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Abstract

The problem of estimating a covariance matrix in multivariate linear regression

models is addressed in a decision-theoretic framework. Although a standard loss

function is the Stein loss, it is not available in the case of a high dimension. In this

paper, a new type of a quadratic loss function, called the intrinsic loss, is suggested,

and unified dominance results are derived under the loss, irrespective of order of

the dimension, the sample size and the rank of the regression coefficients matrix.

Especially, using the Stein-Haff identity, we develop a key inequality which is useful

for constructing a truncated and improved estimator based on the information con-

tained in the sample means or the ordinary least squares estimator of the regression

coefficients.

AMS 2010 subject classifications: Primary 62F11, 62J12, Secondary 62C15, 62C20.

Key words and phrases: high dimension, inadmissibility, invariant loss, Moore-

Penrose inverse, statistical decision theory.

1 Introduction

The problems of estimating the covariance matrix in multivariate linear regression models

are addressed in a decision-theoretic framework. The dominance properties of truncated

estimators over non-truncated and unbiased estimators have been studied in Sinha and

Ghosh (1987), Kubokawa and Srivastava (2003) and Kubokawa and Tsai (2006). These

are multivariate extensions of Stein (1964) who established that the best location-scale

equivariant estimator of a normal variance is dominated by the truncated estimator using

the information contained in a sample mean. All the dominance results have been derived
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when the dimension p of the covariance matrix is less than the degrees of freedom n. In

this paper, we want to establish unified dominance results which cover both cases of p > n

and n ≥ p.

To explain the problem specifically, let us consider a canonical model of the multi-

variate linear regression model. Let X = (X1, . . . ,Xm)
t and Y = (Y 1, . . . ,Y n)

t be,

respectively, m × p and n × p random matrices, where X i’s and Y i’s are mutually and

independently distributed as

X i ∼ Np(θi,Σ), i = 1, . . . ,m,

Y j ∼ Np(0p,Σ), j = 1, . . . , n.
(1.1)

Suppose that θi’s are unknown mean vectors and that Σ is an unknown positive definite

matrix.

Let V = Y tY =
∑n

i=1 Y iY
t
i. Then, V has a Wishart distribution Wp(n,Σ) for

n ≥ p, but a singular Wishart distribution for p > n (see Srivastava (2003)). Our primary

interest is in estimation of the covariance matrix Σ based on (V ,X) and in derivation

of unified dominance results irrespective of order of n, p and m in a decision-theoretic

framework. In the case of n ≥ p, a standard loss function is the Stein loss given by

LS(Σ̂,Σ) = tr Σ̂Σ−1 − log |Σ̂Σ−1| − p, (1.2)

which is easier to handle than a quadratic loss tr[(Σ̂Σ−1 − Ip)
2]. Also, the unbiased

estimator n−1V is the best among estimators cV for positive constant c. In the case

of p > n, however, the Stein loss is not available, since n−1V is singular. Thus, in this

paper, we suggest a new intrinsic loss function given by

LV (Σ̂,Σ) = tr[Σ(Σ−1Σ̂− Ip)
2V +] = tr[Σ−1Σ̂V +Σ̂]− 2tr[Σ̂V +] + tr[ΣV +], (1.3)

where V + is the Moore-Penrose inverse of V . The intrinsic loss corresponds to the loss

derive by substituting V + into one of two Σ−1 in the quadratic loss. It is interesting to

point out the following properties of the intrinsic loss (1.3).

(1) In the case of n ≥ p, there are several similar properties between the losses (1.2)

and (1.3). First, the unbiased estimator n−1V is the best location-equivariant under

the two losses. Secondly, the unbiased estimator can be improved on by the same

James-Stein (1961) estimator under the two losses. Thirdly, the Bayes estimator of

Σ is of the same form (E[Σ−1|V ])−1 under the two losses.

(2) The decision-theoretic results derived in the case of n ≥ p can be extended to the

case of p > n under the intrinsic loss with exchanging n and p.

(3) The terms which we need to evaluate analytically under the two loss functions (1.2)

and (1.3) are E[tr[Σ̂Σ−1]] and E[tr[Σ−1Σ̂V +Σ̂]], while we need to evaluate the term

E[tr[Σ̂Σ−1Σ̂Σ−1]] for the quadratic loss. This shows that the two losses are easier

to treat analytically than the quadratic loss.
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The main objective of this paper is the derivation of unified dominance results that

estimators of Σ can be improved on by truncated estimators based on the information

contained in X, irrespective of order among n, p andm. Such a dominance result was first

established by Stein (1964), and several extensions to the multivariate models were studied

by Sinha and Ghosh (1987), Perron (1990), Kubokawa, Robert and Saleh (1992) and

Kubokawa and Srivastava (2003) in the case of n ≥ p. These articles applied conditional

arguments to deriving the dominance results. Kubokawa and Tsai (2006) suggested a new

method based on the Stein-Haff identity developed by Stein (1977) and Haff (1980) for

n ≥ p. In this paper, we use the same method to extend the dominance results to the

case of p > n under the intrinsic loss.

The paper is organized as follows: In Section 2, we illustrate several important points

on how similar the intrinsic loss (1.3) is to the Stein loss (1.2). In the univariate case of

p = 1, the unbiased estimator of σ2 can be improved on by a common estimator under

the same conditions relative to the two losses. In the multivariate case, the unified James-

Stein type estimator is developed for the two cases of n ≥ p and p > n relative to the

intrinsic loss. This estimator is identical to the James-Stein (1961) estimator under the

Stein loss for n ≥ p.

In Section 3, we analytically derive unified dominance results that estimators of Σ

can be improved on by truncated estimators based on the information contained in X,

irrespective of order among n, p and m. The main issue in Section 3 from a technical

point of view is the derivation of a key inequality to showing the dominance. Also,

some numerical results of simulation studies are provided for the risk functions of several

truncated estimators. The numerical results show nice performances of the truncated

estimators for various n, p and m.

