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Abstract

This paper addresses the problem of estimating the normal mean matrix with an
unknown covariance matrix. Motivated by an empirical Bayes method, we suggest
a unified form of the Efron-Morris type estimators based on the Moore-Penrose
inverse. This form not only can be defined for any dimension and any sample size,
but also can contain the Efron-Morris type or Baranchik type estimators suggested
so far in the literature. Also, the unified form suggests a general class of shrinkage
estimators. For shrinkage estimators within the general class, a unified expression
of unbiased estimators of the risk functions is derived regardless of the dimension of
covariance matrix and the size of the mean matrix. An analytical dominance result
is provided for a positive-part rule of the shrinkage estimators.

AMS 2010 subject classifications: Primary 62C10; secondary 62F10.
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1 Introduction

Statistical inference with high dimension has received much attention in recent years,
because statistical analysis of high-dimensional data has been requested in many research
areas such as genomics, remote sensing, telecommunication, atmospheric science, financial
engineering, and others. Such high-dimensional data are generally hard to handle, and
ordinary or traditional methods are frequently inapplicable. This has inspired statisticians
to develop new research areas in high dimension from both theoretical and practical
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aspects. Most interests have been in development of efficient algorithm for statistical
inference and in derivation of asymptotic properties with the dimension going to infinity.
From a decision-theoretic point of view, however, there does not exist much literature
in high-dimensional problems except for Chételat and Wells (2012), who established the
inadmissibility of the maximum likelihood estimator (MLE) for a large dimensional and
small sample normal model. In this paper, we extend their result to the framework of
estimating a mean matrix and we establish a unified theory for improvement on the MLE
in both cases of high and low dimensions.

To explain the subjects addressed here, we begin by describing the canonical model
and the estimation problem. Let X = (X,..., X))  and Y = (Y,...,Y )" be, re-
spectively, m x p and n X p random matrices, where X,;’s and Y;’s are mutually and
independently distributed as

XZN/\/;)(OZ,Z), izl,...,m,

. (1.1)
Y; ~N,(0,,%), j=1,...,n

Suppose that 6;’s are unknown mean vectors and that 3 is an unknown positive definite
matrix. It is noted that the model (1.1) is a canonical form of a multivariate linear
regression model although the details are omitted here. The problem we consider in this
paper is the estimation of the mean matrix ® = (04,...,0,,)" relative to the invariant
quadratic loss

L(,0|%) =tr(d — @)2_1(6 — G))t, (1.2)
where 8 is an estimator made from X and S.

The MLE of © is 8"* = X, which is a minimax estimator with the constant risk
mp. When n > p, it is known that 6** is improved on by the Efron-Morris (1972) type
estimator

soa _ [ X — (XS'XHTIX if p>m,
X -cX(X'X)18  if m>p,

where S =Y'Y =" | Y,Y, and c is a suitable constant. Konno (1991, 1992) derived
conditions on ¢ for the improvement. When p > n, however, this estimator is not available
because the inverse S~ does not exist. A possible alternative is the Moore-Penrose inverse
S which will be defined in the beginning of Section 2. In the case of m = 1, Chételat
and Wells (2012) suggested the shrinkage estimator

Cc

—XS+XtXS‘5+

5CWIX—

and provided a condition on ¢ for 8" to dominate §*~.

An interesting issue is how to extend the Chételat-Wells estimator 6" to the frame-
work of estimation of the mean matrix ®. Especially, the Efron-Morris type estimators
seem to take various variants which depend on orderings among m, p and n. One of



interesting results provided in this paper is that we can develop a unified form for the
Efron-Morris type estimators, given by

0"M = X — ¢(XSTXHTXSST.

As explained in Section 2, this estimator can be defined for all the positive integers of
m, p and n as well as this expression includes 6“5 and " as special cases. Also this
expression suggests us to consider a general class of shrinkage estimators in Section 3. In
this paper, we derive a unified expression of an unbiased estimator of the risk function
for shrinkage estimators within the general class.

The paper is organized as follows. In Section 2, we introduce shrinkage estimators of
©® based on a motivation from an empirical Bayes method, and we provide the unified
form of the Efron-Morris type estimator. This expression not only contains the Efron-
Morris or Baranchik type estimators suggested so far in the literature, but also provide
various forms corresponding to ordering of m, p and n. In Section 3, we consider a
general class of shrinkage estimators. A unified expression is developed in Section 4
for the risk functions of the general shrinkage estimators. It is noted that the unified
expression gives an unbiased estimator of the risk difference. As specific examples of
shrinkage estimators, we treat the modified Efron-Morris type estimators and the modified
Stein type estimators, and we get conditions for their improvement from the unified
expression. Section 5 provides analytical and numerical dominance results that positive-
part estimators improve the corresponding shrinkage estimators. Some technical proofs
are given in Section 6.

2 A Bayesian Motivation

We begin by describing basic and useful properties of the Moore-Penrose inverse. For any
matrix A, the Moore-Penrose inverse of A is written by A" if A satisfies (i) AATA = A,
(i) ATAAT = AT (iii)) (AA")! = AA* and (iv) (AT A)! = AT A. The Moore-Penrose
inverse A1 has the following properties: (1) A% uniquely exists; (2) (AT)! = (A)F; (3)
A" = A7 for a nonsingular matrix A.

Let B and C be r x p matrices of full row rank. We then have (1) B* = B'(BB')™1,
(2) BB' = I, (3) BT Bisidempotent, (4) (B'C)* = C*(B")* = C'(CC")"'(BB")"'B.
Further, for an r X r nonsingular matrix A and an r x ¢ matrix B of full row rank, we

can easily show that (B'AB)" = B*A™'(B")*.

Based on the properties of the Moore-Penrose inverse, we give a unified form of em-
pirical Bayes estimators. Using a similar argument as in Tsukuma and Kubokawa (2007),
we can show that in the case of known X, the empirical Bayes estimator of ® is given by

sp_{ X— o(XTIXHTIX for p > m,
S X - X(X'X)TI'E form > p,
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for a suitable constant c. Here it is observed that, for m > p,
(XTI XHT = (XH)TEXT = X(X'X)'S(X'X) ' X,
which yields that (XX 'X")* X = X(X'X)"'2. Hence, both cases p > m and m > p

for the empirical Bayes estimator 6” can be unified by

0P =X — (XTI XH)TX.

Since 37! is unknown, we need to estimate it. In the case of n > p, 37! is estimated
by nS™!, so that we get the Efron-Morris type empirical Bayes estimator

O"M = X — (X8I XH)TX. (2.1)

The dominance properties of this estimator have been studied by Konno (1990, 1991,
1992).

