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Abstract

This paper addresses the problem of estimating the normal mean matrix with an

unknown covariance matrix. Motivated by an empirical Bayes method, we suggest

a unified form of the Efron-Morris type estimators based on the Moore-Penrose

inverse. This form not only can be defined for any dimension and any sample size,

but also can contain the Efron-Morris type or Baranchik type estimators suggested

so far in the literature. Also, the unified form suggests a general class of shrinkage

estimators. For shrinkage estimators within the general class, a unified expression

of unbiased estimators of the risk functions is derived regardless of the dimension of

covariance matrix and the size of the mean matrix. An analytical dominance result

is provided for a positive-part rule of the shrinkage estimators.

AMS 2010 subject classifications: Primary 62C10; secondary 62F10.

Key words and phrases: Eforn-Morris estimator, empirical Bayes procedure, high

dimension, invariant loss, matrix mean, Moore-Penrose inverse, shrinkage estimator,
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1 Introduction

Statistical inference with high dimension has received much attention in recent years,

because statistical analysis of high-dimensional data has been requested in many research

areas such as genomics, remote sensing, telecommunication, atmospheric science, financial

engineering, and others. Such high-dimensional data are generally hard to handle, and

ordinary or traditional methods are frequently inapplicable. This has inspired statisticians

to develop new research areas in high dimension from both theoretical and practical
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aspects. Most interests have been in development of efficient algorithm for statistical

inference and in derivation of asymptotic properties with the dimension going to infinity.

From a decision-theoretic point of view, however, there does not exist much literature

in high-dimensional problems except for Chételat and Wells (2012), who established the

inadmissibility of the maximum likelihood estimator (MLE) for a large dimensional and

small sample normal model. In this paper, we extend their result to the framework of

estimating a mean matrix and we establish a unified theory for improvement on the MLE

in both cases of high and low dimensions.

To explain the subjects addressed here, we begin by describing the canonical model

and the estimation problem. Let X = (X1, . . . ,Xm)
t and Y = (Y 1, . . . ,Y n)

t be, re-

spectively, m × p and n × p random matrices, where X i’s and Y i’s are mutually and

independently distributed as

X i ∼ Np(θi,Σ), i = 1, . . . ,m,

Y j ∼ Np(0p,Σ), j = 1, . . . , n.
(1.1)

Suppose that θi’s are unknown mean vectors and that Σ is an unknown positive definite

matrix. It is noted that the model (1.1) is a canonical form of a multivariate linear

regression model although the details are omitted here. The problem we consider in this

paper is the estimation of the mean matrix Θ = (θ1, . . . ,θm)
t relative to the invariant

quadratic loss

L(δ,Θ|Σ) = tr(δ −Θ)Σ−1(δ −Θ)t, (1.2)

where δ is an estimator made from X and S.

The MLE of Θ is δML = X, which is a minimax estimator with the constant risk

mp. When n ≥ p, it is known that δML is improved on by the Efron-Morris (1972) type

estimator

δEMK =

{
X − c(XS−1X t)−1X if p ≥ m,

X − cX(X tX)−1S if m > p,

where S = Y tY =
∑n

i=1 Y iY
t
i, and c is a suitable constant. Konno (1991, 1992) derived

conditions on c for the improvement. When p > n, however, this estimator is not available

because the inverse S−1 does not exist. A possible alternative is the Moore-Penrose inverse

S+ which will be defined in the beginning of Section 2. In the case of m = 1, Chételat

and Wells (2012) suggested the shrinkage estimator

δCW = X − c

XS+X tXSS+

and provided a condition on c for δCW to dominate δML.

An interesting issue is how to extend the Chételat-Wells estimator δCW to the frame-

work of estimation of the mean matrix Θ. Especially, the Efron-Morris type estimators

seem to take various variants which depend on orderings among m, p and n. One of
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interesting results provided in this paper is that we can develop a unified form for the

Efron-Morris type estimators, given by

δEM = X − c(XS+X t)+XSS+.

As explained in Section 2, this estimator can be defined for all the positive integers of

m, p and n as well as this expression includes δEMK and δCW as special cases. Also this

expression suggests us to consider a general class of shrinkage estimators in Section 3. In

this paper, we derive a unified expression of an unbiased estimator of the risk function

for shrinkage estimators within the general class.

The paper is organized as follows. In Section 2, we introduce shrinkage estimators of

Θ based on a motivation from an empirical Bayes method, and we provide the unified

form of the Efron-Morris type estimator. This expression not only contains the Efron-

Morris or Baranchik type estimators suggested so far in the literature, but also provide

various forms corresponding to ordering of m, p and n. In Section 3, we consider a

general class of shrinkage estimators. A unified expression is developed in Section 4

for the risk functions of the general shrinkage estimators. It is noted that the unified

expression gives an unbiased estimator of the risk difference. As specific examples of

shrinkage estimators, we treat the modified Efron-Morris type estimators and the modified

Stein type estimators, and we get conditions for their improvement from the unified

expression. Section 5 provides analytical and numerical dominance results that positive-

part estimators improve the corresponding shrinkage estimators. Some technical proofs

are given in Section 6.

2 A Bayesian Motivation

We begin by describing basic and useful properties of the Moore-Penrose inverse. For any

matrixA, the Moore-Penrose inverse ofA is written byA+ ifA+ satisfies (i)AA+A = A,

(ii) A+AA+ = A+, (iii) (AA+)t = AA+, and (iv) (A+A)t = A+A. The Moore-Penrose

inverse A+ has the following properties: (1) A+ uniquely exists; (2) (A+)t = (At)+; (3)

A+ = A−1 for a nonsingular matrix A.

Let B and C be r× p matrices of full row rank. We then have (1) B+ = Bt(BBt)−1,

(2)BB+ = Ir, (3)B
+B is idempotent, (4) (BtC)+ = C+(Bt)+ = Ct(CCt)−1(BBt)−1B.

Further, for an r × r nonsingular matrix A and an r × q matrix B of full row rank, we

can easily show that (BtAB)+ = B+A−1(Bt)+.

Based on the properties of the Moore-Penrose inverse, we give a unified form of em-

pirical Bayes estimators. Using a similar argument as in Tsukuma and Kubokawa (2007),

we can show that in the case of known Σ, the empirical Bayes estimator of Θ is given by

δB =

{
X − c(XΣ−1X t)−1X for p ≥ m,

X − cX(X tX)−1Σ for m > p,

3



for a suitable constant c. Here it is observed that, for m > p,

(XΣ−1X t)+ = (X t)+ΣX+ = X(X tX)−1Σ(X tX)−1X t,

which yields that (XΣ−1X t)+X = X(X tX)−1Σ. Hence, both cases p ≥ m and m > p

for the empirical Bayes estimator δB can be unified by

δB = X − c(XΣ−1X t)+X.

Since Σ−1 is unknown, we need to estimate it. In the case of n ≥ p, Σ−1 is estimated

by nS−1, so that we get the Efron-Morris type empirical Bayes estimator

δEM = X − c(XS−1X t)+X. (2.1)

The dominance properties of this estimator have been studied by Konno (1990, 1991,

1992).

In the case of p > n, the rank of S is deficient and its inverse does not exist. Therefore,

we here estimate Σ−1 via nS+, where S+ is the Moore-Penrose inverse of S.

The matrix XS+X t is nonsingular for p > n ≥ m, while it is singular for p ≥ m > n.

Taking the shrinkage estimator suggested by Chételat and Wells (2012) into account, we

can suggest the Efron-Morris type shrinkage estimator given by

δEM = X − c(XS+X t)+XSS+, (2.2)

for any set of (m, p, n). This gives a unified form of the Efron-Morris type estimator for

any positive integers p, m and n. In fact, (XS+X t)+ can be rewritten as

(XS+X t)+ =


(XS−1X t)−1 for n ≥ p ≥ m,

(XS+X t)−1 for p > n ≥ m,

(XS−1X t)+ for n ≥ m > p, m > n ≥ p,

and the corresponding Efron-Morris estimators are provided. Especially, in the case that

m > p, δEM is expressed in the following proposition which is an extension of Konno’s

(1992) class for m > p.