In Section 4, we extend the results to the estimation of the covariance matrix in linear

mixed models and to the estimation of the precision matrix. Concerning the former issue,

the covariance matrix Σ corresponds to the ‘within’ component of variance. Although

the estimation of variance components in univariate random effects models have been

studies in many articles, multivariate cases have been discussed in several articles including

Amemiya (1985), Calvin and Dykstra (1991), Mathew, Niyogi and Sinha (1994) and

Srivastava and Kubokawa (1999). The results given in Section 3 can be applied to this

problem.

2 Similarity between the Intrinsic and the Stein Losses

2.1 A univariate case

In the univariate case of p = 1, let V =
∑n

i=1 Y
2
i and X = (X1, . . . , Xm)

t in the model

(1.1). Then, V/σ2 ∼ χ2
n and X ∼ N (θ, σ2Im). The Stein loss and the intrinsic loss

3



functions are described as

LS(σ̂
2, σ2) = σ̂2/σ2 − log(σ̂2/σ2)− 1,

LV (σ̂
2, σ2) = σ2(σ̂2/σ2 − 1)2/V =

(σ̂2)2

σ2V
− 2

σ̂2

V
+
σ2

V
,

both of which are invariant under scale transformations. Since a class of location-scale

equivariant estimators is of the form cV for positive constant c, the corresponding loss

functions for the estimator cV are given by

LS(cV, σ
2) =

cV

σ2
− log

cV

σ2
− 1,

LV (cV, σ
2) =c

{cV
σ2

+
σ2

cV
− 2
}
,

both of which are zero at cV/σ2 = 1 and diverge when cV/σ2 → 0 or cV/σ2 → ∞.

Although a standard loss function is the scale-invariant quadratic loss LQ(σ̂
2, σ2) =

(σ̂2/σ2 − 1)2, the penalties are extremely unbalanced for the two cases of cV/σ2 < 1

and cV/σ2 > 1, since LQ(cV, σ
2) converges to 1 as cV/σ2 → 0, while it diverges when

cV/σ2 → ∞. This undesirable property may be relaxed in the losses LS(cV, σ
2) and

LV (cV, σ
2).

It is interesting to demonstrate that the losses LS(cV, σ
2) and LV (cV, σ

2) provide the

same minimax and unbiased estimator, the same Bayes estimator and the same class of

improved minimax estimators.

(1) It is seen that the unbiased estimator σ̂2
0 = n−1V is the best location-invariant and

minimax under the two loss functions.

(2) Concerning the Bayes estimation, the Bayes estimator of σ2 is given by the posterior

harmonic mean σ̂2BAY = (E[(σ2)−1|V ])−1 under the two loss functions.

(3) Concerning the improvement over σ̂2
0, the Stein-type truncated estimator

σ̂2TR = min
{
n−1V, (n+m)−1(V + ∥X∥2)

}
(2.1)

dominates σ̂2
0 relative to the two loss functions.

This type of truncated estimator (2.1) was first established by Stein (1964) under

the quadratic loss. This dominance result can be verified below for a general class of

scale-equivariant estimators given by

σ̂2
ϕ = ϕ(W )V, for W = ∥X∥2/V,

where ∥X∥2 = X tX.

Theorem 2.1 Assume that ϕ(w) satisfies the following conditions:

(a) ϕ(w) is non-decreasing and limw→∞ ϕ(w) = n−1.
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(b) ϕ(w) ≥ ϕ0(w) for

ϕ0(w) =

∫ ∞

0

Fm(wv)fn(v)dv
/∫ ∞

0

vFm(wv)fn(v)dv,

where fm(v) and Fm(v) denote density and distribution functions of a central chi-square

distribution with m degrees of freedom.

Then, the scale-equivariant estimator σ̂2
ϕ dominates σ̂2

0 under the intrinsic loss and

Stein loss functions.

Proof. We first show the dominance result for the intrinsic loss LV (σ̂
2, σ2). Since

limw→∞ ϕ(w) = n−1, it can be seen that

∆V (λ) =E[LV (σ̂
2
0, σ

2)− LV (σ̂
2
ϕ, σ

2)]

=E[

∫ ∞

1

d

dt
LV (ϕ(tW )V, σ2)dt]

=2E[

∫ ∞

1

{ V
σ2
ϕ(tW )− 1

}
Wϕ′(tW )dt]

=2

∫ ∞

0

∫ ∞

0

∫ ∞

1

{
vϕ(

tu

v
)− 1

}u
v
ϕ′(tu/v)dtfm(u;λ)fn(v)dudv,

where fm(v;λ) denotes the density function of a non-central chi-square distribution with

m degrees of freedom and non-centrality parameter λ = ∥θ∥2/(2σ2). Making the trans-

formations w = (t/v)u and z = vw/t with dw = (t/v)du and dz = (vw/t2)dt, we can

rewrite ∆(λ) as

∆V (λ) = 2

∫ ∞

0

∫ ∞

0

{vϕ(w)− 1}
∫ vw

0

fm(z;λ)dzfn(v)dvϕ
′(w)dw. (2.2)

Since ϕ′(w) ≥ 0, it is seen that ∆V (λ) ≥ 0 if

ϕ(w) ≥
∫∞
0
fn(v)Fm(vw;λ)dv∫∞

0
vfn(v)Fm(vw;λ)dv

,

for Fm(vw;λ) =
∫ vw

0
fm(z;λ)dz. It can be verified that∫∞

0
fn(v)Fm(vw)dv∫∞

0
vfn(v)Fm(vw)dv

≥
∫∞
0
fn(v)Fm(vw;λ)dv∫∞

0
vfn(v)Fm(vw;λ)dv

,

which proves the part of the intrinsic loss in Theorem 2.1.

