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1 Introduction

An approximation for a probability density function is a very interesting topic in various research fields.
In fact, it seems so useful that a precise analytical approximation for a density would lead to substantial
reduction of computational burden so that the subsequent analyses could be very easily implemented. Par-
ticularly, in finance the approximations for the densities of the asset prices have drawn much attention for
at least more than two decades since fast and precise computation is so important in terms of competition
and risk management, which is crucial in the derivatives business.

Examples among a large number of the related researches are Bayer and Laurence [1], Fouque, Papan-
icolaou and Sircar [5], Hagan, Kumar, Lesniewski, and Woodward [7], Gatheral, Hsu, Laurence, Ouyang,
and Wang [6], Siopacha and Teichmann [11] and an asymptotic expansion approach ([12], [9], [10], [13]).
Although those approximation methods have been successfully applied in practice, there are still some rooms
for improvement. For example, it is well known that while the density of the approximation formula for
SABR model ([7]) provides sufficiently accurate approximations for option pricing, it has the negative values
for the left tail, which could create an arbitrage opportunity in option trading.

This paper develops a new scheme for improving density approximation methods, which also provides
precise approximations of option values. Specifically, our scheme is inspired by the idea in the Hilbert space
projection theorem and the so called “Dykstra’s cyclic projections algorithm” is applied for its implementa-
tion. We also remark that our scheme can be easily implemented in practice, where we need only market
data for usual calibration such as option prices with strikes.

We firstly note that our scheme can start with any given approximate density. Then, we improve the
density so that it meets a set of conditions such as the non-negativity and the total mass being one that
the density function must satisfy. Moreover, based on our method it becomes possible to create a new
approximate density to possess certain properties desirable in practice such as calibration to the market
forward and option prices. In addition, the method enable a new density to incorporate known information
if any, such as the decreasing speed of the tails of the true density. In this manner, we develop a generic
scheme which achieves the improvement of the approximation, whatever a starting approximate density is.

Next, let us remark on the criteria on improvement of a density approximation. In general, as the
criteria vary such that an improved density provides more accurate ATM option prices, nonnegative prices
or butterfly spreads and so on, they are inevitably subjective. For instance, which is the better is not definite
between

(1) approximation which excludes negative butterfly spreads

(2) approximation which produces prices close to model prices around ATM, but admits negative butterfly
spreads.

For example, Doust [4] is a kind of the first, while [7] is of the second. As for our method, it guarantees the
first criterion (non-negativity of butterfly spreads) together with our best effort at the second one (accuracy
for model prices). Consequently, the method is robust with respect to the first criterion. In terms of the
second criterion, although the accuracy depends on a starting approximation, our method is still robust with
a decent initial approximation.

Furthermore, numerical experiments for vanilla option pricing under SABR model demonstrate the va-
lidity of our scheme. In fact, with few additional computational costs our scheme improves the third and
fifth order asymptotic expansion preserving the required conditions such as nonnegative densities under an
appropriate forward measure.

We finally remark that our scheme is general and flexible enough to include a set of conditions and
information as one would like to put on an approximate density, and it can be applied to approximation
methods other than the asymptotic expansion method. For example, a number of researches have been
going on in order to extend SABR model with fixing the problem of the negative densities in the method
of [7]. (For instance, see [4].) We note that our scheme is also a candidate for handling this issue. Also,



the estimate of the absorption probability based on Monte Carlo simulations as in [4] can be consistently
reflected in our scheme.

The organization of the paper is as follows: After the next section describes the setup of the problem,
Section 3 provides a concrete formulation of our method as well as the algorithm for the implementation.
Section 4 shows numerical examples under SABR model. Section 5 concludes.

2 Setup

Let St be the spot price of the underlying asset at time ¢t € [0,7] and consider a density f of St, where
St takes a value in I C R, such as I = R, [0, +00) or (0,+00). Clearly, the density function f of the price
St must satisfy the following property. Hereafter, n stands for a density function under a risk-neutral or an
appropriate forward probability measure.

Property 1. (Density Condition) : for a function n on I C R,

(1) f] n(x)dr =1
(2) >0 a.e

Suppose that we have an approximation f of the density function f based on a certain method. Note
that the approximation f does not necessarily have Property 1. Also, the forward price is usually given
independently of models, and hence the average value of the underlying asset price at T should be equal to
the given forward price with maturity 7.

