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Abstract

This paper addresses the problem of estimating the mean vector of a singular

multivariate normal distribution with an unknown singular covariance matrix. The

maximum likelihood estimator is shown to be minimax relative to a quadratic loss

weighted by the Moore-Penrose inverse of the covariance matrix. An unbiased risk

estimator relative to the weighted quadratic loss is provided for a Baranchik type

class of shrinkage estimators. Based on the unbiased risk estimator, a sufficient con-

dition for the minimaxity is expressed not only as a differential inequality, but also as

an integral inequality. Also, generalized Bayes minimax estimators are established

by using an interesting structure of singular multivariate normal distribution.
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Key words and phrases: Empirical Bayes method, generalized Bayes estimator,
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1 Introduction

Statistical inference with the determinant and the inverse of sample covariance matrix

requires nonsingularity of the sample covariance matrix. However in practical cases of

data analysis, the nonsingularity is not always satisfied. The singularity occurs for many

reasons, but in general such singularity is very hard to handle. This paper treats a singular

multivariate normal model, which yields a singular sample covariance matrix, and aims

to provide a series of decision-theoretic results in estimation of the mean vector.
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The singular multivariate normal distribution model and the related topics have been

studied for a long time in the literature. For the density function, see Khatri (1968),

Rao (1973) and Srivastava and Khatri (1979). Khatri (1968) and Rao (1973) derived

the maximum likelihood estimators for the mean vector and the singular covariance ma-

trix. Srivastava (2003) and Dı́az-Garćıa, et al . (1997) studied central and noncentral

pseudo-Wishart distributions which have been used for developing distribution theories

in the problems of testing hypotheses. However, little is known about a decision-theoretic

approach to estimation in the singular model.

To specify the singular model addressed in this paper, let X and Y i (i = 1, . . . , n) be

p-dimensional random vectors having the stochastic representations

X = θ +BZ0,

Y i = BZi, i = 1, . . . , n,
(1.1)

whereZ0,Z1, . . . ,Zn are mutually and independently distributed asNr(0r, Ir), and θ and

B are, respectively, a p-dimensional vector and a p × r matrix of unknown parameters.

Then we write X ∼ Np(θ,Σ) and Y i ∼ Np(0p,Σ) (i = 1, . . . , n), where Σ = BBt.

Assume that

r ≤ min(n, p),

and B is of full column rank, namely Σ is a positive semi-definite matrix of rank r. In

the case when r < p, technically speaking, Np(θ,Σ) is called the singular multivariate

normal distribution with mean vector θ and singular covariance Σ. For the definition of

the singular multivariate normal distribution, see Khatri (1968), Rao (1973, Chapter 8)

and Srivastava and Khatri (1979, page 43).

Denote by Σ+ the Moore-Penrose inverse of Σ. Consider the problem of estimating

the mean vector θ relative to quadratic loss weighted by Σ+,

L(δ,θ|Σ) = (δ − θ)tΣ+(δ − θ), (1.2)

where δ is an estimator of θ based on X and Y = (Y 1, . . . ,Y n)
t. The accuracy of esti-

mators is compared by the risk function R(δ,θ|Σ) = E[L(δ,θ|Σ)], where the expectation

is taken with respect to (1.1).

A natural estimator of θ is the unbiased estimator δUB = X, which is also the maxi-

mum likelihood estimator as pointed out by Khatri (1968, page 276) and Rao (1973, page

532). This paper considers improvement on δUB via the Baranchik (1970) type class of

shrinkage estimators

δSH =
(
1− ϕ(F )

F

)
X, F = X tS+X,

where ϕ(F ) is a bounded and differentiable function of F .

It is worth noting that, instead of F in δSH , we may use F− = X tS−X, where

S− is a generalized inverse of S. Since the generalized inverse is not unique, it may be
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troublesome to consider which we employ as the generalized inverse. On the other hand,

the Moore-Penrose inverse is unique and it is easy to discuss its distributional property.

See Srivastava (2007) for interesting discussion on the Hotelling type T -square tests with

the Moore Penrose and the generalized inverses in high dimension.

The rest of this paper is organized as follows. In Section 2, we introduce the definition

of the Moore-Penrose inverse and its useful properties. We then set up a decision-theoretic

framework for estimating θ and derive some properties of estimators and their risk func-

tions which are specific to the singular model. The key tool for their derivations is the

equality

SS+ = ΣΣ+,

which holds with probability one, where S = Y tY and S+ is the Moore-Penrose inverse

of S. In Section 2, we also prove the minimaxity of δUB. In Section 3, we obtain

sufficient conditions for the minimaxity of δSH . These conditions are given not only by a

differential inequality, but also by an integral inequality. In Section 4, an empirical Bayes

motivation is given for the James-Stein (1961) type shrinkage estimator and its positive

part estimator. Also, Section 4 suggests a hierarchical prior in the singular model and

shows that the resulting generalized Bayes estimators are minimax. Section 5 provides

some remarks on related topics.

2 Estimation in the Singular Normal Model

2.1 The Moore-Penrose inverse and its useful properties

We begin by introducing the following notations which will be used through the paper.

Let O(r) be the group of orthogonal matrices of order r. For p ≥ r, the Stiefel manifold is

denoted by Vp,r = {A ∈ Rp×r : AtA = Ir}. It is noted that Vr,r = O(r). Let Dr be a set

of r × r diagonal matrices whose diagonal elements d1, . . . , dr satisfy d1 > · · · > dr > 0.

As an inverse matrix of a singular covariance matrix, we use the Moore-Penrose inverse

matrix, which is defined as follows:

Definition 2.1 For a matrix A, there exists a matrix A+ such that (i) AA+A = A, (ii)

A+AA+ = A+, (iii) (AA+)t = AA+ and (iv) (A+A)t = A+A. Then A+ is called the

Moore-Penrose inverse of A.

The following basic properties and results on the Moore-Penrose inverse matrix are

useful for investigating properties of shrinkage estimators. Lemmas 2.1 and 2.2 are due

to Harville (1997, Chapter 20).