In the case of p > n, the rank of S is deficient and its inverse does not exist. Therefore,
we here estimate 7! via nS™, where ST is the Moore-Penrose inverse of S.

The matrix X 8% X" is nonsingular for p > n > m, while it is singular for p > m > n.
Taking the shrinkage estimator suggested by Chételat and Wells (2012) into account, we
can suggest the Efron-Morris type shrinkage estimator given by

O"M = X — ¢(XSTX")T XSS, (2.2)

for any set of (m,p,n). This gives a unified form of the Efron-Morris type estimator for
any positive integers p, m and n. In fact, (X S+ X")* can be rewritten as

(XS 'XH™ forn>p>m,
(XSTXHT =< (XSTXH™L forp>n>m,
(XS'XNHt forn>m>p, m>n>p,

and the corresponding Efron-Morris estimators are provided. Especially, in the case that
m > p, 8"M is expressed in the following proposition which is an extension of Konno’s

(1992) class for m > p.

Proposition 2.1 In the case of m > p, the Efron-Morris type estimator given in (2.2) is
expressed as

— tx)-1 > >
(SEM:{X cX(X'X)'S forn>m>p, m>n>p, (2.3)

X —cX(SSTX!'XS8SH)*tS for m >p>n.

Proof. When n > m > p or m > n > p, the expression (2.3) follows from the fact
that §* = S~ and

(XS 'XHTXSST = (XH)T"SXTX = X(X'X)"!'S.
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When m > p > n, we define the eigenvalue decomposition of S as § = HLH', where H
is a p x n matrix such that H'H = I,, and L is a full-rank diagonal matrix of order n.
Since ST = HL'H' and H'X" is an n x m rectangular matrix of full row rank, it is
observed that

(XS*X")" XSSt = (XHL 'H'X")""XHH' = (H'X")"L(XH)' XHH"
— XHH'X'XH)'L(H'X'XH)"'H'X'X HH'
— XH(H'X'XH)'LH'= XHH'X'XH) 'H'HLH'
— XHH'X'XH) 'H'S.

Noting that H H'X'XH)'H' = (HH'X'XHH"" = (SSTX'XSS™)", we obtain
the expression for the case that m > p > n. ([l

3 A General Class of Shrinkage Estimators

Konno (1990, 1991, 1992) separately considered two cases m > p and p > m, and indi-
vidually defined classes of shrinkage estimators. The arguments stated in the previous
section suggest that we can construct a well-defined class of shrinkage estimators unifying
both cases m > p and p > m.

Let O(r) be the group of r x r orthogonal matrices. For r > ¢, let V., be the Stiefel
manifold, namely the set of © x ¢ matrices M such that M'M = T ¢- It is noted that
O(r) = V,,. Define D as the set of r x r diagonal matrices diag(dy,...,d,) such that
dy >--->d, > 0.

Denote £/ = m ApAn. Define the eigenvalue decomposition of S as § = HLH", where
H €V, and L € D, . Let XHL™'/> = RF'*V" be the nonsingular part of the sin-
gular value decomposition, where R € Vy s, V € V0 and FY/? = diag( 2 51/2) €
D/ . It is clear that St = HL 'H' and XS X'= XHL 'H'X"' = RFR'. Note also

that R is orthogonal if £ = m and otherwise V is orthogonal.

For both the cases m > p and p > m, a unified class of shrinkage estimators is defined
by
0" = X - R®(F)R'XSS™, (3.1)
where ®(F') = diag(¢1(F),...,¢(F)) is a diagonal matrix and the ¢;(F') are differen-
tiable functions of F. Since (XSTX")™ = RF'R', the Efron-Morris type shrinkage
estimator (2.2) is given by

"M = X — R®"M(F)R' XSS, ®°M(F) = diag(c/fi,...,c/f).

Interestingly enough, the class (3.1) can be rewritten as in the following which is an
extension of Konno’s (1992) class for m > p.



Proposition 3.1 Let Q = HL Y?V. Then Q satisfies that Q'SQ = I, and Q' X' X Q =

F, and the shrinkage estimator given in (3.1) is expressed as

=X - XQ®(F)Q'S. (3.2)
In the case of £ = n A p, namely, m > n A p, 6°1 is
51 — X — XQB(F)Q" = X(I, - QB(F)Q"). (3.3)

Proof. Recall that XHL "/? = RFY?V*. 1t thus turns out that R*EXH =
FY2VILY2? and R = X HL Y2V F~Y/2_ which yields that

R®(F)R'XSS* = R®(F)RRXHH'= XHL '*VF'?®(F)F'/?V'L'*H'
— XHL 'Y?’V®(F)V'L'V*H'.
Then it is seen that VILY?H' = V'L YV2H'HLH' = Q'S. Hence for any set of

(m,p,n), one gets the expression (3.2). In the case of £ = n A p, it is noted that V €
O(nAp)and VILY2H' = (HLY?V)* = Q7 which yields the expression (3.3). O

4 A Unified Expression of the Risk Functions

We now provide a unified expression of an unbiased estimator of the risk function of
estimators 6°% given in (3.1).

Theorem 4.1 Let ® = ®(F) and ¢; = ¢;(F) fori=1,...,L. Denote by h,,,(X |0, %)
and hy, p(Y'|0p,xp, ) the probability density functions of X and Y, respectively. Assume
that

(i) E[(trS)trF®? < oo

(i) lim {R®R'XSS"}.4hnm,(X|©,%)=0 fora,c=1,....,m and b,d=1,...,p,

Xgp—rEoo

(iii) lim {YSTX'R®*R' XSS }.ihnp(Y|0nxp, X) =0 fora,c=1,....,n andb,d =

Yop—+o00

1,...,p.

For any positive integers m, p and n, the risk difference of 0% and &ML is expressed as

R(6°% ©|%) — R(6ME O|%)
¢

00, _, 0
[;{aﬁcﬁz S T
f2¢2 f2¢2 fin= L,
R O =

7> 7>t



where { =m A pAn and

a=apmn=(In—p|+2m)A(n+p)—3,
b=bpmn=|m—nAp|l +1

When an ordering among m, p and n is given, the corresponding specific value of (a, b)
is provided. Noting that (|n —p| +2m) A (n 4+ p) = n + p for m > n A p, we can see that
specific values of (a, b) are given by

) for n > m > p,
) form >mn>p,
)  form>p>n,

n—p+2m—3, p—m+1) for n >p>m,
) forp>n>m,
)

for p > m > n.

The three cases n > m > p, m > n > p and n > p > m, namely the cases satisfying
n > p, are provided by Konno (1992).