Moreover, it is known that some approximation formulas (e.g. the asymptotic expansion method) pro-
vides rather precise approximations for the values close to At-The-Money(ATM) options. Thus, it is reason-
able that the option prices around ATM under a new approximate density function are calibrated to those
computed based on an initial approximation formula, and that a new density is equal to the one obtained
by the approximation formula for a certain range of the underlying asset price around ATM. We call those
properties by Calibration Condition:

Property 2. (Calibration Condition)

(3) [, zn(x)dx = So

(4) [,(x— Kn)in(x)dz = Ck,, for some given strikes {Kn}n—1
(5) n=f on some subset Iy of I

Here, the risk-free interest rate as well as the dividend rate of the underlying asset are assumed to be
zero for simplicity. Ck, denotes the option price with strike K, and maturity 7' computed by the initial
approximation formula.

In contrast to the accuracy around ATM, the values of the approximated density f may not be reliable
around deep out of the money. However, how fast a density decreases to zero is known under some models
or through a moment formula for the implied volatility. Namely, the following quantities are known:

p = sup{p>0:ES} < +oo} (2.1)

g = sup{g>0:ES;? < +oo} 2.2)
under some models or through the moment formula derived by Lee [8]:
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where

. IV3(x)
= 1 R 2.4
e R P 2
. IV?(x)
= 1 3 . 2.5
BL 1rnmiu_poo 2T (2.5)

Here, IV (z) is an implied volatility function in terms of the log-moneyness that is, z = log (So/K).
Now, let us assume that p and ¢ are known, and suppose x : I — (0,4+00) be a density function which
has the same order of the tail condition as f:

+oo So
[ @ < voo <), [ N @de < +oo (g <) (2.6)
S 0

o
Then, it seems natural to impose the following condition:
Property 3. (Tail Condition)
(6) m has the same tail slopes as x.
However, for ease of computation, the condition may be replaced with the following:
Property 4. (Weak Tail Condition)
(6-1) n < x on (0,Kr] for some positive number K,
(6-2) n < x on [Kg,+00) for some positive number Kgr
Thus, we state our problem formally as follows:

Definition 1 (Problem). Find a new approzimate density function f* for the target density f such that
it satisfies the properties 1, 2 and 4, and

f=F<If = Fll, (2.7)

where f is a given approzimation of the density function of f, and the norm || - || will be defined based on
the inner product (3.1) in the next section.

3 Formulation and Algorithm

This section concretely formulates the previous discussion and provides an algorithm for the implementation.

3.1 Formulation

Firstly, suppose a probability space (R, M, u), where M is a set of all Lebesgue measurable subsets of R,
the measure p is assumed to have a density which is equal to x given in the previous section on I and to
0 on I¢, the complement of I. Next, we define a Hilbert space H = L*(R, M, u), that is the set of square
integrable functions on (R, M, u) equipped with the inner product:

(f.g) = / F(@)g(x)x()dx for f.g € H. (3.1)

Hereafter, roughly speaking, the density function denoted by f in Definition 1 is to be estimated by means
of projecting ¢ = f/x onto a subspace of H as ¢*, and then considering f* = p*x.



Let us define some subsets of H as Kp, K¢ and Kt which stand for (1)-(2) in Property 1, (3)-(5) in
Property 2 and (6-1)-(6-2) in Property 4 defined in Section 2, respectively:

Kp:={peH | (p,l)=1}n[{p e H| (p,6:) >0}, (3.2)

xzel

Ke:={pe M| (pidr)=5}n [ {peH| (¢,9x,) =Cr, } N [ {p € H| (p,0:) = f(z)} (3.3)

n<N z€ly

and

Kri= (] {eet|{pd)<x@}n ] {peH]| (pd)<x@)}) (34)

z€(0,Kr] zE€[KR,+o0)

Here 17, id; and gk,, are elements of H such that 1;(z) = 1, id;(z) = = and gk, (z) = (z — K,)+. Moreover,
So is the initial value of the underlying asset, C'x, denotes the option price with strike K, and maturity
T (defined in Property 2-(4)) and Iy is a subset of I in which St takes a value. In addition, f is a given
approximate density which we can choose arbitrarily.

