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Abstract

We consider the problem of the bandwidth selection for the sharp regression

discontinuity (RD) estimator. The sharp RD estimator requires to estimate

two conditional mean functions on the left and the right of the cut-off point

nonparametrically. We propose to choose two bandwidths, one for each side

for the cut-off point, simultaneously in contrast to common single-bandwidth

approaches. We show that allowing distinct bandwidths leads to a nonstan-

dard minimization problem of the asymptotic mean square error. To address

this problem, we theoretically define and construct estimators of the asymptot-

ically first-order optimal bandwidths that exploit the second-order bias term.

The proposed bandwidths contribute to reduce the mean squared error mainly

due to their superior bias performance. A simulation study based on designs

motivated by existing empirical literatures exhibits a significant gain of the

proposed method under the situations where single-bandwidth approaches can

become quite misleading.
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1 Introduction

The regression discontinuity (RD) is a quasi-experimental design to evaluate causal

effects, which was introduced by Thistlewaite and Campbell (1960). A large number

of empirical applications that exploit the RD design can be found in various areas of

economics. See Imbens and Lemieux (2008), van der Klaauw (2008), Lee and Lemieux

(2010) and DiNardo and Lee (2011) for an overview and lists of empirical researches.

In the sharp RD design, the treatment status changes when a value of the

assignment variable exceeds a known cut-off value and a parameter of interest is the

average treatment effect at the cut-off point. Figure 1 illustrates the situation mo-

tivated by Ludwig and Miller (2007) where the cut-off value is depicted by a dotted

vertical line. The solid line on the left and the dashed line on the right of the cut-off

point depict the conditional mean function of the potential outcome for untreated

conditional on the assignment variable, denoted by E(Y (0)|X = x), where Y (0) is

a potential outcome of untreated and X is an assignment variable. Similarly, the

dashed line on the left and the solid line on the right of the cut-off point draw the

corresponding function for treated, denoted by E(Y (1)|X = x) where Y (1) is an po-

tential outcome of treated. For both functions, the dashed lines are unobserved. The

average treatment effect is given by the difference between the two functions but only

at the cut-off point can we estimate the difference under the continuity assumption

of both functions. This implies that estimating the treatment effect amounts to es-

timating two functions at the boundary point. Depending upon assumptions under

which we are willing to proceed, an appropriate estimation method changes. One of

the most frequently used estimation methods is a nonparametric method using the

local linear regression (LLR) because of its superior performance at the boundary.

Given a particular nonparametric estimator, it is well recognized that choos-

ing an appropriate smoothing parameter is a key implementation issue about which

various methods have been proposed. In the RD setting, the standard approach in

empirical researches is to apply the existing methods of bandwidth choices not nec-

essarily tailored to the RD setting. For example, Ludwig and Miller (2005, 2007)
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E(Y (1)|X = x)

E(Y (0)|X = x)

Figure 1. Potential and observed outcomes

(hereafter LM) and DesJardins and McCall (2008) used the cross-validation and the

plug-in method, respectively. One notable exception is the bandwidth selection proce-

dure proposed by Imbens and Kalyanaraman (2012) (hereafter IK) to choose the same

bandwidth to estimate two functions on both sides of the discontinuity point. The

bandwidth proposed by IK is obtained by minimizing the asymptotic approximation

of the mean squared error (AMSE) with what they term “regularization”.

A single bandwidth approach is familiar to empirical researchers in the applica-

tions of matching methods (Abadie and Imbens, 2011) since the supports of covariates

for treated and untreated individuals overlap and we wish to construct two compa-

rable groups. This reasoning does not apply to the RD estimator since values of the

assignment variable never overlap due to the structure of the RD design. Moreover,

the slopes of the conditional mean functions for treated and that for untreated in the

vicinity of the cut-off point may be rather different. See Figure 1, for example. A case

like this is not an unrealistic artifact and arises naturally in the empirical studies. For

example, sharp contrasts in slopes are observed in Figures 1 and 2 in LM, Figures 12

and 14 in DesJardins and McCall (2008), Figures 3 and 5 of Lee (2008) and Figures
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1 and 2 of Hinnerich and Pettersson-Lidbom (forthcoming) among others. For the

case of Figure 1, considering the bias issue, it would be reasonable to include more

of the treated than the untreated because the conditional mean function values vary

less for the treated than the untreated. This observation hints at a potential pitfall

of common single-bandwidth approaches. We illustrate the usefulness of simultane-

ously choosing two bandwidths theoretically and through a simulation study based on

designs motivated by existing empirical literatures. It exhibits non-negligible gain of

choosing distinct bandwidths under the situations where single-bandwidth approaches

tend to choose a bandwidth that is too large.

We propose to choose two bandwidths simultaneously based on the AMSE

criterion. Although a simultaneous choice of two bandwidths seems natural, it has

not yet been considered in the present context.1 It turns out, this approach leads to

a nonstandard problem. We show that when the sign of the product of the second

derivatives of the conditional mean functions is negative, the bandwidths that mini-

mize the AMSE are well-defined. But when the sign of the product is positive, the

trade-off between bias and variance, which is a key aspect of optimal bandwidth selec-

tion, breaks down, and the AMSE can be made arbitrarily small without increasing

the bias component. This happens because there exists a specific ratio of bandwidths

that can reduce the bias, and we can make the variance arbitrarily small by choosing

large values of the bandwidths keeping the ratio constant.

To address this problem, we theoretically define asymptotically first-order op-

timal (AFO) bandwidths based on objective functions which incorporates a second-

order bias term. The AFO bandwidths are defined as the minimizer of the standard

AMSE when the sign of the product is negative while they are the minimizer of the

AMSE with a second-order bias term subject to the restriction that the first-order

bias term is equal to zero when the sign of the product is positive. We show that

the AFO bandwidths have advantages over the bandwidths chosen independently re-

gardless of the sign of the product. However the AFO bandwidths are unknown since

1Mammen and Park (1997) consider the optimal selection of two bandwidths to estimate the ratio
of the first derivative of the density to the density itself. Since the optimal rates for the bandwidths
differ in their case, their results do not apply in the present context.
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they depend on population quantities. We construct estimators which are shown to

be asymptotically equivalent to using the AFO bandwidths. We describe a detailed

procedure to implement the proposed method.2

We conducted a simulation study to investigate the finite sample properties of

the proposed method. Simulation designs are based on the data used in LM and Lee

(2008). The first of two main findings is that the performance of the proposed method

is robust. The second is that there exists a significant gain in the proposed method

under the situations where single-bandwidth approaches tend to choose a bandwidth

that is too large. Empirical illustration revisiting the study of LM is also provided.

The paper is organized as follows. We first describe an essential difficulty of the

simultaneous selection of the bandwidths and define the AFO bandwidths theoretically

to deal with it. We then propose a feasible version of the AFO bandwidth. Finally

we illustrate usefulness and practicality via simulation experiments and an empirical

example. A detailed procedure for implementation of the proposed method and all

proofs are provided in Appendix.

2 Bandwidth Selection of The Sharp Regression

Discontinuity Estimators

For individual i we denote potential outcomes by Yi(1) and Yi(0), corresponding to

outcomes with and without treatment, respectively. Let Di be a binary variable that

stands for the treatment status. Then the observed outcome, Yi, can be written

as Yi = DiYi(1) + (1 − Di)Yi(0). In the sharp RD setting, the treatment status is

determined solely by the assignment variable, denoted by Xi: Di = I{Xi ≥ c} where

I denotes the indicator function and c is a known constant. Throughout the paper,

we assume that (Y1, X1), . . ., (Yn, Xn) are independent and identically distributed

observations and Xi has the Lebesgue density f .

Define m1(x) = E(Yi(1)|Xi = x) = E(Yi|Xi = x) for x ≥ c and m0(x) =

2Matlab and Stata codes to implement the proposed method are available at
http://www3.grips.ac.jp/~yarai/.
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E(Yi(0)|Xi = x) = E(Yi|Xi = x) for x < c. Suppose that the limits limx→c+ m1(x)

and limx→c− m0(x) exist where x → c+ and x → c− mean taking the limits from the

right and left, respectively. Denote limx→c+ m1(x) and limx→c− m0(x) by m1(c) and

m0(c), respectively. Then the average treatment effect at the cut-off point is given by

τ(c) = m1(c)−m0(c) and τ(c) is the parameter of interest in the sharp RD design.3

Estimation of τ(c) requires to estimate two functions, m1(c) and m0(c). The

nonparametric estimators that we consider are LLR estimators proposed by Stone

(1977) and investigated by Fan (1992). For estimating these limits, the LLR is partic-

ularly attractive because it exhibits the automatic boundary adaptive property (Fan,

1992, Fan and Gijbels, 1992 and Hahn, Todd, and van der Klaauw, 2001). The LLR

estimator for m1(c) is given by α̂h1(c), where

(
α̂h1(c), β̂h1(c)

)
= argmin

α,β

n∑
i=1

{Yi − α− β(Xi − c)}2K
(
Xi − c

h1

)
I{Xi ≥ c},

where K(·) is a kernel function and h1 is a bandwidth. A standard choice of the kernel

function for the RD estimators is the triangular kernel given byK(u) = (1−|u|)I{|u| <

1} because of its minimax optimality (Cheng, Fan, and Marron, 1997). The solution

can be expressed as α̂h1(c)

β̂h1(c)

 = (X(c)′W1(c)X(c))
−1

X(c)′W1(c)Y,

where X(c) is an n×2 matrix whose ith row is given by (1, Xi− c), Y = (Y1, . . . , Yn)
′,

W1(c) = diag(Kh1(Xi − c)) and Kh1(·) = K(·/h1)I{· ≥ 0}/h1. The LLR estimator of

m1(c) can also be written as α̂h1(c) = e′1 (X(c)′W1(c)X(c))−1 X(c)′W1(c)Y , where e1

is a 2 × 1 vector having one in the first entry and zero in the other entry. Similarly,

the LLR estimator for m0(c), denoted by α̂h0(c), can be obtained by replacing W1(c)

with W0(c), where W0(c) = diag(Kh0(Xi − c)) and Kh0(·) = K(·/h0)I{· < 0}/h0.