The unified expression of the risk difference given in Theorem 4.1 can provide condi-

5ML

tions under which specific estimators improve on the MLE = X. Two examples are

given below.

Example 4.1 A modified Stein type estimator is given by

d
T =87 - — — ___ _RR'XSST 4.1
tr[ X ST X" ’ (4.1)
where 6°7 = X — RCF'R'XSS™ for C = diag(cy, ..., c) with ¢; > --+ > ¢ This

corresponds to the form
d

¢i = ﬁ‘i‘ .
fi Z§:1 fi

Then, from Theorem 4.1, it follows that

A = R(6™7T 0|%) — R(6M", 0|%)

¢
1
= E[Z E(GC? — 2bc; + 4e; + 4c?)

14

1 2
+ ﬁ{(a_%+2)d —20bd — 20(0 — 1)d+4d+2(a+2)d;q}

trCF —¢j)(ci +¢j+2)
12 g J G
* (trF) trF Z Z — f;

i=1 5>t

szz CJfJ
St = 42

i=1 j>1




since Y _; > 5o (fi + f;) = (¢ — 1)trF. The condition for obtaining (4.2) is
lm—nAp|>2 (or, equivalently, b > 3),

which is a sufficient condition for (i) of Theorem 4.1. It follows from Konno (1991) and
Tsukuma and Kubokawa (2007) that trF? < (trF)?, trCF/(trF)? < ¢, /trF,

ZZ Cﬂ “"J” Z LS (e (et ¢+ 9),

i=1 j>1 i J>1

¢
chzfz Cyf] >Z — )

i=1 5>t

Thus, one gets A < S°0_ ho(i)/ f; + ha/trF, where

he(i) =(a+4— 20+ 2i)c} —2(b— 2+ 20— 2i)c; + 2 ¢;(¢; +2),

j>i

y4 y4
hd:(a—2€+6)d2—2{€b—|—€(€—1)—2—201 (a+2)Y c+23 (0 cﬁ}
i=1 i=1

Konno (1991) showed that h.(i) < 0 for any i when ¢; is
=0b—-2+20—-2i)/(a+4—20+ 21). (4.3)

For these ¢;’s, it is seen that 2320 (0 —i)e; = — 3.+ (a +4 — 20 + 2 —a — 4)01 =
—Zle(b—2+2£—2i)+(a+4)zz == —=242004+Ll+1)+ (a+4) X c
Then, hy is rewritten as

0
ha = (a — 20 + 6)d? —4{@— 1+Zc¢}d.
=2

Hence, these observations imply that §** is improved on by the Stein (1973) type esti-
mator 6°7 = X — RCF'R'XSS™ for constants ¢;’s given in (4.3). For these ¢;’s, the
Stein estimator 6°7 is further improved on by the modified Stein type estimator

§""'=X - RCF'R'XSS' - %RRtXSSt
tr[ X ST X"]

if d satisfies 0 < d < 4{¢ -1+ S, ¢;}/(a— 20+ 6). This is an extension of Tsukuma
and Kubokawa (2007). O

Example 4.2 A modified Efron-Morris type estimator is given by

d
omEM — §EM . RR'XSST 4.4
tr[ X ST X" ’ (4.4)
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where 6" is given in (2.2). This corresponds to the form
c d

b=t =,
fi Zj:l fj
Letting ¢; = ¢ in (4.2) for all 4, one gets

R(6™*M ©|%) — R(6MF, 0|%)
4

= E|{ac® — 2bc+40+402}z:fl
i=1 7°

+ tLF (a — 20+ 2)d> — 26bd — 20(¢ — 1)d + 4d + 2((a + 2)cd}
r

¢
. , trF? _,cd .
+4d— +4d 52k 4 ;(5 i)},

which is less than or equal to

B|{(a+4)¢ — 20~ 2} Y fl

1
¢

i=1J1

+ {(a—20+6)d® — 2d{bl — 2 — (al + 20+ 2)c + (c+ 1)¢(¢ — 1)}d}

. (45)

which implies that 6™FY improves on 6% if constants ¢ and d satisfy that 0 < ¢ <
2(b—2)/(a+4) and

0<d<2{bl—2—(al+20+2)c+ (c+1)l({—1)}/(a — 20+ 6),

forb>2and {b+ (c+1)({ —1)}{ > 2+ (al + 2 + 2)c. Also from the expression (4.5),
it is seen that the constant ¢ which minimizes the first term is given by

_b-2 lm —nApl—1

S a+4 (In—p|l+2m)A(n+p)+1°

Co

Given ¢ = c¢g, the constant d which minimizes the second term in (4.5) is given by

J C(a+d+2)(l-1)(l+2) (m+nVp)(pAmAn—1)(pAmAn+2)
T (a+d@—-20+6)  {(n—pl+2m)A(n+p)+1}H|n—pl+3)

That is, for b > 3, 6% is improved on by the Efron-Morris type estimator
0FM = X — ¢y(XSTXHTXSST,

which can be further improved on by the modified Efron-Morris type estimator

do
tr[ X St X
for b>3 and ¢ > 2. O

OmMM — X — ((XSTXNTXSST — RR'XSST,



5 Positive-part Estimators and Some Numerical Re-
sults

In this section we investigate risk performances of the shrinkage estimators (3.1) by sim-
ulation. Before that, we prove that the shrinkage estimators are dominated by the corre-
sponding positive-part shrinkage estimators.

Since S = HLH' and XHL '/? = RF'?V" where R € V,,, it is seen that
(I,,— RR"XSS"=(I,,— RROYXHH' =0,,,,,
which is used to rewrite the estimator (3.1) as
0 =X - X8ST+ XSSt - RR'XSS" + RR'XSST — R®(F)R'XSS™
=X(I,-SS")+RY(F)R'XSS™,
where W(F) = diag(¢1(F),...,¢Y(F)) = I, — ®(F). Then, we define the positive-part
shrinkage estimator
05" = X(I,- SS*)+ RV (F)R'XSS™, (5.1)
where U (F) = diag(uf (F), .., v (F)) for v (F) = max{0, s (F)}.
When m =1 and p > n, 5iH was suggested by Chételat and Wells (2012), who showed
by simulation that éiH outperforms 6”7 . For analytical dominance results between 5iH
and 6°" | see Baranchik (1970) for m = 1 and n > p and Tsukuma (2010) for m > 1 and

n > p. We prove analytically this kind of dominance results in more general cases for any
positive numbers m, p and n. The proof of the following theorem is given in Section 6.

