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Abstract

This paper is concerned with the prediction of the conditional mean which involves
the fixed and random effects based on the natural exponential family with a quadratic
variance function. The best predictor is interpreted as the Bayes estimator in the Bayesian
context, and the empirical Bayes estimator (EB) is useful for small area estimation in the
sense of increasing precision of prediction for small area means. When data of the small
area of interest are observed and one wants to know the prediction error of the EB based
on the data, the conditional mean squared error (cMSE) given the data is used instead
of the conventional unconditional MSE. The difference between the two kinds of MSEs
is small and appears in the second-order terms in the classical normal theory mixed
model. However, it is shown that the difference appears in the first-order or leading
terms for distributions far from normality. Especially, the leading term in the cMSE is a
quadratic concave function of the direct estimate in the small area for the binomial-beta
mixed model, and an increasing function for the the Poisson-gamma mixed model, while
the leading terms in the unconditional MSEs are constants for the two mixed models.
Second-order unbiased estimators of the cMSE are provided in two ways based on the
analytical and parametric bootstrap methods. Finally, the performances of the EB and
the estimator of cMSE are examined through simulation and empirical studies.

Key words and phrases: Binomial-beta mixture model, conditional mean squared er-
ror, Fay-Herriot model, mixed model, natural exponential family with quadratic variance
function, Poisson-gamma mixture model, random effect, small area estimation.

1 Introduction

The empirical best linear unbiased predictors (EBLUP), which are empirical Bayes estimators
(EB) in the Bayesian context, have been recognized to give reliable small area estimates in
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the normal linear mixed models. The unconditional mean squared errors (MSE) have been
widely used as measure of uncertainty of EB, and their asymptotic approximations and their
approximated unbiased estimators have been studied in a lot of papers. For example, see Prasad
and Rao (1990), Ghosh and Rao (1994), Rao (2003), Datta, Rao and Smith (2005) and Hall and
Maiti (2006). When data of the small area of interest are observed, the practitioners want to
know how large prediction errors the EB estimates based on the observed data have. Concerning
this issue, the conventional unconditional MSEs do not give us appropriate estimation errors,
since it is an integrated measure. Booth and Hobert (1998) suggested the use of the conditional
MSE given the data of the small area of interest, and Datta, Kubokawa, Molina and Rao (2011)
and Torabi and Rao (2013) derived second-order unbiased estimators of the conditional MSE
in the Fay-Herriot and nested error regression models which are normal linear mixed models.
As pointed out in both papers, the difference between the unconditional and conditional MSEs
is small in the normal linear mixed models, since it appears in the second-order terms. In the
generalized linear mixed models, however, Booth and Hobert (1998) showed that the difference
is significant for distributions far from normality, namely, it appears in the first-order or leading
terms. To give a second-order unbiased estimator of the conditional MSE, they used the Laplace
approximation under the assumption that the sample size from the small area is large. It should
be regrettable that this assumption is against the situation in the small area estimation. In
this paper, we consider mixed models based on natural exponential families with quadratic
variance functions (NEF-QVF), and derive second-order approximations of cMSE of EB and
their second-order unbiased estimators as analytical methods under the assumption that the
sample size from the small area is bounded. For the small area estimation based on NEF-
QVF and the related studies, see Ghosh and Maiti (2004, 2008) and Kubokawa, Hasukawa and
Takahashi (2014).

To explain more details, let us consider the mixed model that (y1, θ1), . . . , (ym, θm) be mutu-
ally independent random variables such that for each i, the conditional distribution of yi given
θi depends on θi and an unknown parameter η, and the marginal distribution of θi depends on
η. It is assumed that we want to predict a scalar quantity ξi(θi,η) based on the observations

y1, . . . , ym. Then the posterior mean of ξi(θi,η) is given by ξ̂i(yi,η) = E[ξi(θi,η)|yi]. When
the parameter is consistently estimated with η̂ = η̂(y1, . . . , ym), one can estimate ξi(θi,η) with

ξ̂i = ξ̂i(yi, η̂). This estimator is evaluated in two ways: the unconditional and conditional
MSEs, given by

MSE(η, ξ̂i) =Eη[{ξ̂i(yi, η̂)− ξi(θi,η)}2],
cMSE(η, ξ̂i) =Eη[{ξ̂i(yi, η̂)− ξi(θi,η)}2|yi],

which are denoted by MSE and cMSE, respectively. When η is known, the best predictors of
ξi(θi,η) in terms of the two kinds of MSEs are the posterior mean ξ̂i(yi,η), which is the Bayes

estimator. Thus, the plug-in estimator ξ̂i(yi, η̂) corresponds to the empirical Bayes estimator
(EB). Booth and Hobert (1998) showed that the difference between the MSE and cMSE appears
in the second-order terms in the normal linear mixed models. Also they demonstrated that the
difference is significant for distributions far from the normality in the generalized linear mixed
models, where the leading terms in the cMSE are approximated by the Laplace approximation
under the assumption that the sample sizes from small areas are large.
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In this paper, we revisit the same problem and investigate more clearly the difference be-
tween the cMSE and the MSE. As a specific model, we treat the mixed model based on the
natural exponential families with quadratic variance functions (NEF-QVF). In this model, the
leading terms in the cMSE are expressed in explicit forms without assuming that the sample
sizes from small areas tend to infinity.

In Section 2, we begin by approximating the cMSE of EB in the general mixed models under
some suitable conditions on η̂ and ξ̂i(yi,η). The leading term in the cMSE is given by the
posterior variance V ar(ξi(θi,η)|yi), which is of order O(1). Second-order unbiased estimators
of cMSE are provided in two ways of the analytical and parametric bootstrap methods.

As an application of the general results in Section 2, we treat the mixed models based on
the NEF-QVF in Section 3. The unconditional MSE was derived by Ghosh and Maiti (2004),
who used the estimating equations suggested in Godambe and Thompson (1989) for estimating
the unknown parameter η. We employ the same methods and techniques as used in Ghosh and
Maiti (2004). The feature of the NEF-QVF is that the conditional variance of yi given θi is a
quadratic function of the mean ξi = E[yi|θi], namely,

V ar(yi|θi) = Q(ξi)/ni,

where ni is a known constant, and Q(x) = v0 + v1x + v2x
2 for constants v0, v1 and v2, which

are not simultaneously zero. For the normal, Poisson and binomial distributions, (v0, v1, v2)
corresponds to (1, 0, 0), (0, 1, 0) and (0, 1,−1), respectively. Then, it is demonstrated that the
leading terms in the cMSE are expressed in explicit forms of

V ar(ξi|yi) = Q(ξ̂i)/(ni + ν − v2),

where ξ̂i = (niyi+νmi)/(ni+ν) for unknown model parameters ν and mi. This shows that the
leading term is a constant for the normal distribution, while it is an increasing function of yi for
the Poisson distribution and a quadratic concave function of yi for the binomial distribution.

In Section 3, we provide a second-order approximation of the cMSE without assuming that
ni tends to infinity. We also derive an analytical and closed form of a second-order unbiased
estimator of cMSE. In the generalized linear mixed models, it is hard to derive an analytical
estimator with a closed form for the cMSE, and Booth and Hobert (1998) suggested an estimator
using the parametric bootstrap method. The result in Section 3 means that it is possible in the
mixed models based on NEF-QVF, however. Some examples are illustrated for the Fay-Herriot,
the Poisson-gamma mixture and the binomial-beta mixture models.