Proposition 2.1 In the case of m > p, the Efron-Morris type estimator given in (2.2) is

expressed as

δEM =

{
X − cX(X tX)−1S for n ≥ m > p, m > n ≥ p,

X − cX(SS+X tXSS+)+S for m > p > n.
(2.3)

Proof. When n ≥ m > p or m > n ≥ p, the expression (2.3) follows from the fact

that S+ = S−1 and

(XS−1X t)+XSS+ = (X t)+SX+X = X(X tX)−1S.
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When m > p > n, we define the eigenvalue decomposition of S as S = HLH t, where H

is a p × n matrix such that H tH = In and L is a full-rank diagonal matrix of order n.

Since S+ = HL−1H t and H tX t is an n ×m rectangular matrix of full row rank, it is

observed that

(XS+X t)+XSS+ = (XHL−1H tX t)+XHH t = (H tX t)+L(XH)+XHH t

= XH(H tX tXH)−1L(H tX tXH)−1H tX tXHH t

= XH(H tX tXH)−1LH t = XH(H tX tXH)−1H tHLH t

= XH(H tX tXH)−1H tS.

Noting that H(H tX tXH)−1H t = (HH tX tXHH t)+ = (SS+X tXSS+)+, we obtain

the expression for the case that m > p > n. □

3 A General Class of Shrinkage Estimators

Konno (1990, 1991, 1992) separately considered two cases m > p and p ≥ m, and indi-

vidually defined classes of shrinkage estimators. The arguments stated in the previous

section suggest that we can construct a well-defined class of shrinkage estimators unifying

both cases m > p and p ≥ m.

Let O(r) be the group of r × r orthogonal matrices. For r ≥ q, let Vr,q be the Stiefel

manifold, namely the set of r × q matrices M such that M tM = Iq. It is noted that

O(r) = Vr,r. Define D+
r as the set of r × r diagonal matrices diag(d1, . . . , dr) such that

d1 > · · · > dr > 0.

Denote ℓ = m∧p∧n. Define the eigenvalue decomposition of S as S = HLH t, where

H ∈ Vp,n∧p and L ∈ D+
n∧p. Let XHL−1/2 = RF 1/2V t be the nonsingular part of the sin-

gular value decomposition, where R ∈ Vm,ℓ, V ∈ Vn∧p,ℓ and F 1/2 = diag(f
1/2
1 , . . . , f

1/2
ℓ ) ∈

D+
ℓ . It is clear that S

+ = HL−1H t and XS+X t = XHL−1H tX t = RFRt. Note also

that R is orthogonal if ℓ = m and otherwise V is orthogonal.

For both the cases m > p and p ≥ m, a unified class of shrinkage estimators is defined

by

δSH = X −RΦ(F )RtXSS+, (3.1)

where Φ(F ) = diag(ϕ1(F ), . . . , ϕℓ(F )) is a diagonal matrix and the ϕi(F ) are differen-

tiable functions of F . Since (XS+X t)+ = RF−1Rt, the Efron-Morris type shrinkage

estimator (2.2) is given by

δEM = X −RΦEM(F )RtXSS+, ΦEM(F ) = diag(c/f1, . . . , c/fℓ).

Interestingly enough, the class (3.1) can be rewritten as in the following which is an

extension of Konno’s (1992) class for m > p.
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Proposition 3.1 LetQ = HL−1/2V . Then Q satisfies that QtSQ = Iℓ and QtX tXQ =

F , and the shrinkage estimator given in (3.1) is expressed as

δSH = X −XQΦ(F )QtS. (3.2)

In the case of ℓ = n ∧ p, namely, m > n ∧ p, δSH is

δSH = X −XQΦ(F )Q+ = X(Ip −QΦ(F )Q+). (3.3)

Proof. Recall that XHL−1/2 = RF 1/2V t. It thus turns out that RtXH =

F 1/2V tL1/2 and R = XHL−1/2V F−1/2, which yields that

RΦ(F )RtXSS+ = RΦ(F )RtXHH t = XHL−1/2V F−1/2Φ(F )F 1/2V tL1/2H t

= XHL−1/2V Φ(F )V tL1/2H t.

Then it is seen that V tL1/2H t = V tL−1/2H tHLH t = QtS. Hence for any set of

(m, p, n), one gets the expression (3.2). In the case of ℓ = n ∧ p, it is noted that V ∈
O(n ∧ p) and V tL1/2H t = (HL−1/2V )+ = Q+, which yields the expression (3.3). □

4 A Unified Expression of the Risk Functions

We now provide a unified expression of an unbiased estimator of the risk function of

estimators δSH given in (3.1).

Theorem 4.1 Let Φ = Φ(F ) and ϕi = ϕi(F ) for i = 1, . . . , ℓ. Denote by hm,p(X|Θ,Σ)

and hn,p(Y |0n×p,Σ) the probability density functions of X and Y , respectively. Assume

that

(i) E[(trS)trFΦ2] <∞,

(ii) lim
Xab→±∞

{RΦRtXSS+}cdhm,p(X|Θ,Σ) = 0 for a, c = 1, . . . ,m and b, d = 1, . . . , p,

(iii) lim
Yab→±∞

{Y S+X tRΦ2RtXSS+}cdhn,p(Y |0n×p,Σ) = 0 for a, c = 1, . . . , n and b, d =

1, . . . , p.

For any positive integers m, p and n, the risk difference of δSH and δML is expressed as

R(δSH ,Θ|Σ)−R(δML,Θ|Σ)

= E
[ ℓ∑
i=1

{
afiϕ

2
i − 2bϕi − 4f 2

i ϕi
∂ϕi

∂fi
− 4fi

∂ϕi

∂fi

− 2
ℓ∑

j>i

f 2
i ϕ

2
i − f 2

j ϕ
2
j

fi − fj
− 4

ℓ∑
j>i

fiϕi − fjϕj

fi − fj

}]
,
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where ℓ = m ∧ p ∧ n and

a =ap,m,n = (|n− p|+ 2m) ∧ (n+ p)− 3,

b =bp,m,n = |m− n ∧ p|+ 1.

When an ordering among m, p and n is given, the corresponding specific value of (a, b)

is provided. Noting that (|n− p|+ 2m) ∧ (n+ p) = n+ p for m > n ∧ p, we can see that

specific values of (a, b) are given by

(a, b) =



(n+ p− 3, m− p+ 1) for n ≥ m > p,

(n+ p− 3, m− p+ 1) for m > n ≥ p,

(n+ p− 3, m− n+ 1) for m > p > n,

(n− p+ 2m− 3, p−m+ 1) for n ≥ p ≥ m,

(p− n+ 2m− 3, n−m+ 1) for p > n ≥ m,

(n+ p− 3, m− n+ 1) for p ≥ m > n.

The three cases n ≥ m > p, m > n ≥ p and n ≥ p ≥ m, namely the cases satisfying

n > p, are provided by Konno (1992).

The unified expression of the risk difference given in Theorem 4.1 can provide condi-

tions under which specific estimators improve on the MLE δML = X. Two examples are

given below.

Example 4.1 A modified Stein type estimator is given by

δmST = δST − d

tr[XS+X t]
RRtXSS+, (4.1)

where δST = X − RCF−1RtXSS+ for C = diag(c1, . . . , cℓ) with c1 ≥ · · · ≥ cℓ. This

corresponds to the form

ϕi =
ci
fi

+
d∑ℓ

j=1 fj
.

Then, from Theorem 4.1, it follows that

∆ = R(δmST ,Θ|Σ)−R(δML,Θ|Σ)

= E

[ ℓ∑
i=1

1

fi
(ac2i − 2bci + 4ci + 4c2i )

+
1

trF

{
(a− 2ℓ+ 2)d2 − 2ℓbd− 2ℓ(ℓ− 1)d+ 4d+ 2(a+ 2)d

ℓ∑
i=1

ci

}
+ 4d

trCF

(trF )2
+ 4d2

trF 2

(trF )3
− 2

ℓ∑
i=1

∑
j>i

(ci − cj)(ci + cj + 2)

fi − fj

− 4d

trF

ℓ∑
i=1

∑
j>i

cifi − cjfj
fi − fj

]
, (4.2)
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since
∑

i

∑
j>i(fi + fj) = (ℓ− 1)trF . The condition for obtaining (4.2) is

|m− n ∧ p| ≥ 2 (or, equivalently, b ≥ 3),

which is a sufficient condition for (i) of Theorem 4.1. It follows from Konno (1991) and

Tsukuma and Kubokawa (2007) that trF 2 ≤ (trF )2, trCF /(trF )2 ≤ c1/trF ,

ℓ∑
i=1

∑
j>i

(ci − cj)(ci + cj + 2)

fi − fj
≥

ℓ∑
i=1

1

fi

∑
j>i

(ci − cj)(ci + cj + 2),

ℓ∑
i=1

∑
j>i

cifi − cjfj
fi − fj

≥
ℓ∑

i=1

(ℓ− i)ci.