Moreover, let us define K as the intersection of Kp, K¢ and Kr:

K:=KpnKcnNKr, (3.5)

We assume K is nonempty, which is expected to be mostly satisfied in practice, and is in fact satisfied for
our numerical examples in Section 4.
Then, let ¢ := f/x ¢ K, and the best approximation set from ¢ to K is defined as

Pe(@) =={¢" e K|[|&—¢"|| = inf || —nl}. (3.6)
nex

Note that the set P (@) has the only one element since K is a closed convex set in a Hilbert space. Hereafter,
we may use the notation P (@) for the unique element of Px (@) without any confusion.
Thus, due to the Hilbert space projection theorem, Px (@) is a better approximation for f/x € K than

@ := f/x ¢ K. Namely,

W/ x—Pc@@I? = |If/x—¢ >+ le" = Pe(@))?
< f/x—e 1P+ llet — @l
= |If/x— &l (3.7)

where @ is the foot of a perpendicular line through ¢ and Px (@) from f/x. }
Consequently, we obtain a better approximated density function than the original one f as

f7 = Pe(@)x- (3.8)
That is, equivalently to (3.7), we have

2 1
mdz. (3.9)
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3.2 Algorithm

This subsection briefly describes a general iterative method called Dykstra’s algorithm. (See pp. 207-214 of
Deutsch [3] for the detail of the algorithm and its convergence discussion.)

This method will be applied to computation of (3.6) in the numerical examples of Section 4.

Let K be a convex set, which is an intersection of finite many closed convex sets K; (t=1,2,---,r)ina
Hilbert space H:

K =N, K;. (3.10)

Here, we assume K to be nonempty.
We remark that in our case described in Section 3.1, K; (i =1,2,---,r) correspond to the discretized
versions of the convex sets in (3.2), (3.3) and (3.4). Thus, K is regarded as a discretization of K defined in

(3.5).
First, for each n € N, let [n] denote n mod r; that is,

[n):={1,2,--- ,r}n{n—kr:k=0,1,2,--- }. (3.11)
For instance, [1] =1,[2] =2, ,[r] =7 [r+ 1] =1,--- [2r] =7,---.
Next, for ¢ € H, set
wo = P, e (po1y=--=€e-1=¢€ =0,
©n = PIC[n] (Sonfl + enf'r)y
€n = Pn—1 + eén—r — $n
= Pn—1+€n—pr — P)C[n] (Son—l + 6n—7‘)- (312)

Here, P;c[n] (¢n—1 + €n—r) is defined as in Eq.(3.6). Namely,

Py (n-1+en—r) = {¢" € Kiny | |lon-1+ en—r —¢"|| = Ll ln—1+en—r —nl[}- (3.13)
[n]

Then, it is the best approximation from ¢, —14en—, to the convex set Kf,; which is one of K; (t=1,2,---,7).
Finally, we obtain the following convergence result based on the Boyle-Dykstra theorem:
lim_ |l — Pe(@)]] = 0. (3.14)
n—+4oo

See Theorem 9.24 in p. 213 of Deutsch [3] for the Boyle-Dykstra theorem and its proof. R
We remark that in our case in Section 3.1, the convergence holds for ¢ defined by any f and x as ¢ = f/x.

3.3 Implementation

This subsection describes how to implement our scheme numerically. More details specific to models will be
explained in Section 4.

In principle, it is so simple to implement our scheme just in order to meet the conditions (1)-(2) in
Property 1, (3)-(5) in Property 2 and (6-1)-(6-2) in Property 4. Although some knacks are recommended
in what follows to make the procedure stable and to get a more desirable result, our method itself guarantees
a new approximate density to satisfy the above conditions independently of these knacks.



Choice of a Hilbert space Our scheme works on every Hilbert space theoretically. However, how to
choose a Hilbert space, namely how to choose x as a kernel of a Hilbert space, is crucial from a viewpoint
of numerical implementation.

Specifically, we choose the kernel function x of the Hilbert space as a function close to the target density
function f as much as possible. In particular, we set x as follows:

X = frlo,x,) + fl[KL,KR) + frRlK g, 400)- (3.15)

In this definition, f is a starting approximation for the density function f, and note that we may choose an
arbitrary approximate density as f . In addition, fr and fr are some functions which have the similar tail
behaviors as f. Here, K1 and Kgr are chosen such that f is accurate on [Kr, KR).

In this Hilbert space the best approximation Pi (@) is expected to be close to 1;, which makes the
algorithm more stable. This is because if ¢ is far from 17, an orthogonal projection of ¢ onto the set
{po € * | (p,11) = 1} can violate the condition (., {¢ € H | (p,d) > 0}.

This can be easily understood, if a two-dimensional case is considered: for instance, compare two pro-
jections from points (1,1) and (2,0) onto a convex set {(z,y) € R? |z +y = 1,2 > 0,y > 0}. The algorithm
(3.12) starting with a projection onto a plane {(z,y) € R? | z +y = 1} converges after one iteration if the
initial point is (1,1). On the other hand, the projected point from (2, 0) is outside the convex set and more
iterations are required.

In this framework, the norm to measure the accuracy is given by Eq.(3.9), which implies that more
weights are put on tails. This norm is reasonable, because an original approximation is usually rather
accurate around ATM and the purpose for using our scheme is to improve accuracy on tails.