Theorem 5.1 Assume that the risk of 8°% is finite and Pr(v;(F) < 0) > 0 for some i.
Then (LSFH dominates 8°M relative to the loss (1.2) regardless of an order relation among
m, p and n.

For example, the Efron-Morris estimator " is dominated by 67" = X (I,—SS")+
RUPM(F)R'XSS™, where the i-th diagonal element of "M (F) is max[0,1 — (b —
2)/{(a + 4)f;}]. Also, Theorem 5.1 can be applied to 6™#M  §°T and 6™ given in
Section 4.

We now investigate how positive-part shrinkage estimators reduce risks of shrinkage
estimators through Monte Carlo simulations. The risks of estimators were estimated by
average of losses based on 10,000 independent replications of X and Y in the model (1.1).
For the mean matrix ® = (6;;), we considered the following two cases: (A) @ = 0,,x,
and (B) ;; = 2sin(i*+j) fori =1,...,mand j = 1,...,p. For the covariance matrix X,
we supposed (a) ¥ = I, or (b) 3 = diag(1,27',...,p™"). Also, m, p and n were taken as
(m,p) = (20,10) and (10,20) and n = 50,15 and 5. Then the risk of 6" = X is given
by mp = 200.

In the simulations, we examined the following shrinkage estimators:

10



Table 1: Average Losses of Shrinkage Estimators and Their Positive-part Estimators
(R(X,0|X) = mp = 200)

© = (mp n oM 6EM gmEM M 55T 6iT 57T 5TST
(A) (a) (20,10) 50 1262 106.9 49.8 11.7 57.3 283 522 174
15 1479 135.5 64.1 41.8 T77.1  59.8 63.7 424

5 156.5 149.6 134.3 121.0 136.5 128.6 131.0 120.5

(10,20) 50 129.2 111.1 494 132 584 31.2 522 193

15 1773 169.2 943 81.6 109.9 970 974 81.7

5 184.7 180.0 164.4 155.8 167.4 161.4 164.1 156.3

(A) (b) (20,10) 50 1262 106.9 49.8 11.7 57.3 283 522 174
15 1479 135.5 64.1 41.8 77.1  59.8 63.7 424

5 162.7 157.0 1444 133.8 146.2 139.8 141.7 133.4

(10,20) 50 129.2 111.1 494 132 584 31.2 522 193

15 178.9 171.5 103.2 91.7 117.0 1054 105.7 91.5

5 1894 186.4 176.5 171.6 1784 174.8 176.3 171.9

(B) (a) (20,10) 50 139.8 1255 1146 964 97.6 77.5 962 7438
15 157.5 148.2 129.5 118.0 115.7 103.5 111.9 98.9

5 170.6 166.8 162.9 158.0 162.5 158.5 160.9 156.4

(10,20) 50 142.3 128.7 116.0 98.7 99.1 80.3 974 773

15 181.6 175.3 153.7 146.4 140.6 131.5 137.0 127.3

5 1894 186.8 1824 179.1 1819 178.9 180.9 177.6

(B) (b) (20,10) 50 140.8 126.8 134.5 119.6 999 80.5 99.6 79.8
15 158.1 149.0 151.1 141.6 119.3 107.6 118.5 106.5

5 1773 174.8 1750 1723 172.6 170.0 172.2 169.5

(10,20) 50 143.2 130.1 139.7 126.1 101.8 83.7 101.6 83.3

15 183.1 1777 179.0 1734 148.8 141.0 148.3 140.5

5 193.6 1923 1923 1909 190.3 188.9 190.1 188.7

Iy
a+4’

(1) 6" = X —cyRF'R'XSS™, ¢y =

(a+b+2)(—1)(C+2)

mEM __ EM_ + t\—1 t + =
(2) 077 = 070 — do(r X STXNTRRXSS™, do = — e oy

b—2+20—2i
ST— — -1 i + = 1 1 P — :
(3) " =X —RCF 'R'XSS™", C = diag(cy,...,c) with ¢ PR Y Sy
2{¢ -1 ¢ e
(4) 6™ =6 —dy(trXSTXH'RR'XSS™, d, = { Z £Z+Z82 c }.
a/_

The corresponding positive-part estimators are denoted by EEM , 5’]:EM , 5”? and 5’}:5 T
respectively.

It is noted that in the cases such that n > p, the estimation problem, shrinkage

11



6SH

estimators and positive-part estimators 635;H are invariant under the transformations

X >0OXP, ©®->00P, S PSP, ¥ P'SP,

where O € O(m) and P is a p x p nonsingular matrix. Then the risk functions of §°*
and 6iH are functions of eigenvalues of @3 '@ However, in the cases such that p > n,
6" and éiH are not invariant under the above transformations because (P'SP)* #
PlST(PH) L

Our findings of the simulations are summarized in Table 1. When © = 0,,,, with
n = 50, the risk improvement of positive-part estimator over the corresponding shrinkage
estimator is very substantial. Through all cases, ETST provide large savings in risk. The
simulation results also suggest that, as n is small, shrinkage and positive-part estimators
are less effective.

6 Proofs

6.1 Proof of Theorem 4.1

For an m x p rectangular matrix X = (X_;), define the m x p rectangular matrix of
differential operators with respect to X as Vy = (d2), where d = 0/0X,. Similarly,
denote by Vy = (dzjb) the n X p rectangular matrix of differential operators with respect
to an n x p rectangular matrix Y = (Y).

A key tool for deriving the unbiased estimator of the risk function is the Stein identity,

which is given in the following lemma. For details, see Kubokawa and Srivastava (2001).

Lemma 6.1 Let X be defined as in the model (1.1). Let ® = (0,) and denote by
hinp(X|©, X) the probability density function (p.d.f.) of X. Let G = (G.q) be an m X p
matrixz such that all the elements G.q are absolutely continuous functions of X and satisfy
El|(Xap — 0ap)Gedl] < 00 and limx,, 100 Geghim p(X[©,X2) = 0 for a,c = 1,...,m and
b,d=1,...,p. It then follows that

E[tr(X — ©)X7'G" = EtrVxG'].

Recall that S = Y'Y, where Y = (Y4,...,Y,)" with Y; ~ N,(0,,%). Konno (2009)
used Lemma 6.1 to obtain the identity

E[trX7'SG') = E[trV, Y GY, (6.1)

where G is a p X p matrix-valued function of Y. This identity is also useful for evaluating
the risk in high dimensions.