Lemma 2.1 The Moore-Penrose inverse A+ has the following properties:

(1) A+ uniquely exists;
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(2) (A+)t = (At)+;

(3) A+ = A−1 for a nonsingular matrix A.

Lemma 2.2 Let B be a p× r matrix of full column rank. We then have

(1) B+B = Ir,

(2) BB+ is idempotent,

(3) B+ = (BtB)−1Bt, in particular H+ = H t for H ∈ Vp,r,

(4) (BCt)+ = (Ct)+B+ = C(CtC)−1(BtB)−1Bt for a q × r matrix C of full column

rank.

Lemma 2.3 Let A be an r × r nonsingular matrix and B a p × r matrix of full col-

umn rank. Then we have (BABt)+ = (Bt)+A−1B+. In particular, it follows that

(HLH t)+ = HL−1H t for H ∈ Vp,r and L ∈ Dr.

Proof. It is noted that ABt is of full column rank. From (3) of Lemma 2.1 and (4)

of Lemma 2.2, it follows that (ABt)+ = (Bt)+A+ = (Bt)+A−1 and

(BABt)+ = {B(ABt)}+ = (ABt)+B+ = (Bt)+A−1B+.

The second part immediately follows from (3) of Lemma 2.2. □
The Moore-Penrose inverse enables us to provide a general form of a solution of a

homogeneous linear system. The following lemma is given in Harville (1997, Theorem

11.2.1).

Lemma 2.4 Let x be a p-dimensional vector of unknown variables and A an r × p co-

efficient matrix. Then a solution of a homogeneous linear system Ax = 0r is given by

x0 = (Ip −A+A)b for some p-dimensional vector b.

The following lemma is due to Zhang (1985). See also Olkin (1998).

Lemma 2.5 Let B be a p× r random matrix of full column rank. Denote the density of

B by f(B) and the Moore-Penrose inverse of B by C = B+ = (BtB)−1Bt. Then the

density of C is given by |CCt|−pf(C+).

Next, we provide some remarks on the probability density function of singular multi-

variate normal distribution (1.1). An explicit expression of the density function is given as

follows: Define B0 ∈ Vp,p−r such that B+
0 B = Bt

0B = 0(p−r)×r, namely ΣB0 = 0p×(p−r).

Denote Λ ∈ Dr, where the diagonal elements of Λ consist of nonzero ordered eigenvalues

of Σ. Then the density of X ∼ Np(θ,Σ) with a singular Σ of rank r is expressed as

f(X|θ,Σ) = (2π)−r/2|Λ|−1/2 exp
{
−1

2
(X − θ)tΣ+(X − θ)

}
, (2.1)

where

B+
0 (X − θ) = 0p−r with probability one.
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This density is interpreted as the density on the hyperplane B+
0 (X − θ) = 0p−r. The

above expression is given by Khatri (1968), Rao (1973) and Srivastava and Khatri (1979),

where their expression uses a generalized inverse ofΣ instead of the Moore-Penrose inverse

Σ+.

From Lemma 2.2 (4), it follows that Σ+ = (Bt)+B+. It is also noted that |Ip−λΣ| =
|Ip − λBBt| = |Ir − λBtB| for a scalar λ, so that the nonzero eigenvalues of Σ = BBt

are equivalent to those of a positive definite matrix BtB. Hence (2.1) is alternatively

expressed as

f(X|θ,B) = (2π)−r/2|BtB|−1/2 exp
{
−1

2
∥B+(X − θ)∥2

}
.

Similarly, the joint density of Y i = BZi (i = 1, . . . , n) with Zi ∼ Nr(0r, Ir) is given by

f(Y 1, . . . ,Y i|B) = (2π)−nr/2|BtB|−n/2 exp
{
−1

2

n∑
i=1

∥B+Y i∥2
}

= (2π)−nr/2|BtB|−n/2 exp
{
−1

2
tr (Bt)+B+S

}
,

where S = Y tY with Y = (Y 1, . . . ,Y n)
t and

B+
0 Y i = 0p−r (i = 1, . . . , n) with probability one.

2.2 Risk properties under a quadratic loss with a singular weighted

matrix

In this paper, we consider the estimation of the unknown mean vector θ in the canonical

model given by X ∼ Np(θ,Σ) and Y i ∼ Np(0p,Σ) (i = 1, . . . , n), where X and Y i’s are

mutually independent and Σ is an unknown positive semi-definite matrix of rank r. It is

assumed that

r ≤ min(n, p).

An estimator δ of θ is evaluated by the risk function relative to the quadratic loss function

with a singular weighted matrix given in (1.2), namely, L(δ,θ|Σ) = (δ − θ)tΣ+(δ − θ).

Let S = Y tY . Denote by S+ the Moore-Penrose inverse of S. From the definition of

the singular multivariate normal distribution, Y is expressed as

Y = (Y 1, . . . ,Y n)
t = (BZ1, . . . ,BZn)

t = ZBt

where Z = (Z1, . . . ,Zn)
t with Zi ∼ Nr(0r, Ir). Since r ≤ min(n, p), the n× p matrix Y

has rank r, and so does S. Then, the following equality is useful for investigating a risk

performance under the singular weighted quadratic loss:

SS+ = S+S = ΣΣ+ = Σ+Σ. (2.2)
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In fact, it is noted that S has the stochastic representation S = BZtZBt and hence

S+ = (Bt)+(ZtZ)−1B+ from Lemma 2.3. It turns out that

SS+ = BZtZBt(Bt)+(ZtZ)−1B+ = BB+ = B(BtB)−1Bt = ΣΣ+

with probability one, since B+B = Bt(Bt)+ = Ir from Lemma 2.1 (2) and Lemma 2.2

(1). Since B(BtB)−1Bt is symmetric, it follows that Σ+Σ = S+S.

Proposition 2.1 For any estimator δ = δ(X,S), the estimator SS+δ has the same risk

as δ under the singular weighted quadratic loss (1.2) if r ≤ min(n, p).

Proof. The risk of SS+δ is given by

R(SS+δ,θ|Σ) = E[(SS+δ − θ)tΣ+(SS+δ − θ)]

= E[δtS+SΣ+SS+δ − 2θtΣ+SS+δ + θtΣ+θ].

