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Abstract

For analyzing positive or bounded data, this paper suggests parametrically trans-
formed nested error regression models (TNERM), which not only include the log-transformed
model, but also adjust flexibly the transformation parameter to fit the data to a normal
linear regression. Conditions on the transformation are derived for consistency of the
maximum likelihood estimator for the transformation parameter. The conditions are sat-
isfied by the dual power transformation for positive data and the dual power logistic
transformation for bounded data. In order to calibrate uncertainty of the transformed
empirical best linear unbiased predictor (TEBLUP), the paper derives prediction inter-
vals with second-order accuracy based on the parametric bootstrap method. Conditional
prediction intervals given data in the area of interest are also constructed. The proposed
methods are investigated through simulation and empirical studies.

Key words and phrases: Box-Cox transformation, dual power transformation, linear
mixed model, nested error regression model, parametric bootstrap, prediction intervals,
small area estimation.

1 Introduction

The linear mixed models with both random and fixed effects have been extensively and actively
studied in recent years from both theoretical and applied aspects in the literature. Of these, the
nested error regression model (NERM) has been used as a unit level linear mixed model in the
framework of small-area estimation. Since direct estimates like sample means for small areas
have unacceptable estimation errors because of small sample sizes in small areas, the model-
based shrinkage methods such as the empirical best linear unbiased predictor (EBLUP) are
very useful for providing reliable estimates for small-areas with higher precisions by borrowing
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data in the surrounding areas. For a good survey on this topic, see Ghosh and Rao (1994) and
Rao (2003).

A convincing example of NERM and EBLUP was given by Battese, Harter and Fuller
(1988), who analyzed data of crop areas in m counties for m = 12. From the i-th county, ni

segments are sampled. Each segment is about 250 hectares, and the area of corn (or soybeans)
in the j-th segment, denoted by yij, is reported as survey data by interviewing farm operators.
For the j-th segment, on the other hand, the numbers of pixels (0.45 hectares) classified as corn
and soybeans, denoted by x1ij and x2ij, are available from LANDSAT satellite data. Battese,
et al . (1988) analyzed the data successfully using the nested error regression model (NERM) in
the framework of a finite population. Without assuming the finite population model, NERM
is described as

yij = β0 + β1x1ij + β2x2ij + vi + εij, (1)

and the problem is the prediction of the mean of crop areas in the i-th county, denoted by

ξi = β0 + β1x1i + β2x2i + vi,

for x1i =
∑ni

j=1 x1ij/ni and x2i =
∑ni

j=1 x2ij/ni, where vi’s and εij’s are mutually independently

distributed as vi ∼ N (0, σ2
v) and εij ∼ N (0, σ2

e). For analyzing such unit level data, NERM
and its variants in finite population models are useful. When applying data to NERM, the
following queries are raised:

(I) We are often faced with the case that yij’s are positive values like the crop areas data.
Fitting such positive data to the normal distributions in NERM may be inappropriate in the
case that the distribution of yij’s is skewed. As investigated in Slud and Maiti (2006), an
alternate method is to apply the log-transformed data to NERM. However, it depends on
a feature of data whether we treat the original observations yij or the log-transformed ones
log(yij). Which method should we use for given data?

(II) As explained above, the crop areas data yij’s are bounded above from 250 hectares. For
such bounded data, how should we transform the data to fit to NERM?

A conventional method for the query (I) is the Box-Cox transformation suggested by Box
and Cox (1964), described by

hBC(yij, λ) =

{
(yλij − 1)/λ, λ ̸= 0,

log yij, λ = 0.

However, it is known that the the maximum likelihood (ML) estimator of the transformation
parameter λ in the Box-Cox transformation is not consistent, which means that EBLUP is
not consistent with BLUP asymptotically. An alternative is the dual power transformation
suggested by Yang (2006), which is given by

hDP (yij, λ) =

{
(yλij − y−λ

ij )/2λ, λ > 0,

log yij, λ = 0.
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This is a transformation from positive numbers to real numbers, and the ML estimator of λ
is consistent. For the query (II), we suggest the dual power logistic transformation (DPLT).
When yij is restricted on the interval (0, 1), the DPLT is given by

hDPL(yij, λ) =


{(

yij
1−yij

)λ

−
(

1−yij
yij

)λ}
/2λ, λ > 0,

log
(

yij
1−yij

)
, λ = 0.

In this paper, we suggest a general class of parametric transformations h(yij, λ) and consider
the parametrically transformed NERM (TNERM) described as h(yij, λ) = β0+β1x1ij+β2x2ij+
vi + εij. This model has the transformation parameter λ which can be used for adjustment,
so that TNERM enables us to flexibly analyze the small-area positive or bounded data. We
clarify conditions on h(·, λ) under which the ML estimator λ̂ of λ is consistent. It is noted that
those conditions are satisfied by both transformations hDP (yij, λ) and hDPL(yij, λ). Base on

the consistency of λ̂, we suggests consistent estimators for the parameters β, σ2
v and σ2

e .

For the prediction of ξi, the consistent estimators are substituted into BLUP to get EBLUP,
denoted by ξ̂EB

i , which is consistent with BLUP asymptotically. However, an interesting quan-
tity is the inversely transformed value of ξi, namely,

h−1(ξi, λ)

rather than ξi. Then, the predictor induced from the EBLUP ξ̂EB
i is h−1(ξ̂EB

i , λ̂), which we
call the transformed EBLUP (TEBLUP). Since TEBLUP is expected to give reliable predicted
values for small-areas with higher precisions, it is important to assess uncertainty of TEBLUP,
and the following query is raised:

(III) How can we measure uncertainty of TEBLUP h−1(ξ̂EB
i , λ̂) as a predictor of h−1(ξi, λ)?

An approach to measuring the uncertainty is to provide an estimate of the mean squared error
(MSE) of TEBLUP. Sugasawa and Kubokawa (2013) gave second-order unbiased estimators of
MSE of ξ̂EB

i in the parametrically transformed Fay-Herriot model. However, it is not necessarily

appropriate to measure uncertainty of TEBLUP h−1(ξ̂EB
i , λ̂) with MSE as well as a second-order

unbiased estimator of MSE for TEBLUP is hard to derive.

For the query (III), in this paper, we consider to construct a prediction interval of h−1(ξi, λ)

based on h−1(ξ̂EB
i , λ̂). Since it is harder to derive an analytical prediction interval with suitable

accuracy based on the Taylor series expansion, we here provide a prediction interval with second-
order accuracy based on the parametric bootstrap along the line given in Chatterjee, Lahiri and
Li (2008). We also provide a conditional prediction interval given data in the area of interest.
This corresponds to the results of Booth and Hobert (1998) who discussed a conditional MSE
and its estimation.

The paper is organized as follows: In Section 2, we suggest the parametric transformed
nested error regression model (TNERM) for a general class of transformations. We also pro-
vide conditions on transformations which guarantee consistency of the ML estimator for the
transformation parameter. As useful transformations, we treat the dual power transformation
(DPT) proposed by Yang (2006) and the dual power logistic transformation (DPLT), which is
newly proposed based on motivation from DPT and logistic transformation. Some consistent
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estimators of parameters in TNERM are also given. In Section 3, we introduce the transformed
EBLUP (TEBLUP) and construct unconditional and conditional prediction intervals based on
TEBLUP using the parametric bootstrap method. It is shown that these prediction intervals
have second-order accuracy for nominal confidence coefficient 1 − α. In Section 4, a finite-
sample performance of unconditional and conditional prediction intervals of TEBLUP through
simulation. As an empirical study, in Section 5, we revisit the data given in Battese, et al .
(1988) who handled the original observations yij’s. Applying the DP transformation to the
data, we observe that the transformation parameter λ is estimated by zero, and this suggests
that the log-transformed model should be used for DPT. Since the crop areas data are bounded
above from 250 hectares, we can also apply the DP logistic transformation. Unconditional and
conditional prediction intervals are given for the log-transformed NERM and the DP logistic
transformed NERM. The concluding remarks are given in Section 6, and the technical proofs
are given in the Appendix.

2 Parametric Transformations of the Nested Error Re-

gression Model (NERM)

2.1 Transformed NERM

Consider the two-stage cluster sampling, namely, m clusters are randomly selected, and data
are randomly selected from each selected cluster. For i = 1, . . . ,m, a random sample taken from
the i-th cluster with size ni is denoted by yi1, . . . , yini

. The most useful model for analyzing
such data is the nested error regression model (NERM) described by

yij = x′
ijβ + vi + εij, i = 1, . . . ,m, j = 1, . . . , ni, (2)

where vi’s and εij’s are mutually independently distributed as vi ∼ N (0, σ2
v) and εij ∼ N (0, σ2

e).
Here, a vector x′ denotes the transpose of x, N (µ, σ2) denotes a normal distribution with
mean µ and variance σ2, xij is a p-dimensional known covariate associated with yij, β is a p-
dimensional unknown vector of regression coefficients, and σ2

v and σ2
e are unknown components

of variance, called ‘between’ and ‘within’ components, respectively.

The model (2) is a linear mixed model which incorporates both fixed and random effects,
and it has been used for analyzing unit level data in the framework of small-area estimation. If
yij’s are real-valued data, the model (2) is reasonable. However, it is inappropriate when values
of yij’s are limited to R+ or R(0,1), where R+ = {x ∈ R;x > 0} and R(a,b) = {x ∈ R; a < x < b}
for the real space R. In this paper, it is assumed that the data take values in D which is
a subset of R, namely, yij ∈ D. For example, D = R+ if yij is positive, and D = R(0,1) if
yij ∈ (0, 1) ⊂ R. Then, we need to consider a transformation of yij ∈ D to fit NERM. Let
h(·, λ) be a monotone increasing transformation from D to R for given λ. The parameter
λ is adjusted so that transformed data h(yij, λ)’s can fit NERM. Thus, we can suggest the
parametrically transformed nested error regression model (TNERM)

h(yij, λ) = x′
ijβ + vi + εij, i = 1, . . . ,m, j = 1, . . . , ni. (3)
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It may be convenient to write the model (3) in matricial forms. Let y = (yi1, . . . , yini
)′,

X i = (xi1, . . . ,xini
)′, ϵi = (εi1, . . . , εini

)′ and jni
= (1, . . . , 1) ∈ Rni . Also, define h(yi, λ) by

h(yi, λ) = (h(yi1, λ), . . . , h(yini
, λ))′.