Next, we provide calculus formulas for a p x p symmetric matrix § = (S;;) = Y'Y
and its Moore-Penrose inverse §* = (S).
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Lemma 6.2 Denote the Kronecker delta by 6;;, namely 6;,; =1 for i = j and 6;; =0 for
1# 7. Fora=1,....nandb=1,... p, we have

(1) d};)scd = 5chad + 5deac fOT C, d = 1, s p,

(i) dSh =—-SH{Y S }ua — Sp{Y S }ae +{I,— SSTHe{Y STS" }uu
+{I, —SS"},,{YSTS*}.. forc,d=1,....p,

(iii) d¥{YS*}a={L,—YSTY"}..S, +{YSTSTY"'},.{I, — SS* }a
—{YS"}alY ST}y forc=1,....nandd=1,...,p

Proof. For the proof of (i), see Chételat and Wells (2012, (i) of Proposition 1).
Since the differential of ST is given by
dST =-87(dS)S*+ (I, — SST)(dS)STST + STST(dS)(I,— SSY),
it is observed that from (i)

44,5 = {dY, 8 Yo = ZZ [ SE(%S:)S + {T, — S8+ }a(d%Si){S TS }a

=1 j5=1
+ {88 }ald2ySis){T, — S5 }idl
= S {Y ST }oa — {Y ST }aSy,
+{I, - S8 {YSTST}u+ {Y (I, — SS")}ae{STS }ia
+{STS 1 {Y (I, — SST)}ua + {Y STS}oe{I, — SS™ }1a.
Noting that Y (I, — SS¥) = 0,,x,, we get (ii).

The product rule is used to obtain
AN {Y ST, = Z{ (A%, Y) St + YadY, Sty

Using (ii) and summing up with respect to ¢ yields (iii). O

Recall that RF R’ denotes the eigenvalue decomposition of XS X', where R =
(Rij) € Ve and F = diag(f1, ..., fr) € Df. The following lemma shows partial deriva-
tives of F' and R with respect to Vx and Vy.

Lemma 6.3 Fori=1,....¢0,k=1,....m,a=1,....m andb=1,...,p, we have

(1) dapfi = Al

AZ
(i) dgy R = Z Rkj y ab + 7T - RR}u{R' XS }a,
J#%
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where AY = R;{AR' XS}y + Ru{R' XS}y Fori=1,....0,k=1,....m, a =
1,...,nandb=1,...,p, we have

(i) dayfi = Blap,

) Ry = Z BoBlo | j RXSTSTY (T~ RROX(I, — S8 hu,

J#%
where

BY,=—{RXSTY'"},,{R'XS"};, — {R'XSTY'"},,{R' XS},
+ {RtXS+S+Yt}ia{RtX(Ip —SSH}i
+{R'XS*STY'}, {R' X (I,— SST)}a.

Proof. Take Ry € Vy, ¢ such that RGR = O(y,—p)xe. Define U = (Uy;) = [R, Ry €
O,,. Denote Fy = diag(fi,..., f:,0,...,0), where Fy is of order m. It is clear that
XSt X"'=UF,U". Since the differential of U'U = I, is given by (dU")U + U*(dU) =
0xm, the m x m matrix U'(dU) is skew-symmetric, namely the (j,4)-th element is
written as

0 for 3 =1,
(o= {—{(dUt)U}ﬁ s 71
The differential of XS+ X" = UF,U" is given by
d(XSTX") = (AU)F U"' + U(dF,)U" + UF,(dU"),
which yields
U'ld(XSTX"YU = U"(dU)Fy + dF, + Fo(dU")U
=U'(dU)Fy +dF, — FoU'(dU).
It is thus seen that
dfi = {U'd(XSTXNH U}, fori=1,...,¢

and
t +yt .
{U[d();s;f)}U}ﬂ forj=1,....0andi=1,...,¢ with j # 1,
AU = (XS XU,
7 " forj=0+1,....mandi=1,... ¢

Noting that dX (X ST X") = (dX X)ST X" + X ST(dX X") and d Xog = JacOpa, We
observe that

{Ut[dﬁ( STXNU};
= Z Z Ugi (A% X ) {SH XU Yy + Z Z{Ut S*}ie(AX X 0 Uys
c=1 d=1 c=1 d=1

- Uaj{S+XtU}bi + {UtXS+}ijai.
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Since {U'[dX(XSTXHU},; = AY,, fori,j=1,...,¢, it follows that
Aoy fi = {U'[d3,(XSTX U i = Al
which gives (i). It is also observed that for k =1,...,mandi=1,...,¢

d)isz - {d U}kz - {UUt(dﬁ)U)}kl

= ZUkj{Ut(dg‘,;U)}ﬂ + Z U AU (d3,U) i

7j=1 j=0l+1
jii
_ Z RkJAzljab i Ukj{Ut[déi(X5+Xt)]U}ji. (6.2)
f] j= =041 fZ
J?él

Here it is seen that

> U {U'N(X ST XU} = {RoR} ik {R' XS}y + Ru{ RoR\X S }iy
Jj=t+1
={I,,— RR'},,{R'XS"}; (6.3)

because RR' + RyRjy = I,, and Ry XS™ = O(m—o)xp- Substituting (6.3) into (6.2), we
obtain (ii).
Since {U*[dY, (X ST XU}, = {U'X[dY,STI XU}, it is observed that from (ii) of
Lemma 6.2
{U'd3(X ST XU,
- —{UtXS+}jb{UtXS+Yt}ia - {UtXS+Yt}ja{UtXS+}ib
+{U'X(I, - SS")},,{U'XS"S"Y"},, + {U'XS*STY'},,{U'X(I,— SS)}a.
It is noted that {U'[dY,(X ST XU}, = BY,, for i,j = ., ¢ and
Z Ui {U' (X STXUY,; = {R'XSTSTY"}io{(I,, — RR)X (I, — SS*) i
j=l+1

Hence using the same arguments as in the proofs of (i) and (ii) yields (iii) and (iv). O

Lemma 6.4 Let ® = ®(F) = diag(¢y, - .., ¢¢) be a diagonal matrixz of order ¢, where the
¢; are differentiable functions of F'. Fora=1,....,m,b=1,....,pandi,j =1,...,¢,
denote Agab = Raj{RtXSS+}ib + Ry {R' XSSt} Let A?ab ’s be defined as in Lemma
6.3. Then we have

dX{R®PR' XSS}, = {R®PR'},.{SST}y, + DX (®) + DX2(®),

15



il O
Dii ' 2 Z Z AjljabAZ;ab afZ
i=1 j=1
DX*(®) ={I,,— RR'},.,{STX'RF"~ 1<I>RtXSS+}bb+ZZ 7 # 7 LAY AY
i=1 j=1"" J