It follows from (2.2) that S+SΣ+SS+ = Σ+ΣΣ+ΣΣ+ = Σ+ΣΣ+ = Σ+ and that

Σ+SS+ = Σ+ΣΣ+ = Σ+. Thus, R(SS+δ,θ|Σ) = E[δtΣ+δ − 2θtΣ+δ + θtΣ+θ] =

R(δ,θ|Σ), which shows Proposition 2.1. □

In estimation of a normal mean vector with p = r > n, Chételat and Wells (2012)

considered a class of estimators,

δCW = (Ip − ψ(X tS+X)SS+)X

= {1− ψ(X tS+X)}SS+X + (Ip − SS+)X,

where ψ is a scalar-valued function of X tS+X. When r ≤ min(n, p), it follows from

Proposition 2.1 that δCW , {1 − ψ(X tS+X)}SS+X and {1 − ψ(X tS+X)}X have the

same risk function. In general, the estimator g1(X,S)SS+X + g2(X,S)(Ip − SS+)X

for nonnegative scalar-valued functions g1 and g2 has the same risk as the estimator

g1(X,S)X in the case of r ≤ min(n, p).

It is well known that the James-Stein (1961) type estimator can be improved on by

the positive-part James-Stein estimator (Baranchik (1970)). This dominance property

can be extended to our situation. Consider a shrinkage estimator of the form g(X,S)X

for an integrable and scalar-valued function g(X,S).

Proposition 2.2 Assume that the risk of g(X,S)X is finite and that

g(SS+X + (Ip − SS+)X,S) = g(−SS+X + (Ip − SS+)X,S). (2.3)

If Pr(g(X,S) > 0) < 1, then δ = g(X,S)X is dominated by

δTR = g+(X,S)X, g+(X,S) = max{0, g(X,S)},

relative to the loss (1.2).
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For instance, the condition (2.3) is satisfied by g(X,S) = ψ(X tS+X).

Proof of Proposition 2.2. Take B0 ∈ Vp,p−r such that B+
0 B = Bt

0B = 0(p−r)×r.

It follows by (2.1) that Bt
0X = Bt

0θ with probability one. Let H = B(BtB)−1/2,

where (BtB)−1/2 = {(BtB)1/2}−1 and (BtB)1/2 is a symmetric square root of BtB,

namely BtB = (BtB)1/2(BtB)1/2. Note that H ∈ Vp,r. Since ΣΣ+ = HH t and

Ip −ΣΣ+ = B0B
t
0, using the identity (2.2) yields that

X = SS+X + (Ip − SS+)X

= ΣΣ+X + (Ip −ΣΣ+)X

= HH tX +B0B
t
0θ.

Here, we abbreviate g(X,S) and g+(X,S) by g(H tX) and g+(H
tX), respectively. The

difference in risk between δTR and δ can be written asR(δTR,θ|Σ)−R(δ,θ|Σ) = E2−2E1,

where

E1 = E[{g+(H tX)− g(H tX)}X tΣ+θ],

E2 = E[{g2+(H tX)− g2(H tX)}X tΣ+X].

Since g2+(H
tX) ≤ g2(H tX) for any X and S, it follows that E2 ≤ 0. Thus the remainder

of proof will be to show that E1 ≥ 0.

Recall that
X = θ +BZ0,

Y i = BZi, i = 1, . . . , n,

where Z0,Z1, . . . ,Zn are mutually and independently distributed as Nr(0r, Ir). Making

the change of variables U = H tX yields that U ∼ Nr(ξ,Ω) with ξ = H tθ and Ω =

H tΣH = BtB. Noting that, from Lemma 2.2 (4),

Σ+ = B(BtB)−2Bt = HΩ−1H t,

we can see that

X tΣ+θ = X tHΩ−1H tθ = U tΩ−1ξ.

Hence E1 is expressed as

E1 = E[{g+(U)− g(U)}U tΩ−1ξ],

where g(U ) = g(HU +B0B
t
0θ,S).

The conditional expectation of {g+(U)− g(U )}U tΩ−1ξ given S = Y tY is written as

E0 = K(Ω)

∫
Rr

{g+(u)− g(u)}utΩ−1ξ e−(1/2)(u−ξ)tΩ−1(u−ξ)du

= K(Ω)

∫
Rr

{g+(u)− g(u)}utΩ−1ξ eu
tΩ−1ξe−utΩ−1u/2−ξtΩ−1ξ/2du, (2.4)
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where K(Ω) stands for a normalizing constant. Making the transformation u → −u, we

obtain

E0 = K

∫
Rr

{g+(u)− g(u)}(−utΩ−1ξ e−utΩ−1ξ)e−utΩ−1u/2−ξtΩ−1ξ/2du (2.5)

by the assumption that g(u) = g(−u). Hence, adding each sides of (2.4) and (2.5) yields

that

2E0 = K(Ω)

∫
Rr

{g+(u)− g(u)}utΩ−1ξ (eu
tΩ−1ξ − e−utΩ−1ξ)e−utΩ−1u/2−ξtΩ−1ξ/2du.

It is noted that y(ey − e−y) ≥ 0 for any real y, which verifies that

utΩ−1ξ (eu
tΩ−1ξ − e−utΩ−1ξ) ≥ 0.

Since g+(u) − g(u) ≥ 0, it is seen that E0 ≥ 0, namely E1 ≥ 0. Thus the proof is

complete. □

2.3 Minimax estimation

For the mean vector θ, one of natural estimators is the unbiased estimator

δUB = X.

As pointed out by Khatri (1968, page 276) and Rao (1973, page 532), δUB is the maximum

likelihood estimator of θ. Since X has the stochastic representation X = θ +BZ0 with

Z0 ∼ Nr(0r, Ir), we observe that Z0 = B+(X − θ), so that

∥Z0∥2 = (X − θ)t(Bt)+B+(X − θ) = (X − θ)tΣ+(X − θ).

The risk of δUB is given by

R(δUB,θ|Σ) = E[∥Z0∥2] = r.