Then, the model (3) is expressed as

h(yi, λ) = X iβ + jni
vi + ϵi, i = 1, . . . ,m, (4)

and h(yi, λ) has an ni-variate normal distributionNni
(X iβ, σ

2
eV i(ρ)) where V i(ρ) = Ini

+ρJni

for ρ = σ2
v/σ

2
e , the ni×ni identity matrix Ini

and Jni
= jni

j ′ni
. It is noted that the covariance of

h(yi, λ) has the intra-class correlation structure, namely h(yi1, λ), . . . , h(yini
, λ) are not mutually

independent when ρ ̸= 0. Let N =
∑m

i=1 ni. All the data yi’s are described as the N -
dimensional vector Y = (y′

i, . . . ,y
′
m)

′. Then the joint density function Y is expressed as

f(Y ) = (2π)−N/2σ−m
e

m∏
i=1

det(V i(ρ))
m∏
i=1

ni∏
j=1

hx(yij, λ)

× exp
{
−1

2
σ−2
e

m∑
i=1

(h(yi, λ)−X iβ)
′V i(ρ)

−1(h(yi, λ)−X iβ)
}
, (5)

where
∏m

i=1

∏ni

j=1 hx(yij, λ) is the Jacobian of the transformation for hx(x, λ) = ∂h(x, λ)/∂x.

This expression will be used for estimating the unknown parameters β, σ2
v , σ

2
e and λ.

For the parametric transformation h(x, λ) given in the model (3), we need to assume con-
ditions under which existence of an estimator of λ and its consistency are guaranteed. For
notational convenience, let ha1a2···an(x, λ) for a1, a2, . . . an ∈ {x, λ} be the partial derivative of
h(x, λ), i.e. ha1a2···an(x, λ) = ∂nf(x, λ)/∂a1 . . . ∂an. For example, hxx(x, λ) = ∂2h(x, λ)/∂x2,
hxλ(x, λ) = ∂2h(x, λ)/∂x∂λ and others. Moreover ha1a2···an(c, λ) or ha1a2···an(x, c) for c ∈ R
means that ha1a2···an(x, λ)|x=c or ha1a2···an(x, λ)|λ=c respectively.

Assumption 1. The function h(·, λ) is a transformation from D to R which is characterized
by the parameter λ ∈ Λ(⊂ R) and satisfies the following:

(A.1) h(x, λ) is a monotone increasing function of x (x ∈ D) and its range is R.

(A.2) h(x, λ) and h−1(x, λ) are three times continuously differentiable, where f(x, λ) = h−1(x, λ)
is the inverse function of h(x, λ) defined by x = h(f(x, λ), λ).

(A.3) The moments of the following exist for each fixed λ ∈ Λ:
(1) {hλ(x, λ)}2 and {(∂/∂λ) log(hx(x, λ))}2,
(2) {hλ(x, λ)}4, {hλλ(x, λ)}2 and {(∂2/∂λ2) log(hx(x, λ))}2,
(3) h−1(x, λ), h−1

x (x, λ), h−1
λ (x, λ), h−1

λx (x, λ), h
−1
xx (x, λ) and h

−1
λλ (x, λ),

where their expectations are taken with respect to h(x, λ) which is normally distributed.

Condition (A.1) means that the transformation is a one-to-one and onto function from D
to R. Clearly, (A.1) is not satisfied by the Box-Cox transformation (Box and Cox, 1964),
but by the logarithmic transformation. Conditions (A.2) and (A.3) will be used for estab-
lishing consistency of estimators including transformation parameter λ and for constructing
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prediction intervals. Especially, (A.2) and (A.3) (1) guarantees that the random variable

F (β̂(λ), σ̂2
v(λ), σ̂

2
e(λ), λ) given in (12) converges in probability, and (A.3)(2) guarantees that

(∂/∂λ)F (β̂(λ), σ̂2
v(λ), σ̂

2
e(λ), λ) converges in probability.

We here provide a couple of examples of the transformations which satisfy Assumption 1.
One is the dual power transformation suggested by Yang (2006) for analyzing positive data,
the other is the dual power logistic transformation which is useful for analyzing data taken in
the interval D = (0, 1). The dual power logistic transformation has not been known as long as
we know.

Example 1 (Dual Power Transformations). For x > 0, the dual power transformation (DPT)
is described as

hDP (x, λ) =

{
(xλ − x−λ)/2λ, λ > 0,

log x, λ = 0.
(6)

Although the Box-Cox transformation does not satisfy assumption (A.1), the dual power trans-
formation satisfies (A.1). As shown later, the maximum likelihood estimator of λ for hDP (x, λ)
is consistent, while the MLE of the transformation parameter in the Box-Cox transformation
is not consistent. This shows that the dual power transformation is useful for constructing pre-
diction intervals by replacing λ with the MLE. It is noted that for z = hDP (x, λ), the inverse
transformation is expressed as

x =
(
λz +

√
λ2z2 + 1

)1/λ

for λ ̸= 0, and x = ez for λ = 0. Then, it can be easily shown that DPT satisfies Assumption
1.

When data are restricted on the space {x ∈ R|x > a} for a ∈ R, DPT can be extended to
hDP (x− a, λ) for analyzing data on the space. �
Example 2 (Dual Power Logistic Transformation). To analyze the data in the interval D =
(0, 1), we newly propose the dual power logistic transformation (DPLT). This is naturally
induced from DPT by replacing x in hDP (x, λ) with the odd (1 − x)/x. Thus, for 0 < x < 1,
the DPLT is given by

hDPL(x, λ) =


{(

x
1−x

)λ

−
(

1−x
x

)λ}
/2λ, λ > 0,

log
(

x
1−x

)
, λ = 0.

(7)

Using the expression of the inverse transformation of DPT, one gets the inverse transformation
of DPLT, given by

x =

(
λz +

√
λ2z2 + 1

)1/λ

1 +
(
λz +

√
λ2z2 + 1

)1/λ

for λ ̸= 0, and x = ez/(1 + ez) for λ = 0. Then, it can be easily shown that DPLT satisfies
Assumption 1.

When data are restricted on the interval (a, b) for fixed values a and b, (a < b), DPLT can
be extended to hDPL((x−a)/(b−a), λ), since (x−a)/(b−a) lies in (0, 1). Thus, we can analyze
data on (a, b) using hDPL((x− a)/(b− a), λ). �
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2.2 Consistent estimators of the parameters

We here provide consistent estimators of the unknown parameters β, σ2
v , σ

2
e and λ. To this

end, we begin by estimating β, σ2
v and σ2

e in the case of known λ. In this case, the conventional
estimators given in the literature for NERM (2) can be inherited to the transformed model.

Concerning estimation of β, the maximum likelihood (ML) or generalized least square (GLS)
estimator of β for known σ2

v , σ
2
e and λ is

β̂(ρ, λ) =
( m∑

i=1

nix̄ix̄
′
i

1 + niρ

)−1
m∑
i=1

nix̄izi(λ)

1 + niρ
, (8)

where ρ = σ2
v/σ

2
e , x̄i =

∑ni

j=1 xij/ni is the mean of covariates xij’s for the i-th area, and

zi(λ) =
1

ni

ni∑
j=1

h(yij, λ), i = 1, . . . ,m,

is the mean of the transformed observations. Since β̂(ρ, λ) ∼ Np(β, {
∑m

j=1(njσ
2
v+σ

2
e)

−1njx̄jx̄
′}−1),

it is clear that β̂(ρ, λ) is consistent and β̂(ρ, λ)− β = Op(m
−1/2) under the following assump-

tion:

Assumption 2. The following are assumed for x̄i and ni:

(A.4) m−1
∑m

i=1 x̄ix̄
′
i converges to a positive definite matrix.

(A.5) There exist integers n and n which are positive and independent ofm such that n ≤ ni ≤ n
for i = 1, . . . ,m.

Since σ2
v and σ2

e are unknown, we estimate them and then substitute their estimators into

β̂(ρ, λ). In NERM (2) with known λ, for σ2
v and σ2

e , the Prasad-Rao estimator, the maximum
likelihood (ML) and the restricted maximum likelihood (REML) estimators have been used in
the literature, and it would be plausible that those estimators can be used still in TNERM (3)
by replacing λ with an estimator. We here clarify conditions that estimators of σ2

v and σ
2
e should

satisfy in order to derive prediction intervals given in this paper. For notational convenience,
Op(an) means that every component in Op(an) is of order Op(an), and the notation O(an) is
defined similarly.

Assumption 3. Let σ̂2(λ) = (σ̂2
e(λ), σ̂

2
v(λ))

′ be an estimator of σ2 = (σ2
e , σ

2
v)

′ in the case of
known λ. Then it is assumed that the estimator σ̂2(λ) satisfies the following:

(A.6) (σ̂2(λ)− σ2)|yi = Op(m
−1/2).

(A.7) E[σ̂2(λ)− σ2|yi] = Op(m
−1).

(A.8) ∂σ̂2(λ)/∂λ
∣∣yi = Op(1).

(A.9)
(
∂σ̂2(λ)/∂λ− E

[
∂σ̂2(λ)/∂λ

∣∣yi

])∣∣yi = Op(m
−1/2).
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Condition (A.6) implies that the estimators σ̂2
v(λ) and σ̂2

e(λ) are consistent. Conditions

(A.7) and (A.8) will be used for investigating asymptotic properties of σ̂2(λ̂).

Substituting ρ̂(λ) = σ̂2
v(λ)/σ̂

2
e(λ) into β̂(ρ, λ), one gets the estimator β̂(λ) defined by

β̂(λ) = β̂(ρ̂(λ), λ).

It is noted from (A.8) that ρ̂(λ) − ρ = Op(m
−1/2). Some asymptotic properties on β̂(λ) are

given in the following lemma which will be proved in the Appendix. Lemma 1 will be used in
Theorem 1 for showing the second-order accuracy of the parametric bootstrap procedure.

Lemma 1 (Asymptotic properties of β̂(λ)). Under Assumptions 1, 2 and 3, it holds that

(β̂(λ)− β)
∣∣yi = Op(m

−1/2), E[β̂(λ)− β|yi] = Op(m
−1) and(

∂β̂(λ)/∂λ− E[∂β̂(λ)/∂λ
∣∣yi]

)∣∣∣yi = Op(m
−1/2).

We here provide some conventional estimators of σ2
v and σ2

e and show whether those esti-
mators satisfy Assumption 3.

[1] Prasad-Rao estimator. Let X = (X ′
1, . . . ,X

′
m)

′ and E = blockdiag(E1, . . . ,Em)
for Ei = Ini

− n−1
i J i. Defined h(Y , λ) by

h(Y , λ) = (h(y1, λ)
′, . . . ,h(ym, λ)

′)′.

Then define S1 and S2 by S1 = h(Y , λ)′(IN −X(X ′X)−1X ′)h(Y , λ) and S2 = h(Y , λ)′(E −
EX(X ′EX)−1X ′E)h(Y , λ). Then, Prasad and Rao (1990) suggested unbiased estimators of
σ2
v and σ2

e given by

σ̂2
e.PR =

S2

N −m− p
and σ̂2

v.PR =
1

N∗

{
S1 − (N − p)σ̂2

e.PR

}
, (9)

where N =
∑m

i=1 ni and N∗ = N − tr {(X ′X)−1
∑m

i=1 n
2
i x̄

′
ix̄i}. The Prasad–Rao estimator

estimator of σ2 is denoted by σ̂2
PR = (σ̂2

e.PR, σ̂
2
v.PR)

′. It is noted that N = O(m), N −m− p =
O(m) and N∗ = O(m) under Assumption 2.