Discretization For numerical implementation, we have to make the problem finite dimensional. Let us
take a finite increasing sequence {xi}‘fzo C R. Then, we can regard the Hilbert space H as a d-dimensional
vector space with an inner product:

(f,9) = Zf(ﬂii)g(fﬁi)x(%)(xi — ZTi-1). (3.16)

If we choose {1(,, , ., }¢=; as an orthogonal basis, an element f € H can be identified with (f(z1), - , f(za)) €
R¢. The properties (1) to (5), (6-1) and (6-2) in Section 2 are conditions that an element 7/x € H is on
a hyper-plane or on a half-space in a d-dimensional vector space. Projection of an element ¢ of H onto a
hyper-plane or a half-space A is given by

[t

Pn(p)=¢— T (g, ") =) ¢", (3.17)

Lp*
if A is a hyper-plane defined by N := {p € H | (¢, ¢*) = c} for some ¢* € H and c € R, or

1
lle[?

if N is a half space defined by N := {¢ € H | {(p,¢") < c}. In both cases, these calculations are easy
to implement and take little computational cost. After repeating the algorithm (3.12), we obtain the best
approximation value at each point: {Pic(p)(x:)x(x:)} ;. Finally, in order to calculate an option value with
payoff gk, we resort to a numerical integration:

Pn(p) = {0y =), 9", (3.18)

d
ZgK(wi)PIC(@)(fvi)x(mi)(xi — Ti1). (3.19)



Procedure In summary, we have the following procedures:
1. Choose an increasing sequence {xi}‘iizo C R for discretization.
2. Calculate values of the given approximated function f at each point {x;}& .
3. Set a density function x of a Hilbert space:
e Choice of K, and Kr is dependent on the domain where the original approximated function f is
accurate. Please see Section 4 for the concrete examples of those choices.
e For a left/right-tail behavior, it is natural to impose constrains such that the density function
decreases to zero as * — 0 and x — +o0. )
More concretely, the tail of y is set as e 2(°82)" or 2P for some p according to its decreasing
speed.
In addition, x should be a natural extension of f so that x is continuous and decreases so fast to
zero as the function f does around K and Kg.
4. Execute Dykstra’s algorithm:
e The algorithm (3.12) with an initial value f/x' is iterated for n = 1,--- , N. Please see Section 4
on how to determine V.
Each projection is calculated by Eq.(3.17) for a hyper-plane or Eq.(3.18) for a half space. It
consists of finitely many operations in a finite dimensional vector space.
e As a result, a set of values for the best approximation { P (@) (z:)} is obtained.
5. Calculate option values:

e Computation is executed numerically based on Eq.(3.19).

4 Numerical Example

4.1 Preparation

This section examines the validity of our scheme through numerical experiments by applying it to an asymp-
totic expansion method [13] under SABR model, where the dynamics of the underlying price process under
a forward measure is expressed as follows:

ds; = o/SEdWy, (4.1)

doy = eordW?.
Here, € > 0, ¢ € (0, 1] and W1 and W? are Brownian motions with a constant correlation p. In the numerical
experiment, let us concentrate on the case of 0 < ¢ < 1.2 In this case, it is well known that St can reach 0
with positive probability. According to the result by Benaim et al. [2], it holds that

p=+o00, ¢=0, (4.2)

where p and ¢ are defined in (2.1). Then, while the density decreases so fast to zero on the right tail, the
left tail is so fat that any moment is infinite: E(S%) < 400 for p > 0 and E(S;?) = +oo for ¢ > 0.

Thus, taking this observation into account, it is reasonable to specify x given in (3.15) as the following
equations in I := [0, +00):

AL z=0,
’)tT €T € (07 KL)
x@) =1 ) v € [Kr, Kn) o
_ (ogz—m)*
Ar g ouTe 277 z € [KR, +00),

L Alternatively, x/x(= 1) can be used in order not to take ill behaviors of f outside [KL, KRr) into account.
2The result for case of ¢ = 1 with p < 0 will be given upon request.



where A is a positive constant and m = log Sy — é&2T with a positive value 6. The selection of the
functions for x = 0, z € [0,K) and z € [Kg,+0o0) corresponds to Property 4( Weak Tail Condition) in
Section 2 and is reflected in Kz in Section 3. On the other hand, f(z) in z € [K, Kg) is obtained by the
asymptotic expansion method, which provides rather precise approximations for the option values around
ATM. It corresponds to Property 2 (Calibration Condition) in Section 2 and is reflected in K¢ in Section
3.