Hence δUB has the constant risk r. We here have the following theorem.

Theorem 2.1 δUB is minimax relative to the loss (1.2).

Proof. In order to prove this theorem, we consider a sequence of prior distributions

and show that the corresponding sequence of the Bayes risk functions tends to the risk of

δUB, namely r.

Suppose that θ = Bζ with Σ = BBt, where ζ is an r-dimensional random vector.

For k = 1, 2, . . . , define the sequence of prior distributions of ζ as Nr(0r, kIr). Assume

that B has a proper density proportional to

π(B) ∝ |BtB|−p exp
{
−1

2
tr (BtB)−1

}
.
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The joint posterior density of ζ and B given X and S = Y tY is proportional to

|BtB|−p−(n+1)/2 exp
{
−1

2

[
∥B+(X−Bζ)∥2+tr (B+)tB+S+

1

k
∥ζ∥2+tr (BtB)−1

]}
. (2.6)

It is noted that B+(X −Bζ) = B+X − ζ, which yields that

∥B+(X −Bζ)∥2 + 1

k
∥ζ∥2 = 1 + k

k

∥∥∥ζ − k

1 + k
B+X

∥∥∥2

+
1

1 + k
X t(Bt)+B+X.

Since tr (BtB)−1 = trB(BtB)−2Bt = tr (B+)tB+, (2.6) is rewritten as

|BtB|−p−(n+1)/2 exp
{
−1

2

[1 + k

k

∥∥∥ζ − k

1 + k
B+X

∥∥∥2

+ tr (B+)tB+Gk

]}
,

where Gk = Ip + (1 + k)−1XX t + S.

For each k, the resulting Bayes estimator relative to the loss (1.2) is denoted by δπ
k ,

which must satisfy

Eπ
k [Σ

+(δπ
k − θ)] = Eπ

k [(B
+)tB+]δπ

k − Eπ
k [(B

+)tζ] = 0p,

where Eπ
k indicates the posterior expectation for each k. Here Eπ

k [(B
+)tB+] is given by

Eπ
k [(B

+)tB+] = K(Gk)

∫
Rp×r

(B+)tB+|BtB|−p−(n+1)/2 exp
{
−1

2
tr (B+)tB+Gk

}
dB,

where K(Gk) is a normalizing constant. From Lemma 2.5, the Jacobian of transformation

C = B+ = (BtB)−1Bt is given by J [B → C] = |CCt|−p, so that

Eπ
k [(B

+)tB+] = K(Gk)

∫
Rr×p

CtC|CCt|(n+1)/2 exp
{
−1

2
trCtCGk

}
dC.

Denoting a maximum eigenvalue of Gk by ℓk, we observe that

Eπ
k [(B

+)tB+] ≥ K(Gk)

∫
Rr×p

CtC|CCt|(n+1)/2 exp
{
−ℓk

2
trCtC

}
dC = I0, say,

where, for a symmetric matrices A1 and A2, A1 ≥ A2 means A1 −A2 is positive semi-

definite. For every O ∈ O(p), making the transformation C → CO yields that I0 =

OtI0O, which implies that I0 has the form cIp with c > 0. Thus Eπ
k [(B

+)tB+] is positive

definite for all k, so that the inverse of Eπ
k [(B

+)tB+] exists. Then for each k, δπ
k can be

written as

δπ
k =

{
Eπ

k [(B
+)tB+]

}−1
Eπ

k [(B
+)tζ]

=
k

1 + k

{
Eπ

k [(B
+)tB+]

}−1
Eπ

k [(B
+)tB+]X =

k

1 + k
X.

The risk of δπ
k = {k/(1 + k)}X is given by

R(δπ
k ,θ|Σ) =

k2r

(1 + k)2
+

1

(1 + k)2
θtΣ+θ =

k2r

(1 + k)2
+

1

(1 + k)2
∥ζ∥2,

so the Bayes risk of δπ
k is expressed as kr/(1+ k), which converges to r as k → ∞. Hence

the proof is complete. □
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3 Classes of Minimax and Shrinkage Estimators

Consider the Baranchik (1970) type class of shrinkage estimators

δSH =

(
1− ϕ(F )

F

)
X,

where ϕ is a bounded and differentiable function of F = X tS+X. This includes the

James-Stein type shrinkage estimator

δJS =

(
1− a

F

)
X,

where a is a positive constant.

Theorem 3.1 The statistic F = X tS+X has the same distribution as F = ∥U∥2/T ,
where U and T are mutually and independently distributed as U ∼ Nr(ζ, Ir) and T ∼ χ2

m

for ζ = B+θ and m = n− r+1. When the risk difference of the estimators δSH and δUB

is denoted by

∆ = R(δSH ,θ|Σ)−R(δUB,θ|Σ),

one gets the expression ∆ = E[∆̂(F )], where

∆̂(F ) =
{(m+ 2)ϕ(F )− 2(r − 2)}ϕ(F )

F
− 4ϕ′(F ){ϕ(F ) + 1}. (3.1)

This shows that ∆̂(F ) is an unbiased estimator of the risk difference ∆.

Theorem 3.2 The risk difference ∆ given in Theorem 3.1 is rewritten as

∆ = E
[T
2
Fm/2

∫ ∞

F

1

tm/2+1
∆̂(t)dt

]
, (3.2)

where ∆̂(·) is given in (3.1). Further, one gets the expression

Fm/2+1

2

∫ ∞

F

1

tm/2+1
∆̂(t)dt = I(F ), (3.3)

where I(F ) is defined by

I(F ) = ϕ(F ){ϕ(F ) + 2} − (m+ r)

∫ 1

0

zm/2ϕ(F/z)dz. (3.4)

Combining (3.2) and (3.3) shows that

∆ = E
[T
F
I(F )

]
. (3.5)
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Theorem 3.2 implies that the estimator δSH is minimax if the following integral in-

equality holds:

I(F ) ≤ 0. (3.6)

The integral inequality was first derived by Kubokawa (2009) with a slightly different

way. Using the same technique as in Kubokawa (2009), Theorem 3.2 derives the integral

inequality directly from ∆̂(F ).