Proof. Since {R®PR' XSS}, = Zle S Raipi Rii{ X SS™ }1s, it is seen that

dy{R®R'XSS*}, = > {ROR}d),{XSS iy + D1 + Dy

k=1

={R®R"},,{SS*}y, + D1 + D,

where

ZRM{RtXSS*}lbdab i

Z Z ${ XSS}y (Riid Rai + Raidy Ri).-

i=1 k=1
It will be shown that D; = D31 (®) and Dy = DX2(P).
Applying the chain rule and (i) of Lemma 6.3 to D; gives that

L

Z Z Ry {R' XSS }u(d)y f5) a@ => Z Ry {R'XSS"};, AV 0¢:

1-ab
i=1 j=1 =1 j=1 af]

It follows that R,{R' XSS}y = (1/2)141;.(11;’ which implies that D; = DX (®).
It is noted that from (ii) of Lemma 6.3

£ m
D oA XSS Ruid Ras = sz o AlfabRaj{RtXSSJr}ib
i=1 k=1 i=1 j7£1

J#i

+{I,,— RR"\.{STX'RF'®R'XSS"}y,

and ,
Y 6i{ XSS} Ruid Ri = ZZ 7 i A?jame-{Rtxssﬂjb,
i=1 k=1 i=1 ]7&1 v
JF

which yields that
A
=1 j=1
#z

+{I,,— RR'},.{STX'RF'®R' XSS}y,

Aﬁjab( R,;{R'XSS*}y+ Ru{R' XSS}

J
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Since Ry;{R' XSS}y + Ry {R' XSS}, = AY . we can see that Dy = DX?(®). Thus
the proof is complete. O

Lemma 6.5 Let B?ab ‘s and ® be defined as in Lemmas 6.3 and 6.4, respectively. For a =
L...,n,b=1,...,pandi,j = 1,...,¢, denote By, = {R'XSTY"'},,{R' XSS}, +
{R'XSTY'},.{R" XSS} Then we have

AX{Y STX'R®’R' XSS}y, = DI (®) + D12 (®) + DY3 (@),
where
DY ®)={I, - YSTY"}, {STX'RP’R' XSS}y,
+{YStStY"}  {(I, - SST)X'RP*R' XSS}y,
—{YSTX'R®’R' XSSt} {Y S}
+{Y ST} {YSTX'R®’R'X (I, — SS")}u
+ {YS*XtR‘I>2RtXS+Yt}aa{Ip — 88T}y,

ORI 1B

=1 j=1 f
DY 3 Z Z ¢2 Bz] Bw
ab f l-ab™—2-ab"
=1 j=1 ¢
JFi

Proof. It is observed that

ALY STX'R®*R'XSS" ), = dY, ZZ&{Rf STY L {R'XSTY oY
i=1 c=1

=D+ D, +{YSTX'R®’R'XSTY "}, (6.4)

where

Z¢ {R'XSST);,dY {R'XStY"},,

+ Z Z PR XSTY '}, Vd {RIXSTY ).,

i=1 c=1

4
=Y {R'XS'Y'} {R' XSS }d) 07
i=1

Using the chain rule and (iii) of Lemma 6.3, we express Ds of (6.4) as

¢ l

i
Dy =20 Y (RXSTY' )L (RXSS Y05
=1 j=1 J

17



Since {R'XSTY"'},,{R' XSS}y = (1/2)Bi ,, we get

9¢i
=3 BB 0 = pi @) (65
i=1 j=1

We next evaluate dY,{R'XS*Y"},. for i = 1,...,¢ and ¢ = 1,...,n. Using the
product rule gives that

QAR XSTY }io =) {XSTY " }od), Ry + Z{RtX}md AY St (6.6)
k=1 =

From (iv) of Lemma 6.3, the first term of the r.h.s. in (6.6) is written as

n ¢
SUXS Yy - 30 DA XSV e
k=1 ¢ g f f]

i

(6.7)

because > - {XSTY ' ho{(I,, — RR")X (I, — SS")}i = 0. Applying (iii) of Lemma
6.2 to the second term of the r.h.s. in (6.6) gives that
p
AR X dp {Y S = {I, - Y STY'} {R' XS}y, — {R' XSV} {Y ST},
k=1

+{YSTSTY'} . {R' X(I,— SST)}a. (6.8)

Combining (6.6), (6.7) and (6.8), we obtain

4 ij t +yt
di;{RtXS+Yt}ic _ Z Bl-ab{I; X? Y }JC + {In . YS+Yt}ac{RtXS+}ib
— i — Jj
i
—{R'XS'Y"}o{Y ST} +{Y STSTY 1 AR X (I, — S57)}a.

(6.9)

Applying (6.9) to D; of (6.4) implies that

¢2 7 1
Dl - Z Z fl fj Bl]abBQJCLb + {I - YS+Yt}aa{S+X R@ RtXSS+}bb
i=1 j=1
J#i

+{YSTStY"}, {(I, - SST)X'R®*R' XSS}y,
—{YSTX'R®’R' XSS}, {Y ST}y —{YSTX'RP’R' XSTY"},.{SS}us
+{Y ST} {YSTX'R®*R' X (I, — SS)}us-

The first term of the above r.h.s. is equal to DY, 3(®). Hence the sum of D; and the third

term of the last r.h.s. in (6.4) is DY,}(®) + DY;3(®). Combining this result and (6.5)
completes the proof. 0
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Proof of Theorem 4.1. Abbreviate ®(F) to ®. The risk of §° is expanded as
R(6°" ©|2) = R(X,0|%) + E[trRPR' X SSTY 'SSTX'RO®R'
—2tr(X - @)X 'SSTX'ROR/]
= R(X,0|X)+ E, — 2E,, (6.10)

where

E, = E[tr(X -0)X'SSTX'R®R'|,
E,=EtrX 'SSTX'RP*R' X SST].

Using Lemma 6.1, we can express F; as

m p
E, = E[ttVxSSTX'R®R!] = [Z Y d{R®R'XSS*},

a=1 b=1

if limy,, y1oc{ ROR' XSS }oihum »(X|©, %) = 0 and

E[|(Xap — ) {RPR' XSS }.4]] < 0 (6.11)
fora,c=1,...,mand b,d=1,...,p. Lemma 6.4 is used to obtain
m p
E=F [tchbRt trSST+ ) > (DN (@) + Dy (@)} (6.12)
a=1 b=1

where DX1(®) and DX2(®) are defined in Lemma 6.4. Since

m P m p
SN AV AL = FYy, DY AV LAY, = it [+ 2{F )y,

a=1 b=1 a=1 b=1

we observe that

ZZDﬁ.l _2Zfza¢l

a=1 b=1
m 4 L
ZZD (m — Etrq)—i-zz fﬁf])@
a=1 b=1 113]75
¢ 1 l 2f11 ¢ )4
m ezwzzﬁ Yy
R HE

=1 7>t
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which are substituted into (6.12) to obtain

14

Ele[Z{pmnwzfz +2Zf“ f”b]}],

=1 7>

where b, ., =n Ap+m — 20+ 1. A simple manipulation gives that

(6.13)

bpmm =nAp+m—2m)AN{2(nAp)}+1=nAp+m+(—2m)V{-2(nAp)}+1

=(nmAp—m)V(m—nAp)+1
=|m—nAp|+1.