Thus, one gets ∆ ≤
∑ℓ

i=1 hc(i)/fi + hd/trF , where

hc(i) =(a+ 4− 2ℓ+ 2i)c2i − 2(b− 2 + 2ℓ− 2i)ci + 2
∑
j>i

cj(cj + 2),

hd =(a− 2ℓ+ 6)d2 − 2
{
ℓb+ ℓ(ℓ− 1)− 2− 2c1 − (a+ 2)

ℓ∑
i=1

ci + 2
ℓ∑

i=1

(ℓ− i)ci

}
d.

Konno (1991) showed that hc(i) ≤ 0 for any i when ci is

ci = (b− 2 + 2ℓ− 2i)/(a+ 4− 2ℓ+ 2i). (4.3)

For these ci’s, it is seen that 2
∑ℓ

i=1(ℓ − i)ci = −
∑ℓ

i=1(a + 4 − 2ℓ + 2i − a − 4)ci =

−
∑ℓ

i=1(b − 2 + 2ℓ − 2i) + (a + 4)
∑ℓ

i=1 ci = −(b − 2 + 2ℓ)ℓ + ℓ(ℓ + 1) + (a + 4)
∑ℓ

i=1 ci.

Then, hd is rewritten as

hd = (a− 2ℓ+ 6)d2 − 4
{
ℓ− 1 +

ℓ∑
i=2

ci

}
d.

Hence, these observations imply that δML is improved on by the Stein (1973) type esti-

mator δST = X −RCF−1RtXSS+ for constants ci’s given in (4.3). For these ci’s, the

Stein estimator δST is further improved on by the modified Stein type estimator

δmST = X −RCF−1RtXSS+ − d

tr[XS+X t]
RRtXSS+,

if d satisfies 0 < d ≤ 4
{
ℓ − 1 +

∑ℓ
i=2 ci

}
/(a − 2ℓ + 6). This is an extension of Tsukuma

and Kubokawa (2007). □

Example 4.2 A modified Efron-Morris type estimator is given by

δmEM = δEM − d

tr[XS+X t]
RRtXSS+, (4.4)
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where δEM is given in (2.2). This corresponds to the form

ϕi =
c

fi
+

d∑ℓ
j=1 fj

.

Letting ci = c in (4.2) for all i, one gets

R(δmEM ,Θ|Σ)−R(δML,Θ|Σ)

= E

[
{ac2 − 2bc+ 4c+ 4c2}

ℓ∑
i=1

1

fi

+
1

trF

{
(a− 2ℓ+ 2)d2 − 2ℓbd− 2ℓ(ℓ− 1)d+ 4d+ 2ℓ(a+ 2)cd

}
+ 4d

c

trF
+ 4d2

trF 2

(trF )3
− 4

cd

trF

ℓ∑
i=1

(ℓ− i)
}]
,

which is less than or equal to

E

[
{(a+ 4)c2 − 2(b− 2)c}

ℓ∑
i=1

1

fi

+
{
(a− 2ℓ+ 6)d2 − 2d{bℓ− 2− (aℓ+ 2ℓ+ 2)c+ (c+ 1)ℓ(ℓ− 1)}d

} 1∑ℓ
i=1 fi

]
, (4.5)

which implies that δmEM improves on δML if constants c and d satisfy that 0 < c ≤
2(b− 2)/(a+ 4) and

0 < d ≤ 2{bℓ− 2− (aℓ+ 2ℓ+ 2)c+ (c+ 1)ℓ(ℓ− 1)}/(a− 2ℓ+ 6),

for b > 2 and {b + (c + 1)(ℓ− 1)}ℓ ≥ 2 + (aℓ + 2ℓ + 2)c. Also from the expression (4.5),

it is seen that the constant c which minimizes the first term is given by

c0 =
b− 2

a+ 4
=

|m− n ∧ p| − 1

(|n− p|+ 2m) ∧ (n+ p) + 1
.

Given c = c0, the constant d which minimizes the second term in (4.5) is given by

d0 =
(a+ b+ 2)(ℓ− 1)(ℓ+ 2)

(a+ 4)(a− 2ℓ+ 6)
=

(m+ n ∨ p)(p ∧m ∧ n− 1)(p ∧m ∧ n+ 2)

{(|n− p|+ 2m) ∧ (n+ p) + 1}(|n− p|+ 3)
.

That is, for b ≥ 3, δML is improved on by the Efron-Morris type estimator

δEM = X − c0(XS+X t)+XSS+,

which can be further improved on by the modified Efron-Morris type estimator

δmEM = X − c0(XS+X t)+XSS+ − d0
tr[XS+X t]

RRtXSS+,

for b ≥ 3 and ℓ ≥ 2. □
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5 Positive-part Estimators and Some Numerical Re-

sults

In this section we investigate risk performances of the shrinkage estimators (3.1) by sim-

ulation. Before that, we prove that the shrinkage estimators are dominated by the corre-

sponding positive-part shrinkage estimators.

Since S = HLH t and XHL−1/2 = RF 1/2V t where R ∈ Vm,ℓ, it is seen that

(Im −RRt)XSS+ = (Im −RRt)XHH t = 0m×p,

which is used to rewrite the estimator (3.1) as

δSH = X −XSS+ +XSS+ −RRtXSS+ +RRtXSS+ −RΦ(F )RtXSS+

= X(Ip − SS+) +RΨ(F )RtXSS+,

where Ψ(F ) = diag(ψ1(F ), . . . , ψℓ(F )) = Iℓ − Φ(F ). Then, we define the positive-part

shrinkage estimator

δSH
+ = X(Ip − SS+) +RΨ+(F )RtXSS+, (5.1)

where Ψ+(F ) = diag(ψ+
1 (F ), . . . , ψ+

ℓ (F )) for ψ+
i (F ) = max{0, ψi(F )}.

Whenm = 1 and p > n, δSH
+ was suggested by Chételat and Wells (2012), who showed

by simulation that δSH
+ outperforms δSH . For analytical dominance results between δSH

+

and δSH , see Baranchik (1970) for m = 1 and n ≥ p and Tsukuma (2010) for m > 1 and

n ≥ p. We prove analytically this kind of dominance results in more general cases for any

positive numbers m, p and n. The proof of the following theorem is given in Section 6.

Theorem 5.1 Assume that the risk of δSH is finite and Pr(ψi(F ) < 0) > 0 for some i.

Then δSH
+ dominates δSH relative to the loss (1.2) regardless of an order relation among

m, p and n.

For example, the Efron-Morris estimator δEM is dominated by δEM
+ = X(Ip−SS+)+

RΨEM
+ (F )RtXSS+, where the i-th diagonal element of ΨEM

+ (F ) is max[0, 1 − (b −
2)/{(a + 4)fi}]. Also, Theorem 5.1 can be applied to δmEM , δST and δmST given in

Section 4.

We now investigate how positive-part shrinkage estimators reduce risks of shrinkage

estimators through Monte Carlo simulations. The risks of estimators were estimated by

average of losses based on 10,000 independent replications of X and Y in the model (1.1).

For the mean matrix Θ = (θij), we considered the following two cases: (A) Θ = 0m×p

and (B) θij = 2 sin(i2+ j) for i = 1, . . . ,m and j = 1, . . . , p. For the covariance matrix Σ,

we supposed (a) Σ = Ip or (b) Σ = diag(1, 2−1, . . . , p−1). Also, m, p and n were taken as

(m, p) = (20, 10) and (10, 20) and n = 50, 15 and 5. Then the risk of δML = X is given

by mp = 200.