The simulation and empirical studies are reported in Section 4. For the empirical studies,
we treat two data sets. One is the Stomach Cancer Mortality Data in Saitama prefecture in
Japan, and we apply the Poisson-gamma mixture model. The other is the Infant Mortality Data
Before World War II in Ishikawa prefecture in Japan, and we use the binomial-beta mixture
model since the mortality rate is distributed around p = 0.2. Since cMSE depends on the data
of the area of interest, the estimates of cMSE are more variable than those of MSE. For some
areas, cMSE gives much higher risks than MSE, and we should note that the conventional MSE
seems to under-estimate a prediction error of the EB estimate for given data of the area. Thus,
we recommend to provide the estimates of cMSE as well as the estimates of MSE. Finally, the
concluding remarks are given in Section 5, and the technical proofs are given in the Appendix.
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2 Conditional MSE of Empirical Bayes Estimator in Gen-

eral Mixed Models

Let y = (y1, . . . , ym)
t be a vector of observable random variables, and let θ = (θ1, . . . , θm)

t

be a vector of unobservable random variables. Let η be a q-dimensional vector of unknown
parameters. In this paper, we treat continuous or discrete cases for yi and θ. The conditional
probability density (or mass) function of yi given (θi,η) is denoted by f(yi|θi,η), and the
conditional probability density (or mass) function of θi given η is denoted by π(θi|η), namely,

yi|(θi,η) ∼f(yi|θi,η)
θi|η ∼π(θi|η)

i = 1, . . . ,m. (1)

This expresses the general parametric mixed models. Since it can be interpreted as a Bayesian
model, we here use the terminology used in Bayes statistics. In the continuous case, the
marginal density function of yi for given η and the conditional (or posterior) density function
of θi given (yi,η) are given by

mπ(yi|η) =
∫
f(yi|θi,η)π(θi|η)dθi

π(θi|yi,η) =f(yi|θi,η)π(θi|η)/mπ(yi|η)
i = 1, . . . ,m, (2)

and we use the same notations in the discrete case. Then, for i = 1, . . . ,m, we consider the
problem of predicting a scalar quantity ξi(θi,η) of each small area.

When ξi(θi,η) is predicted with ξ̂i = ξ̂i(y), the predictor ξ̂i can be evaluated with the
unconditional and conditional MSEs, described as

MSE(η, ξ̂i) =E
[{
ξ̂i − ξi(θi,η)

}2]
,

cMSE(η, ξ̂i|yi) =E
[{
ξ̂i − ξi(θi,η)

}2|yi],
which are denoted by MSE and cMSE, respectively. The best predictors of ξi(θi,η) in terms of
the two kinds of MSEs are the conditional mean given by

ξ̂i(yi,η) = E [ξi(θi,η)|yi] ,

which is the Bayes estimator in the Bayesian context. Since η is unknown, we need to estimate η
from observations y1, . . . , ym. Substituting an estimator η̂ into ξ̂i(yi,η) results in the empirical

Bayes (EB) estimator ξ̂i(yi, η̂).

In this paper, we focus on asymptotic evaluations of the cMSE. To this end, we assume the
following conditions on the estimator η̂ and the predictor ξ̂i(yi,η) for large m:

Assumption 1.

(A.1) The dimension q of η is bounded and the estimator η̂ satisfies that (η̂−η)|yi = Op(m
−1/2)

and E[η̂ − η|yi] = Op(m
−1) for i = 1, . . . ,m.
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(A.2) For i = 1, . . . ,m, ξi(θi,η) = Op(1) and ξ̂i(yi,η) = Op(1). The estimator ξ̂i(yi,η) is
continuously differentiable with respect to η, and

∂ξ̂i(yi,η)/∂η = Op(1).

Under conditions (A1) and (A2), we get a second-order approximation of cMSE of ξ̂i(yi, η̂).
Let

T1i(yi,η) =V ar(ξi(θi,η)|yi), (3)

T2i(yi,η) =E
[{

(η̂ − η)t
∂ξ̂i(yi,η)

∂η

}2∣∣∣yi], (4)

where T1i(yi,η) is the conditional or posterior variance of ξi(θi,η). It is noted that T1i(yi,η) =
Op(1) and T2i(yi,η) = Op(m

−1) under Assumption 1.

Theorem 1. Under assumption 1, the conditional MSE of ξ̂i(yi, η̂) is approximated as

cMSE(η, ξ̂i(yi, η̂)|yi) = T1i(yi,η) + T2i(yi,η) + op(m
−1). (5)

Proof. Since E[ξi − ξ̂i(yi,η)|yi] = 0, it is observed that

cMSE(η, ξ̂i(yi, η̂)|yi) =E[{ξi(θi,η)− ξ̂i(yi,η) + ξ̂i(yi,η)− ξ̂i(yi, η̂)}2|yi]
=E[{ξi(θi,η)− ξ̂i(yi,η)}2|yi] + E[{ξ̂i(yi,η)− ξ̂i(yi, η̂)}2|yi], (6)

and that E[{ξi(θi,η)− ξ̂i(yi,η)}2|yi] = V ar(ξ(θi,η)|yi) = T1i(yi,η). It is noted that

ξ̂i(yi, η̂) = ξ̂i(yi,η) +
(∂ξ̂i(yi,η∗)

∂η

)t
(η̂ − η),

where η∗ is between η and η̂. Thus, we obtain

E[{ξ̂i(yi,η)− ξ̂i(yi, η̂)}2|yi] = E
[{

(η̂ − η)t
∂ξ̂i(yi,η)

∂η

}2∣∣∣yi]+ op(m
−1),

which shows Theorem 1.

We next derive second-order unbiased estimators of T1 and T2, which result in a second-
order unbiased estimator of cMSE. As seen from Theorem 1, the order of T2i(yi,η) is Op(m

−1),
so that we can estimate T2i(yi,η) by T2i(yi, η̂) unbiasedly up to second-order. For estimation
of T1i(yi,η), the naive estimator T1i(yi, η̂) has a second-order bias because T1i(yi,η) = Op(1).
It is observed that

E[T1i(yi, η̂)|yi] = T1i(yi,η) + T11i(yi,η) + T12i(yi,η) + op(m
−1), (7)

where

T11i(yi,η) =
(∂T1i(yi,η)

∂η

)t
E[(η̂ − η)|yi] (8)
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and

T12i(yi,η) =
1

2
tr
[(∂2T1i(yi,η)

∂η∂ηt

)
E
[
(η̂ − η)(η̂ − η)t|yi

]]
. (9)

It is noted that T11i(yi,η) = Op(m
−1) and T12i(yi,η) = Op(m

−1) under Assumption 1.

[Analytical method] It follows from (7) that a second-order unbiased estimator of cMSE is
given by

ĉMSEi(ξ̂i(yi, η̂)) = T1i(yi, η̂)− T11i(yi, η̂)− T12i(yi, η̂) + T2i(yi, η̂). (10)

Theorem 2. Under Assumption 1, the estimator (10) is a second-order unbiased estimator of
cMSE, namely

E
[
ĉMSEi(ξ̂i(yi, η̂))|yi

]
= cMSE(η, ξ̂i(yi, η̂)|yi) + op(m

−1).

As explained in Section 3, in the mixed model based on NEF-QVF, we can provide analytical
expressions for T11i and T12i, whereby we obtain a second-order unbiased estimator in a closed
form. In general, however, it is hard to obtain analytical expressions for T11i and T12i. In this
case, as given below, the parametric bootstrap method helps us obtain a feasible second-order
unbiased estimator of cMSE.