With this setup, we calculate option prices by the following methods:

(a) Monte Carlo simulation (Benchmark)
(b) asymptotic expansion up to the fifth order
(¢) asymptotic expansion up to the third order

(d) our algorithm with K, € (Ki,Kgr), n = 1,---,N in Property 2 (Calibration Condition) and with
f*=fonly=[Kp,Kgr). Here, f is obtained by the fifth order expansion as in (b) or by the third
order expansion as in (c).

In the asymptotic expansion method, we consider the following perturbed SDE of (4.1) with a perturbation
parameter ¢, and expand it around 6 = 0 up to certain orders (that is, up to the fifth order in (b) and up
to the third order in (c¢)) in order to obtain approximate densities of Sr.

ds® = 5o (SOYeawy, (4.4)
do'® = 6e0l®awi.

Particularly, its first order approximate density is obtained as a normal density. Please see [9], [10] and [13]
for the details of the computational method and applications. We remark that the method in [4] may be
regarded within a class of an asymptotic expansion method, though its derivation is different from the one
of the expansion used in this paper and references above.

As numerical experiments, we examine three cases of the parameter setting listed in Table 1. We remark
that Case 3 is the same as in Figure 4 of [4].

The parameters in (4.3) are specified in the following manner. Particularly, the choices of Kr and K
are determined based on the discrepancies between the benchmark prices obtained by (a) Monte Carlo and
the approximate prices obtained by (b) the fifth order expansion or (c¢) the third order expansion ®. More
precisely, Kr and K are set as a slightly lower price (for Kr) and a slightly higher price (for Kr) than
strike prices where the discrepancies become relatively larger. We note that this procedure is not a tough
task at all in practice.

1. We set Kr = 120 and K1, = 0 for Case 1, while Kr = 132 and K = 72 for Case 2. In Case 3, we
set Kr = 7.2224 and K = 2.3424 for (b) the fifth order expansion and Kr = 5.856 and K1 = 3.904
for (c) the third order expansion.

Particularly for Case 2 and Case 3, we determine Kr and K such that Kr ~ So(1 + %O'ATM\/T)
and K1, ~ So(1 — toarm V'T), where o a7 is the ATM implied volatility for each case.

2. AL = f(O) for Case 1. As for Case 2 and Case 3, Ap is approximately equal to the absorption
density obtained by (b) the fifth order expansion or (c) the third order expansion.

3. As for the parameter ¢ appearing in x(z) for the domain of [Kg,+00), we set &§ = 0.45 for Case 1,
and 6 = 0.12 for Case 2 and Case 3, which is the same level as the implied volatility around the
strike price Kg.

4. v and Ag is determined so that x is continuous.

3The frequency of the determination of K and Kpg is the same as how often the original approximation method should be
examined, for instance when the market drastically changes and otherwise once a day. We do not need any additional timing
specific to the calibration of Ky and Kg.



In computation we discretize the domain [0,4Sp) uniformly with 400 grids, where S is the initial under-
lying asset price. We also use 200 grids for coarser discretization case.

Finally, we set NV, the number of the iteration appearing in 4 of Procedure in Section 3.3 as:

100 x (the number of the conditions r in Eq.(3.10)),

or 50 X (the number of the conditions r in Eq.(3.10)).

4.2 Result

In Table 2 - 4 and Figure 1- Figure 6, we report the results for options values expressed as the implied
volatilities based on the three parameter sets in Table 1.

Firstly, in Table 2 and Figure 1 of Case 1, that is the shorter maturity case 7' = 1, we note that
comparing to the third and fifth order expansions ((b), (c)), our method improves the accuracies for the
deep OTM prices, especially in the third order expansion. Moreover, the examination of the left tail of the
corresponding density in Figure 5 shows that our nonnegative density approximation is able to take the
absorption barrier at St = 0 into consideration, at least to a certain extent, which cannot be achieved by
the original asymptotic expansion method only: the asymptotic expansion itself puts nonzero densities on
some negative values of the underlying asset prices.

Next, we report the longer maturity case 7' = 10 in Table 3 and Figure 2. Again, our method whose
results appears as the columns of (d1)-(a), (d2)-(a), (el)-(a), (e2)-(a) in the table generally improves the
accuracies for the option prices at the deep OTM. This fact is due to the improvement of the densities,
which is observed in Figure 6: for example, our scheme corrects the negative densities as well as the nonzero
densities for the negative prices in the fifth order expansion.