Similarly, the Stein identity (6.1) can be used to rewrite F; as

By = E[trV,YSTX'R®*R' X SS*) = [Z Y & {YS'X'R®’R' XSS}

a=1 b=1

if limy,, +0{Y STX'R®*R' XSS} 4hy (Y 0,5, 2) = 0 and
E[lYp{YSTX'R®*R' X SS"}.4|] < 0

fora,c=1,...,nand b,d =1,...,p. Using Lemma 6.5, we get

n p
— B[ XS0k @)+ DLA(®) + DY)
a=1 b=1
It is here seen that
n p
> DLN®) = {n+p-—2nAp) - 1}trFP”.
a=1 b=1

For Bi]:ab’s and Bgcd’s given in Lemmas 6.3 and 6.5, it follows that

ZZBl abB;Z:ab 4{F}Z]7 ZZBl abB;?ab = _2f7«fj 2{F}Z]’

a=1 b=1 a=1 b=1

which yields that

>3 DhH®) = —4Zf b

a=1 b=1
n P 1 l l V4
)SPILTCIEIE) ) SF L) 3 L) S I
a=1 b=1 1191’ i=1 j=1 7" J i=1 j=1

J#i J#i J#1

2 12 2 12
SN LIS W
i . 2 J

20
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Thus we obtain
¢ 212
09 f ?;
B, = E[Z {ap,m,nficb —Afioim ¢ —2 Z H , (6.15)
=1 >t fl
where ay, ., =n+p—2(nAp)+2¢— 3. It is observed that
pmm =1 +p —=2(nAp)+ (2m) A{2(n Ap)} -3
=m+p—2mAp)+2m)A{n+p—2(nAp)+2(nAp)}—3
=(ln—p|l+2m)A(n+p)—3.
Combining (6.10), (6.13) and (6.15) provides the expression of risk given in Theorem 4.1.
It is noted that the conditions (6.11) and (6.14) are satisfied when E[(trS)trF®?] < oo,

which is proved in Lemma 6.6 given below. Thus the proof of Theorem 4.1 is complete.
OJ

Lemma 6.6 A sufficient condition for (6.11) and (6.14) is that E[(trS)tr F®*] < oo
Proof. The Schwarz inequality leads to
{E[|(Xap — 6u) {RPR' XSS"}o4|]}* < E[(Xap — 0up)*] E{RPR' X SS}2 ).
It is noted that E[(Xap — 04)?] < 0o and
m p
E{R®R'XSS}2] <> ) E[{R®R'XSS'}’)
c=1 d=1
= E[trR®*R' XSS X'
< E[trR®*R' X ST X" - 18]
= E[trF®* - t1S].

Hence (6.11) follows when E[trF®? - trS] < oco.
Next, recalling that X H = RF'2V'L'Y? we see that

E[lYu{Y ST X'R®’R' X SS"}.4]

¢
—E {\Yab\ Y A{YHL 'V}, f;¢{V'L'*H'}, ]
i=1
< E{|Yab| Z HYHL 'V}, fi¢? {V'LV*H"} @ (6.16)
=1
Since ( r al) <p>P_, aF for any set of real numbers ay, . .., a,, it is observed that
n p n p
[Yaoo| < ZZ Yaoo| < anZY(fb =\/nptrY'Y = \/nptrS. (6.17)
a=1 b=1 a=1 b=1
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Similarly, it is seen that

{YHL YV}, < Vata VL V2H'Y'YHL V2V = V2, (6.18)
{VIL'?H'} 4| < \/pétrHLl/zVVtLl/QHt < +\/pltrS. (6.19)

Combining (6.16), (6.17), (6.18) and (6.19) yields that

)4
B[V {Y ST X'R®’R' X SS*}.4|] < npl®*E [(trS) > f@?] = npl3?E[(trS)tr F®?).

=1

The sufficient condition for (6.14) is that the last r.h.s. given above is finite. Hence the
proof is complete. O

6.2 Conditions for application of the Stein identity

The modified Stein type estimator is expressed as ™7 = X — R®™TR! X SS*, where

Ci d
q)mST = dia mST7 ol mST mST _ —t ’
g(¢1 4 )? qbz fz trF
where ¢;’s and d are positive constants and ¢; > --- > ¢,. For the modified Stein type

estimator 87| the conditions (i), (ii) and (iii) of Theorem 4.1 are rewritten as follows:
(i) E[(trS)trF(®™°7)?] < oo,

(i) lim {R®™TR' XSS} phmp(X|©,2) = 0 for a,c = 1,...,m and b,d =

Xab—>:t00
17 <o Py
(iif) _ lim {(YSTX'R(®™T2R' XSS} il p(Y[0psp, ) = 0 for a,c =1,...,n and
ab—>I00
b,d=1,...,p.

We can easily verify (i) and (iii). A sufficient condition for (i) will here be established
so that the Stein identity is applied to the risk of §™°T. To this end, we provide useful
lemmas.

Lemma 6.7 If X ~ N, (B, I, ® I,)) with m > p, then we have
Etr(X'X) ™ <pm—p—-1)" form—p>2.
Proof. See the proof of Theorem 2 in Nishii and Krishnaiah (1988). O

Lemma 6.8 Let X and Y be defined as in the model (1.1). Denote 8 = Y'Y and
¢ =mAnAp. Then it follows that for |m —n Ap| > 2

Eltr(XSTXNT|S] < l(lm —nAp —1)'trE'S. (6.20)
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Proof. It is recalled that S = HLH" is the eigenvalue decomposition, where L =
diag(ly, ..., lunp) € D), and H € V, 5. The joint p.d.f. of (L, H) is given by Muirhead

nAp

(1982, Theorem 3.2.18) for the case of n > p and Srivastava (2003, pp.1549) for the case
of p > n. The joint p.d.f. can be expressed as

nAp nAp

F(L, H) = K, exp(—%trE_lHLHt> | | ()

i=1 i<j

where K| is a normalizing constant. For the normalizing constant, see Muirhead (1982)
and Srivastava (2003).