Denote α̂h1(c) and α̂h0(c) by m̂1(c) and m̂0(c), respectively. Then τ(c) is estimated

by m̂1(c)− m̂0(c).

3See Hahn, Todd, and van der Klaauw (2001).
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2.1 The AMSE for The Regression Discontinuity Estimators

In this paper, we propose a simultaneous selection method of two distinct bandwidths,

h1 and h0, based on an AMSE. This is also the standard approach in the literature.4

The conditional MSE of the RD estimators given the assignment variable, X,

is defined by

MSEn(h) = E
[{

[m̂1(c)− m̂0(c)]− [m1(c)−m0(c)]
}2∣∣∣X].

where X = (X1, X2, . . . , Xn)
′.5 A standard approach is to obtain the AMSE, ignoring

higher-order terms, and to choose the bandwidths that minimize that. To do so, we

proceed under the following assumptions. (The integral sign
∫

refers to an integral

over the range (−∞,∞) unless stated otherwise.)

ASSUMPTION 1 K(·) : R → R is a symmetric second-order kernel function that

is continuous with compact support; i.e., K satisfies the following:
∫
K(u)du = 1,∫

uK(u)du = 0, and
∫
u2K(u)du ̸= 0.

ASSUMPTION 2 The positive sequence of bandwidths is such that hj → 0 and

nhj → ∞ as n → ∞ for j = 0, 1.

Assumptions 1 and 2 are standard in the literature of regression function estimation.

Let D be an open set in R, k be a nonnegative integer, Ck be the family of k

times continuously differentiable functions on D and f (k)(·) be the kth derivative of

f(·) ∈ Ck. Let Fk(D) be the collection of functions f such that f ∈ Ck and

∣∣f (k)(x)− f (k)(y)
∣∣ ≤ Mk |x− y|α , ε < f(z) < M, x, y, z ∈ D,

for some positive Mk, ε and M such that 0 < ε < M < ∞ and some α such that

0 < α ≤ 1.

4As IK emphasize, the bandwidth selection problem in the context of the RD setting is how
to choose local bandwidths rather than global bandwidths. Thus, bandwidth selection based on
either the asymptotic mean “integrated” squared errors or the cross-validation criterion can never
be optimal.

5Throughout the paper, we use “h” without a subscript to denote a combination of h1 and h0;
e.g., MSEn(h1, h0) is written as MSEn(h).
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We use σ2
1(x) and σ2

0(x) to denote the conditional variance of Yi given Xi = x

for x ≥ c and x < c, respectively. Also define σ2
1(c) = limx→c+ σ2

1(x), σ2
0(c) =

limx→c− σ2
0(x),m

(2)
1 (c) = limx→c+m

(2)
1 (x),m

(2)
0 (c) = limx→c− m

(2)
0 (x),m

(3)
1 (c) = limx→c+ m

(3)
1 (x),

m
(3)
0 (c) = limx→c− m

(3)
0 (x), µj,0 =

∫∞
0

ujK(u)du and νj,0 =
∫∞
0

ujK2(u)du for nonneg-

ative integer j.

ASSUMPTION 3 The density f is an element of F1(D) where D is an open neigh-

borhood of c.

ASSUMPTION 4 Let δ be some positive constant. The conditional mean function

m1 and the conditional variance function σ2
1 are elements of F3(D1) and F0(D1),

respectively, where D1 is a one-sided open neighborhood of c, (c, c + δ), and m1(c),

m
(2)
1 (c), m

(3)
1 (c) and σ2

1(c) exist and are bounded. Similarly, m0 and σ2
0 are elements

of F3(D0) and F0(D0), respectively, where D0 is a one-sided open neighborhood of c,

(c− δ, c), and m0(c), m
(2)
0 (c), m

(3)
0 (c) and σ2

0(c) exist and are bounded.

Under Assumptions 1, 2, 3 and 4, we can easily generalize the result obtained

by Fan and Gijbels (1992) to get,6

MSEn(h) =

{
b1
2

[
m

(2)
1 (c)h2

1 −m
(2)
0 (c)h2

0

]}2

+
v

nf(c)

{
σ2
1(c)

h1

+
σ2
0(c)

h0

}
+ o

(
h4
1 + h2

1h
2
0 + h4

0 +
1

nh1

+
1

nh0

)
, (1)

where

b1 =
µ2
2,0 − µ1,0µ3,0

µ0,0µ2,0 − µ2
1,0

, and v =
µ2
2,0ν0,0 − 2µ1,0µ2,0ν1,0 + µ2

1,0ν2,0

(µ0,0µ2,0 − µ2
1,0)

2
.

This suggests that we choose the bandwidths to minimize the following AMSE:

AMSEn(h) =

{
b1
2

[
m

(2)
1 (c)h2

1 −m
(2)
0 (c)h2

0

]}2

+
v

nf(c)

{
σ2
1(c)

h1

+
σ2
0(c)

h0

}
. (2)

6The conditions on the first derivative of f and the third derivatives of m1 and m0, described in
Assumptions 3 and 4, are not necessary to obtain the result (1). They are stated for later use.
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However, this procedure may fail. To see why, let h1, h0 ∈ H, where H = (0,∞), and

consider the case in whichm
(2)
1 (c)m

(2)
0 (c) > 0. Now choose h0 = [m

(2)
1 (c)/m

(2)
0 (c)]1/2h1.

Then, we have

AMSEn(h) =
v

nh1f(c)

σ2
1(c) + σ2

0(c)

[
m

(2)
0 (c)

m
(2)
1 (c)

]1/2 .

This implies that the bias component can be removed completely from the AMSE by

choosing a specific ratio of bandwidths and the AMSE can be made arbitrarily small

by choosing a sufficiently large h1.

One reason for this nonstandard behavior is that the AMSE given in (2) does

not account for higher-order terms. If non-removable higher-order terms for the bias

component are present, they should punish the act of choosing large values for band-

widths. In what follows, we incorporate a second-order bias term into the AMSE.

The next lemma presents the MSE with a second-order bias term by generalizing the

higher-order approximation of Fan, Gijbels, Hu, and Huang (1996).7

LEMMA 1 Suppose Assumptions 1–4 hold. Then, it follows that

MSEn(h) =

{
b1
2

[
m

(2)
1 (c)h2

1 −m
(2)
0 (c)h2

0

]
+
[
b2,1(c)h

3
1 − b2,0(c)h

3
0

]
+ o

(
h3
1 + h3

0

)}2

+
v

nf(c)

{
σ2
1(c)

h1

+
σ2
0(c)

h0

}
+ o

(
1

nh1

+
1

nh0

)
,

where

b2,j(c) = (−1)j+1

{
ξ1

[
m

(2)
j (c)

2

f (1)(c)

f(c)
+

m
(3)
j (c)

6

]
− ξ2

m
(2)
j (c)

2

f (1)(c)

f(c)

}

ξ1 =
µ2,0µ3,0 − µ1,0µ4,0

µ0,0µ2,0 − µ2
1,0

, and ξ2 =
(µ2

2,0 − µ1,0µ3,0) (µ0,0µ3,0 − µ1,0µ2,0)

(µ0,0µ2,0 − µ2
1,0)

2
,

for j = 0, 1.

In the literature of regression function estimation, it is common to employ local

7Fan, Gijbels, Hu, and Huang (1996) show the higher-order approximation of the MSE for interior
points of the support of X. Lemma 1 presents the analogous result for a boundary point.
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polynomial regression (LPR) of second-order when the conditional mean function is

three times continuously differentiable because it is known to reduce bias (see, e.g.,

Fan, 1992). However, we have several reasons for confining our attention to the LLR.

First, as shown later, we can achieve the same bias reduction without employing the

LPR when the sign of the product of the second derivatives is positive. When the

sign is negative, the existence of the third derivatives becomes unnecessary. Second,

even when we use the LPR, we end up with an analogous problem. For example,

the first-order bias term is removed by using the LPR, but when the signs of b2,1(c)

and b2,0(c) are the same, the second-order bias term can be eliminated by using an

appropriate choice of bandwidths.