Furthermore, let us make some comments on the direct comparison to [4] by using Table 4, Figure 3 and
Figure 4, the result for the same parameter set as in Figure 4 of [4]. Here, in the columns of (f1)-(a), (£2)-(a),
(g1)-(a), (g2)-(a), we also report the result by our method that includes the information on the estimate of
the absorption probability of St = 0 to K in (3.5) through its inner product expression.

Although the precise comparison is not possible since the result of [4] is reported only as the graph, it is
observed that at least our method with the fifth order expansion provides a better result from K=1.0% to
K= 12%, especially much better between K=2.0% and K= 10% including K=ATM=4.88%. We expect the
reason as follows. The first approximate density (2.2) in [4] does not satisfy the conditions that the total
mass of the approximate density should be one and that the average of the underlying asset price should be
equal to the forward price. (The former condition corresponds to (1) in Property 1(Density Condition),
and the latter to (3) in Property 2(Calibration Condition) in Section 2 of our paper.) Therefore, the further
adjustment (2.13) and (2.14) (in [4]) must be made, which seems ad hoc and does not work very well.

On the other hand, according to Figure 3 in [4], its method seems to work very well for the shorter
maturity 7= 1 as ours. Hence, for the longer maturity our method has an advantage in terms of accuracy.
In sum, the main improvement of our scheme is to achieve the systematic and consistent treatment of the
conditions that should be satisfied in the probability densities.

We remark that while this experiment shows that it is successful to correct the negative densities and
the nonzero densities for the negative rates in the asymptotic expansion, our scheme can be applied to the
approximate density of [4] for its further improvement, too.

Moreover, the comparison between the result of 400 grids with 100 iterations and that of 200 grids with
50 iterations in Table 3 and Table 4 shows that our scheme is robust to the coarser discretization and less
number of iterations. In fact, the accuracies are almost the same for the parameter sets.

Next, let us report the examples of the computational speed for our scheme. The most part of the
computational cost comes from the implementation of the Dykstra’s algorithm. For instance, in Case 3,
based on the machine, Intell(R) Core(TM) i7-3517U @ CPU 1.90GHzx2, RAM 4GB, the total computational
time with 400 grids and 100 iterations is 0.0845 seconds for one option, 0.0864 seconds for 10 options and
0.1053 seconds for 100 options while the computational time with 200 grids and 50 iterations is 0.0170
seconds for one option, 0.0175 seconds for 10 options and 0.0224 seconds for 100 options. It is almost the

10



same in the other cases. Thus, combined with the robust result for the coarser discretization and less number
of iterations, it seems that the computational speed of our scheme has no problem for practical purpose.
On the other hand, (a) the benchmark Monte Carlo simulation is implemented with 100,000 paths and
365 time steps per year, and the computational time is 104 seconds per one option. Clearly, our scheme is
much faster than the benchmark Monte Carlo.
Finally, we remark on a practical application of our scheme. That is, a typical procedure is as follows:

1. Firstly, by using an appropriate analytic approximation formula, we determine the model parameters
through calibration to a (reliable) set of market option prices.

2. Given the parameters, we apply our improvement scheme to obtain a no-arbitrage density, which
generates reasonable option prices of all the strikes with preserving the previous calibration result.

3. Then, we use this density to evaluate options whose market prices are unquoted or unreliable (as in
deep-OTM/ITM options).

We note that the computational time in our scheme is fast enough for this purpose. In this example,
as the asymptotic expansion method itself is a closed form approximation, the computational time is only
2.4 x 1075 seconds per option, that is 0.0024 ms cpu time for 1 option and 0.24 ms cpu time for 100 options,
which is fast enough for the calibration purpose. As reported above, our scheme adds very few computational
costs.

Case So 0o € P T
1. 100 500 03 -05 1
2. 100 1.58 0.3 -0.5 10

3. 4.88% 0.026 0.4 -0.1 10

Table 1: Parameter Set

V(%)
o
¥

50 100 150 200 250 300
strike

Figure 1: (Case 1, Table 2) Error in IV (%) under SABR model with ¢ = 1 and T =1
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strike | (a) IV % | (b)-(a) (c)-(a) | (d1)-(a) (el)-(a)
20 86.2 0.8 5.5 0.6 0.8
40 69.7 0.2 1.7 0.0 0.2
60 60.5 0.1 0.6 -0.1 0.0
80 54.4 0.0 0.2 -0.0 0.0
100 49.8 0.0 0.1 0.0 0.1
120 46.3 0.0 -0.0 0.0 -0.0
140 43.6 -0.0 -0.1 0.1 -0.0
160 414 -0.1 -0.3 0.1 -0.1
180 39.6 -0.1 -0.5 0.0 -0.2
200 38.1 -0.0 -0.7 -0.0 -0.4
220 36.9 0.0 -0.9 -0.1 -0.6
240 36.0 0.1 -1.2 -0.1 -0.9
260 35.3 -0.1 -1.7 -0.2 -1.3
280 34.7 -0.4 -2.3 -0.2 -1.8
300 34.3 -0.9 -3.0 -0.1 -2.3