For the Stein loss LS(σ̂
2, σ2), it is seen that

∆S(λ) =E[LS(σ̂
2
0, σ

2)− LS(σ̂
2
ϕ, σ

2)]

=E[

∫ ∞

1

d

dt
LS(ϕ(tW )V, σ2)dt]

=E[

∫ ∞

1

{ V
σ2
ϕ(tW )− 1

}
W
ϕ′(tW )

ϕ(tW )
dt],
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which can be verified to be non-negative if ϕ(w) satisfies the conditions (a) and (b) in

Theorem 2.1. Therefore, the proof is complete. □

Let ϕTR(w) = min{n−1, (n+m)−1(1 +w)}. Then, ϕTR(w) satisfies the conditions (a)

and (b) since ϕ0(w) ≤ ϕTR(w), and it yields the Stein type truncated estimator σ̂2ST . Also,

ϕ0(w) satisfies the conditions (a) and (b). Thus, the estimators σ̂2ST and σ̂2
ϕ0

dominate

σ̂2
0 under the intrinsic and Stein loss functions. Especially, σ̂2

ϕ0
is the generalized Bayes

estimator of σ2 relative to the two loss functions.

2.2 A multivariate case

We next treat the estimation of the covariance matrix Σ in the model (1.1). Let V =∑n
i=1 Y iY

t
i. In the case n ≥ p, V has a Wishart distribution Wp(n,Σ) with E[V ] = nΣ,

and the unbiased estimator of Σ is Σ̂UB = V /n, which is neither admissible nor minimax,

however. In fact, James and Stein (1961) showed that Σ̂UB is dominated by the minimax

estimator Σ̂JS
p = TDJS

p T t relative to the Stein loss function

LS(Σ̂,Σ) = tr[Σ̂Σ−1]− log |Σ̂Σ−1| − p,

where T is a p × p lower triangular matrix with positive diagonal elements satisfying

V = TT t and DJS
p is the diagonal matrix of order p with the i-th diagonal element being

(n+ p− 2i+ 1)−1.

A drawback of the Stein loss is that it is not available when p > n. As an alternative

loss, we here use the intrinsic loss function

LV (Σ̂,Σ) = tr[Σ(Σ−1Σ̂− Ip)
2V +] = tr[Σ−1Σ̂V +Σ̂]− 2tr[Σ̂V +] + tr[ΣV +], (2.3)

where V + is the Moore-Penrose inverse of V . It is interesting to point out that the

intrinsic loss LV (Σ̂,Σ) not only produces the same minimax estimator Σ̂JS
p as given

under the Stein loss for n ≥ p, but also extends the dominance result to the case of p > n.

In the case p > n, the James-Stein type estimator is constructed as follows: Let T be

a p× n matrix such that V = Y tY = TT t and

T = (tij) =

(
T 1

T 2

)
,

where T 1 is an n × n lower triangular matrix with positive diagonal elements and T 2 is

a (p− n)× n matrix. Then the James-Stein type estimator is given by

Σ̂JS
n = TDJS

n T t,

where DJS
n = diag(dJS1 , . . . , dJSn ) for dJSi = (n+ p− 2i+ 1)−1.
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Theorem 2.2 For real numbers a and b, denote a∨ b = max{a, b} and a∧ b = min{a, b}.
Let V = TT t, where T is a p × (n ∧ p) matrix such that all the diagonal elements

are positive and all the off-diagonal elements above the diagonals are zeros. Let DJS =

diag(dJS1 , . . . , dJSn∧p) with d
JS
i = (n+ p− 2i+ 1)−1. Then the James-Stein type estimator

Σ̂JS = TDJST t (2.4)

dominates Σ̂US relative to the loss (2.3), where the estimator

Σ̂US = c0V , c0 =
n ∧ p
np

=
1

n ∨ p
, (2.5)

is the best among estimators cV for positive constants c under the loss (2.3).

Proof. Since the case of n ≥ p can be easily verified, we here treat the case of p > n.

Let us consider a class of estimators

Σ̂T
n = TDnT

t,

where the size of T is p× n and Dn = diag(d1, . . . , dn) is an n× n diagonal matrix with

constant diagonals. We shall evaluate the risk of Σ̂T
n relative to the intrinsic loss. Using

Corollary 3.1 of Srivastava (2003), we can express the p.d.f. of T as

1

(2π)np/2|Σ|n/2
exp

(
− 1

2
trΣ−1TT t

)
× 2nπn2/2

Γn[n/2]

n∏
i=1

tn−i
ii ,

where Γn[n/2] = πn(n−1)/4
∏n

i=1 Γ[(n − i + 1)/2]. Let Σ−1 = BtB, where B = (bij) is

a p × p lower triangular matrix with positive diagonal elements. Since the Jacobian of

transformation A = (aij) = BT is given by

J [T → A] =

( n∏
i=1

b−i
ii

)( p∏
i=n+1

b−n
ii

)
,

the p.d.f. of A is written as

1

(2π)np/2
2nπn2/2

Γn(n/2)
exp

(
− 1

2
trAAt

) n∏
i=1

an−i
ii

=

( n∏
i=1

an−i
ii e−a2ii/2

2(n−i−1)/2Γ[(n− i+ 1)/2]

)( p∏
i=2

(i−1)∧n∏
j=1

e−a2ij/2

√
2π

)
,

namely, a2ii ∼ χ2
n−i+1 for i = 1, . . . , n, and aij ∼ N (0, 1) for 2 ≤ i ≤ p and 1 ≤ j ≤

(i− 1) ∧ n. All the aij’s are mutually independent.

The risk of Σ̂T
n is expressed by

R(Σ̂T
n ,Σ) = E[trΣ−1TDnT

t(TT t)+TDnT
t − 2trTDnT

t(TT t)+ + trΣV +]

= E[trAD2
nA

t]− 2trDn + E[trΣV +].
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Denote A = (At
1,A

t
2)

t, where A1 is the n× n matrix. It follows that

trAD2
nA

t = trD2
nA

tA = trD2
nA

t
1A1 + trD2

nA
t
2A2 =

n∑
i≥j

a2ijd
2
j +

p∑
i=n+1

n∑
j=1

a2ijd
2
j ,

which yields

E[trAD2
nA

t] =
n∑

i=1

(n− i+ 1)d2i +
n∑

i>j

d2j +

p∑
i=n+1

n∑
j=1

d2j =
n∑

i=1

(n+ p− 2i+ 1)d2i .