Given the expression of Lemma 1, one might be tempted to proceed with an

AMSE including the second-order bias term:

{
b1
2

[
m

(2)
1 (c)h2

1 −m
(2)
0 (c)h2

0

]
+
[
b2,1(c)h

3
1 − b2,0(c)h

3
0

]}2

+
v

nf(c)

{
σ2
1(c)

h1

+
σ2
0(c)

h0

}
(3)

We show that a straightforward minimization of this AMSE does not overcome the

problem discussed earlier. That is, the minimization problem is not well-defined when

m
(2)
1 (c)m

(2)
0 (c) > 0. In particular, we show that one can make the order of the bias

term O(hk+3
1 ), with k being an arbitrary positive integer, by choosing h2

0 = C(h1, k)h
2
1

and C(h1, k) = C0 + C1h1 + C2h
2
1 + C3h

3
1 + . . . + Ckh

k
1 for some constants C0, C1,

. . ., Ck when the sign of the product of the second derivatives is positive. Given that

bandwidths are necessarily positive, we must have C0 > 0, although we allow C1,

C2, . . ., Ck to be negative. For sufficiently large n and for any k, we always have

C(h1, k) > 0 given C0 > 0 and we assume this without loss of generality.

To gain insight, consider choosing C(h1, 1) = C0+C1h1, where C0 = m
(2)
1 (c)/m

(2)
0 (c).
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In this case, the sum of the first- and second-order bias terms is

b1
2

[
m

(2)
1 (c)− C(h1, 1)m

(2)
0 (c)

]
h2
1 +

[
b2,1(c)− C(h1, 1)

3/2b2,0(c)
]
h3
1

=

{
−b1

2
C1m

(2)
0 (c) + b2,1(c)− C

3/2
0 b2,0(c)

}
h3
1 +O(h4

1).

By choosing C1 = 2
[
b2,1(c)− C

3/2
0 b2,0(c)

]/[
b1m

(2)
0 (c)

]
, one can make the order of

bias O(h4
1). Next, consider C(h1, 2) = C0 + C1h1 + C2h

2
1, where C0 and C1 are as

determined above. In this case,

b1
2

[
m

(2)
1 (c)− C(h1, 2)m

(2)
0 (c)

]
h2
1 +

[
b2,1(c)− C(h1, 2)

3/2b2,0(c)
]
h3
1

= −
{
b1C2m

(2)
0 (c) + 3C

1/2
0 C1b2,0(c)

}
h4
1/2 +O(h5

1).

Hence, by choosing C2 = −3C
1/2
0 C1b2,0(c)/[b1m

(2)
0 (c)], one can make the order of bias

term O(h5
1). Similar arguments can be formulated for arbitrary k and the discussion

above is summarized in the following lemma.

LEMMA 2 Suppose Assumptions 1–4 hold. Also suppose m
(2)
1 (c)m

(2)
0 (c) > 0. Then

there exist a combination of h1 and h0 such that the AMSE including the second-order

bias term defined in (3) becomes

v

nh1f(c)

σ2
1(c) + σ2

0(c)

[
m

(2)
1 (c)

m
(2)
0 (c)

]1/2+O
(
hk+3
1

)
.

for an arbitrary nonnegative integer k.

This implies that one can make the AMSE arbitrarily small by appropriate

choices of h1 and k, leading to non-existence of the optimal solution. It is straight-

forward to generalize this discussion to the case of the AMSE with higher-order bias

terms.
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2.2 AFO Bandwidths

We observed that the optimal bandwidths that minimize the AMSE are not well-

defined when the sign of the product of the second derivatives is positive. We also

noted that simply introducing higher-order bias terms does not help to avoid dis-

appearance of the trade-off. Hence, we propose a new optimality criterion termed

“asymptotic first-order optimality”.

First, we discuss the case in which m
(2)
1 (c)m

(2)
0 (c) < 0. Remember that the

standard AMSE is given by equation (2). In this situation, the square of the first-

order bias term cannot be removed by any choice of the bandwidths and dominates

the second-order bias term asymptotically. That is, there is the standard bias-variance

trade-off in this case. Hence, it is reasonable to choose the bandwidths that minimize

the standard AMSE given in (2).

When m
(2)
1 (c)m

(2)
0 (c) > 0, by choosing h2

0 = C0h
2
1 with C0 = m

(2)
1 (c)/m

(2)
0 (c),

the bias component with the second-order term becomes

[
b2,1(c)− C

3/2
0 b2,0(c)

]
h3
1 + o

(
h3
1

)
.

unless m
(2)
0 (c)3b2,1(c)

2 = m
(3)
1 (c)3b2,0(c)

2. With this bias component, there exists a

bias-variance trade-off and the bandwidths can be determined. The above discussion

is formalized in the following definition and the resulting bandwidths are termed

“AFO bandwidths.”

DEFINITION 1 The AFO bandwidths for the RD estimator minimize the AMSE

defined by

AMSE1n(h) =

{
b1
2

[
m

(2)
1 (c)h2

1 −m
(2)
0 (c)h2

0

]}2

+
v

nf(c)

{
σ2
1(c)

h1

+
σ2
0(c)

h0

}
.

when m
(2)
1 (c)m

(2)
0 (c) < 0. Their explicit expressions are given by h∗

1 = θ∗n−1/5 and

12



h∗
0 = λ∗h∗

1, where

θ∗ =

 vσ2
1(c)

b21f(c)m
(2)
1 (c)

[
m

(2)
1 (c)− λ∗2m

(2)
0 (c)

]


1/5

and λ∗ =

{
−σ2

0(c)m
(2)
1 (c)

σ2
1(c)m

(2)
0 (c)

}1/3

.

When m
(2)
1 (c)m

(2)
0 (c) > 0, the AFO bandwidths for the RD estimator minimize the

AMSE defined by

AMSE2n(h) =
{
b2,1(c)h

3
1 − b2,0(c)h

3
0

}2

+
v

nf(c)

{
σ2
1(c)

h1

+
σ2
0(c)

h0

}

subject to the restrictionm
(2)
1 (c)h2

1−m
(2)
0 (c)h2

0 = 0 under the assumption ofm
(2)
0 (c)3b2,1(c)

2 ̸=

m
(3)
1 (c)3b2,0(c)

2. Their explicit expressions are given by h∗∗
1 = θ∗∗n−1/7 and h∗∗

0 =

λ∗∗h∗∗
1 , where

θ∗∗ =

{
v [σ2

1(c) + σ2
0(c)/λ

∗∗]

6f(c)
[
b2,1(c)− λ∗∗3b2,0(c)

]2
}1/7

and λ∗∗ =

{
m

(2)
1 (c)

m
(2)
0 (c)

}1/2

.

Definition 1 is stated assuming that the first- and the second-order bias terms do not

vanish simultaneously, i.e., m
(2)
0 (c)3b2,1(c)

2 ̸= m
(2)
1 (c)3b2,0(c)

2.8

The proposed bandwidths are called the AFO bandwidths because theAMSE2n(h)

is minimized under the restriction that the first-order bias term is removed when the

sign is positive. It is worth noting that the order of the optimal bandwidths exhibits

dichotomous behavior depending on the sign of the product of the second derivatives.

Let h∗ and h∗∗ denote (h∗
1, h

∗
0) and (h∗∗

1 , h∗∗
0 ), respectively. It is easily seen that the

orders of AMSE1n(h
∗) and AMSE2n(h

∗∗) are Op(n
−4/5) and Op(n

−6/7), respectively.

This implies that, when the sign is positive, the AFO bandwidths reduce bias with-

8Uniqueness of the AFO bandwidths in each case is verified in Arai and Ichimura (2013b). Defi-
nition 1 can be generalized to cover the excluded case in a straightforward manner if we are willing
to assume the existence of the fourth derivatives. This case corresponds to the situation in which
the first- and the second-order bias terms can be removed simultaneously by choosing appropriate
bandwidths and the third-order bias term works as a penalty for large bandwidths. Another excluded

case in Definition 1 is when m
(2)
1 (c)m

(2)
0 (c) = 0. It is also possible to extend the idea of the AFO

bandwidths when both m
(2)
1 (c) = 0 and m

(2)
0 (c) = 0 hold. This generalization can be carried out by

replacing the role of the first- and the second-order bias terms by the second- and the third order
bias terms.
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out increasing variance and explains why we need not use the LPR even when the

third derivatives of m1(·) and m0(·) exist. It is also interesting to note that the bias

reduction is possible even when the observations on the right of the cut-off point is

independent of those on the left. It is the structure of the parameter of interest which

is essential for the bias reduction.

