nash equilibrium if and only if 

either 1(0) 0q   or 1 1 1 1(0, , ) ( , , )u q u q      . 

The weak inequality in Proposition 1 implies (6). Hence, 1(0) 0q  , i.e., q  is a Nash 

equilibrium. 

 Suppose that the strict inequality in Proposition 1 does not hold. Then, it must hold 

that 0   and 1(0) 0q  . This, however, contradicts the Nash equilibrium property 

that any selection of [0,1]t  is a best response: any arbitrageur prefers time 0 to any 

time slightly later than time 0, because he can dramatically increase his winning 

probability without any substantial decrease in winner payoff. 

The latter part of Proposition 1 is proved as follows. It follows from the strict 

inequality in Proposition 1 that the property of (6) holds and 0  . This, along with 

Proposition A-1, implies that any symmetric Nash equilibrium q  must satisfy q q  . 
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Next, we show that q  is a unique Nash equilibrium even if all asymmetric Nash 

equilibria are taken into account. We set any Nash equilibrium q Q  arbitrarily. 

First, we show that ( )iq   must be continuous in [0,1]  for all i N . Suppose 

that ( )iq   is not continuous in [0,1] . Then, there exists 0    such that 

lim ( ) ( )i iq q
 

 


  for some i N ; any other arbitrageur can drastically increase his 

winning probability by selecting any time slightly earlier than time   . Hence, no other 

arbitrageur selects any time that is either the same as or slightly later than   . Hence, 

arbitrageur i  can postpone timing the market without decreasing his winning 

probability. This is a contradiction. 

Second, we show that ( ; )D q  must be increasing in 1[ ,1] , where we denote 

  1 max{ (0,1] : ( ) (0) }i iq q for all i N      . 

Now, suppose that ( ; )D q  is not increasing in 1[ ,1] . In this case, from the continuity 

of q , we can select 1, ( ,1]     such that    , ( ; ) ( ; )D q D q   , and the 

selection of    is a best response for some arbitrageur. Since no arbitrageur selects any 

time   in ( , )   , it follows from the continuity of q  that by selecting    instead 

of   , any arbitrageur can postpone the timing from    to    without decreasing his 

winning probability. This is also a contradiction. 

Third, we show that q  must be symmetric. Now let us suppose that q  is 

asymmetric. The strict inequality in Proposition 1 implies that the selection of 0 is a 

dominated strategy. Hence, it follows that 1 0  , and 

  ( ) 0iq    for all i N  and all 1[0, ]  . 

Since q  is continuous and ( ; )D q  is increasing in 1[ ,1] , it follows that there exist 

0   ,    , and i N  such that 

     1( ) ( )jq t q t  for all j N  and all [0, ]t   , 

(A-3)  

( ; ) ( ; )

min
1 ( ; ) 1 ( ; )

i h

h i
i h

D q D q
t t

D q D q

 

 

 
 

 
 for all ( , )t    , 

and 
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(A-4)  

( ; ) ( ; )

min 0
1 ( ; ) 1 ( ; )

i h

h i
i h

D q D q
t t

D q D q

 

 

  
  

  
. 

Since ( ; )D q  is increasing in 1[ ,1] , any selection of t  in ( , )    must be a best 

response for any arbitrageur j N  such that 

( ; ) ( ; )

min
1 ( ; ) 1 ( ; )

j h

h i
j h

D t q D t q
t t

D t q D t q

 
 

 
. 

This equality implies that 
( )

0jq t

t





. Hence, it follows from the continuity of q  that 

the first-order condition holds for arbitrageur j ; i.e., for every ( , )t    , 

1

1 1

(1 ) ( ) ( )

1 (1 ) ( ) ( 1){ ( ) ( )}
j

j

q t v t

q t n v t v t




 


   
. 

Hence, from (A-3), 

   1

1 1

(1 ) ( ) ( )

1 (1 ) ( ) ( 1){ ( ) ( )}
i

i

q t v t

q t n v t v t



 


   

, 

implying that the first-order condition does not hold for arbitrageur i  for every 

( , )t    , where the inequality 
( , , )

0i iu q 






 holds in this case. This inequality 

implies that arbitrageur i  prefers time    to any time in ( , )     , and therefore, 

  
( ; )

0iD q

t





 for all ( , )      , 

where   is positive but close to zero. This is a contradiction, because the inequality in 

(A-4) implies that 
( ; )

0iD q

t

 



. Hence, we have proved that any Nash equilibrium q  

must be symmetric. 

From the above observations, we have completed the proof of Proposition 1. 



32 

 

Appendix B: Proof of Proposition 2 

 

 For every (0,1]t , 

   1 1
1 1 1 1ˆ( , ) ( ) (1 ) (0)n nu t q v t v  

     

   1 1
1 1 1 1ˆ(1) (1 ) (0) (1, )n nv v u q  

    , 

whereas 

   
1 1 1

1

1 1

1

1
1

1

( 1)! 1
(1 ) }

!( 1 )! 1

( 1)! 1
1 (1 ) }

!(

ˆ(0, ) { ( )

{ ).
1 )! 1

(0

l n l

l n

l n l

l n

u q v t

v

n

l n l l

n

l n l l

 

 

 

  

 

  






  


 
 









 

Hence, the necessary and sufficient condition for q̂  to be a Nash equilibrium is given 

by 

   1 1 1 1ˆ ˆ(0, ) (1, )u q u q  , 

that is, 

   1
1

1 1

( 1)! 1
(1 ) }

!( 1 )!
{ ( )

1
l n l

l n

n

l n l l
v t   

  




    

1

1

1
1 1

1

1
1{ (0) (1

( 1)! 1
1 (1 ) }

!
) (1 ) (0

( )!
)

1 1
n nl n l

l n

n

l n l
v

l
v v    



 

 




  



 

 . 

This inequality is equivalent to 

   1 1

1 1 1 1

( 1)! 1 1 (1) (0)
( )

!( 1 )! 1 (0) (0)
l

l n

n v v
R

l n l l v v


  

  
 

    . 

 