Hence the risk of Σ̂T
n is rewritten by

R(Σ̂T
n ,Σ) =

n∑
i=1

{(n+ p− 2i+ 1)d2i − 2di}+ E[trΣV +]. (2.6)

The best constant for di minimizing the risk is given by

dJSi = (n+ p− 2i+ 1)−1 (i = 1, . . . , n),

which yields the James-Stein type estimator Σ̂JS for p > n.

Concerning estimators Σ̂c = cV for positive constant c, the best c is n−1 under the

loss (2.3) in the case of n ≥ p, while in the case of p > n, the best c is p−1 under the loss

(2.3), since R(cV ,Σ) = npc2 − 2nc+E[trΣV +]. In any of these cases, the estimator cV

with the best c can be improved on by the James-Stein type estimator Σ̂JS relative to

the loss (2.3). □

3 Dominance Results in Estimation of the Covari-

ance Matrix

3.1 Notations and preliminaries

We begin by giving some notations. Let O(r) be the group of r × r orthogonal matrices.

For r ≥ q, let Vr,q be the Stiefel manifold, namely the set of r × q matrices M such that

M tM = Iq. It is noted that O(r) = Vr,r. Define D+
r as the set of r× r diagonal matrices

diag(d1, . . . , dr) such that d1 > · · · > dr > 0.

Let ℓ = m ∧ p ∧ n. The eigenvalue decomposition of V = Y tY is written as

V = HLH t, for H ∈ Vp,n∧p and L ∈ D+
n∧p.

The nonsingular part of the singular value decomposition of XHL−1/2 is defined as

XHL−1/2 = RF 1/2P t,
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where R ∈ Vm,ℓ, P ∈ Vn∧p,ℓ and F 1/2 = diag(f
1/2
1 , . . . , f

1/2
ℓ ) ∈ D+

ℓ . Let V + be the

Moore-Penrose inverse of V . It is noted that V + = HL−1H t and

XV +X t = XHL−1H tX t = RFRt.

Note also that R is orthogonal if ℓ = m and otherwise P is orthogonal.

A class of estimators treated in this section is of the form

Σ̂(Ψ) = Σ̂US + c0QΨ(F )Qt = c0{V +QΨ(F )Qt} (3.1)

where Q = HL1/2P is a p × ℓ matrix and Ψ(F ) is an ℓ × ℓ diagonal matrix such that

the diagonal elements are absolutely continuous functions of F . The class (3.1) can be

rewritten by

Σ̂(Ψ) = Σ̂US + c0V V +X tRF−1Ψ(F )RtXV V +. (3.2)

Let Q− = P tL−1/2H t. Then Q− is the generalized inverse of Q because

QQ−Q = HL1/2PP tL−1/2H tHL1/2P = HL1/2P = Q.

It follows that

Q−V (Q−)t = Iℓ, Q−X tX(Q−)t = F .

However, it is noted that

QQt =

{
HLH t = V for m > n ∧ p,
V V +X t(XV +X t)+XV V + for m ≤ n ∧ p,

and

QFQt = HL1/2PF 1/2RtRF 1/2P tL1/2H t

= HH tX tXHH t

= V V +X tXV V +.

To evaluate risk properties of the estimator (3.1), we here give some calculus and

lemmas which will be used in the next subsection.

For an m × q rectangular matrix Z = (zij), define an m × q rectangular matrix of

differential operators with respect to Z as

∇Z =
( ∂

∂zij

)
.

The operation in terms of ∇Z is defined as follows: For a differentiable and scalar-valued

function g(Z), ∇Zg(Z) indicates an m × q rectangular matrix such that the (i, j)-th

element is (∂/∂zij)g(Z). Also for a q × r matrix-valued function G(Z) = (gij(Z)),

∇ZG(Z) is an m× r matrix whose (i, j)-th element is given by
∑q

k=1(∂/∂zik)gkj(Z).

9



Let Z be an m× q matrix and L a q× q diagonal matrix. Let W = ZL−1Zt. Denote

by DW = (dW
ij ) the symmetric matrix of differential operators with respect to W = (wij),

where

dW
ij =

1 + δij
2

∂

∂wij

with δij = 1 for i = j and δij = 0 for i ̸= j. The operation in terms of DW is defined in

the same way as for ∇Z .

The Stein (1973) identity, which is given in the following lemma, is a key tool to

evaluating the risk function. For details, see Bilodeau and Kariya (1989) and Konno

(1992).

Lemma 3.1 Let Z = (zij) ∼ Nm×q(0m×q, Im⊗Ω). Let G = (gij) be a q×m matrix such

that all the elements gij are absolutely continuous functions of Z and satisfy E[|gabzcd|] <
∞ and E[|∂gab/∂zcd|] <∞ for a, d = 1, . . . , q and b, c = 1, . . . ,m. It then follows that

E[trZΩ−1G] = E[tr∇ZG].

The following two lemmas are useful for showing Theorem 3.1 given in the next sub-

section. The lemmas are easily proved by the same arguments as in Konno (1992, Lemma

2.1.9) and in Tsukuma and Kubokawa (2014, equation (6.18)), respectively, and the proofs

are omitted.