The AFO bandwidths has the advantage of the simultaneous selection of band-

widths over the independent selection of the bandwidths. The independent selection

chooses the bandwidths on the left and the right of the cut-off optimally for each

function without paying attention to the relationship between the two functions. The

independently selected bandwidths based on the AMSE criterion are given by

ȟ1 =

 vσ2
1(c)

b21f(c)
[
m

(2)
1 (c)

]2


1/5

n−1/5 and ȟ0 =

 vσ2
0(c)

b21f(c)
[
m

(2)
0 (c)

]2


1/5

n−1/5 (4)

and the resulting order of the AMSE is Op(n
−4/5). The advantage of the simultaneous

selection is apparent when m
(2)
1 (c)m

(2)
0 (c) > 0 since the AFO bandwidths make the

order of the AMSE Op(n
−6/7). When m

(2)
1 (c)m

(2)
0 (c) < 0, we note that the AMSE in

equation (2) can be written as

AMSEn(h) =

{
b1
2

[
m

(2)
1 (c)h2

1 −m
(2)
0 (c)h2

0

]}2

+
v

nf(c)

{
σ2
1(c)

h1

+
σ2
0(c)

h0

}
=

{
b1
2
·m(2)

1 (c)h2
1

}2

+

{
b1
2
·m(2)

0 (c)h2
0

}2

− b1m
(2)
1 (c)m

(2)
0 (c)h2

1h
2
0

+
v

nf(c)

{
σ2
1(c)

h1

+
σ2
0(c)

h0

}
= AMSE1

n(h) + AMSE0
n(h)− b1m

(2)
1 (c)m

(2)
0 (c)h2

1h
2
0 (5)

where

AMSE1
n(h) =

{
b1
2
·m(2)

1 (c)h2
1

}2

+
v

nf(c)
· σ

2
1(c)

h1

, and

AMSE0
n(h) =

{
b1
2
·m(2)

0 (c)h2
0

}2

+
v

nf(c)
· σ

2
0(c)

h0

.
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As shown above, the difference between the objective functions of the AFO band-

widths and the independently selected bandwidths lies solely in the additional bias

term. The bandwidths given in equation (4) minimize AMSE1
n(h1) and AMSE0

n(h0),

respectively. The simultaneous selection is superior to the independent selection since

the former takes into account the third term of the right hand side of equation (5)

which is always positive whenm
(2)
1 (c)m

(2)
0 (c) < 0. This also implies that the advantage

of the simultaneous selection would be larger when the third term is larger.

Before we move on, we briefly note that the asymptotically higher-order opti-

mal bandwidths can be proposed in the same manner under a sufficient smoothness

condition. For example, the asymptotically second-order optimal (ASO) bandwidths

can be constructed when m
(2)
1 (c)m

(2)
0 (c) > 0 under the assumption that m1 and m0

are four times continuously differentiable in the neighborhood of c. However, we do

not pursue this direction further in this paper because of implementation difficulty.

More detailed discussions are provided in Arai and Ichimura (2013a)

2.3 Feasible Automatic Bandwidth Choice

The AFO bandwidths are clearly not feasible because they depend on unknown quan-

tities related to f(·), m1, m0 and, most importantly, on the sign of the product of the

second derivatives.

An obvious plug-in version of the AFO bandwidths can be implemented by

estimating the second derivatives, m̂
(2)
1 (c) and m̂

(2)
0 (c). Depending on the estimated

sign of the product, we can construct the plug-in version of the AFO bandwidths

provided in Definition 1. We refer to these as “the direct plug-in AFO bandwidths.”

They are defined by

ĥD
1 = θ̂1n

−1/5I{m̂(2)
1 (c)m̂

(2)
0 (c) < 0}+ θ̂2n

−1/7I{m̂(2)
1 (c)m̂

(2)
0 (c) ≥ 0},

ĥD
0 = θ̂1λ̂1n

−1/5I{m̂(2)
1 (c)m̂0(c) < 0}+ θ̂2λ̂2n

−1/7I{m̂(2)
1 (c)m̂

(2)
0 (c) ≥ 0},
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where

θ̂1 =

 vσ̂2
1(c)

b21f̂(c)m̂
(2)
1 (c)

[
m̂

(2)
1 (c)− λ̂2

1m̂
(2)
0 (c)

]


1/5

, λ̂1 =

{
− σ̂2

0(c)m̂
(2)
1 (c)

σ̂2
1(c)m̂

(2)
0 (c)

}1/3

, (6)

θ̂2 =


v
[
σ̂2
1(c) + σ̂2

0(c)/λ̂2

]
6f̂(c)

[
b̂2,1(c)− λ̂3

2b̂2,0(c)
]2


1/7

and λ̂2 =

{
m̂

(2)
1 (c)

m̂
(2)
0 (c)

}1/2

. (7)

These bandwidths switch depending on the estimated sign. We can show that the

direct plug-in AFO bandwidths are asymptotically as good as the AFO bandwidths

in large samples. That is, we can prove that a version of Theorem 1 below also

holds for the direct plug-in AFO bandwidths. However, our unreported simulation

experiments show a poor performance of the direct plug-in AFO bandwidths under

the designs described in Section 3 since they misjudge the rate of the bandwidths

whenever the sign is misjudged. Hence we do not pursue the direct plug-in approach

further.

Instead, we propose an alternative procedure for choosing bandwidths that

switch between two bandwidths more smoothly. To propose feasible bandwidths, we

present a modified version of the AMSE (MMSE) defined by

MMSEn(h) =

{
b1
2

[
m

(2)
1 (c)h2

1 −m
(2)
0 (c)h2

0

]}2

+
{
b2,1(c)h

3
1 − b2,0(c)h

3
0

}2

+
v

nf(x)

{
σ2
1(x)

h1

+
σ2
0(x)

h0

}
.

A notable characteristic of the MMSE is that the bias component is represented by

the sum of the squared first- and the second-order bias terms. A key characteristic of

the MMSE is that its bias component cannot be made arbitrarily small by any choices

of bandwidths even when the sign is positive, unless m
(2)
0 (c)3b2,1(c)

2 ̸= m
(2)
1 (c)3b2,0(c)

2.

Thus, either term can penalize large bandwidths regardless of the sign, in which case,

the MMSE preserves the bias-variance trade-off in contrast to the AMSE with the

second-order bias term. More precisely, when m
(2)
1 (c)m

(2)
0 (c) < 0, the square of the

first-order bias term serves as the leading penalty and that of the second-order bias
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term becomes the second-order penalty. On the other hand, when m
(2)
1 (c)m

(2)
0 (c) > 0,

the square of the second-order bias term works as the penalty and that of the first-order

bias term becomes the linear restriction that shows up in the definition of the AFO

bandwidths. In fact, the bandwidths that minimize the MMSE are asymptotically

equivalent to the AFO bandwidths. This claim can be proved rigorously as a special

case of the following theorem.

We propose a feasible bandwidth selection method based on the MMSE. The

proposed method for bandwidth selection can be considered as a generalization of the

traditional plug-in method (see, e.g., Wand and Jones, 1994, Section 3.6). Consider

the following plug-in version of the MMSE denoted by M̂MSE:

M̂MSEn(h) =

{
b1
2

[
m̂

(2)
1 (c)h2

1 − m̂
(2)
0 (c)h2

0

]}2

+
{
b̂2,1(c)h

3
1 − b̂2,0(c)h

3
0

}2

+
v

nf̂(c)

{
σ̂2
1(c)

h1

+
σ̂2
0(c)

h0

}
, (8)

where m̂
(2)
j (c), b̂2,j(c), σ̂

2
j (c) and f̂(c) are consistent estimators of m

(2)
j (c), b2,j(c), σ

2
j (c)

and f(x) for j = 0, 1, respectively. Let (ĥ1, ĥ0) be a combination of bandwidths that

minimizes the MMSE given in (8) and ĥ denote (ĥ1, ĥ0). In the next theorem, we

show that (ĥ1, ĥ0) is asymptotically as good as the AFO bandwidths in the sense of

Hall (1983) (see equation (2.2) of Hall, 1983).

THEOREM 1 Suppose that the conditions stated in Lemma 1 hold. Assume further

that m̂
(2)
j (c), b̂2,j(c), f̂(c) and σ̂2

j (c) satisfy m̂
(2)
j (c) → m

(2)
j (c), b̂2,j(c) → b2,j(c), f̂(c) →

f(c) and σ̂2
j (c) → σ2

j (c) in probability for j = 0, 1, respectively. Then, the following

hold.

(i) When m
(2)
1 (c)m

(2)
0 (c) < 0,

ĥ1

h∗
1

→ 1,
ĥ0

h∗
0

→ 1, and
M̂MSEn(ĥ)

MSEn(h∗)
→ 1

in probability.
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(ii) When m
(2)
1 (c)m

(2)
0 (c) > 0 and m

(2)
0 (c)3b2,1(c)

2 ̸= m
(2)
1 (c)3b2,0(c)

2

ĥ1

h∗∗
1

→ 1,
ĥ0

h∗∗
0

→ 1, and
M̂MSEn(ĥ)

MSEn(h∗∗)
→ 1

in probability.

The first part of Theorem 1 (i) and (ii) implies that the bandwidths that

minimize the MMSE are asymptotically equivalent to the AFO bandwidths regardless

of the sign of the product. The second part shows that the minimized value of the

plug-in version of the MMSE is asymptotically the same as the MSE evaluated at the

AFO bandwidths. These two findings show that the bandwidths that minimize the

MMSE possess the desired asymptotic properties. These findings also justify the use

of the MMSE as a criterion function. Theorem 1 requires pilot estimates for m
(2)
j (c),

b2,j(c), f(c) and σ2
j (c) for j = 0, 1. A detailed procedure about how to obtain the

pilot estimates is given in the next section.

Fan and Gijbels (1996, Section 4.3) points out that replacing constants de-

pending on a kernel function with finite sample approximations can improve finite

sample performance. This leads to the following version of the estimated MMSE:

̂MMSEE
n (h) =

{
b̃1,1(c)− b̃1,0(c)

}2

+
{
b̃2,1(c)− b̃2,0(c)

}2

+ σ̂2
1(c)ṽ1(c) + σ̂2

0(c)ṽ0(c),

(9)
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where

b̃1,j(c) =
m̂

(2)
j (c)

2
e′1S̃

−1
n,0,j c̃n,2,j,

b̃2,j(c) =

{
m̂

(2)
j (c)

2
· f̂

(1)(c)

f̂(c)
+

m̂
(3)
j (c)

3!