[2] ML. The maximum likelihood (ML) estimator σ̂2
ML = (σ̂2

e.ML, σ̂
2
v.ML)

′ of σ2 = (σ2
v , σ

2
e)

′

are given as the solutions of the equations

L1(σ̂
2
ML) = 0 and L2(σ̂

2
ML) = 0, (10)

where

L1(σ
2) =

1

σ4
e

m∑
i=1

∥h(yi, λ)−X iβ̂(ρ, λ)−
niρ

1 + niρ
(zi(λ)− x̄′

iβ̂(ρ, λ))ji∥2 −
m∑
i=1

ni

σ2
e

(
1− ρ

1 + niρ

)
,

L2(σ
2) =

m∑
i=1

n2
i

(σ2
e + niσ2

v)
2

{
zi(λ)− x̄′

iβ̂(ρ, λ)
}2 −

m∑
i=1

ni

σ2
e + niσ2

v

.
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[3] REML. The restricted maximum likelihood (REML) estimator σ̂2
RML = (σ̂2

e.RML, σ̂
2
v.RML)

′

of σ2 is given as the solutions of the equations

0 = L1(σ
2) + tr [(X ′Σ−1X)−1X ′Σ−2X],

0 = L2(σ
2) + tr [(X ′Σ−1X)−1X ′Σ−1ZΣ−1X],

(11)

where Σ = blockdiag(σ2
eV 1(ρ), . . . , σ

2
eV m(ρ)), the covariance matrix of h(Y , λ).

The following lemma guarantees that the above three estimators satisfy Assumption 3,
where the proof will be given in the Appendix.

Lemma 2. Under Assumption 1 and 2, the above three estimators σ̂2
PR, σ̂

2
ML and σ̂2

RML satisfy
Assumption 3.

Lemma 2 means that Assumption 3 is not so restrictive, because it is satisfied by the three
typical estimators.

Finally, we provide an estimator of the transformation parameter λ based on the estimators
β̂(λ), σ̂2

v(λ) and σ̂
2
e(λ). Using the likelihood (5), we suggest the estimator as a solution of the

equation
F (β̂(λ), σ̂2

v(λ), σ̂
2
e(λ), λ) = 0, (12)

where

F (β, σ2
v , σ

2
e , λ) = σ−2

e

m∑
i=1

(
h(yi, λ)−X iβ

)′
V i(ρ)

−1
( ∂

∂λ
h(yi, λ)

)
+ J(Y , λ),

for

J(Y , λ) =
m∑
i=1

ni∑
j=1

hxλ(yij, λ)

hx(yij, λ)
.

Lemma 3. Under Assumptions 1, 2 and 3, the equation (12) includes a solution which is

consistent to λ. This solution is denoted by λ̂. Then, (λ̂−λ)|yi = Op(m
−1/2) and E(λ̂−λ|yi) =

Op(m
−1) under .

It is easy to see that E(λ̂− λ) = O(m−1) from Lemma 3 since E(λ̂− λ) = E[E(λ̂− λ|yi)].
Based on the results given in the above lemmas, we can get the following asymptotic properties
of estimators of the unknown parameters in TNERM (3). The proof is given in the Appendix.

Lemma 4. Let θ = (β′, σ2
v , σ

2
e , λ)

′ and θ̂ = (β̂(λ̂)′, σ2
v(λ̂), σ

2
e(λ̂), λ̂)

′. Under Assumptions 1, 2

and 3, we have (θ̂ − θ)|yi = Op(m
−1/2) and E(θ̂ − θ|yi) = Op(m

−1) for i = 1, . . . ,m.

The latter property that E(θ̂ − θ|yi) = Op(m
−1) is technical but crucial for the proof of

theorem 1 in Section 3, which gives validity of bootstrap method for constructing prediction
intervals of TEBLUP.

9



3 TEBLUP and Prediction Intervals

We now provide the transformed empirical best linear unbiased predictor (TEBLUP) for small
area estimation and construct the prediction intervals based on TEBLUP as a measure of
uncertainty of the predictor. Since TEBLUP includes the estimators of the parameters β, σ2

v ,
σ2
e and λ, it is difficult to construct an exact prediction interval. Thus, in this section, we try

to construct a prediction interval with the second-order accuracy. To this end, the asymptotic
results given in the lemmas in the previous section are heavily used.

3.1 TEBLUP

We here consider the problem of predicting the quantity

h−1(ξi, λ) for ξi = x̄′
iβ + vi.

When θ = (β, σ2
v , σ

2
e , λ) is known, it is well known that the conditional distribution of ξi given

yi is N (ξ̂i(θ), σ
2
i ), where

ξ̂i = ξ̂i(θ) = E[ξi|yi] = x̄′
iβ +

niρ

1 + niρ
(zi(λ)− x̄′

iβ), (13)

and

σ2
i = σ2

i (σ
2) =

σ2
v

1 + niρ
. (14)

The estimator ξ̂i(θ) is the Bayes estimator of ξi in the Bayesian context. Substituting the GLS

β̂(ρ, λ) given in (8) into (13) yields the predictor

x̄′
iβ̂(ρ, λ) +

niρ

1 + niρ
(zi(λ)− x̄′

iβ̂(ρ, λ)).

It is known that this estimator is the best linear unbiased predictor (BLUP) of ξi. For σ2
v ,

σ2
e and λ, we substitute the estimators given in Section 2 into the BLUP, and the resulting

predictor is given by

ξ̂EB
i = ξ̂i(θ̂) = x̄′

iβ̂ +
niρ̂

1 + niρ̂
(zi(λ̂)− x̄′

iβ̂), (15)

where, for simplicity, we use the notations β̂, σ̂2
v , σ̂

2
e and ρ̂ as abbreviation of β̂(λ̂), σ̂2

v(λ̂), σ̂
2
e(λ̂)

ρ̂(λ̂) = σ̂2
v(λ̂)/σ̂

2
e(λ̂) without any confusion. The predictor (15) is called the empirical best linear

unbiased predictor (EBLUP). In the Bayesian context, it corresponds to the empirical Bayes
estimator of ξi.

Since our interest is in the prediction of h−1(ξi, λ), we need to make the inverse transforma-
tion of ξ̂EB

i . It should be remarked that the inverse transformation depends on the unknown
transformation parameter λ. Hence, the transformed predictor of h−1(ξi, λ) is given by

h−1(ξ̂EB
i , λ̂),

which is called the transformed empirical best linear unbiased predictor (TEBLUP). For the
purpose of measuring uncertainty of TEBLUP h−1(ξ̂EB

i , λ̂), we construct the prediction interval
via parametric bootstrap methods, which will be derived in the following subsections.

10



3.2 Unconditional prediction interval based on TEBLUP

We construct a prediction interval of h−1(ξi, λ) with a second-order accuracy for ξi = x′
iβ+ vi.

Recall that conditionally ξi|yi ∼ N (ξ̂i(θ), σ
2
i ), where ξ̂i(θ) and σ

2
i are given in (13) and (14),

respectively. This conditional distribution given yi implies that

σ−1
i

{
h(h−1(ξi, λ), λ)− ξ̂i(θ)

}
is a standard normal pivot since h(h−1(ξi, λ), λ) = ξi.

Let σ̂2
i = σ̂2

v/(1 + niρ̂). For ξ̂
EB
i given in (15), we want to obtain a distribution of

Ti = Ti(ξi, λ, θ̂,yi) = σ̂−1
i

{
h(h−1(ξi, λ), λ̂)− ξ̂EB

i

}
. (16)

This distribution is denoted by Lm. If there were constants aα and bα such that P [aα ≤
σ̂−1
i

{
h(h−1(ξi, λ), λ̂)− ξ̂EB

i

}
≤ bα] = 1− α, one would get a 100(1− α)% prediction interval

h−1(ξi, λ) ∈
[
h−1(ξ̂EB

i + aασ̂i, λ̂), h
−1(ξ̂EB

i + bασ̂i, λ̂)
]
.

However, h(h−1(ξi, λ), λ̂) is directly affected by the randomness of λ̂, and the distribution Lm of
(16) depends on unknown parameters. Thus, aα and bα are not free from unknown parameters.

A feasible approach is an asymptotic approximation of Lm. Since the estimator θ̂ is consistent
from Lemma 4, it can be seen that Lm converges to the standard normal distribution asm tends
to infinity. By approximating aα and bα with quantiles of the standard normal distribution,
we can construct a prediction interval of h−1(ξi, λ). However, the accuracy of this prediction
interval is of order O(m−1), so that such an approximation does not guarantee enough accuracy.

To obtain a prediction interval with accuracy up to O(m−3/2), we consider to estimate the
distribution Ln based on the parametric bootstrap method. Let y∗ij’s be a bootstrap sample
which is generated as

y∗ij = h−1(x′
ijβ̂ + v∗i + ε∗ij, λ̂), i = 1, . . . ,m, j = 1, . . . , ni,

where v∗i ’s and ε
∗
ij’s are mutually independently distributed as v∗i ∼ N (0, σ̂2

v) and ε
∗
ij ∼ N (0, σ̂2

e).

The estimator θ̂
∗
= ((β̂

∗
)′, σ̂2∗

v , σ̂
2∗
e , λ̂

∗)′ is calculated from y∗ij’s with the same methods as used

to obtain θ̂. Let ξ̂EB∗
i = x̄′

iβ̂
∗
+ (niρ̂

∗/(1 + niρ̂
∗))(z∗i (λ̂

∗)− x̄′
iβ̂

∗
) and σ̂2∗

i = σ̂2∗
v /(1 + niρ̂

∗) for

ρ̂∗ = σ̂2∗
v /σ̂

2∗
e and z∗i (λ̂

∗) = ni
−1

∑ni

j=1 h(y
∗
ij, λ̂

∗). For ξ∗i = x̄′
iβ̂+ v∗i , consider the distribution of

T ∗
i = (σ̂∗

i )
−1
{
h(h−1(ξ∗i , λ̂), λ̂

∗)− ξ̂EB∗
i

}
, (17)

which is denoted by L∗
m. As shown in Theorem 1 given below, the distribution Lm in (16) can

be approximated by the bootstrap distribution L∗
m with accuracy of order Op(m

−3/2). Using
this approximation, we then proceed to obtain a prediction interval.

Theorem 1. Under Assumptions 1, 2 and 3, we have

sup
q∈R

|Lm(q)− L∗
m(q)| = Op(m

−3/2). (18)

11



The proof of Theorem 1 is given in the Appendix. A direct application of Theorem 1 is the
following result on highly accurate prediction intervals.