Lemma 3.2 Let Z be an m × q matrix and L a q × q diagonal matrix. Let g(Z) be a

differentiable and scalar-valued function of Z. Define G(W ) as an m × m symmetric

matrix such that all the elements are differentiable functions of W = ZL−1Zt. Then we

have

tr∇Z{ZtG(W )g(Z)} = g(Z)(q −m− 1)trG(W ) + 2g(Z)trDW{WG(W )}
+ trZtG(W ){∇Zg(Z)},

Lemma 3.3 Let the notation be as in (3.1) and (3.2). Denote W = XV +X t. Let Φ(F )

be an ℓ × ℓ diagonal matrix such that the diagonal elements are absolutely continuous

functions of F . Then we have

E[trΣ−1QΦ(F )Qt] = E[atrΦ(F )− 2trDWRFΦ(F )Rt],

where a = 2(n ∨ p)− p− n+ 2m+ 1.

3.2 A key inequality to improvement

We now prove the following theorem which will be used as a key tool to showing the

Stein-type dominance results in the next subsection.

10



Theorem 3.1 Let Φ(F ) be an ℓ× ℓ diagonal matrix such that the diagonal elements are

absolutely continuous and nonnegative functions of F . Then we have

E[trΣ−1Q(Iℓ + F )Φ(F )Qt] ≥ E[(n ∨ p+m)trΦ(F )].

Proof. Abbreviate Φ(F ) to Φ. Define

I1 = E[trΣ−1QΦQt], I2 = E[trΣ−1QFΦQt].

The probability density function (p.d.f.) of X is proportional to

f(X|Θ,Σ) ∝ exp
(
−1

2
tr(X −Θ)Σ−1(X −Θ)t

)
,

where a normalizing constant is omitted. Take H0 as a p× (p− n ∧ p) matrix such that

H0 ∈ Vp×(p−n∧p) and H t
0H = 0(p−n∧p)×(n∧p). Note that [H ,H0] ∈ O(p) and

tr(X −Θ)Σ−1(X −Θ)t = trXHH tΣ−1HH tX t + 2trXHH tΣ−1(XH0H
t
0 −Θ)t

+ tr(XH0H
t
0 −Θ)Σ−1(XH0H

t
0 −Θ)t.

Making the orthogonal transformation (Z,Z0) = (XH ,XH0), we get the joint p.d.f. of

(Z,Z0), which is proportional to

exp
(
−1

2
trZΩ−1Zt + trZΞt − 1

2
tr(Z0H

t
0 −Θ)Σ−1(Z0H

t
0 −Θ)t

)
,

where Ω−1 = H tΣ−1H and Ξ = −(Z0H
t
0 − Θ)Σ−1H . This implies that Z|Z0,Y ∼

Nm×(n∧p)(ΞΩ, Im ⊗Ω). Thus I2 is expressed as

I2 = E[trΣ−1V V +X tRΦRtXV V +] = EZ0,Y [EZ|Z0,Y [trZΩ−1ZtRΦRt]],

where EZ0,Y denotes expectations with respect to (Z0,Y ) and EZ|Z0,Y denotes condi-

tional expectation with respect to Z given (Z0,Y ). It is noted that

RFRt = XV +X t = ZL−1Zt

and

EZ|Z0,Y [trZΩ−1ZtRΦRt]

= K exp
(
−1

2
trΞΩΞt

)∫
trZΩ−1ZtRΦRt exp

(
−1

2
trZΩ−1Zt + trZΞt

)
dZ,

where K is a normalizing constant.

Using the same arguments as in the proof of Theorem 3.3 of Dı́az-Garćıa et al . (1997),

we obtain

exp(trZΞt) = 0F1

(1
2
ℓ;
1

4
ΞZtZΞt

)
,

11



where 0F1(·) is a hypergeometric function with matrix argument. For details of a hyper-

geometric function, see Muirhead (1982, Section 7.3). Hence it is observed that

EZ|Z0,Y [trZΩ−1ZtRΦRt] = E∗

[
trZΩ−1ZtRΦRt · 0F1

(1
2
ℓ;
1

4
ΞZtZΞt

)]
,

where E∗ denotes expectation with respect to Z|Y ∼ Nm×(n∧p)(0m×(n∧p), Im⊗Ω). Using

Lemmas 3.1 and 3.2 gives that

E∗

[
trZΩ−1ZtRΦRt · 0F1

(1
2
ℓ;
1

4
ΞZtZΞt

)]
= E∗

[
tr∇ZZ

tRΦRt · 0F1

(1
2
ℓ;
1

4
ΞZtZΞt

)]
= E∗

[
0F1

(1
2
ℓ;
1

4
ΞZtZΞt

)
{a2trΦ+ 2trDWRFΦRt}

]
+ E∗

[
trZtRΦRt

{
∇Z · 0F1

(1
2
ℓ;
1

4
ΞZtZΞt

)}]
, (3.3)

for a2 = n ∧ p−m− 1 and W = ZL−1Zt = RFRt. Using Lemma 3.4 given below, we

see that the second term in the last r.h.s. of (3.3) is nonnegative, which implies that

I2 ≥ EZ0,Y
[
E∗

[
0F1

(1
2
ℓ;
1

4
ΞZtZΞt

)
{a2trΦ+ 2trDWRFΦRt}

]]
= E[a2trΦ+ 2trDWRFΦRt]. (3.4)

Applying Lemma 3.3 to I1, we get

I1 = E[a1trΦ− 2trDWRFΦRt], (3.5)

where a1 = 2(n ∨ p)− p− n+ 2m+ 1. It is here observed that

a1 + a2 = n ∨ p+ {n ∨ p+ n ∧ p} − p− n+m

= n ∨ p+m. (3.6)

Combining (3.4), (3.5) and (3.6) gives that

E[trΣ−1Q(Iℓ + F )ΦQt] = I1 + I2 ≥ E[(n ∨ p+m)trΦ].