[Parametric bootstrap method] Since yi is fixed, a bootstrap sample is generated from

y∗j |(θ∗j , η̂) ∼ f(y∗j |θ∗j , η̂) j ̸= i, j = 1, . . . ,m,

where θ∗j ’s are mutually independently distributed as θ∗j |η̂ ∼ π(θ∗j |η̂). Noting that yi is fixed,
we construct the estimator η̂∗

(i) from the bootstrap sample

y∗1, . . . , y
∗
i−1, yi, y

∗
i+1, . . . , y

∗
m (11)

with the same technique as used to obtain the estimator η̂. Let E∗ [·|yi] be the expectation
with regard to the bootstrap sample (11). A second-order unbiased estimator of T1i(yi,η) is
given by

T 1i(yi, η̂) = 2T1i(yi, η̂)− E∗
[
T1i(yi, η̂

∗
(i))|yi

]
.

Then, it can be verified that E[T 1i(yi, η̂)|yi] = T1i(yi,η)+op(m
−1). In fact, from (7), it is noted

that
E[T1i(yi, η̂)|yi] = T1i(yi,η) + di(yi,η) + op(m

−1),

where di(yi,η) = T11i(yi,η) + T12i(yi,η). This implies that E∗
[
T1i(yi, η̂

∗
(i))|yi

]
= T1i(yi, η̂) +

di(yi, η̂) + op(m
−1). Since di(yi,η) is continuous in η and di(yi,η) = Op(m

−1), one gets
E[T 1i(yi, η̂)|yi] = T1i(yi,η) + op(m

−1).

For T2i(yi,η), from (6), it is estimated via parametric bootstrap method as

T ∗
2i(yi, η̂) = E∗[{ξ̂∗i (yi, η̂)− ξ̂∗i (yi, η̂

∗
(i))}2

∣∣yi].
It is noted that the estimator T ∗

2i(yi, η̂) is always available although an analytical expression of
T2i(yi,η) is not necessarily available. Combining the above results yields the estimator

ĉMSE
∗
i (ξ̂i(yi, η̂)) = T 1i(yi, η̂) + T ∗

2i(yi, η̂). (12)
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Theorem 3. Under Assumption 1, the estimator (12) is a second-order unbiased estimator of
cMSE, namely

E[ĉMSE
∗
i |yi] = cMSE(η, ξ̂i(yi, η̂)|yi) + op(m

−1).

3 Applications to NEF-QVF

We now apply the results in the previous section to the mixed models based on natural ex-
ponential families with quadratic variance functions (NEF-QVF). The mixed models are used
in context of small area estimation by Ghosh and Maiti (2004), who derived the second-order
approximation and its unbiased estimator of the unconditional MSE for calibrating uncertainty
of the empirical Bayes estimator. In this section, we handle an area level model with a survey
estimate from each area where the survey estimate has a distribution based on NEF-QVF,
and apply the results in the previous section to provide a second-order approximation and its
unbiased estimator for the conditional MSE of the EB. In our settings, it is assumed that the
known parameters ni’s, which correspond to sample sizes in small-areas in normal cases, are
bounded and the number of areas m is large.

3.1 Empirical Bayes estimator in NEF-QVF

Let y1, . . . , ym be mutually independent random variables where the conditional distribution of
yi given θi and the marginal distribution of θi belong to the the following natural exponential
families:

yi|θi ∼f(yi|θi) = exp[ni(θiyi − ψ(θi)) + c(yi, ni)],

θi|ν,mi ∼π(θi|ν,mi) = exp[ν(miθi − ψ(θi))]C(ν,mi),
(13)

where ni is a known scalar parameter and ν is an unknown scalar hyperparameter. Let
y = (y1, . . . , ym)

t and θ = (θ1, . . . , θm)
t. The function f(yi|θi) is the regular one-parameter

exponential family and the function π(θi|ν,mi) is the conjugate prior distribution. Define ξi by

ξi = E[yi|θi] = ψ′(θi),

which is the conditional expectation of yi given θi. Assume that ψ′′(θi) = Q(ξi), namely,

V ar(yi|θi) =
ψ′′(θi)

ni

=
Q(ξi)

ni

,

where Q(x) = v0 + v1x+ v2x
2 for known constants v0, v1 and v2 which are not simultaneously

zero. This means that the conditional variance V ar(yi|θi) is quadratic function of the condi-
tional expectation E[yi|θi]. This is the natural exponential family with the quadratic variance
function (NEF-QVF) introduced and investigated by Morris (1982, 1983). Similarly, the mean
and variance of the prior distribution are given by

E[ξi|mi, ν] = mi, V ar(ξi|mi, ν) =
Qi(mi)

ν − v2
. (14)
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In our settings, we consider the link given by

mi = ψ′(xt
iβ), i = 1, . . . ,m,

where xi is a p × 1 vector of explanatory variables and β is a p × 1 unknown common vector
of regression coefficients. Then, the unknown parameters η in the previous section correspond
to ηt = (βt, ν). The joint probability density (or mass) function of (yi, θi) can be expressed as

f(yi|θi)π(θi|ν,mi) = π(θi|yi, ν)fπ(yi|ν,mi),

where π(θi|yi, ν) is the conditional (or posterior) density function of θi given yi, and fπ(yi|ν,mi)
is the marginal density function of yi. These density (or mass) functions are written as

π(θi|yi, ν,mi) = exp[(ni + ν)(ξ̂iθi − ψ(θi))]C(ni + ν, ξ̂i),

fπ(yi|ν,mi) =
C(ν,mi)

C(ni + ν, ξ̂i)
exp[c(yi, ni)],

(15)

where ξ̂i is the posterior expectation of ξi, namely, ξ̂i = E[ξi|yi,η], given by

ξ̂i = ξ̂i(yi,η) =
niyi + νmi

ni + ν
, (16)

which corresponds to the Bayes estimator of ξi in the Bayesian context when ν and mi are
known. As shown in Ghosh and Maiti (2004),

E[yi] =E[ψ
′(θi)] = mi,

V ar(yi) =V ar(E[yi|θi]) + E[V ar(yi|θi)] = V ar(ξi) + E[Qi(ξi)/ni] = Qi(mi)ϕi,

Cov(yi, ξi) =E[Cov(yi, ξi)|θi] + Cov(E[yi|θi], ξi) = Qi(mi)/(ν − v2),

for ϕi = (1 + ν/ni)/(ν − v2). Using these observations, Ghosh and Maiti (2004) showed that

the Bayes estimator ξ̂i given in (18) is the best linear unbiased predictor (BLUP) of ξi in terms
of MSE.

Since the hyperparameters η are unknown, we need to estimate them from the joint marginal
distribution of y. For the purpose, Ghosh and Maiti (2004) suggested the estimating equations
given in Godambe and Thompson (1989). Let gi = (g1i, g2i)

t for g1i = yi − mi and g2i =
(yi −mi)

2 − ϕiQi(mi). Let

Dt
i =Qi(mi)

(
xi Q′

i(mi)ϕixi

0 −(1 + v2/ni)(ν − v2)
−2

)
,

Σi =Cov (gi) =

(
µ2i µ3i

µ3i µ4i − µ2
2i

)
,

and |Σi| = µ4iµ2i − µ3
2i − µ2

3i, where µri = E[(yi − mi)
r], r = 1, 2, . . ., and exact expressions

of µ2i, µ3i and µ4i are given below. Then, Ghosh and Maiti (2004) derived the estimating
equations given by

∑m
i=1D

t
iΣ

−1
i gi = 0, which are written as

m∑
i=1

1

|Σi|

[
{µ4i − µ2

2i − µ3iϕiQ
′
i(mi)}g1i + {µ2iϕiQ

′
i(mi)− µ3i}g2i

]
Qi(mi)xi = 0,

m∑
i=1

1

|Σi|
{µ2ig2i − µ3ig1i}Qi(mi)(1 + v2/ni)(ν − v2)

−2 = 0.