The integral inequality I(F ) ≤ 0 is expressed as

ϕ(F ) ≤ −2 + (m+ r)

∫ 1

0
zm/2ϕ(F/z)dz

ϕ(F )
, (3.7)

so that one gets another sufficient condition for the minimaxity by evaluating the r.h.s.

of (3.7). For instance, if F cϕ(F ) is nondecreasing in F for a nonnegative constant c, then

we have (F/z)cϕ(F/z) ≥ F cϕ(F ) for 0 < z < 1, so that∫ 1

0

zm/2ϕ(F/z)dz =

∫ 1

0

zm/2(z/F )c{(F/z)cϕ(F/z)}dz

≥
∫ 1

0

zm/2(z/F )c{F cϕ(F )}dz

=

∫ 1

0

zm/2+cdzϕ(F ) =
2

m+ 2 + 2c
ϕ(F ),

Thus, the integral inequality (3.7) gives a simple condition ϕ(F ) ≤ 2(r−2−2c)/(m+2+2c).

Proposition 3.1 Assume that F cϕ(F ) is nondecreasing in F for c ≥ 0. If

0 < ϕ(F ) ≤ 2(r − 2− 2c)

n− r + 3 + 2c
, min(n, p) ≥ r ≥ 3, (3.8)

then δSH is minimax relative to the loss (1.2).

Corollary 3.1 If

0 < a ≤ 2(r − 2)

n− r + 3
, min(n, p) ≥ r ≥ 3,

then δJS is minimax relative to the loss (1.2).

A well-known condition for the minimaxity is the differential inequality

∆̂(F ) ≤ 0. (3.9)

It is interesting to note that from Theorem 3.2, the differential inequality implies the

integral inequality, namely, condition (3.9) is more restrictive than (3.6). For instance,

we shall derive a similar condition to (3.8) from the differential inequality (3.9) under the

11



condition that F cϕ(F ) is nondecreasing in F for c ≥ 0. It is noted that ∆̂(F ) can be

rewritten as

∆̂(F ) =
(m+ 2 + 4c)ϕ2(F )− 2(r − 2− 2c)ϕ(F )

F
− 4

(F cϕ(F ))′

F c
{ϕ(F ) + 1},

which provides a sufficient condition that (1) F cϕ(F ) is nondecreasing in F for c ≥ 0 and

(2) ϕ(F ) ≤ 2(r − 2− 2c)/(n− r + 3 + 4c) for m = n− r + 1. The condition (2) is more

restrictive than condition (3.8) in Proposition 3.1.

Theorems 3.1 and 3.2 show that the risk of δSH relative to the loss (1.2) is represented

by expectation of a function of F . The statistic F has a noncentral F like distribution

depending on the parameter ∥ζ∥2. Hence the risk of δSH is a function of

∥ζ∥2 = θt(B+)tB+θ = θtΣ+θ.

We now give proofs of Theorems 3.1 and 3.2. The following lemmas are useful for the

purpose.

Lemma 3.1 Let U be a random vector such that U ∼ Nr(ξ,Ω). Denote by ∇ = (∂/∂Ui)

the differential operator vector with respect to U = (Ui). Let G = (Gi) be an r-dimensional

function of U , such that E[|UiGi|] < ∞ and E[|∂Gi/∂Uj|] < ∞ for i, j = 1, . . . , r. Then

we have

E[(U − ξ)tΩ−1G] = E[tr∇Gt].

Lemma 3.2 Let T be a random variable such that T ∼ χ2
m. Let g(t) be a differentiable

function such that E[|g(T )|] < ∞ and E[|Tg′(T )|] < ∞. Then we have E[Tg(T )] =

E[mg(T ) + 2Tg′(T )] and

E[T 2g(T )] = E[(m+ 2)Tg(T ) + 2T 2g′(T )].

Proof of Theorem 3.1. Let H = B(BtB)−1/2. Using the same arguments as

in the proof of Proposition 2.2, we observe that U = H tX ∼ Nr(ξ,Ω) with ξ =

H tθ and Ω = BtB. Also, it follows that S = BZtZBt = HWH t, where W =

(BtB)1/2ZtZ(BtB)1/2 ∼ Wr(n,Ω) independent of U . Since Σ+ = HΩ−1H t, H ∈ Vp,r

and

X tS+X = X t(HWH t)+X = X t(H t)+W−1H+X = U tW−1U ,

the difference in risk between δSH and δUB is given by

R(δSH ,θ|Σ)−R(δUB,θ|Σ) = E

[
ϕ2(F )

F 2
X tΣ+X − 2

ϕ(F )

F
(X − θ)tΣ+X

]
= E

[
ϕ2(F1)

F 2
1

U tΩ−1U − 2
ϕ(F1)

F1

(U − ξ)tΩ−1U

]
(3.10)
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with F1 = U tW−1U . Applying Lemma 3.1 to the second term in the last r.h.s. of (3.10)

gives that

R(δSH ,θ|Σ)−R(δUB,θ|Σ) = E

[
ϕ2(F1)

F 2
1

U tΩ−1U − 2(r − 2)
ϕ(F1)

F1

− 4ϕ′(F1)

]
. (3.11)

It is a well-known fact that U tΩ−1U/U tW−1U ∼ χ2
n−r+1 independent of U tΩ−1U .

Letting U = U tΩ−1U and T = U tΩ−1U/U tW−1U , we obtain F1 = U/T and rewrite

(3.11) as

R(δSH ,θ|Σ)−R(δUB,θ|Σ) = E

[
T 2ϕ2(U/T )

U
− 2(r − 2)

Tϕ(U/T )

U
− 4ϕ′

(U
T

)]
.

Applying Lemma 3.2 to the first term of the r.h.s. yields that

E

[
T 2ϕ2(U/T )

U

]
= EU

[
ET |U

[
T 2ϕ2(U/T )

U

]]
= E

[
(n−r+3)

Tϕ2(U/T )

U
−4ϕ

(U
T

)
ϕ′
(U
T

)]
,

so that

R(δSH ,θ|Σ)−R(δUB,θ|Σ)

= E

[{
(n− r + 3)ϕ

(U
T

)
− 2(r − 2)

}
Tϕ(U/T )

U
− 4ϕ′

(U
T

){
ϕ
(U
T

)
+ 1

}]
= E[{(n− r + 3)ϕ(F )− 2(r − 2)}ϕ(F )/F − 4ϕ′(F ){ϕ(F ) + 1}].