Hence the proof is complete. □

Lemma 3.4 Let Φ be a diagonal matrix such that the diagonal elements are nonnegative

functions of F . Then we observe that

trZtRΦRt
{
∇Z · 0F1

(1
2
ℓ;
1

4
ΞZtZΞt

)}
≥ 0.
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Proof. The proof will be proved by the same way as in Kubokawa and Tsai (2006). For

a nonnegative integer k, let κ = {k1, . . . , kℓ} be a partition of k, namely k1+ · · ·+ kℓ = k,

where ki ≥ 0 for i = 1, . . . , ℓ. Denote by
∑

κ the summation over all partitions κ =

{k1, . . . , kℓ} of k, where k1 ≥ . . . ≥ kℓ ≥ 0. It follows from the definition of hypergeometric

function (Muirhead (1982, p.258)) that

0F1

(1
2
ℓ;
1

4
ΞZtZΞt

)
=

∞∑
k=0

∑
κ

α(ℓ)
κ Cκ(ΞZtZΞt),

where α
(ℓ)
κ are positive constants and Cκ(ΞZtZΞt) are the zonal polynomials. For details

of the hypergeometric function and the zonal polynomial, see Muirhead (1982) and also

Takemura (1984).

Denote q = n ∧ p. It follows that

trZtRΦRt∇ZCκ(ΞZtZΞt) =
m∑
i=1

q∑
j=1

{ZtRΦRt}ji
∂

∂zij
Cκ(ΞZtZΞt).

Let U = (uab) = ZΞt and Ξ = (ξab). Since the (a, b)-th element of U is given by

uab =
∑q

c=1 zacξbc, it is observed that

∂

∂zij
Cκ(ΞZtZΞt) =

m∑
a,b

∂uab
∂zij

· ∂

∂uab
Cκ(U tU)

=
m∑
a,b

q∑
c=1

ξbcδiaδjc
∂

∂uab
Cκ(U tU)

=
m∑
b=1

ξbj
∂

∂uib
Cκ(U tU).

Write the eigenvalue decomposition of U tU as U tU = Odiag(d1, . . . , dℓ)O
t, where O =

(oab) ∈ Vm,ℓ and d1, . . . , dℓ are the nonzero eigenvalues of U tU . Let

βκ,a =
∂

∂da
Cκ(U tU).

It is noted that βκ,a ≥ 0 for every κ and a because the zonal polynomial Cκ(U tU ) is

a symmetric homogeneous polynomial of the nonzero eigenvalues of U tU with positive

coefficients. Hence the chain rule gives that

∂

∂zij
Cκ(ΞZtZΞt) =

m∑
b=1

ξbj
∂

∂uib
Cκ(U tU) =

ℓ∑
a=1

m∑
b=1

ξbjβκ,a
∂da
∂uib

.

Using Lemma 4.1 of Konno (2009) yields that

∂da
∂uib

= 2
m∑
c=1

ocauicoba,

13



so that

∂

∂zij
Cκ(ΞZtZΞt) = 2

ℓ∑
a=1

m∑
b,c

ξbjβκ,aocauicoba = 2
ℓ∑

a=1

{UO}iaβκ,a{OtΞ}aj.

Thus we get

trZtRΦRt∇ZCκ(ΞZtZΞt) = 2
ℓ∑

a=1

βκ,a{OtU tRΦRtUO}aa ≥ 0,

which completes the proof. □

3.3 Methods for improvements

We here present some kinds of improvements. Consider first the class of estimators (3.1),

given by

Σ̂(Ψ) = Σ̂US + c0QΨ(F )Qt = c0(V +QΨ(F )Qt),

where c0 = (n ∨ p)−1. We derive conditions for improvements over the James-Stein

estimator Σ̂JS given in (2.4) and the estimator Σ̂US = c0V given in (2.5).

Theorem 3.2 Let ℓ = n ∧ p ∧m and Ψ = diag(ψ1, . . . , ψℓ). For any order among n, p

and m, the risk function of the estimator Σ̂(Ψ) given in (3.1) relative to the intrinsic loss

(2.3) is expressed as

R(Σ̂(Ψ),Σ) =R(Σ̂US,Σ)

+ c20E
[ ℓ∑
i=1

{αiψ
2
i − 2(c−1

0 − αi)ψi} − 4g1(Ψ)− 2g2(Ψ)
]
,

(3.7)

where αi = |n− p|+ 2i− 1 for i = 1, . . . , ℓ and

g1(Ψ) =
ℓ∑

i=1

fi(1 + ψi)
∂ψi

∂fi
, g2(Ψ) =

ℓ∑
i=1

ℓ∑
j>i

ψ2
i + 2ψi − ψ2

j − 2ψj

fi − fj
fj.

Proof. It is observed that

R(Σ̂(Ψ),Σ) = E[LV (Σ̂(Ψ),Σ)] = E[trΣ(c0Σ
−1V − Ip + c0Σ

−1QΨ(F )Qt)2V +]

= R(Σ̂US,Σ) + 2c0E[c0trV Σ−1QΨ(F )QtV + − trQΨ(F )QtV +]

+ c20E[trΣ
−1QΨ(F )QtV +QΨ(F )Qt]

= R(Σ̂US,Σ) + c20(2E1 − 2c−1
0 E2 + E3), (3.8)

where E1 = E[trΣ−1QΨ(F )QtV +V ], E2 = E[trQΨ(F )QtV +] and

E3 = E[trΣ−1QΨ(F )QtV +QΨ(F )Qt].
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Since QtV +Q = Iℓ, it is seen that

E2 = E[trΨ(F )] = E

[ ℓ∑
i=1

ψi

]
. (3.9)