In the simulations, we examined the following shrinkage estimators:
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Table 1: Average Losses of Shrinkage Estimators and Their Positive-part Estimators

(R(X,θ|Σ) = mp = 200)

Θ Σ (m, p) n δEM δEM
+ δmEM δmEM

+ δST δST
+ δmST δmST

+

(A) (a) (20, 10) 50 126.2 106.9 49.8 11.7 57.3 28.3 52.2 17.4

15 147.9 135.5 64.1 41.8 77.1 59.8 63.7 42.4

5 156.5 149.6 134.3 121.0 136.5 128.6 131.0 120.5

(10, 20) 50 129.2 111.1 49.4 13.2 58.4 31.2 52.2 19.3

15 177.3 169.2 94.3 81.6 109.9 97.0 97.4 81.7

5 184.7 180.0 164.4 155.8 167.4 161.4 164.1 156.3

(A) (b) (20, 10) 50 126.2 106.9 49.8 11.7 57.3 28.3 52.2 17.4

15 147.9 135.5 64.1 41.8 77.1 59.8 63.7 42.4

5 162.7 157.0 144.4 133.8 146.2 139.8 141.7 133.4

(10, 20) 50 129.2 111.1 49.4 13.2 58.4 31.2 52.2 19.3

15 178.9 171.5 103.2 91.7 117.0 105.4 105.7 91.5

5 189.4 186.4 176.5 171.6 178.4 174.8 176.3 171.9

(B) (a) (20, 10) 50 139.8 125.5 114.6 96.4 97.6 77.5 96.2 74.8

15 157.5 148.2 129.5 118.0 115.7 103.5 111.9 98.9

5 170.6 166.8 162.9 158.0 162.5 158.5 160.9 156.4

(10, 20) 50 142.3 128.7 116.0 98.7 99.1 80.3 97.4 77.3

15 181.6 175.3 153.7 146.4 140.6 131.5 137.0 127.3

5 189.4 186.8 182.4 179.1 181.9 178.9 180.9 177.6

(B) (b) (20, 10) 50 140.8 126.8 134.5 119.6 99.9 80.5 99.6 79.8

15 158.1 149.0 151.1 141.6 119.3 107.6 118.5 106.5

5 177.3 174.8 175.0 172.3 172.6 170.0 172.2 169.5

(10, 20) 50 143.2 130.1 139.7 126.1 101.8 83.7 101.6 83.3

15 183.1 177.7 179.0 173.4 148.8 141.0 148.3 140.5

5 193.6 192.3 192.3 190.9 190.3 188.9 190.1 188.7

(1) δEM = X − c0RF−1RtXSS+, c0 =
b− 2

a+ 4
;

(2) δmEM = δEM − d0(trXS+X t)−1RRtXSS+, d0 =
(a+ b+ 2)(ℓ− 1)(ℓ+ 2)

(a+ 4)(a− 2ℓ+ 6)
;

(3) δST = X −RCF−1RtXSS+, C = diag(c1, . . . , cℓ) with ci =
b− 2 + 2ℓ− 2i

a+ 4− 2ℓ+ 2i
;

(4) δmST = δST − d1(trXS+X t)−1RRtXSS+, d1 =
2
{
ℓ− 1 +

∑ℓ
i=2 ci

}
a− 2ℓ+ 6

.

The corresponding positive-part estimators are denoted by δEM
+ , δmEM

+ , δST
+ and δmST

+ ,

respectively.

It is noted that in the cases such that n ≥ p, the estimation problem, shrinkage

11



estimators δSH and positive-part estimators δSH
+ are invariant under the transformations

X → OXP , Θ → OΘP , S → P tSP , Σ → P tΣP ,

where O ∈ O(m) and P is a p × p nonsingular matrix. Then the risk functions of δSH

and δSH
+ are functions of eigenvalues of ΘΣ−1Θt. However, in the cases such that p > n,

δSH and δSH
+ are not invariant under the above transformations because (P tSP )+ ̸=

P−1S+(P t)−1.

Our findings of the simulations are summarized in Table 1. When Θ = 0m×p with

n = 50, the risk improvement of positive-part estimator over the corresponding shrinkage

estimator is very substantial. Through all cases, δmST
+ provide large savings in risk. The

simulation results also suggest that, as n is small, shrinkage and positive-part estimators

are less effective.

6 Proofs

6.1 Proof of Theorem 4.1

For an m × p rectangular matrix X = (Xab), define the m × p rectangular matrix of

differential operators with respect to X as ∇X =
(
dX
ab

)
, where dX

ab = ∂/∂Xab. Similarly,

denote by ∇Y =
(
dY
ab

)
the n× p rectangular matrix of differential operators with respect

to an n× p rectangular matrix Y = (Yab).

A key tool for deriving the unbiased estimator of the risk function is the Stein identity,

which is given in the following lemma. For details, see Kubokawa and Srivastava (2001).

Lemma 6.1 Let X be defined as in the model (1.1). Let Θ = (θab) and denote by

hm,p(X|Θ,Σ) the probability density function (p.d.f.) of X. Let G = (Gcd) be an m× p

matrix such that all the elements Gcd are absolutely continuous functions of X and satisfy

E[|(Xab − θab)Gcd|] < ∞ and limXab→±∞Gcdhm,p(X|Θ,Σ) = 0 for a, c = 1, . . . ,m and

b, d = 1, . . . , p. It then follows that

E[tr(X −Θ)Σ−1Gt] = E[tr∇XG
t].

Recall that S = Y tY , where Y = (Y 1, . . . ,Y n)
t with Y i ∼ Np(0p,Σ). Konno (2009)

used Lemma 6.1 to obtain the identity

E[trΣ−1SGt] = E[tr∇t
YY Gt], (6.1)

where G is a p×p matrix-valued function of Y . This identity is also useful for evaluating

the risk in high dimensions.

Next, we provide calculus formulas for a p × p symmetric matrix S = (Sij) = Y tY

and its Moore-Penrose inverse S+ = (S+
ij ).

12



Lemma 6.2 Denote the Kronecker delta by δij, namely δij = 1 for i = j and δij = 0 for

i ̸= j. For a = 1, . . . , n and b = 1, . . . , p, we have

(i) dY
abScd = δbcYad + δbdYac for c, d = 1, . . . , p,

(ii) dY
abS

+
cd = −S+

bc{Y S+}ad − S+
bd{Y S+}ac + {Ip − SS+}bc{Y S+S+}ad

+{Ip − SS+}bd{Y S+S+}ac for c, d = 1, . . . , p,

(iii) dY
ab{Y S+}cd = {In − Y S+Y t}acS+

bd + {Y S+S+Y t}ac{Ip − SS+}bd
− {Y S+}ad{Y S+}cb for c = 1, . . . , n and d = 1, . . . , p.

Proof. For the proof of (i), see Chételat and Wells (2012, (i) of Proposition 1).

Since the differential of S+ is given by

dS+ = −S+(dS)S+ + (Ip − SS+)(dS)S+S+ + S+S+(dS)(Ip − SS+),

it is observed that from (i)

dY
abS

+
cd = {dY

abS
+}cd =

p∑
i=1

p∑
j=1

[
− S+

ci(d
Y
abSij)S

+
jd + {Ip − SS+}ci(dY

abSij){S+S+}jd

+ {S+S+}ci(dY
abSij){Ip − SS+}jd

]
= −S+

bc{Y S+}ad − {Y S+}acS+
bd

+ {Ip − SS+}bc{Y S+S+}ad + {Y (Ip − SS+)}ac{S+S+}bd
+ {S+S+}bc{Y (Ip − SS+)}ad + {Y S+S+}ac{Ip − SS+}bd.

Noting that Y (Ip − SS+) = 0n×p, we get (ii).

The product rule is used to obtain

dY
ab{Y S+}cd =

p∑
i=1

{(dY
abYci)S

+
id + Ycid

Y
abS

+
id}.

Using (ii) and summing up with respect to i yields (iii). □
Recall that RFRt denotes the eigenvalue decomposition of XS+X t, where R =

(Rij) ∈ Vm,ℓ and F = diag(f1, . . . , fℓ) ∈ D+
ℓ . The following lemma shows partial deriva-

tives of F and R with respect to ∇X and ∇Y .

Lemma 6.3 For i = 1, . . . , ℓ, k = 1, . . . ,m, a = 1, . . . ,m and b = 1, . . . , p, we have

(i) dX
abfi = Aii

1·ab,

(ii) dX
abRki =

ℓ∑
j=1
j ̸=i

RkjA
ij
1·ab

fi − fj
+ f−1

i {Im −RRt}ak{RtXS+}ib,
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where Aij
1·ab = Raj{RtXS+}ib + Rai{RtXS+}jb. For i = 1, . . . , ℓ, k = 1, . . . ,m, a =

1, . . . , n and b = 1, . . . , p, we have

(iii) dY
abfi = Bii

1·ab,

(iv) dY
abRki =

ℓ∑
j=1
j ̸=i

RkjB
ij
1·ab

fi − fj
+ f−1

i {RtXS+S+Y t}ia{(Im −RRt)X(Ip − SS+)}kb,

where

Bij
1·ab = −{RtXS+Y t}ia{RtXS+}jb − {RtXS+Y t}ja{RtXS+}ib

+ {RtXS+S+Y t}ia{RtX(Ip − SS+)}jb
+ {RtXS+S+Y t}ja{RtX(Ip − SS+)}ib.