}
e′1S̃

−1
n,0,jcn,3,j −

m̂
(2)
j (c)

2
· f̂

(1)(c)

f̂(c)
e′1S̃

−1
n,0,jSn,1,jS̃

−1
n,0,j c̃n,2,j,

ṽj(x) = e′1S
−1
n,0,jTn,0,jS

−1
n,0,je1, S̃n,0,j = Sn,0,j −

f̂ (1)(c)

f̂(c)
Sn1,j, c̃n,2,j = cn,2,j −

f̂ (1)(c)

f̂(c)
cn,3,j,

Sn,k,j =

 sn,k,j sn,k+1,j

sn,k+1,j sn,k+2,j

 , Tn,k,j =

 tn,k,j tn,k+1,j

tn,k+1,j tn,k+2,j

 , cn,k,j =

 sn,k,j

sn,k+1,j

 ,

sn,k,j =
n∑

i=1

Khj
(Xi − c)(Xi − c)k, tn,k,j =

n∑
i=1

K2
hj
(Xi − c)(Xi − c)k, (10)

for j = 0, 1. Let (ĥE
1 , ĥ

E
0 ) minimize the MMSE defined by (9), and let ĥE denote

(ĥE
1 , ĥ

E
0 ). Then, the following extension of Theorem 1 holds.

COROLLARY 1 Suppose that the conditions stated in Theorem 1 hold for each case.

Also assume that the second derivative of the density f exists in the neighborhood of x.

Then, the results for ĥ1, ĥ0 and ̂MMSEn(ĥ) also hold for ĥE
1 , ĥ

E
0 and ̂MMSEE

n (ĥ
E).

3 Simulation

To investigate the finite sample performance of the proposed method, we conducted

simulation experiments.

3.1 Simulation Designs

The objective of the RDD application is to estimate τ(c) defined in Section 2. First we

consider four designs motivated by the existing empirical studies, LM and Lee (2008).

Designs 1–3 are the ones used for simulation experiments in the present context by

IK and Calonico, Cattaneo, and Titiunik (2012) (hereafter CCT). Design 4 tries to

mimic the situation considered by LM where they investigate the effect of Head Start
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assistance on Head Start spending in 1968. This design corresponds to Panel A of

Figure II in Ludwig and Miller (2007, pp. 176).9

The designs are depicted in Figure 2. For the first two designs, the sign of the

product of the second derivatives is negative. The ratio of the second derivative on

the right to the one on the left in absolute value is moderate for Design 1, whereas it

is rather large for Design 2. For the next two designs, the sign is positive. Design 3

has exactly the same second derivative on both sides, and Design 4 has a relatively

large ratio of second derivatives.

For each design, we consider a normally distributed additive error term with

mean zero and standard deviation 0.1295. We use data sets of 500 observations and

the results are drawn from 10,000 replications. The specification for the assignment

variable is exactly the same as that considered by IK.10

3.2 Results

The simulation results are presented in Tables 1 and 2. Table 1 reports the results for

Designs 1 and 2. The first column explains the design. The second column reports

the method used to obtain the bandwidth(s). MMSE refers to the proposed methods

based on ̂MMSEn(h) in equation (8).11 IK corresponds to the bandwidth denoted

by ĥopt in Table 2 of IK.

The cross-validation bandwidth used by LM; its implementation is described

in Section 4.5 of IK. Note that the cross-validation bandwidth involves one ad hoc

parameter although other methods presented here are fully data-driven.12 DM is the

plug-in bandwidths used by DesJardins and McCall (2008) as explained in Section

9We followed IK and CCT to obtain the functional form. First we fit the fifth order global
polynomial with different coefficients for the right and the left of the cut-off point after rescaling.

10In IK the assignment variable is generated by a Beta distribution. More precisely, let Zi have a
Beta distribution with parameters α = 2 and β = 4. Then, the assignment variable Xi is given by
2Zi − 1.

11As far as the designs considered in this section are concerned, the results based on the methods

using ̂MMSEE
n (h) in equation (9) are almost identical to those using ̂MMSEn(h). Hence we only

show the results based on the latter.
12See Section 4.5 of IK for the ad hoc parameter δ used in the cross-validation method. δ is set to

0.5 as in IK.
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1. Lee (2008) Data (Design 1 of IK and CCT)

m1(x) = 0.52 + 0.84x− 3.0x2 + 7.99x3 − 9.01x4 + 3.56x5

m0(x) = 0.48 + 1.27x+ 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5

2. Ludwig and Miller I (2007) Data (Design 2 of CCT)

m1(x) = 0.26 + 18.49x− 54.8x2 + 74.3x3 − 45.02x4 + 9.83x5

m0(x) = 3.70 + 2.99x+ 3.28x2 + 1.45x3 + 0.22x4 + 0.03x5

3. Constant Additive Treatment Effect (Design 3 of IK)

m1(x) = 1.42 + 0.84x− 3.0x2 + 7.99x3 − 9.01x4 + 3.56x5

m0(x) = 0.42 + 0.84x− 3.0x2 + 7.99x3 − 9.01x4 + 3.56x5

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-1 -0.5  0  0.5  1

4. Ludwig and Miller II (2007, Figure II. B) Data

m1(x) = 0.09 + 5.76x− 42.56x2 + 120.90x3 − 139.71x4 + 55.59x5

m0(z) = 0.03− 2.26x− 13.14x2 − 30.89x3 − 31.98x4 − 12.1x5

Figure 2. Simulation Design (The dotted line in the panel for Design 1 denotes the density of
the forcing variable. The supports for m1(x) and m0(x) are x ≥ 0 and x < 0, respectively.)
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4.4 of IK.13 DM is an example of the independent bandwidth selection.

The third and fourth columns report the mean (labeled ‘Mean’) and standard

deviation (labeled ‘SD’) of the bandwidths for IK, LM, and DM. For MMSE, these

columns report the bandwidth obtained for the right side of the cut-off point. The

fifth and sixth columns report the corresponding ones on the left sides for MMSE.

The seventh and eighth columns report the bias (Bias) and the root mean squared

error (RMSE) for the sharp RDD estimate, denoted by τ̂ . The eighth column report

the efficiency relative to the most efficient bandwidth selection rule under Design 1

based on the RMSE.

First, we look at the designs in which the signs of the second derivatives are dis-

tinct. The top panel of Table 1, which reports the results for Design 1, demonstrates

that all methods perform similarly. DM performs only marginally better. Given simi-

lar magnitude for the second derivatives in absolute value, choosing a single bandwidth

might be appropriate. The bottom panel of Table 1 reports the results for Design 2, in

which there exists a large difference in the magnitudes of the second derivatives. Now

MMSE perform significantly better than the other methods, followed by LM. IK and

DM perform very poorly mainly because the bandwidths are too large, leading to the

large bias. Ignoring the additional bias component represented by the third term in

equation (5) is leading to the poor performance of the independence selection (DM).

The superior bias performance of MMSE is evident. This shows the importance of

choosing a small bandwidth on the right of the cut-off point.

Next, we examine designs in which the sign of the product of the second deriva-

tives is positive. The top panel of Table 2 show that MMSE performs reasonably well

for Design 3. The bottom panel of Table 2 reports that MMSE works significantly

better than others for Design 4, reflecting the advantage of allowing distinct band-

widths. The bandwidths based on IK, LM and DM tend to be too large for estimating

the function on the right of the cut-off and too small on the left relative to the ones

based on MMSE.

In summary, for the designs that satisfy the assumptions of Theorem 1, the

13The plug-in method used by DesJardins and McCall (2008) is proposed by Fan and Gijbels
(1992, 1995).
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Table 1: Bias and RMSE for the Sharp RDD, n=500

ĥ1 ĥ0 τ̂
Design Method Mean SD Mean SD Bias RMSE Efficiency

Design 1 MMSE 0.378 0.165 0.377 0.151 0.033 0.057 0.895
IK 0.432 0.114 0.038 0.054 0.944
LM 0.424 0.118 0.037 0.054 0.944
DM 0.556 0.135 0.037 0.051 1

Design 2 MMSE 0.076 0.005 0.187 0.027 0.039 0.085 1
IK 0.177 0.010 0.138 0.151 0.563
LM 0.129 0.013 0.078 0.107 0.794
DM 0.267 0.020 0.264 0.272 0.313

Table 2: Bias and RMSE for the Sharp RDD, n=500

ĥ1 ĥ0 τ̂
Design Method Mean SD Mean SD Bias RMSE Efficiency

Design 3 MMSE 0.356 0.173 0.205 0.045 -0.021 0.059 0.983
IK 0.199 0.029 -0.013 0.058 1
LM 0.112 0.008 -0.003 0.071 0.817
DM 0.204 0.041 -0.016 0.063 0.921

Design 4 MMSE 0.237 0.094 0.723 0.244 0.025 0.059 1
IK 0.374 0.127 0.064 0.081 0.728
LM 0.559 0.205 0.075 0.089 0.663
DM 0.700 0.264 0.088 0.095 0.621
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performance of MMSE is good and stable. IK and DM exhibits disappointing perfor-

mance for some designs. LM also produces stable results but outperformed by MMSE

except Design 1 where LM performs marginally better than MMSE. Overall, MMSE

appears very promising.