Note that QtV +V = P tL1/2H tHH t = P tL1/2H t = Qt. Applying Lemma 3.3 to E1

leads to

E1 = E[trΣ−1QΨQt] = E[a1trΨ− 2trDWRFΨRt],

where Ψ = Ψ(F ) and a1 = 2(n∨ p)− p−n+2m+1. Using Lemma 6.4 of Tsukuma and

Kubokawa (2014) gives that

trDWRFΨRt =
ℓ∑

i=1

{
(m− ℓ+ 1)ψi + fi

∂ψi

∂fi
+

ℓ∑
j>i

fiψi − fjψj

fi − fj

}

=
ℓ∑

i=1

{
(m− i+ 1)ψi + fi

∂ψi

∂fi
+

ℓ∑
j>i

ψi − ψj

fi − fj
fj

}
,

which implies that

E1 = E

[ ℓ∑
i=1

{
αiψi − 2fi

∂ψi

∂fi
− 2

ℓ∑
j>i

ψi − ψj

fi − fj
fj

}]
. (3.10)

where αi = 2(n∨ p)− p− n+ 2m+ 1− 2(m− i+ 1) = |n− p|+ 2i− 1. Similarly, E3 can

be expressed as

E3 = E[trΣ−1QΨ2(F )Qt] =
ℓ∑

i=1

{
αiψ

2
i − 4fiψi

∂ψi

∂fi
− 2

ℓ∑
j>i

ψ2
i − ψ2

j

fi − fj
fj

}
. (3.11)

Combining (3.8), (3.9), (3.10) and (3.11), we obtain (3.7). Thus the proof is complete. □

Using Theorem 3.2, we can investigate dominance properties for a couple of estimators.

A Stein-type estimator is described by

Σ̂(ΨST ) = c0{V +QΨST (F )Qt}, ΨST (F ) = diag(ψST
1 , . . . , ψST

ℓ ),

where for i = 1, . . . , ℓ,

ψST
i =

c−1
0 − αi

αi

=
n ∧ p− 2i+ 1

|n− p|+ 2i− 1
.

Then from Theorem 3.2, it follows that Σ̂(ΨST ) dominates Σ̂US for any order of n, p and

m, and that it further dominates the James-Stein type estimator Σ̂JS if m > n ∧ p. In

fact, the risk function of Σ̂(ΨST ) under the loss (2.3) is expressed as

R(Σ̂(ΨST ),Σ) = R(Σ̂US,Σ)− c20

ℓ∑
i=1

(c−1
0 − αi)

2

αi

− 2c20E
[
g2(Ψ

ST )
]
,
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which is less than R(Σ̂US,Σ) since, for j > i,

(ψST
i )2 + 2ψST

i − (ψST
j )2 − 2ψST

j = c−2
0 (α−2

i − α−2
j ) > 0,

namely g2(Ψ
ST ) > 0. Furthermore, when ℓ = n ∧ p, namely, m > n ∧ p, it then follows

that

R(Σ̂US,Σ)− c20

n∧p∑
i=1

(c−1
0 − αi)

2

αi

= −
n∧p∑
i=1

1

αi

+ E[trΣV +] = R(Σ̂JS,Σ).

This shows that if ℓ = n ∧ p then Σ̂(ΨST ) dominates Σ̂JS relative to the loss (2.3).

Another reasonable estimator is the Haff (1980) type estimator

Σ̂(ΨHF ) = c0(V +QΨHFQt), ΨHF (F ) = diag(ψHF
1 , . . . , ψHF

ℓ ),

ψHF
i =

a

trF
fi (i = 1, . . . , ℓ).

Using Theorem 3.2, we can show that the Haff type estimator Σ̂(ΨHF ) dominates Σ̂US

if constant a satisfies the inequality 0 < a ≤ 2(n ∧ p− 1)/(|n− p| + 1) for n ∧ p > 1. In

fact, it is noted that

ℓ∑
i=1

ℓ∑
j>i

ψHF
i − ψHF

j

fi − fj
fj =

a

trF

ℓ∑
i=1

ℓ∑
j>i

fj =
a

trF

ℓ∑
i=1

(i− 1)fi (3.12)

and also

ℓ∑
i=1

ℓ∑
j>i

(ψHF
i )2 − (ψHF

j )2

fi − fj
fj =

a2

(trF )2

ℓ∑
i=1

ℓ∑
j>i

(fi + fj)fj

=
a2

2(trF )2

ℓ∑
i=1

ℓ∑
j ̸=i

fifj +
a2

(trF )2

ℓ∑
i=1

ℓ∑
j>i

f 2
j

=
a2

2(trF )2

ℓ∑
i=1

(
ℓ∑

j=1

fifj − f 2
i

)
+

a2

(trF )2

ℓ∑
i=1

(i− 1)f 2
i

=
a2

2(trF )2

ℓ∑
i=1

{
fitrF + (2i− 3)f 2

i

}
. (3.13)

Combining these identities (3.12) and (3.13) gives

g2(Ψ
HF ) =

a2

2
+

1

2

ℓ∑
i=1

{
a2

(trF )2
(2i− 3)f 2

i +
4a

trF
(i− 1)fi

}
.

Thus the difference in risk of Σ̂(ΨHF ) and Σ̂US is written as

R(Σ̂(ΨHF ),Σ)−R(Σ̂US,Σ)

= c20

{
(|n− p|+ 2)a2E

[
trF 2

(trF )2

]
− a2 − 2(n ∧ p− 1)a− 4E[g1(Ψ

HF )]

}
.
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Since trF 2/(trF )2 ≤ 1 and

g1(Ψ
HF ) =

a

trF

ℓ∑
i=1

fi

(
1 +

afi
trF

)(
1− fi

trF

)
≥ 0,

it is observed that

R(Σ̂(ΨHF ),Σ)−R(Σ̂US,Σ) ≤ c20
{
(|n− p|+ 1)a2 − 2(n ∧ p− 1)a

}
,

which shows the dominance result.

Next, we consider improvement on Σ̂(ΨST ) and Σ̂(ΨHF ) by using Theorem 3.1. Let

[Ψ]TR = diag(ψTR
1 (F ), . . . , ψTR

ℓ (F )) be a diagonal matrix of order ℓ such that the i-th

diagonal element is given by

ψTR
i (F ) = min

{
ψi(F ),

n ∨ p
n ∨ p+m

(1 + fi)− 1
}
,

where Ψ(F ) = diag(ψ1(F ), . . . , ψℓ(F )). Then we obtain a general dominance result for

improvement on the class (3.1).