Proof. Take R0 ∈ Vm,m−ℓ such that Rt
0R = 0(m−ℓ)×ℓ. Define U = (Uij) = [R,R0] ∈

Om. Denote F 0 = diag(f1, . . . , fℓ, 0, . . . , 0), where F 0 is of order m. It is clear that

XS+X t = UF 0U
t. Since the differential of U tU = Im is given by (dU t)U +U t(dU ) =

0m×m, the m × m matrix U t(dU) is skew-symmetric, namely the (j, i)-th element is

written as

{U t(dU)}ji =

{
0 for j = i,

−{(dU t)U}ji for j ̸= i.

The differential of XS+X t = UF 0U
t is given by

d(XS+X t) = (dU)F 0U
t +U(dF 0)U

t +UF 0(dU
t),

which yields

U t[d(XS+X t)]U = U t(dU )F 0 + dF 0 + F 0(dU
t)U

= U t(dU )F 0 + dF 0 − F 0U
t(dU).

It is thus seen that

dfi = {U t[d(XS+X t)]U}ii for i = 1, . . . , ℓ

and

{U t(dU)}ji =


{U t[d(XS+X t)]U}ji

fi − fj
for j = 1, . . . , ℓ and i = 1, . . . , ℓ with j ̸= i,

{U t[d(XS+X t)]U}ji
fi

for j = ℓ+ 1, . . . ,m and i = 1, . . . , ℓ.

Noting that dX
ab(XS+X t) = (dX

abX)S+X t + XS+(dX
abX

t) and dX
abXcd = δacδbd, we

observe that

{U t[dX
ab(XS+X t)]U}ji

=
m∑
c=1

p∑
d=1

Ucj(d
X
abXcd){S+X tU}di +

p∑
c=1

m∑
d=1

{U tXS+}jc(dX
abXdc)Udi

= Uaj{S+X tU}bi + {U tXS+}jbUai.
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Since {U t[dX
ab(XS+X t)]U}ji = Aij

1·ab for i, j = 1, . . . , ℓ, it follows that

dX
abfi = {U t[dX

ab(XS+X t)]U}ii = Aii
1·ab,

which gives (i). It is also observed that for k = 1, . . . ,m and i = 1, . . . , ℓ

dX
abRki = {dX

abU}ki = {UU t(dX
abU)}ki

=
ℓ∑

j=1
j ̸=i

Ukj{U t(dX
abU )}ji +

m∑
j=ℓ+1

Ukj{U t(dX
abU)}ji

=
ℓ∑

j=1
j ̸=i

RkjA
ij
1·ab

fi − fj
+

m∑
j=ℓ+1

Ukj{U t[dX
ab(XS+X t)]U}ji

fi
. (6.2)

Here it is seen that

m∑
j=ℓ+1

Ukj{U t[dX
ab(XS+X t)]U}ji = {R0R

t
0}ak{RtXS+}ib +Rai{R0R

t
0XS+}kb

= {Im −RRt}ak{RtXS+}ib (6.3)

because RRt + R0R
t
0 = Im and Rt

0XS+ = 0(m−ℓ)×p. Substituting (6.3) into (6.2), we

obtain (ii).

Since {U t[dY
ab(XS+X t)]U}ji = {U tX[dY

abS
+]X tU}ji, it is observed that from (ii) of

Lemma 6.2

{U t[dY
ab(XS+X t)]U}ji

= −{U tXS+}jb{U tXS+Y t}ia − {U tXS+Y t}ja{U tXS+}ib
+ {U tX(Ip − SS+)}jb{U tXS+S+Y t}ia + {U tXS+S+Y t}ja{U tX(Ip − SS+)}ib.

It is noted that {U t[dY
ab(XS+X t)]U}ji = Bij

1·ab for i, j = 1, . . . , ℓ and

m∑
j=ℓ+1

Ukj{U t[dY
ab(XS+X t)]U}ji = {RtXS+S+Y t}ia{(Im −RRt)X(Ip − SS+)}kb.

Hence using the same arguments as in the proofs of (i) and (ii) yields (iii) and (iv). □

Lemma 6.4 Let Φ = Φ(F ) = diag(ϕ1, . . . , ϕℓ) be a diagonal matrix of order ℓ, where the

ϕi are differentiable functions of F . For a = 1, . . . ,m, b = 1, . . . , p and i, j = 1, . . . , ℓ,

denote Aij
2·ab = Raj{RtXSS+}ib +Rai{RtXSS+}jb. Let Aij

1·ab’s be defined as in Lemma

6.3. Then we have

dX
ab{RΦRtXSS+}ab = {RΦRt}aa{SS+}bb +DX·1

ab (Φ) +DX·2
ab (Φ),
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where

DX·1
ab (Φ) =

1

2

ℓ∑
i=1

ℓ∑
j=1

Ajj
1·abA

ii
2·ab

∂ϕi

∂fj
,

DX·2
ab (Φ) = {Im −RRt}aa{S+X tRF−1ΦRtXSS+}bb +

ℓ∑
i=1

ℓ∑
j=1
j ̸=i

ϕi

fi − fj
Aij

1·abA
ij
2·ab.

Proof. Since {RΦRtXSS+}ab =
∑ℓ

i=1

∑m
k=1RaiϕiRki{XSS+}kb, it is seen that

dX
ab{RΦRtXSS+}ab =

m∑
k=1

{RΦRt}akdX
ab{XSS+}kb +D1 +D2

= {RΦRt}aa{SS+}bb +D1 +D2,

where

D1 =
ℓ∑

i=1

Rai{RtXSS+}ibdX
abϕi,

D2 =
ℓ∑

i=1

m∑
k=1

ϕi{XSS+}kb(Rkid
X
abRai +Raid

X
abRki).

It will be shown that D1 = DX·1
ab (Φ) and D2 = DX·2

ab (Φ).

Applying the chain rule and (i) of Lemma 6.3 to D1 gives that

D1 =
ℓ∑

i=1

ℓ∑
j=1

Rai{RtXSS+}ib(dX
abfj)

∂ϕi

∂fj
=

ℓ∑
i=1

ℓ∑
j=1

Rai{RtXSS+}ibAjj
1·ab

∂ϕi

∂fj
.

It follows that Rai{RtXSS+}ib = (1/2)Aii
2·ab, which implies that D1 = DX·1

ab (Φ).

It is noted that from (ii) of Lemma 6.3

ℓ∑
i=1

m∑
k=1

ϕi{XSS+}kbRkid
X
abRai =

ℓ∑
i=1

ℓ∑
j=1
j ̸=i

ϕi

fi − fj
Aij

1·abRaj{RtXSS+}ib

+ {Im −RRt}aa{S+X tRF−1ΦRtXSS+}bb

and
ℓ∑

i=1

m∑
k=1

ϕi{XSS+}kbRaid
X
abRki =

ℓ∑
i=1

ℓ∑
j=1
j ̸=i

ϕi

fi − fj
Aij

1·abRai{RtXSS+}jb,

which yields that

D2 =
ℓ∑

i=1

ℓ∑
j=1
j ̸=i

ϕi

fi − fj
Aij

1·ab(Raj{RtXSS+}ib +Rai{RtXSS+}jb)

+ {Im −RRt}aa{S+X tRF−1ΦRtXSS+}bb.
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Since Raj{RtXSS+}ib+Rai{RtXSS+}jb = Aij
2·ab, we can see that D2 = DX·2

ab (Φ). Thus

the proof is complete. □

Lemma 6.5 Let Bij
1·ab’s and Φ be defined as in Lemmas 6.3 and 6.4, respectively. For a =

1, . . . , n, b = 1, . . . , p and i, j = 1, . . . , ℓ, denote Bij
2·ab = {RtXS+Y t}ia{RtXSS+}jb +

{RtXS+Y t}ja{RtXSS+}ib. Then we have

dY
ab{Y S+X tRΦ2RtXSS+}ab = DY ·1

ab (Φ) +DY ·2
ab (Φ) +DY ·3

ab (Φ),

where

DY ·1
ab (Φ) = {In − Y S+Y t}aa{S+X tRΦ2RtXSS+}bb

+ {Y S+S+Y t}aa{(Ip − SS+)X tRΦ2RtXSS+}bb
− {Y S+X tRΦ2RtXSS+}ab{Y S+}ab
+ {Y S+}ab{Y S+X tRΦ2RtX(Ip − SS+)}ab
+ {Y S+X tRΦ2RtXS+Y t}aa{Ip − SS+}bb,

DY ·2
ab (Φ) =

ℓ∑
i=1

ℓ∑
j=1

Bjj
1·abB

ii
2·abϕi

∂ϕi

∂fj
,

DY ·3
ab (Φ) =

ℓ∑
i=1

ℓ∑
j=1
j ̸=i

ϕ2
i

fi − fj
Bij

1·abB
ij
2·ab.