4 Empirical Illustration

We illustrate how the proposed method in this paper can contribute to empirical re-

searches. In doing so, we revisit the problem considered by LM. They investigate the

effect of Head Start on health and schooling. Head Start is the federal government’s

program aimed to provide preschool, health, and other social services to poor children

age three to five and their families. They note that the federal government assisted

Head Start proposals of the 300 poorest counties based on the county’s 1960 poverty

rate and find that the county’s 1960 poverty rate can become the assignment variable

where the cut-off value is given by 59.1984. They assess the effect of Head Start assis-

tance on numerous measures such as Head Start participation, Head Start spending,

other social spending, health, mortality and education.

Here we revisit the study on the effect of Head Start assistance on Head Start

spending and mortality provided in Tables II and III of LM. The outcome variables

considered in Tables II and III include Head Start spending per child in 1968 and 1972,

and the mortality rate for Head Start susceptible causes to all and black children 5 to

9. 1972 Head Start spending per child and the mortality rate for all children generated

the simulation Designs 2 and 4 in the previous section, respectively. In obtaining the

RD estimates, they employ the LLR using a triangular kernel function as proposed

by Porter (2003). For bandwidths, they use 3 different bandwidths, 9, 18 and 36 in

somewhat ad-hoc manner rather than relying on some bandwidths selection methods.

This implies that the bandwidths and the number of observations with nonzero weight

used for estimation are independent of outcome variables.

Table 3 reproduces the results presented in Tables II and III of Ludwig and

Miller (2007) for comparison. The point estimates for 1968 Head Start spending per
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child range from 114.711 to 137.251 and we might be able to say that they are not

very sensitive to the choice of bandwidth. However, the point estimates for 1972 Head

Start spending per child range from 88.959 to 182.396. What is more troubling would

be the fact that they produce mixed results in statistical significance. For 1968 Head

Start spending per child, the point estimate with the bandwidth of 36 produce the

result which is statistically significant at 5% level while the estimates with bandwidths

of 9 and 18 are not statistically significant even at 10% level. The results for 1972

Head Start spending per child are similar in the sense that the estimates based on the

bandwidths of 9 and 36 are statistically significant at 10% level while the estimate

based on the bandwidth of 18 is not at the same level.

The results on the mortality rate for all children five to nine exhibit statistical

significance though the point estimates range from -1.895 to -1.114 depending on which

bandwidth to employ. The point estimate for the mortality rate for black children five

to nine with bandwidth 18 is -2.719 which is statistically significant at 5% level while

the point estimates with bandwidths 9 and 36 are -2.275 and -1.589, respectively,

which are not statistically insignificant even at 10% level. It would be meaningful to

see what sophisticated bandwidth selection methods can offer under situations where

the results based on ad-hoc approaches cannot be interpreted easily.

Table 4 presents the result based on the bandwidth selection methods based

on MMSE and IK. For 1968 Head Start spending per child, the point estimates based

on both methods are similar but statistically insignificant although MMSE produces

a smaller standard error reflecting the larger bandwidth on the left of the cut-off. The

point estimate for 1972 Head Start spending per child differ substantially although

they are not statistically significant. For the mortality rate for all children five to

nine, both methods produce similar results in terms of the point estimates as well as

statistical significance while they generate very different results in both point estimate

and statistical significance. To summarize, we found large but statistically insignif-

icant point estimates for Head Start spending and statistically significant estimates

for mortality rates by the proposed method in this paper. The results presented in

Table 4 alone do not imply any superiority of the proposed method over the existing
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Table 3: RD Estimates of the Effect of Head Start Assistance by LM

Variable Nonparametric

Bandwidth 9 18 36
Number of observations with nonzero weight [217, 310] [287, 674] [300, 1877]

1968 Head Start spending per child
RD estimate 137.251 114.711 134.491∗∗

(128.968) (91.267) (62.593)

1972 Head Start spending per child
RD estimate 182.119∗ 88.959 130.153∗

(148.321) (101.697) (67.613)

Age 5–9, Head Start-related causes, 1973–1983
RD estimate −1.895∗∗ −1.198∗ −1.114∗∗

(0.980) (0.796) (0.544)

Blacks age 5–9, Head Start-related causes, 1973–1983
RD estimate −2.275 −2.719∗∗ −1.589

(3.758) (2.163) (1.706)

This table is reproduced based on Tables II and III of Ludwig and Miller (2007). The numbers of
observations with nonzero weight on the right and the left of the cut-off are shown in the square
brackets. Standard errors are presented in parentheses. ***, ** and * indicate statistical significance
at 1%, 5% and 10% level, respectively.

methods because we never know true causal relationships. However, the results based

on the proposed method should provide a meaningful perspective given the simulation

experiments demonstrated in the previous section.

5 Conclusion

In this paper, we have proposed a bandwidth selection method for the RD estimators.

We provided a discussion on the validity of the simultaneous choice of the band-

widths theoretically and illustrated that the proposed bandwidths can produce good

and stable results under situations where single-bandwidth approaches can become

misleading based on the simulations motivated by the existing empirical researches.

When we allow two bandwidths to be distinct, we showed that the minimiza-

tion problem of the AMSE exhibits dichotomous characteristics depending on the

sign of the product of the second derivatives of the underlying functions and that the

optimal bandwidths that minimize the AMSE are not well-defined when the sign of

the product is positive. We introduced the concept of the AFO bandwidths, which
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Table 4: RD Estimates of the Effect of Head Start Assistance by MMSE and IK

Variable MMSE IK

1968 Head Start spending per child
Bandwidth [26.237, 45.925] 19.012
Number of observations with nonzero weight [299, 2633] [290, 727]
RD estimate 110.590 108.128

(76.102) (80.179)

1972 Head Start spending per child
Bandwidth [22.669, 42.943] 20.924
Number of observations with nonzero weight [298, 2414] [294, 824]
RD estimate 105.832 89.102

(79.733) (84.027)

Age 5–9, Head Start-related causes, 1973–1983
Bandwidth [8.038, 14.113] 7.074
Number of observations with nonzero weight [203, 508] [182, 243]
RD estimate −2.094∗∗∗ −2.359∗∗∗

(0.606) (0.822)

Blacks age 5–9, Head Start-related causes, 1973–1983
Bandwidth [22.290, 25.924] 9.832
Number of observations with nonzero weight [266, 968] [209, 312]
RD estimate −2.676∗∗∗ −1.394

(1.164) (2.191)

The bandwidths on the right and the left of the cut-off points are presented in the square brackets.
The numbers of observations with nonzero weight on the right and the left of the cut-off are shown in
the square brackets. Standard errors are presented in parentheses. ***, ** and * indicate statistical
significance based on the bias-corrected t-value at 1%, 5% and 10% level, respectively. See Fan and
Gijbels (1996, Section 4.3) for estimation of the bias and variance.
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are well-defined regardless of the sign. We proposed a feasible version of the AFO

bandwidths. The feasible bandwidths are asymptotically as good as the AFO band-

widths. A simulation study based on designs motivated by existing empirical litera-

tures exhibits non-negligible gain of the proposed method under the situations where

a single-bandwidth approach can become quite misleading. We also illustrated the

usefulness of the proposed method via an empirical example.

Appendix A Implementation

In this section, we provide a detailed procedure to implement the proposed method

in this paper.14 To obtain the proposed bandwidths, we need pilot estimates of the

density, its first derivative, the second and third derivatives of the conditional expec-

tation functions, and the conditional variances at the cut-off point. We obtain these

pilot estimates in a number of steps.

Step 1: Obtain pilot estimates for the density f(c) and its first

derivative f (1)(c)

We calculate the density of the assignment variable at the cut-off point f(c), which

is estimated using the kernel density estimator with an Epanechnikov kernel.15 A

pilot bandwidth for kernel density estimation is chosen by using the normal scale rule

with Epanechnikov kernel, given by 2.34σ̂n−1/5, where σ̂ is the square root of the

sample variance of Xi (see Silverman, 1986 and Wand and Jones, 1994 for the nor-

mal scale rules). The first derivative of the density is estimated by using the method

proposed by Jones (1994). The kernel first derivative density estimator is given by∑n
i=1 L((c−Xi)/h)/(nh

2), where L is the kernel function proposed by Jones (1994),

L(u) = −15u(1 − u2)1{|u|<1}/4. Again, a pilot bandwidth is obtained by using the

normal scale rule, given by σ̂ · (112
√
π/n)1/7.

14Matlab and Stata codes to implement the proposed method are available at
http://www3.grips.ac.jp/~yarai/.

15IK estimated the density in a simpler manner (see Section 4.2 of IK). We used the kernel density
estimator to be consistent with the estimation method used for the first derivative. Our unreported
simulation experiments produced similar results for both methods.
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Step 2: Obtain pilot bandwidths for estimating the second and

third derivatives m
(2)
j (c) and m

(3)
j (c) for j = 0, 1

We next estimate the second and third derivatives of the conditional mean functions by

using the third-order LPR. We obtain pilot bandwidths for the LPR based on the esti-

mated fourth derivatives of m
(4)
1 (c) = limx→c+ m

(4)
1 (x) and m

(4)
0 (c) = limx→c− m

(4)
0 (x).