Note that

tr(X —0)X (X —0) =tr(XH Hy — ©)S (XH H| — ©)
+ 2 XHH'S ' (XH\H, - 0) +twt XHH'S'HH' X',

where [H, Hy] € O(p). Make the change of variables (Z,Z,) = (XHL '* XH,).
Since the Jacobian of the transformation is given by J[X — (Z, Z,)] = [[27 l;n/ ? the
joint p.d.f. of (Z, Zy, L, H) is proportional to

1
exp(—étr(ZOHB - 0)x Y (ZyH, - ©) —trZL'’H'S ™ (Z H!, — ©)!

nAp nAp
1 1 pltme
- EtrZLWHtE‘lHLI/ZZt - §tr2‘1HLHt> [Turm=v2 - 1), (6.21)
i=1 i<j

where a normalizing constant is omitted, which implies that
Z|Z07 S ~ me(n/\p)(E> Im ® Q)
with B = —(ZoH, — ©)X 'HL'?>Q and Q = (L'*H'S"HL'*)~".
It is seen that Z is an m x (n A p) full rank matrix and

tr(ZZ")™1 fornAp>m,

tr(XST XN =tr(Z2Z")" =
tr(Z'Z)' fornAp<m.
Since Tpp > Q7H/ (0271 = Q71 /(1271 S), we get

tr(ZQ ' ZY) N (2 S) forn Ap > m,
trQ(Z'Z) " (trx'S)  fornAp<m.

tr(X ST XN < {

Using Lemma 6.7, we obtain (6.20) for |m — n A p| > 2, which completes the proof. O
The Lh.s. of (i), namely E[(trS)trF(®™7)?], is bounded above by

E[(trS)trF(®™7)?] < (¢; + d)?E[(trS)trF '] = (c1 + d)*E[(trS)tr( X ST X )]
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since ¢; > -+- > ¢y and (trF)~! < f;! for every i. Using Lemma 6.8 gives that
E[(trS)tr(X STXHT]) < l(lm —n Ap| — 1) E[(trS)trE18]
for
|m —nAp| > 2. (6.22)

It is noted that E[(trS)trX~'8] is always finite. Hence, under the condition (6.22), the
Stein identity can be applied to the risk of the modified Stein type estimator 8™°7. When
the condition (6.22) is met, we also make it possible to apply the Stein identity to the risks
of the Efron-Morris type estimator 8% and the modified Efron-Morris type estimator

6mEM'
6.3 Proof of Theorem 5.1

For the proof, we use a similar argument as in Tsukuma (2010). Abbreviate ¥(F') and
U, (F) by ¥ = diag(¢y,...,¢¢) and ¥, = diag(yy,...,1¥,), respectively. Let H,
be a p X (p — n A p) matrix such that [H,H, € O(p). It is observed that 6% =
XHyH,+ RYR'XHH' and

tr(0% — @)27(0%" — @) = tr(X HoH}, — ©)S (X H H} - ©)'
+ 20 VR'XHH'S ' (XH\H, - ©O)'R
+trV’RIXHH'S 'HH'X'R.

Thus the difference in risk of 5iH and 6% is given by

R(37",0[%) - R(6™, 0|%)
= E[tr(¥2 - V)R XHH'S 'HH'X'R)
+2B[tr(¥, - O)R'XHH'S" (XH,H!, - ©)'R). (6.23)

The first expectation in the r.h.s. of (6.23) is not positive because (¢ )% < 4? for all i.

Here, we use the same notation as in the proof of Lemma 6.8. Let (Z,Z,) =
(XHL '? X H,), where [H, Hy] € O(p). Note that the joint p.d.f. of (Z,Z,, L, H)
is given by (6.21). Then the second expectation in the r.h.s. of (6.23) is expressed as

/// I'x f(Zo,L,H)(dZ,)(dL)(dH),
Rmx(p*n/\P)X]D):;/\pXVp,n/\p

where
I = / tr(¥, — O)R' ZL'’H'S"'(Z,H, — ©)'R
RmMX(nAp)

1
x exp(—trZLl/Qth—l(ZOHg —0) - §trZL1/2HtE‘1HL1/2Zt> (dZ)

24



and

1 1
Zy, L, H) = K, exp|—=tr(Z,H, — )X (Z,H, — ©) — —tr> 'HLH'
2 0 0 2

nAp nAp
XHZ‘H p|+m 1/2H(l—l)
1<J

with a normalizing constant K;. Hence, if it is shown that I < 0, the proof of Theorem
5.1 will be complete.

We next consider the singular value decomposition Z = RDV", where R € V,,,
D = diag(dy,...,d)) = FY* € D}, V € Vypps and £ = m A (n A p). From Theorem 5 of
Uhlig (1994), the Jacobian of the transformation Z = RDV" is given by

(12) = 5 Hd'm ”AP'H &2 — d2)(R'AR)(AD)(V'dV)

1<j

= o H fimmnr H(fi ~ [)(RUAR)(AF)(V'aV),

1<j

where the second equality is verified by the transformation F = D?. Note that (R'dR)
and (V'dV) are invariant with respect to an orthogonal transformation (Muirhead (1982,
pp.69)). For i = 1,...,¢, it is observed that

(RIZL'’H'S ' (Z,H}, — ©)'R};; = f}*v!L'?H'S ™ (Z,H!, — ©)'r; = alr;, say,

7

where v; and r; are the i-th column vectors of V' and R, respectively. We then obtain

I = Z///MX@ XVMM —)airie” %" G (R AR)(AF)(VAV), (6.24)

where
;

_ 1/2 gyt 1 1/2 (lm—nAp|—1)/2
exp{ ;a br; — trFVL/HE HL/V}Q%Hf g(fz—fj).
For each 7, we make the transformation r; — —r;. This transformation is equivalent
to the orthogonal transformation R — RO;, where O; € O({) such that the i-th diagonal
is minus one and the other diagonals are ones. Because (R'dR) is invariant with respect
to the orthogonal transformation, (6.24) is rewritten as

I= Z / / / U — ) (—alrem™)Gi(RIAR) (AF)(VIAV). (6.25)
Vi, ,g><ID> ><Vn,\p ¢
Adding each side of (6.24) and (6.25) yields that
" Z /], ~ il (e G RAR) (AF) (V'Y ).
m ZXD ><Vn/\p I

Since 1 > 1; and alr;(e”®" — e®™) < 0 for any value of alr;, it always holds that
I < 0. Thus the proof of Theorem 5.1 is complete. O
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