Making the transformation Ω−1/2U → U gives that the resulting U is distributed as

Nr(ζ, Ir) with ζ = Ω−1/2ξ = (BtB)−1Btθ = B+θ. Hence the proof is complete. □

Proof of Theorem 3.2. Let U = ∥U∥2. For F = U/T , let

G(F ) =
Fm/2

2

∫ ∞

F

1

tm/2+1
∆̂(t)dt.

Then from Lemma 3.2, it follows that

ET |U [TG(F )] = ET |U [mG(F )− 2T
U

T 2
G′(F )],

where ET |U [·] denotes the conditional expectation with respect to T given U . Since

mG(F )− 2FG′(F ) = ∆̂(F ), it is easy to see that

E[TG(F )] = E[∆̂(F )],

which shows (3.2). To show the equality (3.3), it is noted that∫ ∞

F

∆̂(t)

tm/2+1
dt =

∫ ∞

F

{(m+ 2)ϕ2(t)− 2(r − 2)ϕ(t)

tm/2+2
− 4

ϕ′(t){ϕ(t) + 1}
tm/2+1

}
dt. (3.12)
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By integration by parts, it is observed that∫ ∞

F

ϕ′(t)

tm/2+1
dt =− ϕ(F )

Fm/2+1
+
m+ 2

2

∫ ∞

F

ϕ(t)

tm/2+2
dt,∫ ∞

F

ϕ(t)ϕ′(t)

tm/2+1
dt =− 1

2

ϕ2(F )

Fm/2+1
+
m+ 2

4

∫ ∞

F

ϕ2(t)

tm/2+2
dt.

Then from (3.12), we have∫ ∞

F

∆̂(t)

tm/2+1
dt =− 2(m+ r)

∫ ∞

F

ϕ(t)

tm/2+2
dt+ 2

ϕ2(F )

Fm/2+1
+ 4

ϕ(F )

Fm/2+1

=
2

Fm/2+1

{
ϕ(F ){ϕ(F ) + 2} − (m+ r)

∫ 1

0

zm/2ϕ(F/z)dz
}
, (3.13)

where the second equality is derived by making the transformation z = F/t with dz =

−(F/t2)dt. The expression given in (3.13) shows (3.3) and (3.4). Finally, the equality

(3.5) follows since ∆ = E[TG(F )] = E[(T/F )I(F )]. □

4 A Bayesian Motivation and Generalized Bayes and

Minimax Estimators

4.1 Empirical Bayes approach

We begin by giving a Bayesian motivation for the James-Stein type shrinkage estimator.

Under the singular case of the covariance matrix, we here demonstrate that the James-

Stein (1961) type shrinkage estimator can be provided as an empirical Bayes estimator

using an argument similar to that in Efron and Morris (1972).

The empirical Bayesian approach considered here consists of the following steps: (1)

Reduce the estimation problem to that on the r-dimensional subspace in Rp spanned by

column vectors of B; (2) Derive an empirical Bayes estimator on the subspace; (3) Return

the Bayes estimator to the original whole space.

Step (1). Let

H = B(BtB)−1/2,

where (BtB)−1/2 is a symmetric square root of (BtB)−1. Note that H ∈ Vp,r and

HH t = ΣΣ+ = SS+.

Since X = θ +BZ0 with Z0 ∼ Nr(0r, Ir), it follows that

H tX = H tθ +H tBZ0 = H tθ + (BtB)1/2Z0,

so that H tX ∼ Nr(ξ,Ω), where Ω = BtB and

ξ = H tθ. (4.1)

14



For the stochastic representation S = BZtZBt, S can be expressed by

S = HWH t,

where W = (BtB)1/2ZtZ(BtB)1/2 ∼ Wr(n,B
tB). Also, it is seen that H tSH = W

and

Σ+ = B(BtB)−2Bt = HΩ−1H t. (4.2)

Then we assume that H is fixed and rewrite the likelihood of X and S as

L(U ,W |ξ,Ω)

= K|Ω|−(n+1)/2|W |(n−r−1)/2 exp
{
−1

2
(U − ξ)tΩ−1(U − ξ)− 1

2
trΩ−1W

}
, (4.3)

where U = H tX and K is a positive constant. It is noted that U and W are random

and ξ and Ω are unknown parameters.

Step (2). We here consider the following prior distribution for ξ = H tθ:

ξ ∼ Nr(0r, {(1− η)/η}Ω), 0 < η < 1, (4.4)

where η is a hyperparameter. Multiplying (4.3) by the density of (4.4), we observe that

the posterior distribution of ξ given U and W is

ξ|U ,W ∼ Nr

(
ξ̂
B
(U ,W , η), (1− η)Ω

)
,

where ξ̂
B
(U ,W , η) = (1− η)U . Also, the marginal density is proportional to

ηr/2|Ω|−(n+1)/2|W |(n−r−1)/2 exp
[
−η
2
U tΩ−1U − 1

2
trΩ−1W

]
. (4.5)

Since ξ̂
B
(U ,W , η) is the Bayes estimator relative to the squared errors loss, the Bayes

estimator of θ is given by

δB(U ,W , η) = Hξ̂
B
(U ,W , η) = (1− η)HU .

The parameter η in δB(U ,W , η) requires to be estimated from the marginal density

(4.5), which is equivalent to the model that U ∼ Nr(0r,Ω/η) and W ∼ Wr(n,Ω). A

reasonable estimator of η is of the form, for a positive constant a,

η̂ =
a

U tW−1U
,

which includes the unbiased estimator

η̂UB =
r − 2

(n− r + 1)U tW−1U
.
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The estimator η̂ is substituted into the Bayes estimator δB(U ,W , η) to get the empirical

Bayes estimator

δEB =
(
1− a

U tW−1U

)
HU =

(
1− a

X tS+X

)
SS+X

because HU = HH tX = SS+X and

U tW−1U = X tHW−1H tX = X t(HWH t)+X = X tS+X.