Following IK, we use estimates that are not necessarily consistent by fitting global

polynomial regressions. In doing so, we construct a matrix whose ith row is given by

[1 (Xi − c) (Xi − c)2 (Xi − c)3 (Xi − c)4]. This matrix tends to have a high condition

number, suggesting potential multicollinearity. That typically makes the polynomial

regression estimates very unstable. Hence, we use the ridge regression proposed by

Hoerl, Kennard, and Baldwin (1975). This is implemented in two steps. First, using

observations for which Xi ≥ c, we regress Yi on 1, (Xi − c), (Xi − c)2, (Xi − c)3 and

(Xi − c)4 to obtain the standard OLS coefficients γ̂1 and the variance estimate ŝ21.

This yields the ridge coefficient proposed by Hoerl, Kennard, and Baldwin (1975):

r1 = (5ŝ21)/(γ̂
′
1γ̂1). Using the data with Xi < c, we repeat the procedure to obtain

the ridge coefficient, r0. Let Y be a vector of Yi, and let X be the matrix whose

ith row is given by [1 (Xi − c) (Xi − c)2 (Xi − c)3 (Xi − c)4] for observations with

Xi ≥ c, and let Ik be the k × k identity matrix. The ridge estimator is given by

β̂r1 = (X ′X + r1I5)
−1X ′Y , and β̂r0 is obtained in the same manner. The estimated

fourth derivatives are m̂
(4)
1 (c) = 24 · β̂r1(5) and m̂

(4)
0 (c) = 24 · β̂r0(5), where β̂r1(5) and

β̂r0(5) are the fifth elements of β̂r1 and β̂r0, respectively. The estimated conditional

variance is σ2
r1 =

∑n1

i=1(Yi− Ŷi)
2/(n1−5), where Ŷi denotes the fitted values, n1 is the

number of observations for which Xi ≥ c, and the summation is over i with Xi ≥ c.

σ2
r0 is obtained analogously. The plug-in bandwidths for the third-order LPR used to

estimate the second and third derivatives are calculated by

hν,j = Cν,3(K)

(
σ2
rj

f̂(c) · m̂(4)
j (c)2 · nj

)1/9

,
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where j = 0, 1 (see Fan and Gijbels, 1996, Section 3.2.3 for information on plug-in

bandwidths and the definition of Cν,3). We use ν = 2 and ν = 3 for estimating the

second and third derivatives, respectively.

Step 3: Estimation of the second and third derivatives m
(2)
j (c)

and m
(3)
j (c) as well as the conditional variances σ̂2

j (c) for j = 0, 1

We estimate the second and third derivatives at the cut-off point by using the third-

order LPR with the pilot bandwidths obtained in Step 2. Following IK, we use the

uniform kernel, which yields constant values of C2,3 = 5.2088 and C3,3 = 4.8227. To

estimate m̂
(2)
1 (c), we construct a vector Ya = (Y1, . . . , Yna)

′ and an na × 4 matrix,

Xa, whose ith row is given by [1 (Xi − c) (Xi − c)2 (Xi − c)3] for observations with

c ≤ Xi ≤ c+h2,1, where na is the number of observations with c ≤ Xi ≤ c+h2,1. The

estimated second derivative is given by m̂
(2)
1 (c) = 2 · β̂2,1(3), where β̂2,1(3) is the third

element of β̂2,1 and β̂2,1 = (Xa
′Xa)

−1XaYa. We estimate m̂
(2)
0 (c) in the same manner.

Replacing h2,1 with h3,1 leads to an estimated third derivative of m̂
(3)
1 (c) = 6 · β̂3,1(4),

where β̂3,1(4) is the fourth element of β̂3,1, β̂3,1 = (Xb
′Xb)

−1XbYb, Yb = (Y1, . . . , Ynb
)′,

Xb is an nb × 4 matrix whose ith row is given by [1 (Xi − c) (Xi − c)2 (Xi − c)3]

for observations with c ≤ Xi ≤ c + h3,1, and nb is the number of observations with

c ≤ Xi ≤ c+ h3,1. The conditional variance at the cut-off point σ2
1(c) is calculated as

σ̂2
1(c) =

∑n2

i=1(Yi− Ŷi)
2/(n−4), where Ŷi denotes the fitted values from the regression

used to estimate the second derivative.16 β̂2,0, β̂3,0 and σ̂2
0(c) can be obtained analo-

gously.

Step 4: Numerical Optimization

The final step is to plug the pilot estimates into the MMSE given by equation (8) or

(9) and to use numerical minimization over the compact region to obtain ĥ1 and ĥ0.

Unlike AMSE1n(h) and AMSE2n(h) subject to the restriction given in Definition 1,

the MMSE is not necessarily strictly convex, particularly when the sign of the product

is positive. In conducting numerical optimization, it is important to try optimization

16One can use the fitted values from the regression used to estimate the third derivatives, having
replaced na with nb. These values produce almost identical simulation results.
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with several initial values, so as to avoid finding only a local minimum. Either (ĥ1, ĥ0)

or (ĥE
1 , ĥ

E
0 ) can be computed as the minimizers depending on the choice of the MMSE.

Appendix B Proofs

Proof of Lemma 1: A contribution to the MSE from a variance component is stan-

dard. See Fan and Gijbels (1996) for the details. Here we consider the contribution

made by the bias component. We present the proof only for α̂h1(c). The proof for α̂h0

is parallel and hence is omitted. Denote γ̂1 =
(
α̂h1(c), β̂h1(c)

)′
. The conditional bias

is given by

Bias(γ̂1|X) = (X(c)′W1(c)X(c))−1X(c)W1(c)(m1 −X(c)γ1),

where m1 = (m1(X1), . . . ,m1(Xn))
′ and γ1 = (m1(c),m

(1)
1 (c))′. Note that Sn,0,1 =

X(c)′W1(c)X(c). The argument made by Fan, Gijbels, Hu, and Huang (1996) can be

generalized to yield

sn,k,1 = nhk
{
f(c)µk,0 + hf (1)(c)µk+1,0 + op (h)

}
. (11)

Then, it follows that

Sn,0,1 = nH
{
f(c)S0,1 + hf (1)(c)S1,1 + op (h)

}
H,

where H = diag(1, h). By using the fact that (A+hB)−1 = A−1−hA−1BA−1+o (h),

we obtain

S−1
n,0,1 = n−1H−1

{
1

f(c)
A0,1 −

hf (1)(c)

f(c)2
A1,1 + op (h)

}
H−1, (12)
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where

A0,1 =

 µ2,0 −µ1,0

−µ1,0 µ−1
0,0

 ,

A1,1 =
1

µ0,0µ2,0 − µ2
1,0

 −µ1,0(µ
2
2,0 − µ1,0µ3,0) µ2,0(µ

2
2,0 − µ1,0µ3,0)

µ2,0(µ
2
2,0 − µ1,0µ3,0) µ3

1,0 − 2µ0,0µ1,0µ2,0 + µ2
0,0µ3,0

 .

Next, we consider X(c)W1(c){m1 − X(c)γ1}. A Taylor expansion of m1(·)

yields

X(c)W1(c){m1 −X(c)γ1} =
m

(2)
1 (c)

2
cn,2,1 +

m
(3)
1 (c)

3!
cn,3,1 + op

(
nh3
)
. (13)

The definition of cn,k,j in (10), in conjunction with (11), yields

cn,k,1 = nhkH
{
f(c)ck,1 + hf (1)(c)ck+1,1 + op (h)

}
. (14)

Combining this with (12) and (13) and extracting the first element gives

Bias(α̂h1(c)|X) =
h2b1m

(2)
1 (c)

2
+ b2,1(c)h

3
1 + op

(
h3
1

)
.

This expression gives the required result. ■

Proof of Theorem 1: Recall that the objective function is:

M̂MSEn(h) =

{
b1
2

[
m̂

(2)
1 (c)h2

1 − m̂
(2)
0 (c)h2

0

]}2

+
[
b̂2,1(c)h

3
1 − b̂2,0(c)h

3
0

]2
+

ν

nf̂(c)

{
σ̂2
1(c)

h1

+
σ̂2
0(c)

h0

}
.

To begin with, we show that ĥ1 and ĥ0 satisfy Assumption 2. If we choose

a sequence of h1 and h0 to satisfy Assumption 2, then M̂MSEn(h) converges to

0. Assume to the contrary that either one or both of ĥ1 and ĥ0 do not satisfy As-

sumption 2. Since m
(2)
0 (c)3b2,1(c)

2 ̸= m
(2)
1 (c)3b2,0(c)

2 by assumption, m̂
(2)
0 (c)3b̂2,1(c)

2 ̸=

m̂
(2)
1 (c)3b̂2,0(c)

2 with probability approaching 1. Without loss of generality, we assume
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this as well. Then at least one of the first-order bias term, the second-order bias term

and the variance term of M̂MSEn(ĥ) does not converge to zero in probability. Then

M̂MSEn(ĥ) > M̂MSEn(h) holds for some n. This contradicts the definition of ĥ.

Hence ĥ satisfies Assumption 2.