Table 2: (Case 1, Figure 1) Implied Volatility(IV) (%) under SABR model with ¢ = 3 and T'=1

(a) Monte Carlo, (b) 5th order Asymptotic Expansion (5th AE), (c) 3rd order Asymptotic Expansion (3rd AE),
(d1) with 5th AE, (400,100),

(el) with 3rd AE, (400,100),

(Remark)

1. “(b)-(a)”stands for the deviation % of IV by (b) from IV by (a).

2. “with 5th (3rd) AE, (400,100)” means that the fifth (third) order asymptotic expansion is used in our scheme
with 400 grids and 100 iterations.
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Strike | (a) IV% | (b)-(a) (c)-(a) | (d1)-(a) (d2)-(a) | (el)-(a) (e2)-(a)
20 34.5 18 108 0.4 0.4 3.0 2.9
40 26.4 0.5 4.6 0.1 0.1 2.3 2.3
60 21.5 0.3 2.2 0.2 0.2 1.8 1.8
80 18.1 0.2 1.0 0.3 0.3 1.0 1.1
100 15.6 0.2 0.5 0.3 0.4 0.6 0.7
120 14.0 0.2 0.2 0.3 0.5 0.3 0.4
140 13.2 03 0.1 0.5 0.7 0.1 0.3
160 12.8 0.5  -04 1.0 1.3 -0.0 0.4
180 12.8 03  -04 1.6 1.8 0.4 0.9
200 13.0 09  -0.3 1.9 2.0 1.0 1.3
220 132 39 -04 1.9 2.0 1.3 15
240 13.4 - -0.7 1.7 1.8 1.3 1.5
260 13.6 - -1.3 1.5 1.5 1.2 1.3
280 13.8 20 -2.0 1.1 1.1 0.9 1.0
300 14.0 1.3 -2.8 0.6 0.6 0.5 0.5

Table 3: (Case 2, Figure 2) Implied Volatility (IV) (%) under SABR model with ¢ = 3 and 7' = 10

(a) Monte Carlo, (b) 5th order Asymptotic Expansion (5th AE), (c) 3rd order Asymptotic Expansion (3rd AE),
(d1) with 5th AE, (400,100), (d2) with 5th AE, (200,50),

(el) with 3rd AE, (400,100), (e2) with 3rd AE, (200,50)

(Remark)

1. “(b)-(a)” stands for the deviation % of IV by (b) from IV by (a).

2. “with 5th (3rd) AE, (400,100) ((200,50))” means that the fifth (third) order asymptotic expansion is used
in our scheme with 400 (200) grids and 100 (50) iterations.

3. 7-” in the column ”(b)-(a)” means a failure in calculation of an implied volatility for the 5th AE due to a
negative option price.

13



Sirike [ (a) V% | (0)(a) (9-(a) | (@D-(a) (@)(a) | (eD-(a) (e2-(a) | ((-(a) (21-(a) | (@D-(a) (e2)()
0.1% 52.9 - 40.7 -1.6 -2.1 -3.9 -3.3 -0.1 -0.1 -0.1 -0.1
1.0% 29.9 11.5 8.0 -0.5 -0.8 -2.2 -1.8 0.0 0.0 0.1 0.1
2.0% 22.0 0.7 5.0 0.2 0.2 0.0 0.2 0.2 0.2 1.0 1.0
3.0% 17.2 -0.0 2.7 0.1 0.1 1.3 1.4 0.1 0.1 1.6 1.6
4.0% 14.1 0.4 1.2 0.5 0.6 1.2 1.2 0.5 0.6 1.2 1.2
5.0% 12.6 0.3 0.6 0.8 1.1 0.7 0.8 0.8 1.1 0.7 0.8
6.0% 12.5 0.3 0.6 0.6 0.8 0.8 0.9 0.6 0.8 0.8 0.9
7.0% 13.1 0.1 0.8 0.4 0.5 0.1 0.2 0.4 0.5 0.1 0.2
8.0% 13.9 1.0 0.2 0.1 0.2 -0.9 -0.8 0.1 0.2 -0.9 -0.8
9.0% 14.7 2.9 -1.3 -1.0 -1.0 -1.9 -1.8 -1.0 -1.0 -1.9 -1.8
10.0% 15.4 3.1 -3.2 2.1 -2.1 2.7 2.7 -2.1 2.1 2.7 2.7
11.0% 16.0 1.1 -5.0 -3.0 -3.0 -3.5 -3.5 -3.0 -3.0 -3.5 -3.5
12.0% 16.5 -1.6 -6.6 3.7 -3.7 -4.2 -4.2 -3.7 -3.7 -4.2 -4.2
13.0% 17.1 4.1 -8.0 4.4 -4.4 4.8 4.8 -4.4 4.4 4.8 4.8
14.0% 17.5 -6.2 -9.2 -5.1 -5.1 -5.4 -5.4 -5.1 -5.1 -5.4 -5.4