(17)
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The equations can only be solved numerically. To accomplish this, we use the optim function
in ’R’ to solve the estimating equations by minimizing the sums of squares of the estimating
functions, as noted in Ghosh and Maiti (2004). This approach may cause the problem in the
presence of multiple roots, but fortunately we did not encounter this situation in our example.
The exact moments µri = E[(yi−mi)

r], r = 1, 2, 3, 4, are obtain from Theorem 1 of Ghosh and
Maiti (2004) as

µ2i =
Q(mi)(ν/ni + 1)

ν − v2
, µ3i =

Q(mi)Q
′(mi)(ν/ni + 1)(ν/ni + 2)

(ν − v2)(ν − 2v2)
,

and

µ4i =(di + 1)(2di + 1)(3di + 1)E[(ξi −mi)
4] +

6

ni

Q′
i(mi)(di + 1)(2di + 1)E[(ξi −mi)

3]

+
di + 1

n2
i

[
7{Q′(mi)}2 + 2ni(4di + 3)Q(mi)

]
E[(ξi −mi)

2]

+
1

n3
i

Q(mi)
[
ni(2di + 3)Q(mi) + {Q′(mi)}2

]
,

for di = v2/ni. The expression of the moments of ξi are obtained given in Kubokawa, et al .
(2014) as E[(ξi −mi)

2] = Q(mi)/(ν− v2), E[(ξi −mi)
3] = 2Q(mi)Q

′(mi)/(ν − v2)(ν− 2v2) and

E
[
(ξi −mi)

4
]
=

3Q(mi)
[
(ν − v2)Q(mi) + 2 {Q′(mi)}2

]
(ν − v2)(ν − 2v2)(ν − 3v2)

.

Using these expressions, we obtain the estimator η̂t = (β̂
t
, ν̂). Letting m̂i = ψ′(xt

iβ̂) and
substituting m̂i and ν̂ into (16), we finally get the empirical Bayes estimator of ξi, given by

ξ̂i(yi, η̂) =
niyi + ν̂m̂i

ni + ν̂
. (18)

The EB estimator is often used as a predictor in small area estimation and its uncertainty is
of great importance. Our interest is in evaluation of the conditional MSE of ξ̂i(yi, η̂), which is
investigated in the next subsection.

3.2 Evaluation of the conditional MSE

We begin by giving a stochastic expansion and conditional moments of η̂ which is the solution
of the estimating equations (17). We use the notations given by

sm =
m∑
i=1

Dt
iΣ

−1
i gi,

U(η) =Cov (sm) =
m∑
i=1

Dt
iΣ

−1
i Di,

b(η) =U(η)−1
(
a1(η) +

1

2
a2(η)

)
,

where the detailed forms of a1 and a2 are given in the Appendix. It is noted that sm = Op(m)
and U (η) = O(m). The following lemma is useful for evaluating the conditional MSE, where
the proof is given in the Appendix.
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Lemma 1. Let η̂ be the solution of estimating equations in (17). Then for i = 1, . . . ,m,

(η̂ − η)|yi = U (η)−1sm + op(m
−1/2),

E[(η̂ − η)(η̂ − η)t|yi] = U(η)−1 + op(m
−1),

E[η̂ − η|yi] = b(η) + op(m
−1).

(19)

Lemma 1 means that the second-order approximations of the conditional moments E[(η̂ −
η)(η̂−η)t|yi] and E[η̂−η|yi] do not depend on yi, that is , they are equal to the unconditional
moments given in Ghosh and Maiti (2004). Lemma 1 shows that the estimator η̂ defined as
the solution of (17) satisfies conditions (A.1) and (A.2).

We now derive analytical expressions of T1i(yi,η) and T2i(yi,η) in Theorem 1. Let

T1i(yi,η) =
Q(ξ̂i(yi,η))

ni + ν − v2
, i = 1, . . . ,m,

which is Op(1). Let
T2i(yi,η) = tr

[
P i(yi,η)U (η)−1

]
,

which is Op(m
−1), where

P i(yi,η) = (ni + ν)−2

(
ν2Q(mi)

2xix
t
i −niν(ni + ν)−1Q(mi)g1ixi

−niν(ni + ν)−1Q(mi)g1ix
t
i n2

i (ni + ν)−2g21i

)
.

Theorem 4. The conditional mean squared error of ξ̂(yi, η̂) can be approximated up to Op(m
−1)

as
cMSEi(η, ξ̂i(yi, η̂)|yi) = T1i(yi,η) + T2i(yi,η) + op(m

−1). (20)

Proof. From Theorem 1, it is sufficient to calculate T1i and T2i. It is easy to see that

V ar(ξi|yi) =
Q(ξ̂i(yi,η))

ni + ν − v2
, i = 1, . . . ,m,

so that we have the expression T1i(yi,η). For T2i(yi,η), we have

E
[{

(η̂ − η)t
∂ξ̂i(yi,η)

∂η

}2∣∣∣yi] = trE
[(∂ξ̂i
∂η

)(∂ξ̂i
∂η

)t
(η̂ − η)(η̂ − η)t

∣∣∣yi]
= tr

[(∂ξ̂i
∂η

)(∂ξ̂i
∂η

)t
E
[
(η̂ − η)(η̂ − η)t

∣∣yi]].
It is noted from (16) that

∂ξ̂i(yi,η)

∂η
=

(
ν(ni + ν)−1Q(mi)xi

−ni(ni + ν)−2g1i

)
.

Then from Lemma 1, the last formula can be approximated as

tr
[
P i(yi,η)U(η)−1

]
+ op(m

−1),

which completes the proof.
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Taking the expectation of cMSEi with respect to yi, one gets the unconditional MSE given
in Theorem 1 of Ghosh and Maiti (2004) with δi = n−1

i . In fact,

T1i(η) ≡E[T1i(yi,η)] =
ν

(ni + ν)(ν − v2)
Q(mi),

T2i(η) ≡E[T2i(yi,η)]

=(ni + ν)−2tr
[( ν2Q(mi)

2xix
t
i 0

0t ni(ni + ν)−1Q(mi)(ν − v2)
−1

)
U (η)−1

]
.

Corollary 1. The unconditional MSE of ξ̂i(yi, η̂) is approximated as

MSE(η, ξ̂i(yi, η̂)) = T1i(η) + T2i(η) + o(m−1). (21)

It is interesting to investigate the difference between the approximations of the cMSE and
the MSE. When the underlying distribution of yi is a normal distribution, we have Q(x) = 1,
or v0 = 1 and v1 = v2 = 0, so that T1i(yi,η) = 1/(ni + ν) = T1i(η), namely the leading term
in the cMSE is identical to that in the MSE. Thus, the difference between the cMSE and the
MSE appears in the second-order term with Op(m

−1). When v1 or v2 is not zero, however,
the leading term T1i(yi,η) in the cMSE is a function of yi and it is not equal to the leading
term T1i(η) in the MSE. Thus, for distributions far from the normality, the difference between
the cMSE and the MSE is significant even when m is large. This tells us about the remark
that one cannot replace the the conditional MSE given yi with the corresponding unconditional
MSE except for the normal distribution. Some examples including the Poisson and binomial
distributions are given in Section 3.3.