We first consider the case in which m
(2)
1 (c)m

(2)
0 (c) < 0. In this case, with

probability approaching 1, m̂
(2)
1 (c)m̂

(2)
0 (c) < 0, so that we assume this without loss of

generality. When this holds, note that the leading terms are the first term and the

last term of M̂MSEn(ĥ) since ĥ1 and ĥ0 satisfy Assumption 2. Define the plug-in

version of AMSE1n(h) provided in Definition 1 by

ÂMSE1n(h) =

{
b1
2

[
m̂

(2)
1 (c)h2

1 − m̂
(2)
0 (c)h2

0

]}2

+
ν

nf̂(c)

{
σ̂2
1(c)

h1

+
σ̂2
0(c)

h0

}
.

A calculation yields h̃1 = θ̂1n
−1/5 ≡ C̃1n

−1/5 and h̃0 = θ̂1λ̂1n
−1/5 ≡ C̃0n

−1/5 where

θ̂1 and λ̂1 are defined in (6). With this choice, ÂMSE1n(h̃) and hence M̂MSEn(h̃)

converges at the rate of n−4/5. Note that if ĥ1 or ĥ0 converges at the rate slower

than n−1/5, then the bias term converges at the rate slower than n−4/5. If ĥ1 or ĥ0

converges at the rate faster than n−1/5, then the variance term converges at the rate

slower than n−4/5. Thus the minimizer of M̂MSEn(h), ĥ1 and ĥ0 converges to 0 at

rate n−1/5.

Thus we can write ĥ1 = Ĉ1n
−1/5 + op(n

−1/5) and ĥ0 = Ĉ0n
−1/5 + op(n

−1/5) for

some OP (1) sequences Ĉ1 and Ĉ0 that are bounded away from 0 and ∞ as n → ∞.

Using this expression,

M̂MSEn(ĥ) = n−4/5

{
b1
2

[
m̂

(2)
1 (c)Ĉ2

1 − m̂
(2)
0 (c)Ĉ2

0

]}2

+
ν

n4/5f̂(c)

{
σ̂2
1(c)

Ĉ1

+
σ̂2
0(c)

Ĉ0

}
+ op(n

−4/5).
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Note that

M̂MSEn(h̃) = n−4/5

{
b1
2

[
m̂

(2)
1 (c)C̃2

1 − m̂
(2)
0 (c)C̃2

0

]}2

+
ν

n4/5f̂(c)

{
σ̂2
1(c)

C̃1

+
σ̂2
0(c)

C̃0

}
+OP (n

−8/5).

Since ĥ is the optimizer, M̂MSEn(ĥ)/M̂MSEn(h̃) ≤ 1. Thus

{
b1
2

[
m̂

(2)
1 (c)Ĉ2

1 − m̂
(2)
0 (c)Ĉ2

0

]}2

+ ν

f̂(c)

{
σ̂2
1(c)

Ĉ1
+

σ̂2
0(c)

Ĉ0

}
+ op(1){

b1
2

[
m̂

(2)
1 (c)C̃2

1 − m̂
(2)
0 (c)C̃2

0

]}2

+ ν

f̂(c)

{
σ̂2
1(c)

C̃1
+

σ̂2
0(c)

C̃0

}
+OP (n−4/5)

≤ 1.

Note that the denominator converges to

{
b1
2

[
m

(2)
1 (c)C∗2

1 −m
(2)
0 (c)C∗2

0

]}2

+
ν

f(c)

{
σ2
1(c)

C∗
1

+
σ2
0(c)

C∗
0

}
,

where C∗
1 and C∗

0 are the unique optimizers of

{
b1
2

[
m

(2)
1 (c)C2

1 −m
(2)
0 (c)C2

0

]}2

+
ν

f(c)

{
σ2
1(c)

C1

+
σ2
0(c)

C0

}
,

with respect to C1 and C0. This implies that Ĉ1 and Ĉ0 also converge to the same

respective limit C∗
1 and C∗

0 because the inequality will be violated otherwise.

Next we consider the case with m
(2)
1 (c)m

(2)
0 (c) > 0. In this case, with prob-

ability approaching 1, m̂
(2)
1 (c)m̂

(2)
0 (c) > 0, so that we assume this without loss of

generality.

When these conditions hold, define h0 = λ̂2h1 where λ̂2 is defined in (7). This

sets the first-order bias term of M̂MSEn(h) equal to 0. Define the plug-in version of

AMSE2n(h) by

ÂMSE2n(h) =
{
b̂2,1(c)h

3
1 − b̂2,0(c)h

3
0

}2

+
v

nf̂(c)

{
σ̂2
1(c)

h1

+
σ̂2
0(c)

h0

}

Choosing h1 to minimize ÂMSE2n(h), we define h̃1 = θ̂2n
−1/7 ≡ C̃1n

−1/7 and h̃0 =
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λ̂2h̃1 ≡ C̃0n
−1/7 where θ̂2 is defined in (7). Then M̂MSEn(h̃) can be written as

M̂MSEn(h̃) = n−6/7
{
b̂2,1(c)C̃

3
1 − b̂2,0(c)C̃

3
0

}2

+ n−6/7 ν

f̂(c)

{
σ̂2
1(c)

C̃1

+
σ̂2
0(c)

C̃0

}
.

In order to match this rate of convergence, both ĥ1 and ĥ0 need to converge at

the rate slower than or equal to n−1/7 because the variance term needs to converge at

the rate n−6/7 or faster. In order for the first-order bias term to match this rate,

m̂
(2)
1 (c)ĥ2

1 − m̂
(2)
0 (c)ĥ2

0 ≡ B1n = n−3/7b1n,

where b1n = OP (1) so that under the assumption that m
(2)
0 (c) ̸= 0, with probability

approaching 1, m̂
(2)
0 (c) is bounded away from 0 so that assuming this without loss

of generality, we have ĥ2
0 = λ̂2

2ĥ
2
1 − B1n/m̂

(2)
0 (c). Substituting this expression to the

second term and the third term, we have

M̂MSEn(ĥ) =

{
b1
2
B1n

}2

+
{
b̂2,1(c)ĥ

3
1 − b̂2,0(c){λ̂2

2ĥ
2
1 −B1n/m̂

(2)
0 (c)}3/2

}2

+
ν

nf̂(c)

{
σ̂2
1(c)

ĥ1

+
σ̂2
0(c)

{λ̂2
2ĥ

2
1 −B1n/m̂

(2)
0 (c)}1/2

}
.

Suppose ĥ1 is of order slower than n−1/7. Then because m̂
(2)
0 (c)3b̂2,1(c)

2 ̸= m̂
(2)
1 (c)3b̂2,0(c)

2

and this holds even in the limit, the second-order bias term is of order slower than

n−6/7. If ĥ1 converges to 0 faster than n−1/7, then the variance term converges at the

rate slower than n−6/7. Therefore we can write ĥ1 = Ĉ1n
−1/7 + op(n

−1/7) for some

OP (1) sequence Ĉ1 that is bounded away from 0 and ∞ as n → ∞ and as before

ĥ2
0 = λ̂2

2ĥ
2
1 −B1n/m̂

(2)
0 (c). Using this expression, we can write

M̂MSEn(ĥ) = n−6/7

{
b1
2
b1n

}2

+ n−6/7
{[

b̂2,1(c)Ĉ
3
1 + op(1)− b̂2,0(c){λ̂2

2Ĉ
2
1 + op(1)− n−1/7b1n/m̂

(2)
0 (c)}3/2

]}2

+ n−6/7 ν

f̂(c)

{
σ̂2
1(c)

Ĉ1 + op(1)
+

σ̂2
0(c)

{λ̂2
2Ĉ

2
1 + op(1)− n−1/7b1n/m̂

(2)
0 (c)}1/2

}
.
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Thus b1n converges in probability to 0. Otherwise the first-order bias term remains

and that contradicts the definition of ĥ1.

Since ĥ is the optimizer, M̂MSEn(ĥ)/M̂MSEn(h̃) ≤ 1. Thus

op(1) +
{[

b̂2,1(c)Ĉ
3
1 − b̂2,0(c){λ̂2

2Ĉ
2
1 + op(1)}3/2

]}2

+ ν

f̂(c)

{
σ̂2
1(c)

Ĉ1+op(1)
+

σ̂2
0(c)

{λ̂2
2Ĉ

2
1+op(1)}1/2

}
{
b̂2,1(c)C̃3

1 − b̂2,0(c)C̃3
0

}2

+ ν

f̂(c)

{
σ̂2
1(c)

C̃1
+

σ̂2
0(c)

C̃0

} ≤ 1.

If Ĉ1 − C̃1does not converge to 0 in probability, then the ratio is not less than 1 at

some point. hence Ĉ1 − C̃1 = op(1). Therefore ĥ0/h̃0 converges in probability to 1 as

well.

The result above also shows that M̂MSEn(ĥ)/MSEn(h
∗) converges to 1 in

probability in both cases. ■
Proof of Corollary 1: Observe that equations (11) and (14) imply

e′1S̃
−1
n,0,j c̃n,2,j → b1, e′1S̃

−1
n,0,jcn,3,j → (−1)j+1c1,

e′1S̃
−1
n,0,jSn,1,jS̃

−1
n,0,j c̃n,2,j → (−1)j+1c2 and e′1S

−1
n,0,jTn,0,jS

−1
n,0,je1 → v

in probability uniformly. With these properties, each step of the proof of Theorem 1

is valid even if M̂MSEn(h) is replaced by ̂MMSEE
n(h), thus completing the proof

of Corollary 1. ■
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