Proof. It is observed that

dY
ab{Y S+X tRΦ2RtXSS+}ab = dY

ab

ℓ∑
i=1

n∑
c=1

ϕ2
i {RtXS+Y t}ia{RtXS+Y t}icYcb

= D1 +D2 + {Y S+X tRΦ2RtXS+Y t}aa, (6.4)

where

D1 =
ℓ∑

i=1

ϕ2
i {RtXSS+}ibdY

ab{RtXS+Y t}ia

+
ℓ∑

i=1

n∑
c=1

ϕ2
i {RtXS+Y t}iaYcbdY

ab{RtXS+Y t}ic,

D2 =
ℓ∑

i=1

{RtXS+Y t}ia{RtXSS+}ibdY
abϕ

2
i .

Using the chain rule and (iii) of Lemma 6.3, we express D2 of (6.4) as

D2 = 2
ℓ∑

i=1

ℓ∑
j=1

{RtXS+Y t}ia{RtXSS+}ibBjj
1·abϕi

∂ϕi

∂fj
.
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Since {RtXS+Y t}ia{RtXSS+}ib = (1/2)Bii
2·ab, we get

D2 =
ℓ∑

i=1

ℓ∑
j=1

Bjj
1·abB

ii
2·abϕi

∂ϕi

∂fj
= DY ·2

ab (Φ). (6.5)

We next evaluate dY
ab{RtXS+Y t}ic for i = 1, . . . , ℓ and c = 1, . . . , n. Using the

product rule gives that

dY
ab{RtXS+Y t}ic =

m∑
k=1

{XS+Y t}kcdY
abRki +

p∑
k=1

{RtX}ikdY
ab{Y S+}ck. (6.6)

From (iv) of Lemma 6.3, the first term of the r.h.s. in (6.6) is written as

m∑
k=1

{XS+Y t}kcdY
abRki =

ℓ∑
j=1
j ̸=i

Bij
1·ab{R

tXS+Y t}jc
fi − fj

. (6.7)

because
∑m

k=1{XS+Y t}ka{(Im −RRt)X(Ip − SS+)}kb = 0. Applying (iii) of Lemma

6.2 to the second term of the r.h.s. in (6.6) gives that

p∑
k=1

{RtX}ikdY
ab{Y S+}ck = {In − Y S+Y t}ac{RtXS+}ib − {RtXS+Y t}ia{Y S+}cb

+ {Y S+S+Y t}ac{RtX(Ip − SS+)}ib. (6.8)

Combining (6.6), (6.7) and (6.8), we obtain

dY
ab{RtXS+Y t}ic =

ℓ∑
j=1
j ̸=i

Bij
1·ab{R

tXS+Y t}jc
fi − fj

+ {In − Y S+Y t}ac{RtXS+}ib

− {RtXS+Y t}ia{Y S+}cb + {Y S+S+Y t}ac{RtX(Ip − SS+)}ib.
(6.9)

Applying (6.9) to D1 of (6.4) implies that

D1 =
ℓ∑

i=1

ℓ∑
j=1
j ̸=i

ϕ2
i

fi − fj
Bij

1·abB
ij
2·ab + {In − Y S+Y t}aa{S+X tRΦ2RtXSS+}bb

+ {Y S+S+Y t}aa{(Ip − SS+)X tRΦ2RtXSS+}bb
− {Y S+X tRΦ2RtXSS+}ab{Y S+}ab − {Y S+X tRΦ2RtXS+Y t}aa{SS+}bb
+ {Y S+}ab{Y S+X tRΦ2RtX(Ip − SS+)}ab.

The first term of the above r.h.s. is equal to DY ·3
ab (Φ). Hence the sum of D1 and the third

term of the last r.h.s. in (6.4) is DY ·1
ab (Φ) + DY ·3

ab (Φ). Combining this result and (6.5)

completes the proof. □
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Proof of Theorem 4.1. Abbreviate Φ(F ) to Φ. The risk of δSH is expanded as

R(δSH ,Θ|Σ) = R(X,Θ|Σ) + E[trRΦRtXSS+Σ−1SS+X tRΦRt

− 2tr(X −Θ)Σ−1SS+X tRΦRt]

= R(X,Θ|Σ) + E2 − 2E1, (6.10)

where

E1 = E[tr(X −Θ)Σ−1SS+X tRΦRt],

E2 = E[trΣ−1SS+X tRΦ2RtXSS+].

Using Lemma 6.1, we can express E1 as

E1 = E[tr∇XSS
+X tRΦRt] = E

[ m∑
a=1

p∑
b=1

dX
ab{RΦRtXSS+}ab

]
if limXab→±∞{RΦRtXSS+}cdhm,p(X|Θ,Σ) = 0 and

E[|(Xab − θab){RΦRtXSS+}cd|] <∞ (6.11)

for a, c = 1, . . . ,m and b, d = 1, . . . , p. Lemma 6.4 is used to obtain

E1 = E

[
trRΦRt · trSS+ +

m∑
a=1

p∑
b=1

{DX·1
ab (Φ) +DX·2

ab (Φ)}
]
, (6.12)

where DX·1
ab (Φ) and DX·2

ab (Φ) are defined in Lemma 6.4. Since

m∑
a=1

p∑
b=1

Ajj
1·abA

ii
2·ab = 4{F }ij,

m∑
a=1

p∑
b=1

Aij
1·abA

ij
2·ab = fi + fj + 2{F }ij,

we observe that

m∑
a=1

p∑
b=1

DX·1
ab (Φ) = 2

ℓ∑
i=1

fi
∂ϕi

∂fi
,

m∑
a=1

p∑
b=1

DX·2
ab (Φ) = (m− ℓ)trΦ+

ℓ∑
i=1

ℓ∑
j=1
j ̸=i

(fi + fj)ϕi

fi − fj

= (m− ℓ)
ℓ∑

i=1

ϕi +
ℓ∑

i=1

ℓ∑
j=1
j ̸=i

2fiϕi

fi − fj
−

ℓ∑
i=1

ℓ∑
j=1
j ̸=i

ϕi

= (m− 2ℓ+ 1)
ℓ∑

i=1

ϕi + 2
ℓ∑

i=1

ℓ∑
j>i

fiϕi − fjϕj

fi − fj
,
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which are substituted into (6.12) to obtain

E1 = E

[ ℓ∑
i=1

{
bp,m,nϕi + 2fi

∂ϕi

∂fi
+ 2

ℓ∑
j>i

fiϕi − fjϕj

fi − fj

}]
, (6.13)

where bp,m,n = n ∧ p+m− 2ℓ+ 1. A simple manipulation gives that

bp,m,n = n ∧ p+m− (2m) ∧ {2(n ∧ p)}+ 1 = n ∧ p+m+ (−2m) ∨ {−2(n ∧ p)}+ 1

= (n ∧ p−m) ∨ (m− n ∧ p) + 1

= |m− n ∧ p|+ 1.

Similarly, the Stein identity (6.1) can be used to rewrite E2 as

E2 = E[tr∇t
YY S+X tRΦ2RtXSS+] = E

[ n∑
a=1

p∑
b=1

dY
ab{Y S+X tRΦ2RtXSS+}ab

]
if limYab→±∞{Y S+X tRΦ2RtXSS+}cdhn,p(Y |0n×p,Σ) = 0 and

E[|Yab{Y S+X tRΦ2RtXSS+}cd|] <∞ (6.14)

for a, c = 1, . . . , n and b, d = 1, . . . , p. Using Lemma 6.5, we get

E2 = E

[ n∑
a=1

p∑
b=1

{DY ·1
ab (Φ) +DY ·2

ab (Φ) +DY ·3
ab (Φ)}

]
It is here seen that

n∑
a=1

p∑
b=1

DY ·1
ab (Φ) = {n+ p− 2(n ∧ p)− 1}trFΦ2.