We next derive an analytical form of a second-order unbiased estimator for the cMSE. For
the purpose, we need to calculate T11i and T12i given in (8) and (9), respectively. Note that

r(yi,η) ≡
∂T1i
∂η

=
( ν(ni + ν)−1λiQ

′(ξ̂i)Q(mi)xi

−λ2iQ(ξ̂i)− λini(ni + ν)−2Q′(ξ̂i)g1i

)
,

R(yi,η) ≡
∂2T1i
∂η∂ηt

=
( T 11

1i T 12
1i

(T 12
1i )

t T 22
1i

)
,

where λi = (ni + ν − v2)
−1, and

T 11
1i = (ni + ν)−2νxix

t
iλiQ(mi)

[
2v2νQ(mi) +Q′(ξ̂i)Q

′(mi)(ni + ν)
]
,

T 12
1i =

∂2T1i
∂β∂ν

= Q(mi)λi(ni + ν)−2
{
Q′(ξ̂i) (ni − ν(ni + ν)λi)− 2v2niνg1i(ni + ν)−1

}
xi,

T 22
1i =

∂2T1i
∂ν2

= 2λ3iQ(ξ̂i) + 2λ2ini(ni + ν)−2Q′(ξ̂i)g1i

+ 2λini(ni + ν)−4g1i

[
(ni + ν)Q′(ξ̂i) + niv2g1i

]
.

Using (19) in Lemma 1, we obtain the analytical expression of T11i and T12i as

T11i(yi,η) =r(yi,η)
tb(η),

T12i(yi,η) =
1

2
tr
[
R(yi,η)U (η)−1

]
.

11



The estimator ĉMSEi given in (10) is expressed as

ĉMSEi(ξ̂i(yi, η̂)) = T1i(yi, η̂) + T2i(yi, η̂)− r(yi, η̂)
tb(η̂)− 1

2
tr
[
R(yi, η̂)U (η̂)−1

]
. (22)

Theorem 5. The estimator (22) is a second-order unbiased estimator, namely,

E[ĉMSEi(ξ̂i(yi, η̂))] = cMSEi(η, ξ̂i(yi, η̂)|yi) + op(m
−1).

It is noted that the results in Theorems 4 and 5 do not require the condition that ni → ∞,
while the condition is assumed in Booth and Hobert (1998) for the generalized linear mixed
model. Thus, the results in Theorems 4 and 5 are applicable in the context of small area
estimation.

3.3 Some examples

We give some examples of the mixed models belonging to (13) and investigate the conditional
MSE.

[1] Fay-Herriot model. The Fay-Herriot model is an area-level model often used in small
area estimation, given by

yi = xt
iβ + vi + εi, i = 1, . . . ,m,

where m is the number of small areas, and vi’s and εi’s are mutually independently distributed
random errors such that vi ∼ N (0, A) and εi ∼ N (0, Di). The notations in (13) correspond to
ni = D−1

i , v0 = 1, v1 = v2 = 0, ξi = θi, ν = A−1 and ψ(θi) = θ2i /2. In this case, the estimating
equations in (17) reduce to

m∑
i=1

(A+Di)
−1xiyi =

m∑
i=1

(A+Di)
−1xix

t
iβ,

m∑
i=1

(A+Di)
−2(yi − xt

iβ)
2 =

m∑
i=1

(A+Di)
−1,

which coincide with the likelihood equations for the maximum likelihood estimators of β and
A. The terms T1i(yi,η) and T2i(yi,η) in approximation (20) of the cMSE are written as

T1i(yi,η) =
ADi

A+Di

T2i(yi,η) =
Di

(A+Di)2
xt
i

(
m∑
j=1

xjx
t
j

A+Dj

)−1

xj +
D2

i (yi − xt
iβ)

2

(A+Dj)4

(
m∑
j=1

1

2(A+Dj)2

)−1

,

which were given in Datta et al (2011). In the Fay-Herriot model, T1i(yi,η) = ADi/(A+Di) =
T1i(η), namely, the leading terms in the cMSE and the MSE are identical, and the difference
between the cMSE and MSE is small for large m.

12



[2] Poisson-gamma mixture model. Let z1, . . . , zm be mutually independent random vari-
ables having

zi|λi ∼ Po(niλi) and λi ∼ Ga(νmi, 1/ν)

where λ1, . . . , λm are mutually independent, Po(λ) denotes the Poisson distribution with mean
λ, and Ga(a, b) denotes the gamma distribution with shape parameter a and scale parameter
b. Let yi = zi/ni and logmi = xt

iβ for i = 1, . . . ,m. Then, the notations in (13) correspond to
v1 = 1, v0 = v2 = 0, ξi = λi = exp(θi), and ψ(θi) = exp(θi). The posterior distribution of λi is

Ga(νmi + niyi, (ni + ν)−1) or Ga((ni + ν)ξ̂i, (ni + ν)−1). Then we have

T1i(yi,η) =
ξ̂(yi,η)

ni + ν
=
niyi + νmi

(ni + ν)2
,

which increases in yi. Thus, the difference between the unconditional and conditional MSE
gets large as yi gets large. When a large value of yi is observed, it should be remarked that the
conditional prediction error of the empirical Bayes estimator given yi is larger than the uncon-
ditional (or integrated) prediction error. Hence, it is meaningful to provide to practitioners the
information on the conditional MSE as well as the unconditional MSE.

[3] Binomial-beta mixture model. Let z1, . . . , zm be mutually independent random vari-
ables having

zi|pi ∼ Bin(ni, pi) and pi ∼ Beta(νmi, ν(1−mi)),

where p1, . . . , pm are mutually independent, Bin(n, p) denotes the binomial distribution and
Beta(a, b) denotes the beta distribution. Let yi = zi/ni and mi = exp(xt

iβ)/(1 + exp(xt
iβ)) for

i = 1, . . . ,m. Then the notations in (13) correspond to v0 = 0, v1 = 1 and v2 = −1, ξi =
pi = exp(θi)/(1 + exp(θi)) and ψ(θi) = log(1 + exp(θi)). The posterior distribution of pi is

Beta(νmi + niyi, ni(1− yi) + ν(1−mi)) or Beta((ni + ν)ξ̂i, (ni + ν)(1− ξ̂i)), so that T1i(yi,η)
is written as

T1i(yi,η) =
ξ̂i(yi,η)(1− ξ̂i(yi,η))

ni + ν + 1
,

which is a quadratic and concave function of yi. Since 0 < ξ̂(yi,η) < 1, T1i(yi,η) is always

positive and attains the maximum when ξ̂i = 1/2 or yi = (ni+ν)/2ni−νmi/ni, and T1i(yi,η) =

0 when ξ̂i = 0 or 1. Thus, the value of T1i(yi,η) is relatively small when yi is close to 0 or 1.
When yi is around 1/2, the value of T1i(yi,η) tends to be larger. When a value around 1/2 is
observed for yi, it should be remarked that the conditional prediction error of the EB given yi
is larger than the unconditional (or integrated) prediction error.

4 Numerical and Empirical Studies

We here give some comparisons of the conditional and unconditional MSEs and investigate
finite sample performances of the second-order unbiased estimator of the cMSE. We also apply
the suggested procedures to real mortality data.
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4.1 Comparison of the conditional and unconditonal MSEs

It is interesting to investigate how different the conditional MSE is from the unconditional
MSE. The major difference between them appears in the leading terms, namely the terms with
order Op(1) in the cMSE and MSE. The ratio of the leading term of the cMSE to that of the
MSE is defined by

Ratio1 = T1i(yi,η)/E[T1i(yi,η)],

which is a function of yi and η. We consider the case that m = 10, ν = 1, xt
iβ = µ = 0 and

ni = 10 for i = 1, . . . ,m. Then, the curves of the functions Ratio1 are illustrated Figure 1
for the three mixed models: the Fay-Herriot, Poisson-gamma and binomial-beta models. As
mentioned before, in the Fay-Herriot (or normal-normal mixture) model, Ratio1 = 1 since
T1i(yi,η) = E [T1i(yi,η)]. For the Poisson-gamma and binomial-beta mixture models, Figure 1
tells us about the interesting features of their leading terms in the cMSE, namely, the ratio is
an increasing function of yi for the Poisson-gamma mixture model, and a concave and quadratic
function of yi for the binomial-beta mixture model.
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Figure 1: Figures of Ratio1 for the Three Mixed Models (The solid, dashed and dotted lines
correspond to the Fay-Herriot, Poisson-gamma mixture and binomial-beta mixture models, re-
spectively.)