Corollary 1. For any α ∈ (0, 1), let q1 = q1(Y ) and q2 = q2(Y ) be appropriate quantiles based
on the bootstrap sample such that

L∗
m(q2)− L∗

m(q1) = 1− α,

where L∗
m(·) is the distribution function of T ∗

i . Then, one gets the prediction interval of
h−1(ξi, λ) given by

Im =
[
h−1(ξ̂EB

i + q1σ̂i, λ̂), h
−1(ξ̂EB

i + q2σ̂i, λ̂)
]
. (19)

Under Assumptions 1, 2 and 3, it holds that

P
(
h−1(ξi, λ) ∈ Im

)
= 1− α+O(m−3/2). (20)

Corollary 1 gives us a highly accurate prediction interval of h−1(ξi, λ) based on TEBLUP.
The prediction interval Im implies that one can figure out precision of TEBLUP with the length
of the interval Im. It is also noted that the coverage accuracy of the prediction interval given
in Corollary 1 can be further improved up to O(m−5/2) with one round of calibration.

3.3 Conditional prediction interval

We next construct a conditional prediction interval given data in the area of interest. When data
yi are observed from the i-th area, Booth and Hobert (1998), Datta, Kubokawa, Molina and
Rao (2011) treated the conditional MSE of the EBLUP ξ̂EB

i given yi, namely, E[(ξ̂EB
i −ξi)2|yi].

This conditional MSE measures how much the EBLUP has an estimation error given this data
yi, and this conditional approach may be appealing because it conditions on the data in the
area of interest. In this subsection, we construct a conditional prediction interval Icm given yi

such that
P
(
h−1(ξi, λ) ∈ Icm|yi

)
= 1− α+Op(m

−3/2). (21)

To this end, we need to approximate the conditional distribution of Ti = Ti(ξi, λ, θ̂,yi) =

σ̂−1
i

{
h(h−1(ξi, λ), λ̂) − ξ̂EB

i

}
given yi. Denote this conditional distribution by Lc

m = Lc
m(·|yi).

The difference between the unconditional and conditional prediction intervals is that the uncon-
ditional distribution of Ti is considered in (16), while the conditional distribution of Ti given
yi is treated. It is noted that there is a correlation between ξi and yi in (21), namely, the
conditional distribution of ξi given yi is N (ξ̂i(θ), σ

2
i ) for ξ̂i(θ) and σ

2
i given in (13) and (14).

Since it is difficult to derive an exact conditional distribution of Ti given yi, we suggest to
approximate it via the parametric bootstrap method. A bootstrap sample is generated as

y∗kj = h−1(x′
kjβ̂ + v∗k + ε∗kj, λ̂), k ̸= i, k = 1, . . . ,m, j = 1, . . . , nk,

where v∗k’s and ε∗kj’s are mutually independently distributed as v∗k ∼ N (0, σ̂2
v) and ε∗kj ∼

N (0, σ̂2
e). Let y∗

k = (y∗k1, . . . , y
∗
knk

)′ for k ̸= i. Noting that yi is fixed, we can construct

the estimator θ̂
∗
(i) = ((β̂

∗
(i))

′, σ̂2∗
v(i), σ̂

2∗
e(i), λ̂

∗
(i))

′ from

y∗
1, . . . ,y

∗
i−1,yi,y

∗
i+1, . . . ,y

∗
m,

12



with the same technique as used to obtain θ̂. Let ξ̂EBc∗
(i) = x̄′

iβ̂
∗
(i)+(niρ̂

∗
(i)/(1+niρ̂

∗
(i)))(zi(λ̂

∗
(i))−

x̄′
iβ̂

∗
(i)) and σ̂

2c∗
(i) = σ̂2∗

v(i)/(1+niρ̂
∗
(i)) for ρ̂

∗
(i) = σ̂2∗

v(i)/σ̂
2∗
e(i) and zi(λ̂

∗
(i)) = ni

−1
∑ni

j=1 h(yij, λ̂
∗
(i)). Let

ξc∗i be a random variable having N (ξ̂EB
i , σ̂2

i ) for ξ̂
EB
i = ξ̂i(θ̂). Then, for fixed yi, we consider

the distribution of
T c∗
(i) = (σ̂c∗

(i))
−1
{
h(h−1(ξc∗i , λ̂), λ̂

∗
(i))− ξ̂EBc∗

(i)

}
, (22)

which is denoted by Lc∗
m = Lc∗

m(·|yi). Similarly to the unconditional case, we can obtain a
conditional prediction interval via the parametric bootstrap approximation.

Theorem 2. Under Assumptions 1, 2 and 3, we have

sup
q∈R

|Lc
m(q|yi)− Lc∗

m(q|yi)| = Op(m
−3/2). (23)

The proof of Theorem 2 is given in the Appendix. From Theorem 2, we obtain a conditional
prediction interval with second-order accuracy.

Corollary 2. For any α ∈ (0, 1), let qc1 = qc1(Y ) and qc2 = qc2(Y ) be appropriate quantiles based
on the bootstrap sample such that

Lc∗
m(q

c
2|yi)− Lc∗

m(q
c
1|yi) = 1− α,

where Lc∗
m(·|yi) is the distribution function of T c∗

(i). Then, one gets the prediction interval of

h−1(ξi, λ) given by

Icm =
[
h−1(ξ̂EB

i + qc1σ̂i, λ̂), h
−1(ξ̂EB

i + qc2σ̂i, λ̂)
]
. (24)

Under Assumptions 1, 2 and 3, it holds that

P
(
h−1(ξi, λ) ∈ Icm|yi

)
= 1− α+Op(m

−3/2). (25)

4 Simulation Studies

In this section, we investigate finite performances of the unconditional and conditional pre-
diction intervals suggested in the previous section for the DP and DPL transformations. The
performances are examined by Monte Carlo simulation in the case of x′

ijβ = µ without covari-
ates as treated in Chatterjee, et al . (2008).

In the simulation experiments, 1,000 observations for yij are generated as yij = h−1(vi +
εij, λ), i = 1, . . . ,m, j = 1, . . . , ni, for m = 10, ni = 5 and λ = 0, 0.5 and 1.0, where vi’s and
εij’s are mutually independently generated from N (0, 1) with µ = 0, σ2

v = 1 and σ2
e = 1. The

frequency of the prediction interval which includes h−1(ξi, λ) is counted for i = 1, . . . ,m, and
the coverage probability is estimated by dividing the total number of the frequency by 1,000,
where the size of the bootstrap sample is 200. The expected length of the prediction interval
can be also estimated as an average length by a similar method.

Under the above simulation, we investigate the performances of the unconditional prediction
interval and compare it with the naive prediction interval given by[

h−1(ξ̂EB
i − zα/2σ̂i, λ̂), h

−1(ξ̂EB
i + zα/2σ̂i, λ̂)

]
, (26)
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where zα/2 is the upper α/2 quantile point of the standard normal distribution. This is an em-
pirical Bayes confidence interval which is derived by substituting the estimators into the Bayes
confidence interval. The maximum likelihood estimators are used for the variance components
σ2
v and σ2

e . Table 1 reports the coverage probability (CP) and the expected length (EL) of the
two unconditional prediction intervals (19) and (26) based on the bootstrap method (BT) and
the naive method (NV). From Table 1, it is observed that the naive prediction interval is not
appropriate since it does not satisfy the nominal confidence coefficient 1 − α = 0.95, while it
gives a shorter length than BT. The prediction interval (19) based on BT has the coverage
probability close to the nominal level 0.95. This shows that the correction by the bootstrap
method works well.

Table 1: Values of Coverage Probability and Expected Length of the Unconditional Prediction
Interval with Confidence Coefficient 1− α = 0.95

λ 0 0.5 1

NV BT NV BT NV BT

DPT CP 91.7 96.1 90.6 94.2 90.6 96.3
EL 2.64 3.91 2.00 2.40 1.50 5.50

DPLT CP 91.0 95.4 91.2 95.6 90.7 95.4
EL 0.32 0.41 0.30 0.45 0.27 0.37

We next investigate a performance of the conditional prediction interval given in (24). The
same simulation setup as used above is treated for λ = 0.5 except for fixing initial values of yi’s.
We first generate initial observations of yi’s from the model described above for i = 1, . . . , 10
and fix them. Then, the conditional prediction intervals given yi are constructed based on
the quantiles of the parametric bootstrap samples. The coverage probability (CP) and the
expected length (EL) of the conditional prediction interval are reported in Table 2 for TNERM
with DPT and DPLT, where the values of yi are the averages yi of the given values yi for 10
areas. From Table 2, it is revealed that the coverage probabilities of the conditional prediction
intervals are close to the nominal level 0.95 for DPT and DPLT. It is interesting to point out
that the expected length of the conditional prediction interval for DPT is larger as the value
of yi is larger, while the expected length in the case of DPLT is not affected by the value of
yi. This property of the conditional prediction interval for DPLT is quite different from the
unconditional prediction interval.

5 Application to the crop areas data

We now apply the unconditional and conditional prediction intervals to real data. The data we
handle is the crop areas data given by Battese, et al . (1988), which have been used repeatedly
in the literature. Note that the crop (corn) areas data yij’s are positive and bounded above
from 250 hectares. Thus, we can apply the two kinds of transformed nested error regression

14



Table 2: Values of Coverage Probability and Expected Length of the Conditional Prediction
Interval with Confidence Coefficient 1− α = 0.95

area 1 2 3 4 5 6 7 8 9 10

yi 0.44 0.45 1.74 1.91 2.11 2.25 2.47 3.46 3.84 6.58

DPT CP 95.1 94.9 97.0 95.4 95.5 96.3 97.8 96.2 95.2 93.4
EL 0.90 0.84 3.33 3.48 3.79 3.95 4.30 5.33 5.23 6.12

yi 0.26 0.38 0.44 0.47 0.49 0.50 0.52 0.60 0.66 0.68

DPLT CP 95.2 95.7 94.9 96.3 95.5 97.4 95.1 97.7 96.6 96.2
EL 0.33 0.41 0.42 0.47 0.41 0.59 0.43 0.49 0.39 0.37

models (TNERM) with the dual power transformation (DPT) and the dual power logistic
transformation (DPLT).

We begin by applying TNERM with DPT, described as

yλij − y−λ
ij

2λ
= β0 + β1x

†
1ij + β2x

†
2ij + vi + εij, i = 1, . . . , 12 (27)

for x†1ij = log(x1ij) and x
†
21ij = log(x2ij), where x1ij, x2ij, vi and εij are defined around (1). The

quantity of interest is the crop areas in the i-th county given by

ηi =
(
λξi +

√
λ2ξ2i + 1

)1/λ

, i = 1, . . . , 12

where ξi = β0 + β1
∑ni

j=1 x
†
1ij/ni + β2

∑ni

j=1 x
†
2ij/ni + vi. Then the estimates of the parameters

β = (β0, β1, β2)
′, σ2

v , σ
2
e and λ via the maximum likelihood method are β̂ = (0.26, 0.84,−0.05),

σ̂v = 0.05, σ̂e = 0.14 and λ̂ = 0.00. These estimates demonstrate a couple of important features
of data.