For Bij
1·ab’s and B

ij
2·cd’s given in Lemmas 6.3 and 6.5, it follows that

n∑
a=1

p∑
b=1

Bjj
1·abB

ii
2·ab = −4{F }2ij,

n∑
a=1

p∑
b=1

Bij
1·abB

ij
2·ab = −2fifj − 2{F }2ij,

which yields that

n∑
a=1

p∑
b=1

DY ·2
ab (Φ) = −4

ℓ∑
i=1

f 2
i ϕi

∂ϕi

∂fi
,

n∑
a=1

p∑
b=1

DY ·3
ab (Φ) = −2

ℓ∑
i=1

ℓ∑
j=1
j ̸=i

fifjϕ
2
i

fi − fj
= −2

ℓ∑
i=1

ℓ∑
j=1
j ̸=i

f 2
i ϕ

2
i

fi − fj
+ 2

ℓ∑
i=1

ℓ∑
j=1
j ̸=i

fiϕ
2
i

= −2
ℓ∑

i=1

ℓ∑
j>i

f 2
i ϕ

2
i − f 2

j ϕ
2
j

fi − fj
+ 2(ℓ− 1)

ℓ∑
i=1

fiϕ
2
i .
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Thus we obtain

E2 = E

[ ℓ∑
i=1

{
ap,m,nfiϕ

2
i − 4f 2

i ϕi
∂ϕi

∂fi
− 2

ℓ∑
j>i

f 2
i ϕ

2
i − f 2

j ϕ
2
j

fi − fj

}]
, (6.15)

where ap,m,n = n+ p− 2(n ∧ p) + 2ℓ− 3. It is observed that

ap,m,n = n+ p− 2(n ∧ p) + (2m) ∧ {2(n ∧ p)} − 3

= (n+ p− 2(n ∧ p) + 2m) ∧ {n+ p− 2(n ∧ p) + 2(n ∧ p)} − 3

= (|n− p|+ 2m) ∧ (n+ p)− 3.

Combining (6.10), (6.13) and (6.15) provides the expression of risk given in Theorem 4.1.

It is noted that the conditions (6.11) and (6.14) are satisfied when E[(trS)trFΦ2] < ∞,

which is proved in Lemma 6.6 given below. Thus the proof of Theorem 4.1 is complete.

□

Lemma 6.6 A sufficient condition for (6.11) and (6.14) is that E[(trS)trFΦ2] <∞.

Proof. The Schwarz inequality leads to

{E[|(Xab − θab){RΦRtXSS+}cd|]}2 ≤ E[(Xab − θab)
2]E[{RΦRtXSS+}2cd].

It is noted that E[(Xab − θab)
2] <∞ and

E[{RΦRtXSS+}2cd] ≤
m∑
c=1

p∑
d=1

E[{RΦRtXSS+}2cd]

= E[trRΦ2RtXSS+X t]

≤ E[trRΦ2RtXS+X t · trS]
= E[trFΦ2 · trS].

Hence (6.11) follows when E[trFΦ2 · trS] <∞.

Next, recalling that XH = RF 1/2V tL1/2, we see that

E[|Yab{Y S+X tRΦ2RtXSS+}cd|]

= E

[
|Yab|

∣∣∣∣ ℓ∑
i=1

{Y HL−1/2V }cifiϕ2
i {V tL1/2H t}id

∣∣∣∣]

≤ E

[
|Yab|

ℓ∑
i=1

|{Y HL−1/2V }ci| · fiϕ2
i · |{V tL1/2H t}id|

]
. (6.16)

Since
(∑p

i=1 ai
)2 ≤ p

∑p
i=1 a

2
i for any set of real numbers a1, . . . , ap, it is observed that

|Yab| ≤
n∑

a=1

p∑
b=1

|Yab| ≤

√√√√np

n∑
a=1

p∑
b=1

Y 2
ab =

√
np trY tY =

√
np trS. (6.17)
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Similarly, it is seen that

|{Y HL−1/2V }ci| ≤
√
nℓtrV tL−1/2H tY tY HL−1/2V =

√
nℓ2, (6.18)

|{V tL1/2H t}id| ≤
√
pℓtrHL1/2V V tL1/2H t ≤

√
pℓ trS. (6.19)

Combining (6.16), (6.17), (6.18) and (6.19) yields that

E[|Yab{Y S+X tRΦ2RtXSS+}cd|] ≤ npℓ3/2E

[
(trS)

ℓ∑
i=1

fiϕ
2
i

]
= npℓ3/2E[(trS)trFΦ2].

The sufficient condition for (6.14) is that the last r.h.s. given above is finite. Hence the

proof is complete. □

6.2 Conditions for application of the Stein identity

The modified Stein type estimator is expressed as δmST = X −RΦmSTRtXSS+, where

ΦmST = diag(ϕmST
1 , . . . , ϕmST

ℓ ), ϕmST
i =

ci
fi

+
d

trF
,

where ci’s and d are positive constants and c1 ≥ · · · ≥ cℓ. For the modified Stein type

estimator δmST , the conditions (i), (ii) and (iii) of Theorem 4.1 are rewritten as follows:

(i) E[(trS)trF (ΦmST )2] <∞,

(ii) lim
Xab→±∞

{RΦmSTRtXSS+}cbhm,p(X|Θ,Σ) = 0 for a, c = 1, . . . ,m and b, d =

1, . . . , p,

(iii) lim
Yab→±∞

{Y S+X tR(ΦmST )2RtXSS+}cbhn,p(Y |0n×p,Σ) = 0 for a, c = 1, . . . , n and

b, d = 1, . . . , p.

We can easily verify (ii) and (iii). A sufficient condition for (i) will here be established

so that the Stein identity is applied to the risk of δmST . To this end, we provide useful

lemmas.

Lemma 6.7 If X ∼ Nm×p(Ξ, Im ⊗ Ip) with m ≥ p, then we have

E[tr(X tX)−1] ≤ p(m− p− 1)−1 for m− p ≥ 2.

Proof. See the proof of Theorem 2 in Nishii and Krishnaiah (1988). □

Lemma 6.8 Let X and Y be defined as in the model (1.1). Denote S = Y tY and

ℓ = m ∧ n ∧ p. Then it follows that for |m− n ∧ p| ≥ 2

E[tr(XS+X t)+|S] ≤ ℓ(|m− n ∧ p| − 1)−1trΣ−1S. (6.20)
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Proof. It is recalled that S = HLH t is the eigenvalue decomposition, where L =

diag(l1, . . . , ln∧p) ∈ D+
n∧p and H ∈ Vp,n∧p. The joint p.d.f. of (L,H) is given by Muirhead

(1982, Theorem 3.2.18) for the case of n ≥ p and Srivastava (2003, pp.1549) for the case

of p > n. The joint p.d.f. can be expressed as

f(L,H) = K0 exp
(
−1

2
trΣ−1HLH t

) n∧p∏
i=1

l
(|n−p|−1)/2
i

n∧p∏
i<j

(li − lj),

where K0 is a normalizing constant. For the normalizing constant, see Muirhead (1982)

and Srivastava (2003).

Note that

tr(X −Θ)Σ−1(X −Θ)t = tr(XH0H
t
0 −Θ)Σ−1(XH0H

t
0 −Θ)t

+ 2trXHH tΣ−1(XH0H
t
0 −Θ)t + trXHH tΣ−1HH tX t,

where [H ,H0] ∈ O(p). Make the change of variables (Z,Z0) = (XHL−1/2,XH0).

Since the Jacobian of the transformation is given by J [X → (Z,Z0)] =
∏n∧p

i=1 l
m/2
i , the

joint p.d.f. of (Z,Z0,L,H) is proportional to

exp
(
−1

2
tr(Z0H

t
0 −Θ)Σ−1(Z0H

t
0 −Θ)t − trZL1/2H tΣ−1(Z0H

t
0 −Θ)t

− 1

2
trZL1/2H tΣ−1HL1/2Zt − 1

2
trΣ−1HLH t

) n∧p∏
i=1

l
(|n−p|+m−1)/2
i

n∧p∏
i<j

(li − lj), (6.21)

where a normalizing constant is omitted, which implies that

Z|Z0,S ∼ Nm×(n∧p)(Ξ, Im ⊗Ω)

with Ξ = −(Z0H
t
0 −Θ)Σ−1HL1/2Ω and Ω = (L1/2H tΣ−1HL1/2)−1.