We next investigate the corresponding ratios based on the second-order approximations of
the cMSE and MSE. Let us define Ratio2 by

Ratio2 = {T1i(yi,η) + T2i(yi,η)}/E[T1i(yi,η) + T2i(yi,η)],

where T1i(yi,η)+T2i(yi,η) and E[T1i(yi,η)+T2i(yi,η)] are given in (20) and (21), respectively.
Since the second-order terms depend on m, we treat the three cases of m = 10, 15 and 20 for
x′
iβ = µ and n1 = · · · = nm = 5. The performaces of Ratio2 are illustrated in Figure 2 for the

three mixed models, where the values of (µ, ν) are (0, 1) for the Fay-Herriot model, (exp(2), 0)
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for the Poisson-gamma mixture model, and (exp(1.5)/(1 + exp(1.5)), 0) for the binomial-beta
mixture models. Figure 2 demonstrates that the second-order terms for the three mixed models
do not contribute so much to Ratio2 or the conditional MSE.
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Figure 2: Figures of Ratio2 for the Fay-Herriot Model (Left), the Binomial-beta Mixture Model
(Center) and the Poisson-gamma Mixture Model (Right) (The solid, dashed and dotted lines
correspond to the cases of m = 10, 15 and 20, respectively. The conditioning value denotes yi.)

4.2 Finite performances of the estimator of cMSE

We investigate finite performances of the second-order unbiased estimator for the conditional
MSE by simulation. The mixed models we examin are the Poisson-gamma mixture and
binomial-beta mixture models where the simple case of x′

iβ = 0 without covariates is treated
with m = 25, ni = 10 and ν = 15.

In the experiment of simulation, let i = 1 be the index for the area of interest, namely the
value of y1 is conditioned. As seen from the discussion given in Section 4.1, the performances
of the conditional MSE depend on the value of y1. In this simulation, we consider the α-
quantile point, denoted by y1(α), of the distribution of y1 and select the five quantiles y1(α)
for α = 0.05, 0.25, 0.5, 0.75 and 0.95. For the Poisson-gamma mixture model, the marginal
distribution of y1 is the negative binomial distribution NB(νm1, ν/(n1+ν)), and we can obtain
the five quantiles y1(α) from the marginal distribution. For the binomial-beta mixture model,
the marginal distribution of y1 is not given as a typical distribution. Thus, we need to calculate
numerically α-quantile values of y1.

The true values of cMSE can be provided based on the simulation with R = 10, 000 repli-
cations. For r = 1, . . . , R, we generate random variables y

(r)
i and θ

(r)
i , i = 2, . . . ,m, which

are distributed as y
(r)
i |(θ(r)i , µ, ν) ∼ f(yi|θ(r)i , µ, ν) and θ

(r)
i |(µ, ν) ∼ π(θi|µ, ν). In the r-th

replication, from the sample {y1(α), y(r)2 , . . . , y
(r)
m }, we calculate the values of ξ̂1(y1(α), η̂)

(r) and

ξ̂1(y1(α),η)
(r). Then, the true value of the cMSE of ξ̂1(y1(α), η̂) can be numerically calculated as

cMSE1 = T11(y1(α),η) +
1

R

R∑
r=1

{
ξ̂1(y1(α), η̂)

(r) − ξ̂1(y1(α),η)
(r)
}2

.
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Through the same manner as described above, we generate another simulated sample with

size T = 2, 000 and calculate the cMSE estimate ĉMSE1 from (22). Then, we can obtain the
relative bias (RB) and coefficients of variation (CV) for the cMSE estimator, which are defined
by

RB =
T−1

∑T
t=1 ĉMSE

(t)

1 − cMSE1

cMSE1

,

CV =
[ 1
T

T∑
t=1

(
ĉMSE

(t)

1 − cMSE1

)2]1/2/
cMSE1,

where ĉMSE
(t)

1 denotes the cMSE estimate in the t-th replication for t = 1, . . . , T .

For α = 0.05, 0.25, 0.50, 0.75 and 0.95, the values of y1(α), cMSE1, E[ĉMSE1], RB and CV

are reported in Table 1 for the two mixed models, where the values of cMSE1 and E[ĉMSE1]

are multiplied by 100. Table 1 demonstrates that the estimator ĉMSE1 of the conditional MSE
performs well for various values of y1(α)in both models. The true value of cMSEi has a general
treand of increase in y1(α) for the Poisson-gamma mixture model, and this conincides with the
analytical property discussed in Section 4.1. For the binomial-beta mixture model, the true
values of cMSEi are about the same and do have a feature of concave explained in Section 4.1.
The values of RB and CV show that the analytical second-order unbiased estimator given in
(22) is not bad as an etimator of cMSEi.

Table 1: Values of cMSE1, E[ĉMSE1], Relative Bias (RB) and Coefficient of Variation (CV) of
the cMSE Estimator for the Five Conditioning Values in the Poisson-gamma and Binomial-beta
Mixture Models

α y1(α) cMSE1 E[ĉMSE1] RB CV

0.05 0.40 4.10 4.53 0.10 0.75
0.25 0.70 3.80 3.88 0.02 0.57

Poisson-gamma 0.50 1.00 4.24 4.14 -0.02 0.70
0.75 1.30 4.90 4.67 -0.05 0.71
0.95 1.70 6.16 6.58 0.07 0.60

0.05 0.10 1.18 1.06 -0.10 0.28
0.25 0.30 1.07 1.10 0.03 0.49

binomial-beta 0.50 0.40 1.03 1.12 0.09 0.58
0.75 0.50 1.03 1.09 0.06 0.62
0.95 0.70 1.06 1.05 -0.01 0.51
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4.3 Empirical examples

We now apply the suggested procedures to the two data sets: the Stomach Cancer Mortal-
ity Data and the Infant Mortality Data Before World War II, both of which are data from
prefectures in Japan.

Example 1 (Mortality rates estimates in the Poisson-gamma mixture model). We begin by
analyzing the Stomach Cancer Mortality Data in Japan. The data set consists of the observed
number of mortality zi and its expected number ni of stomach cancer for women who lived
in the i-th city or town in Saitama prefecture, Japan, for five years from 1995 to 1999. Such
area-level data (zi, ni), i = 1, . . . ,m, are available for m = 92 cities and towns, and the total
number of mortality in the whole region is L = 3953. The expected numbers are adjusted by
age on the basis of the population so that L =

∑m
i=1 zi =

∑m
i=1 ni.

For z1, . . . , zK , we use the Poisson-gamma mixture model discussed in Section 3.3, namely
zi|λi ∼ Po(niλi) and λi ∼ Ga(νmi, 1/ν). Since data of mortality rate of stomach cancer for men
are also available, we can use them as a covariate. Let xi be a log-transformed mortality rate for
men for i-th area. Then, we treat the regression model logmi = β0+xiβ1 for i = 1, . . . ,m. The
unknown parameters ηt = (β0, β1, ν)

t are estimated as the roots of the estimating equations in
(17). Their estimates are β0 = −7.77× 10−3, β1 = 0.157 and ν = 158.