First, the estimate β̂2 = −0.05 suggests that the variable x2j does not affect the survey data
yij of corn. This observation seems natural because x2j denotes the numbers of pixels classified
as soybeans from the satellite data.

Secondly, the estimate of λ gives λ̂ = 0.0, which recommends the logarithm transformation
in model (27). Thus, in analysis of the crop areas data in model (27), we suggest the log-
transformed NERM given by

log(yij) = β0 + β1x1ij + β2x2ij + vi + εij. (28)

Since the model (28) does not contain any transformation parameters, we can obtain the pre-
diction intervals more easily based on the parametric bootstrap method given in Chatterjee,
et al . (2008). Then, based on 1,000 bootstrap samples, we can construct unconditional and
conditional prediction intervals, which are illustrated in Figure 1. From Figure 1, it is revealed
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Figure 1: Conditional (right) and Unconditional (left) Prediction Intervals in Model (28) (The
solid line denotes TEBLUP and the two dotted lines denote the upper and lower bounds of
prediction intervals of each county.)

that the lengths of both prediction intervals are shorter as the sample size is larger. It is also
seen that the length of the conditional prediction intervals is larger than that of unconditional
ones.

We next try to apply TNERM with the dual power logistic transformation. As explained
in Section 1, the crop areas data yij’s are bounded above from 250 hectares, which means that
100× yij/250 indicates percentage of crop areas in 250 hectares. Then, the scaled observation
zij = yij/250 lies in the interval (0, 1), and we can apply TNERM with DPLT, described as

(2λ)−1
{( zij

1− zij

)λ

−
(

zij
1− zij

)−λ}
= β0+β1 log

(
x∗1ij

1− x∗1ij

)
+β2 log

(
x∗2ij

1− x∗2ij

)
+vi+εij, (29)

where x∗1ij = 0.45x1ij/250 and x∗2ij = 0.45x2ij/250. Note that 0.45x1ij and 0.45x2ij are bounded
above from 250. The estimates of parameters by the maximum likelihood method are given
by β̂ = (−0.23, 0.85,−0.05)′, σ̂v = 0.11, σ̂e = 0.28 and λ̂ = 0.37. Since the estimate of λ is
away from 0, this shows that the standard logistic transformation is not appropriate in the
framework of model (29). It is noted that the estimate β̂2 is close to zero, which implies that
the survey data of corn areas are not affected by x2ij, the number of pixels of soybeans. This
observation coincides with the analysis based on model (27). Based on 1,000 bootstrap samples,
we get the unconditional and conditional prediction intervals, which are illustrated in Figure
2. Similarly to Figure 1, Figure 2 shows that the length of both prediction intervals is shorter
as the sample size is larger, and that the conditional prediction intervals are longer than that
of the unconditional ones. Comparing Figures 1 and 2, we can see that the lengths of the
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prediction intervals in model (29) are longer than larger than those in model (28). This may
be caused from the prediction intervals based on model (29) involve error in estimation of λ.
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Figure 2: Conditional (right) and Unconditional (left) Prediction Intervals in Model (29) (The
solid line denotes TEBLUP and the two dotted lines denote the upper and lower bounds of
prediction intervals of each county.)

Finally, we investigate how different the predicted values of h−1(ξi, λ) are among TEBLUP
in (28), TEBLUP in (29) and EBLUP in the non-transformed model given in Battese, et al .
(1988) defined as

yij = β0 + β1x1ij + β2x2ij + vi + εij. (30)

Those predicted values are reported in Table 3 for twelve counties. Although the sample means
for small sample sizes seem unreliable, those sample means are much shrunken by EBLUP and
the two TEBLUPs. EBLUP and the two TEBLUPs give slightly different predicted values, but
perform similarly.

6 Concluding Remarks

In this paper, we have suggested the parametric transformed nested error regression model
(TNERM) as a new unit-level model for analysis of positive or bounded data. We have provided
the procedures for estimating unknown parameters including the transformation parameter as
well as regression coefficients and the variance components. Conditions on the parametric
transformation has been derived for consistency of the estimation procedures. The conditions
are satisfied by the dual power transformation for positive data and the dual power logistic
transformation, which we newly proposed in this paper, for bounded data. The transformed
EBLUP (TEBLUP) has been made based on the consistent estimators, and unconditional
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Table 3: Predicted Hectares of Corn via EBLUP in NERM and TEBLUP for DPT and DPLT

sample sample EBLUP TEBLUP TEBLUP
County size mean in (30) in (28) in (29)

Cerro Gordo 1 165.8 155.0 154.3 157.2
Hamilton 1 96.3 89.2 89.2 88.2
Worth 1 76.1 99.1 99.3 98.5

Humboldt 2 150.9 157.7 153.1 161.6
Franklin 3 158.6 144.4 140.2 144.9

Pocahontas 3 102.5 95.3 90.8 93.0
Winnebago 3 112.8 117.3 114.5 116.8
Wright 3 144.3 142.3 136.5 147.8
Webster 4 117.6 111.1 109.1 110.3
Hancock 5 109.4 112.4 111.1 112.1
Kossuth 5 110.3 119.3 117.5 119.6
Hardin 5 114.8 115.5 111.6 115.1

and conditional prediction intervals with second-order accuracy have been constructed based
on the parametric bootstrap method. It has been confirmed by simulation that the coverage
probability of the suggested prediction intervals is close to the nominal level 0.95. It has been
pointed out that the conditional prediction interval given yi gets wider as the average value yi
is larger.

The crop areas data treated in Battese, et al . (1988) are positive and bounded above from
250 hectares. We have analyzed the data in the two ways, TNERM with the DPT and DPLT,
and we have provided reasonable conditional and unconditional prediction intervals.

Our proposed methodology based on the parametric transformation is regarded as a new
framework to cope with small-area data, and we hope further development will be studied from
theoretical and practical aspects in statistical inferences.

Appendix

All the lemmas and theorems given in this paper will be proved here. In their proofs, the fol-
lowing fact will be heavily used: Assume that for i = 1, . . . ,m, a function ψ(yi) is independent
of yj for j ̸= i, and that ψ(yi) = Op(1) and E[ψ(yi)] = O(1). Then, it follows from the Law of
Large Numbers (LLN) that

1

m

m∑
j=1

ψ(yj)
∣∣∣yi = Op(1), i = 1, . . . ,m. (31)
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Moreover, if E[ψ2(yi)] = O(1), then from the Central Limit Theorem (CLT), one gets

1√
m

( m∑
j=1

ψ(yj)− E
[ m∑
j=1

ψ(yj)
∣∣yi

])∣∣∣yi = Op(1), i = 1, . . . ,m, (32)

where (·)|yi denotes a random variable given yi.
In the proofs, for notational simplicity, we treat the case of i = m without loss of generality.

A.1 Proof of Lemma 1. Recall that β̂(λ) = β̂(ρ̂(λ), λ). It is noted that

β̂(λ)− β = β̂(ρ, λ)− β +
(∂β̂(ρ, λ)

ρ

)′
(ρ̂(λ)− ρ) +Op((ρ̂(λ)− ρ)2). (33)

Here ∂β̂(ρ, λ)/∂ρ is expressed as

∂β̂(ρ, λ)

∂ρ
=

( m∑
i=1

nix̄ix̄
′
i

1 + niρ

)−1( m∑
i=1

n2
i x̄ix̄

′
i

(1 + niρ)2

)(
β̂(ρ, λ)− β̂

†
(ρ, λ)

)
,

where β̂
†
(ρ, λ) =

(∑m
i=1 n

2
i x̄ix̄

′
i/(1 + niρ)

2
)−1∑m

i=1 n
2
i x̄izi(λ)/(1 + niρ)

2. Note that (β̂
†
(ρ, λ)−

β̂(λ))|ym = Op(m
−1/2) since (β̂

†
(ρ, λ) − β)|ym = Op(m

−1/2) from (32) and Assumption 2.

Thus, (∂β̂(ρ, λ)/∂ρ)|ym = Op(m
−1/2). Also, ρ̂− ρ can be expanded as

ρ̂(λ)− ρ =
1

σ2
e

(σ̂2
e(λ)− σ2

e)−
σ2
v

σ4
e

(σ̂2
v(λ)− σ2

v) +Op(m
−1), (34)

which implies that (ρ̂(λ)−ρ)|ym = Op(m
−1/2) and E[ρ̂(λ)−ρ|ym] = Op(m

−1) from Assumptions
(A.6) and (A.7). Combining these observations and applying (32) to the first term in the r.h.s.

of (33), one gets (β̂(λ)− β)|ym = Op(m
−1/2) under Assumptions 2 and 3.

To show E[β̂(λ)− β|ym] = Op(m
−1/2), from (33), it is sufficient to show that E[β̂(ρ, λ)−

β|ym] = Op(m
−1). Note that β̂(ρ, λ)− β is rewritten as

β̂(ρ, λ)− β =
( m∑

i=1

nix̄ix̄
′
i

1 + niρ

)−1
m∑
i=1

nix̄i

(
zi(λ)− x̄′

iβ
)

1 + niρ

=
( m∑

i=1

nix̄ix̄
′
i

1 + niρ

)−1(m−1∑
i=1

nix̄i

(
zi(λ)− x̄′

iβ
)

1 + niρ
+
nmx̄m

(
zm(λ)− x̄′

mβ
)

1 + nmρ

)
.

Noting that z1(λ), . . . , zm−1(λ) are independent of ym, zi(λ) = Op(1) and
∑m

i=1 nix̄ix̄
′
i/(1 + niρ) =

O(m) under Assumption 2, one gets

E[β̂(ρ, λ)− β|ym] =
( m∑

i=1

nix̄ix̄
′
i

1 + niρ

)−1nmx̄m

(
zm(λ)− x̄′

mβ
)

1 + nmρ
= Op(m

−1).
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To show the third part, by straightforward calculation, one gets

∂β̂(λ)

∂λ
=

( m∑
i=1

nix̄ix̄
′
i

1 + niρ̂(λ)

)−1
m∑
i=1

nix̄ix̄
′
i

(1 + niρ̂(λ))2
{
β̂(λ)− β̂

†
(λ)

}(∂ρ̂(λ)
∂λ

)
+
( m∑

i=1

nix̄ix̄
′
i

1 + niρ̂(λ)

)−1
m∑
i=1

nix̄izi,λ(λ)

1 + niρ̂(λ)
,

where β̂
†
(λ) =

(∑m
i=1 n

2
i x̄ix̄

′
i/(1 + niρ̂(λ))

2
)−1 ∑m

i=1 n
2
i x̄izi(λ)/(1 + niρ̂(λ))

2,

∂ρ̂(λ)

∂λ
=

1

σ̂2
e(λ)

( ∂

∂λ
σ̂2
v(λ)− ρ̂(λ)

∂

∂λ
σ̂2
e(λ)

)
and zi,λ =

∂

∂λ
zi(λ), i = 1, . . . ,m.