Since η is restricted to 0 < η < 1, we should find an optimal estimator subject to

0 < η < 1. For instance, such optimal estimator is given by

η̂TR = min
{
1,

a

U tW−1U

}
= min

{
1,

a

X tS+X

}
,

which is used to obtain

δTR =
(
1−min

{
1,

a

X tS+X

})
SS+X = max

{
0, 1− a

X tS+X

}
SS+X.

Step (3). From Proposition 2.1, δEB has the same risk as the James-Stein type shrink-

age estimator

δJS
1 =

(
1− a

X tS+X

)
X.

Similarly, δTR has the same risk as

δTR
1 = max

{
0, 1− a

X tS+X

}
X,

which is a positive-part James-Stein type shrinkage estimator. Thus the James-Stein

type and the positive part James-Stein type shrinkage estimators can be characterized by

empirical Bayes approach.

4.2 Generalized Bayes and minimax estimators

In this subsection we derive generalized Bayes estimators for a hierarchical prior and

discuss the minimaxity. The hierarchical prior is analogous to that of Lin and Tsai (1973)

in a nonsingular multivariate normal model.

A generalized Bayes estimator δGB
0 relative to the loss (1.2) needs to satisfy

Eπ[Σ+(δGB
0 − θ)] = 0p, (4.6)

where Eπ denotes the posterior expectation given X and Y . Now, using (4.1) and (4.2)

with the assumption that H is fixed, we rewrite the expression (4.6) as

Eπ[Σ+(δGB
0 − θ)] = Eπ[Σ+]δGB

0 − Eπ[Σ+θ]

= HEπ[Ω−1]H tδGB
0 −HEπ[Ω−1H tθ]

= HEπ[Ω−1]H tδGB
0 −HEπ[Ω−1ξ] = 0p,
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so that

H tδGB
0 =

{
Eπ[Ω−1]

}−1
Eπ[Ω−1ξ]. (4.7)

Here, we define a prior distribution of (ξ,Ω). Assume that (ξ,Ω) has a hierarchical

prior distribution and the joint density is given by

π(ξ,Ω) ∝
∫ 1

0

π(ξ,Ω|η)π(η)dη, (4.8)

where

π(ξ,Ω|η) ∝ |Ω|−b/2
∣∣∣1− η

η
Ω
∣∣∣−1/2

exp
{
− η

2(1− η)
ξtΩ−1ξ

}
, π(η) ∝ ηa/2

with constants a and b. Multiplying (4.3) by (4.8) yields the joint posterior density of ξ

and Ω given X and Y , which is proportional to∫ 1

0

|(1− η)Ω|−1/2 exp
[
− 1

2(1− η)
{ξ − (1− η)U}tΩ−1{ξ − (1− η)U}

]
× |Ω|−(n+b+1)/2 exp

[
−1

2
trΩ−1(ηUU t +W )

]
× η(a+r)/2dη

for a+ r > −2 and n+ b− 2r ≥ 0. Therefore, integrating out (4.7) with respect to ξ and

Ω gives that

H tδGB
0 = {Eπ

η [(ηUU t +W )−1]}−1Eπ
η [(1− η)(ηUU t +W )−1]U ,

where Eπ
η stands for expectation with respect to the posterior density of η given U and

W , which is proportional to

π(η|U ,W ) ∝ η(a+r)/2|ηUU t +W |−(n+b−r)/2

∝ η(a+r)/2(1 + ηF )−(n+b−r)/2

with F = U tW−1U . A simple manipulation leads to

H tδGB
0 =

{
1−

Eπ
η [η(1 + ηF )−1]

Eπ
η [(1 + ηF )−1]

}
U

=

{
1−

∫ 1

0
η · η(a+r)/2(1 + ηF )−(n+b−r+2)/2dη∫ 1

0
η(a+r)/2(1 + ηF )−(n+b−r+2)/2dη

}
U ,

which yields that

H tδGB
0 =

(
1− ϕGB(F )

F

)
H tX, (4.9)

where F = X tS+X and

ϕGB(F ) =

∫ F

0
η · η(a+r)/2(1 + η)−(n+b−r+2)/2dη∫ F

0
η(a+r)/2(1 + η)−(n+b−r+2)/2dη

.
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The expression (4.9) indicates a system of linear equations in δGB
0 . Since H ∈ Vp,r,

using Lemma 2.4 yields the reasonable solution of the system (4.9),

δGB
0 =

(
1− ϕGB(F )

F

)
X + (Ip − SS+)a,

where SS+ = HH t and a is an arbitrary p-dimensional vector. From Proposition 2.1,

the vector (Ip − SS+)a has no effect on the risk of δGB
0 , so that we define the resulting

generalized Bayes estimator as

δGB =
(
1− ϕGB(F )

F

)
X.

It is easy to verify that ϕGB(F ) is nondecreasing in F and

lim
F→∞

ϕGB(F ) =
a+ r + 2

n− a+ b− 2r − 2
.

Using Proposition 3.1, we obtain the following proposition.

Proposition 4.1 Assume that a+ r > −2, n+ b− 2r ≥ 0 and

0 <
a+ r + 2

n− a+ b− 2r − 2
≤ 2(r − 2)

n− r + 3
.

Then δGB is minimax relative to the loss (1.2).

In the case such that Σ = σ2Ip for an unknown positive parameter σ2, several priors

have been proposed for constructing minimax estimators. For instance, see Maruyama

and Strawderman (2005), Wells and Zhou (2008) and Kubokawa (2009). Their priors

can be applied to our singular case and we can derive some classes of generalized Bayes

minimax estimators improving on the James-Stein type shrinkage estimator. However,

the detailed discussion is omitted here.

5 Extensions and Remarks

In the previous sections, under the assumption min(n, p) ≥ r, we have derived classes of

minimax and shrinkage estimators. Out of the classes, we have singled out the generalized

Bayes and minimax estimators with hierarchical prior. In this section, we mention some

extensions and remarks.