To illustrate the difference between cMSE and MSE, we use the percentage relative difference
(RD) defined by

RDi = 100× (ĉMSEi − M̂SEi)/M̂SEi.

When RDi is positive, ĉMSEi is larger than M̂SEi, or MSE under-estimates the prediction

error. When RDi > 100, ĉMSEi is larger than twice the M̂SEi, and we should note the

prediction error of the EB for given data. In Figure 3, the plots of the values (M̂SEi, ĉMSEi)
multiplied by 1, 000 and the values of (yi,RDi) for i = 1, . . . ,m are given in the left and right
figures, respectively, where yi = zi/ni is the standard mortality rate (SMR). From Figure 3,

it is revealed that the values of ĉMSEi are larger than those of M̂SEi for many areas, and
that the relative differences RDi have great variability, which comes from non-normality of
distribution as discussed in Section 4.1. For areas in which RDi are large, we should note that
the unconditional MSEs, which has been used conventionally in small area estimation, seem to
under-estimate the prediction errors of the EB estimates for given observations of the areas.

Table 2 reports the values of ni, yi, EBi, ĉMSEi, M̂SEi and RDi for ten selected municipal-

ities in Saitama prefecture, where the values of M̂SEi and ĉMSEi are multiplied by 1, 000. It is
noted that Minamikawara has the maximum RD value and Ageo has the minimum RD value
in our result. The values of RD tell us about important information that the given empirical
Bayes estimate has a larger prediction error than the usual unconditional MSE. For instance,
Kamiizumi shows that SMR yi = 3.285 is much shrunken to 1.050 by EB since ni = 1.5 is
very small. The estimate of the conditional MSE is 1.653, while that of the unconditional MSE
is 0.767. The resulting RD is 116, quite high, which suggests that the unconditional MSE
under-estimates the prediction error. Thus, we suggest to provide estimates of cMSE as well
as estimates of MSE.

Example 2 (Infant mortality rates estimates in the binomial-beta mixture model). We next
handle the historical data of the Infant Mortality Data Before World War II. The data set
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Figure 3: Plots of (M̂SEi, ĉMSEi) (left) and Plots of (yi,RDi) (right) for Stomach Cancer
Mortality Data

Table 2: Values of ni, SMR yi, EBi, ĉMSEi, M̂SEi and RDi for Selected Areas in Saitama
Prefecture

Area ni yi EBi ĉMSEi M̂SEi RDi

Ageo 110.0 0.991 0.994 2.282 2.741 -16
Asaka 52.5 1.124 1.005 2.839 2.918 -2
Hannou 58.2 0.979 0.989 2.221 2.634 -15

Kamiizumi 1.5 3.285 1.050 1.653 0.767 116
Kamikawa 10.1 0.594 0.993 1.966 1.185 66
Kumagaya 102.8 1.324 1.138 4.666 2.813 64

Minamikawara 3.2 0.620 0.979 1.314 0.535 146
Okano 11.8 0.339 0.954 2.431 1.098 121
Shiraoka 26.2 0.764 0.987 2.639 2.145 23
Yashio 37.5 0.828 0.981 2.583 2.353 10

consists of the observed number of infant mortality zi and the number of birth ni in the i-
th city or town in Ishikawa prefecture, Japan, before World War II. Such area-level data are
available for m = 211 cities, towns and villages, and the total number of infant mortality in
the whole region is L = 4252.

It is noted that the infant mortality rates yi = zi/ni before World War II are not small and
distributed around 0.2. Thus, we here apply the data to the binomial-beta model rather than
the Poisson-gamma model. For z1, . . . , zK , zi|pi and pi have the distributions zi|pi ∼ Bin(ni, pi)
and pi ∼ Beta(νmi, ν(1−mi)), where mi = exp(β)/(1 + exp(β)) for i = 1, . . . ,m, since we do
not have any covariates. Thus, the unknown parameters are ηt = (β, ν)t and their estimates
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Figure 4: Plots of (M̂SEi, ĉMSEi) (left) and Plots of (yi,RDi) (right) for Infant Mortality Data

are β = −1.57, namely mi = 0.171, and ν = 102.

The plots of the values (M̂SEi, ĉMSEi) multiplied by 1, 000 and the values of (yi,RDi) for
i = 1, . . . ,m are given in the left and right figures of Figure 4, respectively. Figure 4 suggests
that the values of the relative difference RD gets larger as yi is larger. This is because the
leading Op(1) term is an increasing function of yi for fixed ni since yi is between 0 and 0.5, as

investigated in Section 4.1. Table 3 reports the values of ni, yi, EBi, ĉMSEi, M̂SEi and RDi

for fifteen selected municipalities in Ishikawa prefecture, where the values of M̂SEi and ĉMSEi

are multiplied by 1, 000. It is noted that Area 175 has the maximum RD value and Area 46
has the minimum RD value in our result. For Area 176, the observed mortality rate yi = 0.400
is much shrunken to EBi = 0.216 by the empirical Bayes estimator since the number of birth
is quite small as given by ni = 25. The unconditional MSE is estimated by 1.123, but the
relative difference is RDi = 27, and the estimate of cMSE is 1.436, which is higher than the
MSE estimate. This suggests that it should be good to provide estimates of cMSE as well as
estimates of MSE.

5 Concluding Remarks

In this paper, we have derived the second-order approximation of the conditional MSE of the
empirical Bayes estimator and its second-order unbiased estimator in the general mixed models.
Those results have been applied to the mixed models based on NEF-QVF, and the second-order
evaluations of the cMSE have been provided in analytical and closed forms without assuming
that the sample size ni goes to infinity. It has been shown that the difference between the
cMSE and the MSE is small for the normal distribution, while it is significant for the Poisson-
gamma and the binomial-beta mixture models. We have also clarified how different the cMSE
is from the MSE by comparing the leading terms in the cMSE and MSE. Through the empirical
studies, the importance of cMSE has been illustrated for the Poisson-gamma and the binomial-
beta mixture models, and we suggest to provide estimates of cMSE as well as estimates of
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Table 3: Values of ni, yi, EBi, ĉMSEi, M̂SEi and RDi for Selected Areas in Ishikawa Prefecture

Area ni yi EBi ĉMSEi M̂SEi RDi

1 4146 0.139 0.139 0.028 0.034 -15
19 56 0.250 0.199 1.060 0.916 15
23 55 0.164 0.168 0.928 0.921 0
46 197 0.091 0.119 0.366 0.485 -24
71 84 0.060 0.121 0.610 0.780 -21
79 87 0.069 0.124 0.611 0.768 -20
86 101 0.079 0.125 0.571 0.715 -20
96 194 0.119 0.137 0.411 0.490 -16
98 208 0.250 0.224 0.584 0.467 24
112 94 0.160 0.166 0.729 0.740 -1
158 173 0.185 0.180 0.551 0.527 4
162 57 0.333 0.229 1.199 0.910 31
175 119 0.294 0.237 0.874 0.657 33
176 25 0.400 0.216 1.436 1.123 27
179 245 0.229 0.212 0.496 0.417 18

MSE.

It should be beneficial that the second-order unbiased estimator of cMSE can be provided
in a closed form in the mixed models based on NEF-QVF. As discussed in Booth and Hobert
(1998), we cannot derive a second-order unbiased estimator with a closed form in the frame-
work of the generalized linear mixed model, and we need to resort to numerical methods like
bootstrap.