Table 4: (Case 3, Figure 3,4) Implied Volatility (IV) (%) under SABR model with ¢ = 1 and T = 10
(a) Monte Carlo, (b) 5th order Asymptotic Expansion (5th AE), (c) 3rd order Asymptotic Expansion (3rd AE),
(d1) with 5th AE, (400,100), (d2) with 5th AE, (200,50),

(el) with 3rd AE, (400,100), (e2) with 3rd AE, (200,50),

(f1) with 5th AE, absorption probability, (400,100), (2) with 5th AE, absorption probability, (200,50),

(g1) with 3rd AE, absorption probability, (400,100), (g2) with 3rd AE, absorption probability, (200,50)
(Remark) This parameter set is the same as in Figure 4 of [4].

1. “(b)-(a)” stands for the deviation % of IV by (b) from IV by (a).

2. “with 5th (3rd) AE, (400,100) ((200,50))” means that the fifth (third) order asymptotic expansion is used
in our scheme with 400 (200) grids and 100 (50) iterations.

3. “with 5th (3rd) AE, absorption probability, (400,100) ((200,50))” means that the fifth (third) order asymp-
totic expansion and the absorption probability at S = 0 estimated in advance by Mote Carlo are used in our
scheme with 400 (200) grids and 100 (50) iterations.

4. The total computational time with 400 grids and 100 iterations is 0.0845 seconds for one option, 0.0864
seconds for 10 options and 0.1053 seconds for 100 options, while the computational time with 200 grids and 50
iterations is 0.0170 seconds for one option, 0.0175 seconds for 10 options and 0.0224 seconds for 100 options.
(The result is based on the machine, Intell(R) Core(TM) i7-3517U @ CPU 1.90GHz x2, RAM 4GB.)

5. 7-” in the column ”(b)-(a)” means a failure in calculation of an implied volatility for the 5th AE due to a
negative option price.
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Figure 2: (Case 2, Table 3) Error in IV (%) under SABR model with ¢ = % and T = 10
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Figure 3: (Case 3, Table 4: (b)-(e2)) Error in IV (%) under SABR model with ¢ = 3 and 7' = 10
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Figure 4: (Case 3, Table 4: (f1)-(g2)) Error in IV (%) under SABR model with ¢ = £ and T = 10
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Figure 5: (Case 1) Densities under SABR model with ¢ = 1 and 7'=1 (our method: (d1) with 5th AE)
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Figure 6: (Case 2) Densities under SABR model with ¢ = 1 and 7' = 10 (our method: (d1) with 5th AE)
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5 Conclusion

We have proposed a novel method inspired by the Hilbert space projection theorem for improving an arbitrary
density approximation. Particularly, applying the so called Dykstra’s cyclic projections algorithm, we are
easily able to implement it in practice with market data such as option prices with strikes used for usual
calibration.

In the method, we start with an arbitrary approximate density, and then improve the density to meet a
set of conditions such as Property 1(Density Condition) in Section 2 that should be satisfied by density
functions. In addition, our method is able to create a new approximate density that has certain desirable
properties in practice such as described in Property 2(Calibration Condition). Also, the method enable
the new density to satisfy any conditions that one would like to put on an approximate density such as
Property 4(Weak Tail Condition). In this way, we have achieved the improvement of an approximation,
whatever a starting approximate density is.

Moreover, numerical experiments under SABR model have demonstrated the validity of the method. For
instance, in terms of the approximation accuracy, this scheme improved the third and fifth order asymptotic
expansions with few additional computational costs, preserving the required conditions for the approximate
density such as non-negativity and the total mass being one. In addition, it was observed that the improved
densities generally provided more precise approximation of option values.

It could be stressed that the method is general and flexible enough to include any conditions and in-
formation on an arbitrary approximate density. Further, estimates of the absorption probabilities based on
Monte Carlo simulations as in [4] can be consistently plugged into our method. More concrete and detailed
examinations on those features will be one of our future research topics.
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