It is seen that Z is an m× (n ∧ p) full rank matrix and

tr(XS+X t)+ = tr(ZZt)+ =

{
tr(ZZt)−1 for n ∧ p ≥ m,

tr(ZtZ)−1 for n ∧ p < m.

Since In∧p ≥ Ω−1/(trΩ−1) = Ω−1/(trΣ−1S), we get

tr(XS+X t)+ ≤

{
tr(ZΩ−1Zt)−1(trΣ−1S) for n ∧ p ≥ m,

trΩ(ZtZ)−1(trΣ−1S) for n ∧ p < m.

Using Lemma 6.7, we obtain (6.20) for |m− n ∧ p| ≥ 2, which completes the proof. □
The l.h.s. of (i), namely E[(trS)trF (ΦmST )2], is bounded above by

E[(trS)trF (ΦmST )2] ≤ (c1 + d)2E[(trS)trF−1] = (c1 + d)2E[(trS)tr(XS+X t)+]
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since c1 ≥ · · · ≥ cℓ and (trF )−1 ≤ f−1
i for every i. Using Lemma 6.8 gives that

E[(trS)tr(XS+X t)+] ≤ ℓ(|m− n ∧ p| − 1)−1E[(trS)trΣ−1S]

for

|m− n ∧ p| ≥ 2. (6.22)

It is noted that E[(trS)trΣ−1S] is always finite. Hence, under the condition (6.22), the

Stein identity can be applied to the risk of the modified Stein type estimator δmST . When

the condition (6.22) is met, we also make it possible to apply the Stein identity to the risks

of the Efron-Morris type estimator δEM and the modified Efron-Morris type estimator

δmEM .

6.3 Proof of Theorem 5.1

For the proof, we use a similar argument as in Tsukuma (2010). Abbreviate Ψ(F ) and

Ψ+(F ) by Ψ = diag(ψ1, . . . , ψℓ) and Ψ+ = diag(ψ+
1 , . . . , ψ

+
ℓ ), respectively. Let H0

be a p × (p − n ∧ p) matrix such that [H ,H0] ∈ O(p). It is observed that δSH =

XH0H
t
0 +RΨRtXHH t and

tr(δSH −Θ)Σ−1(δSH −Θ)t = tr(XH0H
t
0 −Θ)Σ−1(XH0H

t
0 −Θ)t

+ 2trΨRtXHH tΣ−1(XH0H
t
0 −Θ)tR

+ trΨ2RtXHH tΣ−1HH tX tR.

Thus the difference in risk of δSH
+ and δSH is given by

R(δSH
+ ,Θ|Σ)−R(δSH ,Θ|Σ)

= E[tr(Ψ2
+ −Ψ2)RtXHH tΣ−1HH tX tR]

+ 2E[tr(Ψ+ −Ψ)RtXHH tΣ−1(XH0H
t
0 −Θ)tR]. (6.23)

The first expectation in the r.h.s. of (6.23) is not positive because (ψ+
i )

2 ≤ ψ2
i for all i.

Here, we use the same notation as in the proof of Lemma 6.8. Let (Z,Z0) =

(XHL−1/2,XH0), where [H ,H0] ∈ O(p). Note that the joint p.d.f. of (Z,Z0,L,H)

is given by (6.21). Then the second expectation in the r.h.s. of (6.23) is expressed as∫∫∫
Rm×(p−n∧p)×D+

n∧p×Vp,n∧p

I × f(Z0,L,H)(dZ0)(dL)(dH),

where

I =

∫
Rm×(n∧p)

tr(Ψ+ −Ψ)RtZL1/2H tΣ−1(Z0H
t
0 −Θ)tR

× exp
(
−trZL1/2H tΣ−1(Z0H

t
0 −Θ)t − 1

2
trZL1/2H tΣ−1HL1/2Zt

)
(dZ)
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and

f(Z0,L,H) = K1 exp
(
−1

2
tr(Z0H

t
0 −Θ)Σ−1(Z0H

t
0 −Θ)t − 1

2
trΣ−1HLH t

)
×

n∧p∏
i=1

l
(|n−p|+m−1)/2
i

n∧p∏
i<j

(li − lj)

with a normalizing constant K1. Hence, if it is shown that I ≤ 0, the proof of Theorem

5.1 will be complete.

We next consider the singular value decomposition Z = RDV t, where R ∈ Vm,ℓ,

D = diag(d1, . . . , dℓ) = F 1/2 ∈ D+
ℓ , V ∈ Vn∧p,ℓ and ℓ = m ∧ (n ∧ p). From Theorem 5 of

Uhlig (1994), the Jacobian of the transformation Z = RDV t is given by

(dZ) =
1

2ℓ

ℓ∏
i=1

d
|m−n∧p|
i

ℓ∏
i<j

(d2i − d2j)(R
tdR)(dD)(V tdV )

=
1

22ℓ

ℓ∏
i=1

f
(|m−n∧p|−1)/2
i

ℓ∏
i<j

(fi − fj)(R
tdR)(dF )(V tdV ),

where the second equality is verified by the transformation F = D2. Note that (RtdR)

and (V tdV ) are invariant with respect to an orthogonal transformation (Muirhead (1982,

pp.69)). For i = 1, . . . , ℓ, it is observed that

{RtZL1/2H tΣ−1(Z0H
t
0 −Θ)tR}ii = f

1/2
i vt

iL
1/2H tΣ−1(Z0H

t
0 −Θ)tri = at

iri, say,

where vi and ri are the i-th column vectors of V and R, respectively. We then obtain

I =
ℓ∑

i=1

∫∫∫
Vm,ℓ×D+

ℓ ×Vn∧p,ℓ

(ψ+
i − ψi)a

t
irie

−at
iriGi(R

tdR)(dF )(V tdV ), (6.24)

where

Gi = exp
{
−

ℓ∑
j ̸=i

at
jrj −

1

2
trFV tL1/2H tΣ−1HL1/2V

} 1

22ℓ

ℓ∏
i=1

f
(|m−n∧p|−1)/2
i

ℓ∏
i<j

(fi − fj).

For each i, we make the transformation ri → −ri. This transformation is equivalent

to the orthogonal transformation R → ROi, where Oi ∈ O(ℓ) such that the i-th diagonal

is minus one and the other diagonals are ones. Because (RtdR) is invariant with respect

to the orthogonal transformation, (6.24) is rewritten as

I =
ℓ∑

i=1

∫∫∫
Vm,ℓ×D+

ℓ ×Vn∧p,ℓ

(ψ+
i − ψi)(−at

irie
at
iri)Gi(R

tdR)(dF )(V tdV ). (6.25)

Adding each side of (6.24) and (6.25) yields that

2I =
ℓ∑

i=1

∫∫∫
Vm,ℓ×D+

ℓ ×Vn∧p,ℓ

(ψ+
i − ψi)a

t
iri(e

−at
iri − ea

t
iri)Gi(R

tdR)(dF )(V tdV ).

Since ψ+
i ≥ ψi and at

iri(e
−at

iri − ea
t
iri) ≤ 0 for any value of at

iri, it always holds that

I ≤ 0. Thus the proof of Theorem 5.1 is complete. □
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[11] Srivastava, M.S. (2003). Singular Wishart and multivariate beta distributions, Ann.

Statist., 31, 1537–1560.

26



[12] Stein, C. (1973). Estimation of the mean of a multivariate normal distribution, In

Proc. Prague Symp. Asymptotic Statist., 345–381.

[13] Tsukuma, H. (2010). Shrinkage minimax estimation and positive-part rule for a

mean matrix in an elliptically contoured distribution, Statist. & Probab. Letters,

80, 215–220.

[14] Tsukuma, H. and Kubokawa, T. (2007). Methods for improvement in estimation of

a normal mean matrix, J. Multivariate Anal., 98, 1592–1610.

[15] Uhlig, H. (1994). On singular Wishart and singular multivariate Beta distributions,

Ann. Statist., 22, 395–405.

27