As an estimator of the hyperparameters, in this paper, we have used the solution of the
estimating equations given in Ghosh and Maiti (2004). Their procedure allows us to express the
asymptotic bias and variance in closed forms like Lemma 1. Another procedure is the maximum
likelihood estimator (MLE) of the marginal likelihood. For the Poisson-gamma mixture model,
the marginal distribution of yi (marginal likelihood) is the negative binomial distribution given
by

f(yi|η) =
Γ(niyi + νmi)

Γ(niyi + 1)Γ(νmi)

(
ni

ni + ν

)niyi ( ν

ni + ν

)νmi

,

where Γ(·) denotes a gamma function. For the binomial-beta mixture model, the marginal
likelihood is proportional to

L(η) ∝
m∏
i=1

B(νmi + niyi, ni(1− yi) + ν(1−mi))

B(νmi, ν(1−mi))
,

where B(·) denotes a beta function. Then, we can obtain MLE of the parameters as a maximizer
of the marginal likelihood. However, it is difficult to derive the asymptotic bias and variance
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like Lemma 1 in closed forms. Thus, in this case, we need to resort to the parametric bootstrap
method given in Section 2 to estimate the cMSE.

Appendix

We here give a proof of Lemma 1. Using the results in Ghosh and Maiti (2004), we imme-
diately have η̂ − η = U (η)−1sm + op(m

−1/2). Using this expression, we have

E
[
(η̂ − η)(η̂ − η)t|yi

]
= U(η)−1E

[
sms

t
m|yi

]
U(η)−1 + op(m

−1),

where

E
[
sms

t
m|yi

]
=

m∑
j=1

E
[
Dt

jΣ
−1
j gjg

t
jΣ

−1
j Dj|yi

]
=

m∑
j ̸=i

E
[
Dt

jΣ
−1
j gjg

t
jΣ

−1
j Dj

]
+Dt

iΣ
−1
i gig

t
iΣ

−1
i Di

= U(η) +Dt
iΣ

−1
i (gig

t
i −Σi)Σ

−1
i Di,

since gj depends only on yj of Y and y1, . . . , ym are mutually independent. Since U (η) = O(m)
and Dt

iΣ
−1
i (gig

t
i −Σi)Σ

−1
i Di = Op(1), we have E [sms

t
m|yi] = U(η) +Op(1), so that

E
[
(η̂ − η)(η̂ − η)t|yi

]
= U (η)−1 + op(m

−1).

Next, we evaluate the asymptotical conditional bias of η̂, i.e. E[η̂ − η|yi]. By expanding
the equation (17) up to second order, we have

η̂ − η =
(
−∂sm
∂η

)−1(
sm +

1

2
t+ op(1)

)
,

where

∂sm
∂η

=
m∑
j=1

( ∂

∂ηt
Dt

jΣ
−1
j

) (
Ip ⊗ gj

)
+

m∑
j=1

Dt
jΣ

−1
j

(∂gj

∂ηt

)
= A1 +A2, (say)

and

t = colℓ

{
(η̂ − η)t

(
∂2Sm.ℓ

∂η∂ηt

)
(η̂ − η)

}
,

for sm = (Sm.1, . . . , Sm.p+1). The notation colℓ {Aℓ} for matrix Aℓ, ℓ = 1, . . . , n is defined by

colℓ {Aℓ} = (A′
1 A

′
2 . . . A′

n)
′

Note that E(A1) = 0, A1 = Op(m
1/2), E(A2) = U(η) and A2 −U (η) = Op(m

1/2). Then, we
have

E[η̂ − η|yi] = E
[
U(η)−1A1U(η)−1sm|yi

]
+ E

[
U(η)−1A2U(η)−1sm|yi

]
+

1

2
E
[
U(η)−1t|yi

]
+ op(m

−1)

= I1(yi,η) + I2(yi,η) +
1

2
I3(yi,η) + op(m

−1). (say)
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Since E(gj) = 0, g1, . . . , gm are mutually independent, and gi depends only on yi of Y , we
have

I1(yi,η) =
m∑
j=1

U (η)−1
( ∂

∂ηt
Dt

jΣ
−1
j

)
E
[(
Ip ⊗ gj

)
Cjgj|yi

]
,

where Cj = U(η)−1Dt
jΣ

−1
j (= O(m−1)). Using the fact that(

Ip ⊗ gj

)
Cjgj = vec (gjg

t
jC

t
j), and E

[
vec (gjg

t
jC

t
j)
]
= vec (DjU (η)−1),

we have

I1(yi,η) =
m∑
j=1

U(η)−1
( ∂

∂ηt
Dt

jΣ
−1
j

)
vec (DjU(η)−1)

+U(η)−1
( ∂

∂ηt
Dt

iΣ
−1
i

)
vec (gig

t
iC

t
i −DjU (η)−1)

=
m∑
j=1

U(η)−1
( ∂

∂ηt
Dt

jΣ
−1
j

)
vec (DjU(η)−1) + op(m

−1).

(23)

Similarly, we have

I2(yi,η) =
m∑
j=1

U(η)−1Dt
jΣ

−1
j E

[
hjCjgj|yi

]
,

where

hj ≡
∂gj

∂ηt
= Q(mj)

( xt
j 0

{2(yj −mj) + ϕjQ
′(mj)}xt

j −(1 + v2/nj)(ν − v2)
−2

)
.

Since

E
[
hjCjgj

]
= 2Q(mj)

( 0t 0
xt
j 0

)
Cj

( µ2j

µ3j

)
= Ej, (say)

and Ej = Op(m
−1), we have

I2(yi,η) =
m∑
j=1

U(η)−1Dt
jΣ

−1
j Ej +U(η)−1Dt

iΣ
−1
i (hiCigi −Ei)

=
m∑
j=1

U(η)−1Dt
jΣ

−1
j Ej + op(m

−1). (24)

For the evaluation of I3(yi), we observe that

E [t|yi] = colℓ

{
trE

[( ∂Sm.ℓ

∂η∂ηt

)
U(η)−1sms

t
mU(η)−1

∣∣∣∣yi]}+ op(m
−1)

= colℓ

{
tr

m∑
j=1

KjℓU (η)−1
}
+ op(m

−1),
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where

Kjl = 2
∂djℓ

∂η
Σ−1

j Dj + 2(Ip ⊗ djℓ)
∂Σ−1

j

∂η
Dj + (Ip ⊗ (djℓΣ

−1
j ))J j

for J j = [Gt
1j,G

t
2j]

t, which are expressed as

G1j = −Q(mi)xi ⊗
[

Q′(mi)x
t
i 0

{−2Q(mi) + (Q′(mi))
2 + 2ϕiv2Q(mi)}xt

i −Q′(mi)(1 + v2/ni)(λ− v2)
−2

]
,

and

G2j = −Q(mi)

[
0t 0

−(1 + v2/ni)(λ− v2)
−2Q′(mi)x

t
i 2(1 + v2/ni)(λ− v2)

−3

]
.

Then, we have

I3(yi) = U(η)−1colℓ

{
tr

m∑
j=1

KjℓU(η)−1
}
+ op(m

−1). (25)

Combining (23), (24) and (25), one gets the expressions of a1(yi,η) and a2(yi,η) given by

a1(η) =
m∑
j=1

( ∂

∂ηt
Dt

jΣ
−1
j

)
vec (DjU(η)−1) +

m∑
j=1

Dt
jΣ

−1
j Ej,

a2(η) =colℓ

{
tr
[ m∑
j=1

KjℓU(η)−1
]}
,

which completes the proof.
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