Since β̂
†
(λ) − β = Op(m

−1/2), we have β̂(λ) − β̂
†
(λ) = Op(m

−1/2). Also note that that
∂ρ̂(λ)/∂λ

∣∣ym = Op(1) from Assumption (A.8). Then, we have

E
[∂β̂(λ)

∂λ

∣∣∣ym

]
=

( m∑
i=1

nix̄ix̄
′
i

1 + niρ

)−1(m−1∑
i=1

nix̄iE[zi(λ)]

1 + niρ
+
nmx̄mzm(λ)

1 + nmρ

)
+Op(m

−1/2).

Hence, one gets

√
m
(∂β̂(λ)

∂λ
− E

[∂β̂(λ)
∂λ

∣∣∣ym

])∣∣∣ym

=
( 1

m

m∑
i=1

nix̄ix̄
′
i

1 + niρ

)−1
√
m− 1√
m

1√
m− 1

m−1∑
i=1

nix̄i

1 + niρ

{
zi(λ)− E[zi(λ)]

}
+Op(1),

which is of order Op(1), since from CLT and Assumption 2,

1√
m− 1

m−1∑
i=1

nix̄i

1 + niρ

{
zi(λ)− E[zi(λ)]

}
= Op(1).

Therefore, Lemma 1 is proved.

A.2 Proof of Lemma 2. We can easily verify that Assumptions (A.6) and (A.7) are satis-
fied for the three estimators of σ2 based on their stochastic expansions given in Prasad and
Rao (1990), Datta and Lahiri (2000) and Das, Jiang and Rao (2004). Thus, we shall check
Assumptions (A.8) and (A.9) for i = m.

[1] PR estimator. Recall that σ̂2
PR is given in (9). For S1,

1

m

( ∂

∂λ
S1(λ)

)
=

2

m
h(Y , λ)′(IN −X(X ′X)−1X ′)

( ∂

∂λ
h(Y , λ)

)
=

2

m

m∑
i=1

h(yi, λ)
′M i

( ∂

∂λ
h(yi, λ)

)
+ op(1)

=
2

m

m−1∑
i=1

h(yi, λ)
′M i

( ∂

∂λ
h(yi, λ)

)
+

2

m
h(ym, λ)

′Mm

( ∂

∂λ
h(ym, λ)

)
+ op(1),
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where M i = Ini
−X i(X

′X)−1X ′
i. Then from (31) and (32), it follows that

1

m
E
[ ∂
∂λ
S1(λ)

∣∣∣ym

]
= Op(1) and

1

m

( ∂

∂λ
S1(λ)−

1

m
E
[ ∂
∂λ
Si(λ)

∣∣∣ym

])∣∣∣ym = Op(m
−1/2).

For S2, we can show similar properties since

∂

∂λ
S2(λ) = 2h(Y , λ)′(E −EX(X ′EX)−1X ′E)

( ∂

∂λ
h(Y , λ)

)
.

Thus, Assumptions (A.8) and (A.9) are satisfied.

[2] ML. The ML estimator σ̂2
ML is given in (10). From the implicit function theorem,

∂

∂λ
σ̂2

ML(λ) = I(λ)−1J(λ),

where

I(λ) =
(I11(λ) I12(λ)
I21(λ) I22(λ)

)
=

(∂L1(σ
2, λ)/∂σ2

e ∂L1(σ
2, λ)/∂σ2

v

∂L2(σ
2, λ)/∂σ2

e ∂L2(σ
2, λ)/∂σ2

v

)∣∣∣
σ2=σ̂2

ML(λ)
,

J(λ) =(J1(λ), J2(λ))
′ =

( ∂

∂λ
L1(σ

2, λ)
∣∣∣
σ2=σ̂2

ML(λ)
,
∂

∂λ
L2(σ

2, λ)
∣∣∣
σ2=σ̂2

ML(λ)

)′
. (35)

By straightforward calculation, it is shown that

∂

∂λ
L1(σ

2, λ) =
1

σ4
e

m∑
i=1

(
h(yi, λ)−X iβ̂(ρ, λ)−

niρ

1 + niρ
(zi(λ)− x̄′

iβ̂(ρ, λ))ji

)′

·
(
X i +

niρ

1 + niρ
jix̄

′
i

)( ∂

∂λ
β̂(ρ, λ)

)
,

where
∂

∂λ
β̂(ρ, λ) =

( m∑
i=1

nix̄ix̄
′
i

1 + niρ

)−1
m∑
i=1

nix̄izi,λ(λ)

1 + niρ
,

which is of order Op(1) under Assumption 1 and 2. Then from the above expression, it easily
follows that

1

m
J1(λ) = σ−4

e

1

m

m∑
i=1

(
h(yi, λ)−X iβ − niρ

1 + niρ
(zi(λ)− x̄′

iβ)ji

)′

·
(
X i +

niρ

1 + niρ
jix̄

′
i

)( ∂

∂λ
β̂(ρ, λ)

)
+Op(m

−1/2)

=
( 1

m

m∑
i=1

J1i(λ)
)′( ∂

∂λ
β̂(ρ, λ)

)
+Op(m

−1/2), (say).

Since J1i(λ), i = 1, . . . ,m, are mutually independent random vectors E[J1i(λ)] = 0, it is seen
that m−1

∑m
i=1 J1i(λ)|ym = Op(m

−1/2) from (32). Thus, m−1J1(λ)|ym = Op(m
−1/2), namely,

m−1/2J1(λ)|ym = Op(1).
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Also, we obtain

∂

∂λ
L2(σ

2, λ) =
m∑
i=1

2n2
i

(σ2
e + niσ2

v)
2

(
zi(λ)− x̄′

iβ̂(ρ, λ)
)(
zi,λ(λ)− x̄′

i

( ∂

∂λ
β̂(ρ, λ)

))
,

which implies that

1

m
J2(λ) =

1

m

m∑
i=1

2n2
i

(σ2
e + niσ2

v)
2

(
zi(λ)− x̄′

iβ
)
zi,λ(λ) +Op(m

−1/2)

=
1

m

m∑
i=1

J2i(λ) +Op(m
−1/2), (say).

Since J2i(λ) = Op(1) and it depends only on yi of Y , from (31) and (32), one gets

m−1J2(λ)|ym = Op(1) and m−1/2
(
J2(λ)− E

[
J2(λ)

∣∣ym

])∣∣ym = Op(m
−1/2).

We next evaluate I(λ). We here give a proof for I21(λ), and we omit proofs for the other
elements since they can be similarly proved. By a straightforward calculation,

∂L2(σ
2, λ)

∂σ2
v

=−
m∑
i=1

2n2
i

(σ2
e + niσ2

v)
3

(
zi(λ)− x̄iβ̂(ρ, λ)

)2
+

m∑
i=1

2n2
i

(σ2
e + niσ2

v)
3

−
m∑
i=1

2n2
i

(σ2
e + niσ2

v)
2

(
zi(λ)− x̄iβ̂(ρ, λ)

)
x̄′
i

(∂β̂(ρ, λ)
∂σ2

e

)
,

where
∂β̂(ρ, λ)

∂σ2
e

= −σ
2
v

σ4
e

( m∑
i=1

nix̄ix̄
′
i

1 + niρ

)−1
m∑
i=1

nix̄ix̄
′
i

(1 + niρ)2
(
β̂(ρ, λ)− β̂

†
(ρ, λ)

)
,

which is Op(m
−1/2) since β̂(ρ, λ)− β̂

†
(ρ, λ) = Op(m

−1/2) as in the proof of Lemma 1. Then,

1

m
I21(λ) = − 1

m

m∑
i=1

2n2
i

(σ2
e + niσ2

v)
3

(
zi(λ)− x̄iβ

)2
+

1

m

m∑
i=1

2n2
i

(σ2
e + niσ2

v)
3
+Op(m

−1/2),

so that, we have

1

m
I21(σ

2, λ)
∣∣∣ym =− 1

m

m−1∑
i=1

2n2
i

(σ2
e + niσ2

v)
2
+

1

m

m∑
i=1

2n2
i

(σ2
e + niσ2

v)
3

− 1

m

2n2
i

(σ2
e + nmσ2

v)
3

(
zm(λ)− x̄mβ

)2
+Op(m

−1/2)

= − 1

m

m−1∑
i=1

2n2
i

(σ2
e + niσ2

v)
2
+

1

m

m∑
i=1

2n2
i

(σ2
e + niσ2

v)
3
+Op(m

−1/2),

since E[
(
zi(λ)− x̄iβ

)2
] = σ2

e +niσ
2
v . This demonstrates that the leading term is of order O(1).

Since the other elements of I(λ) can be evaluated similarly, we have

m−1I(λ)|yi = C(θ) +Op(m
−1/2),
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where C(θ) is a non-stochastic matrix with bounded entries, i.e. C(θ) = O(1).Therefore, one
gets

∂

∂λ
σ̂2

ML(λ)
∣∣ym = (m−1I(λ))−1m−1J(λ)

∣∣ym = Op(1),

which shows that the ML estimator satisfies Assumption (A.8). Moreover,

√
m
( ∂

∂λ
σ̂2

ML(λ)− E
[ ∂
∂λ

σ̂2
ML(λ)

∣∣∣ym

])∣∣∣ym

= C(θ)−1m−1/2
(
J(λ)− E

[
J(λ)

∣∣ym

])
|ym +Op(1),

which is of order Op(1). Thus, (A.9) is satisfied.

[3] REML Recall that REML is given in (11). From the implicit function theorem,

∂

∂λ
σ̂2

RML(λ) = IR(λ)−1J(λ),

where J(λ) is defined in (35) and

IR(λ) =
(IR

11(λ) IR
12(λ)

IR
21(λ) IR

22(λ)

)
= I(λ) +

(∂P1(σ
2)/∂σ2

e ∂P1(σ
2)/∂σ2

v

∂P2(σ
2)/∂σ2

e ∂P2(σ
2)/∂σ2

v

)∣∣∣
σ2=σ̂2

RML(λ)
.

for P1(σ
2) = tr [(X ′Σ−1X)−1X ′Σ−2X] and P2(σ

2) = tr [(X ′Σ−1X)−1X ′Σ−1ZΣ−1X]. Then,
the result follows if m−1P1(σ

2)|yi = Op(1) and m
−1P2(σ

2)|yi = Op(1), which can be seen from
Assumptions 2 and (A.6).

A.3 Proof of Lemma 3. We begin by demonstrating the consistency of λ̂. According the
Cramer method explained in Jiang (2010), we show that the equation F (β̂(λ), σ̂2

v(λ), σ̂
2
e(λ), λ) =

0 includes a solution which converges to λ in probability. Let

gm(λ
′) = m−1F (β̂(λ′), σ̂2

v(λ
′), σ̂2

e(λ
′), λ′),

for scalar λ′. Then, it can be seen that gm(λ
′) converges to g(λ′) in probability, where

g(λ′) = lim
m→∞

m−1Eλ[F (β̂(λ
′), σ̂2

v(λ
′), σ̂2

e(λ
′), λ′)].