Concerning the class of minimax estimators, we can treat the case p ≥ r > n as well

as the case min(n, p) ≥ r. In the case p ≥ r > n, consider the Chételat and Wells (2012)

type class of shrinkage estimators given by

δCW = X − ϕ(F )

F
SS+X,

where ϕ(F ) is a bounded and differentiable function of F = X tS+X.
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Proposition 5.1 In the case p ≥ r > n, the risk difference of the estimators δCW and

δUB is written as R(δCW ,θ|Σ)− R(δUB,θ|Σ) = E[∆̂(F )], where ∆̂(F ) is given in (3.1)

for m = r − n+ 1 and F = X tS+X.

Proof. In the case such that p > r > n, the rank of Σ is r, while that of S is n.

Write S as

S = BZtZBt = B(BtB)−1/2W (BtB)−1/2Bt,

where W = (BtB)1/2ZtZ(BtB)1/2 is the r × r singular Wishart matrix with n degrees

of freedom and mean nBtB. Since W is of rank n, it can be decomposed as W = RLRt,

where R ∈ Vr,n and L ∈ Dn. Noting that B(BtB)−1/2R ∈ Vp,n, we observe from Lemma

2.3 that

S+ = {B(BtB)−1/2RLRt(BtB)−1/2Bt}+

= B(BtB)−1/2RL−1Rt(BtB)−1/2Bt

= B(BtB)−1/2W+(BtB)−1/2Bt,

which leads to

SS+ = B(BtB)−1/2WW+(BtB)−1/2Bt.

Let U = (BtB)−1/2BtX, ξ = (BtB)−1/2Btθ and Ω = BtB. It follows that U ∼
Nr(ξ,Ω). Note that Ω is positive definite and

X tS+X = X tB(BtB)−1/2W+(BtB)−1/2BtX = U tW+U .

Similarly, we obtain

(X − θ)tΣ+SS+X = (U − ξ)tΩ−1WW+U

and

X tSS+Σ+SS+X = U tWW+Ω−1WW+U .

Thus the difference in risk of δCW and δUB can be written as

R(δCW ,θ|Σ)−R(δUB,θ|Σ)

= E

[
ϕ2(F )

F 2
X tSS+Σ+SS+X − 2

ϕ(F )

F
(X − θ)tΣ+SS+X

]
= E

[
ϕ2(F1)

F 2
1

U tWW+Ω−1WW+U − 2
ϕ(F1)

F1

(U − ξ)tΩ−1WW+U

]
,

where F1 = U tW+U . Note that W ∼ Wr(n,Ω) and trWW+ = n < r. Using the same

arguments as in the proof of Theorem 1 in Chételat and Wells (2012), we can see that

R(δCW ,θ|Σ)−R(δUB,θ|Σ)

= E

[
ϕ2(F1)

n+ r − 2trWW+ + 3

F1

− 2ϕ(F1)
trWW+ − 2

F1

− 4ϕ′(F1){ϕ(F1) + 1}
]

= E

[
{(r − n+ 3)ϕ(F )− 2(n− 2)}ϕ(F )

F
− 4ϕ′(F ){ϕ(F ) + 1}

]
,
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where F = X tS+X. □

In the case p > r > n, the minimaxity of the unbiased estimator can be established

by the same Bayesian method as in Section 2.3. Also, a positive-part rule is applicable

to δCW , which is verified by the same lines as in Tsukuma and Kubokawa (2014). It is,

however, hard to construct a generalized Bayes minimax estimator in the case p ≥ r > n.

Since p ≥ r, as possible ordering among p, n and r, we can consider the three cases:

n ≥ p = r, min(n, p) > r and p ≥ r > n. The first case is a standard nonsingular model,

and the risk expression was given in the literature. The rest of the cases have been treated

in Theorem 3.1 and Proposition 5.1 of this paper. Combining these results yields a unified

expression of the risk difference.

Proposition 5.2 For the three cases n ≥ p = r, min(n, p) > r and p ≥ r > n, consider

the class of the shrinkage estimators of the form δCW = X − {ϕ(F )/F}SS+X for F =

X tS+X. Then the unified expression of the risk difference between δCW and δUB is given

by R(δCW ,θ|Σ)−R(δUB,θ|Σ) = E[∆̂(F )] where

∆̂(F ) =
{(m+ 2)ϕ(F )− 2(min(n, r)− 2)}ϕ(F )

F
− 4ϕ′(F ){ϕ(F ) + 1},

for m = |n− r|+ 1.

We conclude this section with some remarks on the related topics. It is noted that

the loss function given in (1.2) measures the accuracy of estimators on the r-dimensional

subspace in Rp spanned by column vectors ofB. We should possibly measure the accuracy

on the whole space Rp and employ a quadratic loss with nonsingular weight matrix. Such

quadratic loss is, for instance,

LQ(δ,θ|B,B0) = (δ − θ)t(Σ+ +B0B
t
0)(δ − θ),

where B0 ∈ Vp,p−r such that B+
0 B = Bt

0B = 0(p−r)×r. It is easy to handle the risk of

shrinkage type estimators

δS =

{
1− ϕ(F0)

F0

}
X, F0 = X tS+X +X t(Ip − SS+)X.

Some dominance results can be provided for the above shrinkage estimators and their

positive part estimators.

Finally, we give a note on invariance of models. In the nonsingular case r = p, namely,

n > p, the covariance matrix Σ is nonsingular and the estimation problem considered in

this paper is invariant under the group of transformations

X → PX, θ → Pθ, S → PSP t, Σ → PΣP t

for a p×p nonsingular matrix P . The invariance is very important and verifies intuitively

reasonable estimators of the mean vector θ. Using the invariance shows that the risk of
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the Baranchik type shrinkage estimator δSH is a function of θtΣ−1θ. In the singular case

r < p, on the other hand, the estimation problem with the loss (1.2) does not preserve

invariance since (PΣP t)+ ̸= (P t)−1Σ+P−1 except when P is an orthogonal matrix.

However the risk of δSH is expressed as a function of θtΣ+θ.
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