When λ′ = λ, it is noted that g(λ) = 0, since g(λ) = limm→∞m−1Eλ[F (β, σ
2
v , σ

2
e , λ)] = 0. Since

g(λ′) is continuous, without loss of generality, we have g(λ − ε) < 0 and g(λ + ε) for some
positive ε. Then, gm(λ− ε) and gm(λ+ ε) converge to g(λ− ε) < 0 and g(λ+ ε), respectively,
in probability. This implies that both probabilities P (gm(λ − ε) < 0) and P (gm(λ + ε) > 0)
converge to one as m→ ∞. In fact, for instance, the former result follows from the fact that

P (gm(λ− ε) < 0) =P (gm(λ− ε)− g(λ− ε) < −g(λ− ε))

>P (|gm(λ− ε)− g(λ− ε)| < −g(λ− ε)) → 1,

as m → ∞ since −g(λ − ε) > 0. Thus, for any δ > 0, there exists an M such that for any
m > M , P (gm(λ− ε) < 0) > 1− δ and P (gm(λ + ε) > 0) > 1− δ. Note that the intersection

23



of the events {gm(λ − ε) < 0} and {gm(λ + ε) > 0} implies that λ̂ is included in the interval

(λ− ε, λ+ ε), namely, |λ̂− λ| < ε. Hence,

P (|λ̂− λ| < ε) > P (gm(λ− ε) < 0, gm(λ+ ε) < 0) > 1− 2δ,

which means that λ̂ is consistent.

We next show that (λ̂ − λ)|ym = Op(m
−1/2) in the case of i = m. To this end, we expand

the equation (12) around λ to get

√
m(λ̂− λ) = − m−1/2F (β̂(λ), σ̂2

v(λ), σ̂
2
e(λ), λ)

m−1
(

∂
∂λ
F (β̂(λ), σ̂2

v(λ), σ̂
2
e(λ), λ)

∣∣
λ=λ∗

) , (36)

where λ∗ is an intermediate value between λ and λ̂. For the numerator in (36), from Lemma 1
and Assumption 3, it is seen that

1√
m
F (β̂(λ), σ̂2

v(λ), σ̂
2
e(λ), λ)

∣∣∣ym =
1√
m
F (β, σ2

v , σ
2
e , λ)

∣∣∣ym +Op(1)

=
1√
m

m∑
i=1

Fi(θ)
∣∣∣ym +Op(1),

where Fi(θ) = −2 log f(yi;θ) for θ = (β, σ2
v , σ

2
e , λ) and the density function f(yi;θ) of yi.

Since F1, . . . , Fm are mutually independently distributed with E[Fi(θ)
]
= 0, from (32), it is

seen that
1√
m
F (β̂(λ), σ̂2

v(λ), σ̂
2
e(λ), λ)

∣∣∣ym = Op(1).

For the denominator in (36), it follows from the consistency of λ̂ that

m−1
( ∂
∂λ
F (β̂(λ), σ̂2

v(λ), σ̂
2
e(λ), λ)

∣∣
λ=λ∗

)
= m−1 ∂

∂λ
F (β̂(λ), σ̂2

v(λ), σ̂
2
e(λ), λ)

(
1 + op(1)

)
.

By straightforward calculation, it can be seen from Lemma 1 and Assumption 3 that

1

m

( ∂

∂λ
F (β̂(λ), σ̂2

v(λ), σ̂
2
e(λ), λ)

)
=

{
− 1

σ4
e

( ∂

∂λ
σ̂2
e(λ)

) 1

m

m∑
i=1

(h(yi, λ)−X iβ)
′V i(ρ)

−1
( ∂

∂λ
h(yi, λ)

)
+ σ−2

e

1

m

m∑
i=1

( ∂

∂λ
h(yi, λ)−X i

( ∂

∂λ
β̂(λ)

))′
V i(ρ)

−1
( ∂

∂λ
h(yi, λ)

)
+ σ−2

e

1

m

m∑
i=1

(h(yi, λ)−X iβ)
′
( ∂

∂λ
V i(ρ̂(λ))

−1
)( ∂

∂λ
h(yi, λ)

)
+ σ−2

e

1

m

m∑
i=1

(h(yi, λ)−X iβ)
′V i(ρ)

−1
( ∂2

∂λ2
h(yi, λ)

)
+

1

m

( ∂

∂λ
J(Y , λ)

)}(
1 + op(1)

)
= (K1 +K2 +K3 +K4 +K5)(1 + op(1)). (say)
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We shall evaluate the terms K1, . . . , K5 under Assumption 1. It is easy to see that K4|ym =
Op(1) and K5|ym = Op(1) by (31). Similarly under Assumptions 1 and 3, we have K1 = Op(1)
by (31). To evaluate K2, the expression is rewritten as

K2 =σ
−2
e

1

m

m∑
i=1

( ∂

∂λ
h(yi, λ)

)′
V i(ρ)

−1
( ∂

∂λ
h(yi, λ)

)
+ σ−2

e

( ∂

∂λ
β̂(λ)

)′( 1

m

m∑
i=1

X iV i(ρ)
−1
( ∂

∂λ
h(yi, λ)

))
,

where (∂β̂(λ)/∂λ)|ym = Op(1) from Lemma 1. Then from (31), K2|ym = Op(1). For K3, it is
observed that the each element of (∂V i(ρ̂(λ))

−1/∂λ)|ym is of order Op(1), since (ρ̂(λ)/∂λ)|ym =
Op(1) under Assumption 3. Furthermore, the expression of K3 reduces to K3 = σ−2

e tr [K∗
3],

where

K∗
3 =

1

m

m∑
i=1

( ∂

∂λ
h(yi, λ)

)(
h(yi, λ)−X iβ

)′ · ( ∂

∂λ
V i(ρ̂(λ))

−1
)
.

From (31) and Assumption 1, we have

1

m

m∑
i=1

( ∂

∂λ
h(yi, λ)

)(
h(yi, λ)−X iβ

)′∣∣ym = Op(1),

so that K∗
3|ym = Op(1). Since K∗

3 is an ni × ni matrix, it follows that K3 = Op(1). These

observations show that the denominator in (36) is of order Op(1). Hence, one gets
√
m(λ̂ −

λ)|ym = Op(1), namely, (λ̂− λ)|ym = Op(m
−1/2).

Finally, we show that E[λ̂− λ|ym] = Op(m
−1). Evaluating the term in (36) more precisely

based on the fact that (λ̂− λ)|ym = Op(m
−1/2), we can approximate λ̂− λ stochastically as

λ̂− λ = − F (β̂(λ), σ̂2
v(λ), σ̂

2
e(λ), λ)

∂
∂λ
F (β̂(λ), σ̂2

v(λ), σ̂
2
e(λ), λ)

+Op(m
−1).

Let M = E[∂F (β̂(λ), σ̂2
v(λ), σ̂

2
e(λ), λ)/∂λ], which is of order O(m). From Lemma 1 and As-

sumption 3, it easily follows that

1

m

( ∂

∂λ
F (β̂(λ), σ̂2

v(λ), σ̂
2
e(λ), λ)

)
=
M

m
+Op(m

−1/2).

Then, one gets λ̂− λ = −M−1F (β̂(λ), σ̂2
v(λ), σ̂

2
e(λ), λ) +Op(m

−1), so that

E[λ̂− λ] = −M−1E[F (β̂(λ), σ̂2
v(λ), σ̂

2
e(λ), λ)] +O(m−1).
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Note that m−1F (β̂(λ), σ̂2
v(λ), σ̂

2
e(λ), λ) is evaluated as

m−1F (β̂(λ), σ̂2
v(λ), σ̂

2
e(λ), λ)

= m−1F (β, σ2
v , σ

2
e , λ) + σ−2

e (β̂(λ)− β)′
1

m

m∑
i=1

V i(ρ)
−1
( ∂

∂λ
h(yi, λ)

)
+ σ−2

e

1

m

m∑
i=1

(h(yi, λ)−X iβ)
′{V i(ρ̂(λ))

−1 − V i(ρ)
−1
}( ∂

∂λ
h(yi, λ)

)
+
( 1

σ̂2
e(λ)

− 1

σ2
e

) 1

m

m∑
i=1

(h(yi, λ)−X iβ)
′V i(ρ)

−1
( ∂

∂λ
h(yi, λ)

)
+Op(1).

From Assumption (A.7), it is easy to see thatE[σ̂−2
e (λ)−σ−2

e |ym] = Op(m
−1) and E

[
V i(ρ̂(λ))

−1−
V i(ρ)

−1
∣∣ym

]
= Op(m

−1), which conclude that E
[
m−1F (β̂(λ), σ̂2

v(λ), σ̂
2
e(λ), λ)

∣∣ym

]
= Op(m

−1).
Therefore, the proof is complete.

A.4 Proof of Lemma 4. From Lemma 3, we need to establish the results for β̂(λ̂) and

σ̂2(λ̂). Let i = m. From Lemmas 1 and 3, we have

(β̂(λ̂)− β)|ym =
( ∂

∂λ
β̂(λ)

)
(λ̂− λ)

∣∣∣ym +Op(m
−1)

=
( ∂

∂λ
β̂(λ)− E

[ ∂
∂λ

β̂(λ)
∣∣∣ym

])
(λ̂− λ)

∣∣∣ym

+ E
[ ∂
∂λ

β̂(λ)
∣∣∣ym

]
(λ̂− λ)

∣∣∣ym +Op(m
−1)

= E
[ ∂
∂λ

β̂(λ)
∣∣∣ym

]
(λ̂− λ)

∣∣ym +Op(m
−1),

since E[∂β̂(λ)/∂λ|ym] = Op(1). Then, one gets (β̂(λ̂) − β)|ym = Op(m
−1/2) and E[β̂(λ̂) −

β|ym] = Op(m
−1) from Lemmas 1 and 3. Similarly, the results for σ̂2(λ̂) follow from Lemma

3 and Assumption 3, since

(σ̂2(λ̂)− σ2)
∣∣ym = E

[ ∂
∂λ

σ̂2(λ)
∣∣∣ym

]
(λ̂− λ)

∣∣ym +Op(m
−1),

where E[∂σ̂2(λ)/∂λ
∣∣ym] = Op(1). Therefore, the proof is complete.

A.5 Proof of Theorem 1. It is first noted that in the proof, the capital C, with or without
suffix, means a generic constant. If Lm(q) is expanded as

Lm(q) = Φ(q) +m−1γ(q,θ) +Op(m
−3/2), (37)

where γ(q,θ) is a smooth function with O(1), then the corresponding expansion holds for L∗
m(q),

namely,
L∗

m(q) = Φ(q) +m−1γ(q, θ̂) +Op(m
−3/2).
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Thus, one gets

L∗
m(q)− Lm(q) =m

−1
{
γ(q, θ̂)− γ(q,θ)

}
+Op(m

−3/2)

=m−1
(∂γ(q,θ)

∂θ

)′
(θ̂ − θ) +Op(m

−3/2), (38)

which establishes the result given in Theorem 1. Hence, we shall show the expansion (37)
through the following steps.

(Step 1) Expansion of Lm(q). Since the inequality σ̂−1
i

{
h(h−1(ξi, λ), λ̂)− ξ̂EB

i

}
≤ q for

any q ∈ R is equivalently rewritten as h−1(ξi, λ) ≤ h−1(ξ̂EB
i + qσ̂i, λ̂), we have

Lm(q) = P
[
σ̂−1
i

{
h(h−1(ξi, λ), λ̂)− ξ̂EB

i

}
≤ q

]
= E

(
P
[
σ−1
i (ξi − ξ̂i(θ)) ≤ σ−1

i

{
h(h−1(ξ̂EB

i + qσ̂i, λ̂), λ)− ξ̂i(θ)
}]∣∣∣Y )

= E
[
Φ(q +R(q,Y ))

]
,

where Φ(·) is a cumulative distribution function of the standard normal distribution and

R(q,Y ) = σ−1
i

{
h(h−1(ξ̂EB

i + qσ̂i, λ̂), λ)− ξ̂i(θ)
}
− q.

For the standard normal density function ϕ(·), the first and second derivatives are written as
ϕ′(x) = −xϕ(x)and ϕ′′(x) = (x2 − 1)ϕ(x) for x ∈ R. The Taylor expansion is applied to get

Lm(q) = Φ(q) + ϕ(q)E[R(q,Y )]− 1

2
qϕ(q)E[R2(q,Y )]

+
1

2
E
[∫ q+R(q,Y )

q

(
q +R(q,Y )− x

)2
(x2 − 1)ϕ(x)dx

]
= Φ(q) + ϕ(q)t1(q)−

1

2
qϕ(q)t2(q) + t3(q),

where t1(q) = E[R], t2(q) = E[R2] and t3(q) = 2−1E[
∫ q+R

q
(q + R − x)2(x2 − 1)ϕ(x)dx] for

R = R(q,Y ). Note that 0 ≤ |q + R − x| ≤ |R| and (x2 − 1)ϕ(x) ≤ 2ϕ(
√
3) for x ∈ (q, q + R).

Then,

E
[∫ q+R

q

(q +R− x)2(x2 − 1)ϕ(x)dx
]
≤ E

[
R2

∫ q+R

q

2ϕ(
√
3)dx

]
≤ C1E

[
|R|3

]
,

which implies that

Lm(q) = Φ(q) + ϕ(q)t1(q)−
1

2
qϕ(q)t2(q) +O(E

[
|R|3

]
). (39)

(Step 2) Expansion of R = R(q,Y ). We shall show that R = R(q,Y ) = Op(m
−1/2)

based on an expansion of R. It follows from this property that supq∈R t3(q) = O(m−3/2) and

supq∈R t2(q) = O(m−1). Let Q = h−1(ξ̂EB
i + qσ̂i, λ̂)− h−1(ξ̂i(θ) + qσi, λ). Then,

h(h−1(ξ̂EB
i + qσ̂i, λ̂), λ) = ξ̂i(θ) + qσi + hx(h

−1(ξ̂i(θ) + qσi, λ), λ)Q

+
1

2
hxx(h

−1(ξ̂i(θ) + qσi, λ), λ)Q
2

+
1

2

∫ a+Q

a

(a+Q− x)2hxxx(x, λ)dx,
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where a = h−1(ξ̂i(θ) + qσi, λ). Since 0 ≤ |q +Q− x| ≤ |Q| for x ∈ (a, a+Q), we have∣∣∣∫ a+Q

a

(a+Q− x)2hxxx(x, λ)dx
∣∣∣ ≤ Q2

∣∣∣hxx(a+Q, λ)− hxx(Q, λ)
∣∣∣.

It is here noted that Q = Op(m
−1/2), which will be shown in (Step 3) below. Then it follows

from Assumption 1 that hx(a+Q, λ), hx(Q, λ) and hxx(a, λ) are Op(1). Thus,

h(h−1(ξ̂EB
i + qσ̂i, λ̂), λ) = ξ̂i(θ) + qσi + g(yi,θ)Q+Op(m

−1),

for g(yi,θ) = hx(h
−1(ξ̂i(θ) + qσi, λ), λ). Since g(yi,θ) = Op(1), it can be observed that

g(yi,θ)Q = Op(m
−1/2), which results in

R(q,Y ) = σ−1
i g(yi,θ)Q+Op(m

−1). (40)

Also, the expectation of R(q,Y ) is evaluated as

E[R(q,Y )] = σ−1
i E

[
g(yi,θ)E(Q|yi)

]
+O(m−1). (41)

(Step 3) Evaluation of Q and E[Q|yi]. To get the expansion (37), it is sufficient to
show that Q = Op(m

−1/2) and E[Q|yi] = Op(m
−1) from (41). To this end, decompose Q as

Q = Q1 +Q2, where

Q1 =h
−1(ξ̂EB

i + qσ̂i, λ)− h−1(ξ̂i(θ) + qσi, λ), (42)

Q2 =h
−1(ξ̂EB

i + qσ̂i, λ̂)− h−1(ξ̂EB
i + qσ̂i, λ). (43)

From (42), Q1 is expanded as

Q1 = h−1
x (ξ̂i(θ) + qσi, λ)U + h−1

xx (ξ̂i(θ) + qσi, λ)U
2

+
1

2

∫ b+U

b

(b+Q− x)2h−1
xxx(x, λ)dx,

where U = ξ̂EB
i − ξ̂i(θ) + q(σ̂i − σi) and b = ξ̂i(θ) + qσi. It is here noted that

U |yi = Op(m
−1/2) and E[U |yi] = Op(m

−1), (44)

which will be shown in (Step 4) below. Then, it follows that the last two terms of the expansion
of Q1 are Op(m

−1) given yi, and Q1|yi = Op(m
−1/2) by the similar argument. Thus,

E[Q1|yi] = h−1
x (ξ̂i(θ) + qσi, λ)E(U |yi) +Op(m

−1) = Op(m
−1).

Also, Q2 is expanded as

Q2 = h−1
λ (ξ̂EB

i + qσ̂i, λ)(λ̂− λ) +
1

2
h−1
λλ (ξ̂

EB
i + qσ̂i, λ

∗)(λ̂− λ)2,
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where λ∗ is intermediate value between λ and λ̂. It can be observed that h−1
λ (ξ̂EB

i +qσ̂i, λ)|yi =

Op(1), h
−1
λλ (ξ̂

EB
i + qσ̂i, λ

∗)|yi = Op(1) under Assumption 1 and (λ̂ − λ)|yi = Op(m
−1/2) from

Lemma 4. Thus, Q2|yi = Op(m
−1/2) and

E[Q2|yi] = E
[
h−1
λ (ξ̂EB

i + qσ̂i, λ)(λ̂− λ)
∣∣yi

]
+Op(m

−1)

= E
[{
h−1
λ (ξ̂EB

i + qσ̂i, λ)− h−1
λ (ξ̂i(θ) + qσi, λ)

}
(λ̂− λ)

∣∣yi

]
+ h−1

λ (ξ̂i(θ) + qσi, λ)E(λ̂− λ|yi) +Op(m
−1)

= Op(m
−1),

since h−1
λ (ξ̂EB

i + qσ̂i, λ) − h−1
λ (ξ̂i(θ) + qσi, λ) given yi is Op(m

−1/2), which can be verified by

h−1
λx (ξ̂i(θ) + qσi, λ) = Op(1) and Lemma 4.

(Step 4) Evaluation of U |yi and E[U |yi]. It remains to show that U |yi = Op(m
−1/2)

and E(U |yi) = Op(m
−1), for which it is sufficient to show that both (ξ̂EB

i − ξ̂i(θ))|yi and
(σ̂i − σi)|yi are Op(m

−1/2) and the conditional expectation given yi is Op(m
−1). Recall that

U = ξ̂EB
i − ξ̂i(θ) + q(σ̂i − σi). First, ξ̂

EB
i − ξ̂i(θ) is rewritten as

ξ̂EB
i − ξ̂i(θ) = x̄′

i(β̂ − β) +
ρ̂ni

1 + ρ̂ni

(zi(λ̂)− zi(λ)− x̄′
i(β̂ − β))

+
( ρ̂ni

1 + ρ̂ni

− ρni

1 + ρni

)
(zi(λ)− x̄′β).

Note that given yi, zi(λ̂)− zi(λ) = zi,λ(λ)(λ̂− λ) +Op(m
−1) and

ρ̂ni

1 + ρ̂ni

=
ρni

1 + ρni

+
ni

(1 + ρni)2
(ρ̂− ρ) +Op(m

−1).

Further, from Lemma 4 and a similar expansion as in (34), it follows that (ρ̂−ρ)|yi = Op(m
−1/2)

and E(ρ̂− ρ|yi) = Op(m
−1). Hence, one gest (ξ̂EB

i − ξ̂i(θ))|yi = Op(m
−1/2) and

E[ξ̂EB
i − ξ̂i(θ)|yi]

= E
[ ρni

1 + ρni

zi,λ(λ)(λ̂− λ) +
ni

(1 + ρni)2
(ρ̂− ρ)(zi(λ)− x̄′

iβ)
∣∣∣yi

]
+Op(m

−1)

=
ρni

1 + ρni

zi,λ(λ)E[λ̂− λ|yi] +
ni

(1 + ρni)2
(zi(λ)− x̄′

iβ)E[ρ̂− ρ|yi] +Op(m
−1),

which is of order Op(m
−1) from Lemma 4. A similar evaluation for σ̂i − σi shows that given yi,

σ̂i − σi =
1

2
σ−1
v (1 + niρ)

−1/2(σ̂2
v − σ2

v)−
ni

2
σ−3
i (ρ̂− ρ) +Op(m

−1).

Then, from Lemma 4, it follows that (σ̂i − σi)|yi = Op(m
−1/2) and E[σ̂i − σi|yi] = Op(m

−1),
which completes the proof.

A.6 Proof of Theorem 2. As in the proof of Theorem 1, we obtain an asymptotic expansion
of Lc

m(q|yi) in the same settings of the proof of Theorem 1. Then for any q ∈ R, we have

Lc
m(q|yi) = E[Φ(q +R(q,Y ))|yi].
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Since E[R(q,Y )|yi] = Op(m
−1), we have an asymptotic expansion of Lc

m(q|yi) as

Lc
m(q|yi) = Φ(q) +m−1η(q,θ,yi) +Op(m

−3/2)

for an O(1) smooth quantity η(q,θ,yi), which leads to the result by Lemma 4.
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