Theorem 3.3 Assume that each diagonal element of Ψ(F ) + Iℓ is larger than or equal

to zero. For any tuple of positive integers n, p and m, the truncated estimator Σ̂([Ψ]TR)

dominates Σ̂(Ψ) relative to the loss (2.3) if Pr([Ψ]TR ̸= Ψ) > 0.

Proof. Abbreviate Ψ(F ) to Ψ. The difference in risk of Σ̂(Ψ) and Σ̂([Ψ]TR) is

expressed by

R(Σ̂(Ψ),Σ)−R(Σ̂([Ψ]TR),Σ)

= E[c20trΣ
−1Q{Ψ2 + 2Ψ− ([Ψ]TR)2 − 2[Ψ]TR}Qt − 2c0tr(Ψ− [Ψ]TR)]

= c0E[c0trΣ
−1Q{(Ψ+ Iℓ)

2 − ([Ψ]TR + Iℓ)
2}Qt − 2tr(Ψ− [Ψ]TR)].

Denote Ψ = diag(ψ1, . . . , ψℓ) and [Ψ]TR = diag(ψTR
1 , . . . , ψTR

ℓ ). From the given assump-

tion and the definition of [Ψ]TR, it is seen that ψi ≥ ψTR
i and ψTR

i + 1 ≥ 0 for each i.

Thus using Theorem 3.1 verifies

R(Σ̂(Ψ),Σ)−R(Σ̂([Ψ]TR),Σ)

≥ c0E[c0(n ∨ p+m)tr(Iℓ + F )−1{(Ψ+ Iℓ)
2 − ([Ψ]TR + Iℓ)

2} − 2tr(Ψ− [Ψ]TR)].

(3.14)

The r.h.s. of (3.14) is rewritten as

c0E

[ ℓ∑
i=1

(ψi − ψTR
i )

{
c0
n ∨ p+m

1 + fi
(ψi + ψTR

i + 2)− 2

}]
. (3.15)
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Recall that ψTR
i = min{ψi, c

−1
0 (n∨ p+m)−1(1+ fi)− 1} ≤ ψi. The summation inside the

square brackets in (3.15) is bounded below by

ℓ∑
i=1

(ψi − ψTR
i )

{
c0
n ∨ p+m

1 + fi
(ψTR

i + ψTR
i + 2)− 2

}

= 2
ℓ∑

i=1

(ψi − ψTR
i )

{
c0
n ∨ p+m

1 + fi
(ψTR

i + 1)− 1

}
,

which is equal to zero. Hence the proof is complete. □

It is obviously seen that ψST
i + 1 ≥ 0 and ψHF

i + 1 ≥ 0 for i = 1, . . . , ℓ. Hence the

following corollary is given from Proposition 3.3.

Corollary 3.1 The truncated estimator Σ̂([ΨST ]TR) dominates Σ̂(ΨST ) relative to the

loss (2.3). Also, Σ̂([ΨHF ]TR) dominates Σ̂(ΨHF ) relative to the loss (2.3).

We conclude this section with providing other types of estimators. As shown in The-

orem 2.2, the James-Stein estimator Σ̂JS dominates Σ̂US under the intrinsic loss (2.3).

Using Theorem 2.2 of Konno (2009), we can show that Σ̂JS is further dominated by the

orthogonally invariant estimator Σ̂DS = HLDJSH t relative to the loss (2.3). The es-

timator Σ̂DS is called the Dey-Srinivasan (1985) type estimator. It is recalled that the

truncated Stein type estimator is given by Σ̂([ΨST ]TR) = Σ̂US + c0Q[ΨST ]TRQt. In this

estimator, we can suggest replacing Σ̂US with Σ̂JS and Σ̂DS, which gives

Σ̂JSTR =Σ̂JS + c0Q[ΨST ]TRQt, (3.16)

Σ̂DSTR =Σ̂DS + c0Q[ΨST ]TRQt. (3.17)

It is, however, difficult to show that Σ̂JSTR and Σ̂DSTR dominate Σ̂JS and Σ̂DS, respec-

tively, relative to the loss (2.3). In the next subsection, we will investigate the perfor-

mances of Σ̂JSTR and Σ̂DSTR through the Monte Carlo simulations.

3.4 Simulation studies

We here briefly report risk performances of estimators suggested in this section by simula-

tion. Especially, it is interesting to investigate whether Σ̂(ΨST ) or Σ̂([ΨST ]TR) dominates

the James-Stein estimator Σ̂JS in the case ofm < p, because this dominance result can not

be shown analytically. Since dominance properties of the estimators Σ̂JSTR and Σ̂DSTR

given in (3.16) and (3.17) cannot be shown analytically, it is also interesting to examine

their risk performances numerically.

In our simulation studies, we consider the following two cases: (A) Σ = Ip and (B)

Σ = diag(1, 2, . . . , p) as the true covariance matrix Σ. The true mean matrix Θ = (θij)

is supposed as (a) Θ = 0m×p, (b) θij = 3 sin(i2 + j) and (c) θij = 10 sin(i2 + j) for
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i = 1, . . . ,m and j = 1, . . . , p. Values of m, p and n are taken as combinations of 5, 10

and 15.

Through the simulation experiments, we investigate the risk performances of the esti-

mators suggested by the previous subsection, given by

1. Σ̂HF = Σ̂(ΨHF ) with a = (n ∧ p− 1)/(|n− p|+ 1);

2. Σ̂HFTR = Σ̂([ΨHF ]TR) with a = (n ∧ p− 1)/(|n− p|+ 1);

3. Σ̂ST = Σ̂(ΨST );

4. Σ̂STTR = Σ̂([ΨST ]TR);

5. Σ̂JSTR = Σ̂JS + c0Q[ΨST ]TRQt;

6. Σ̂DS = HLDJSH t;

7. Σ̂DSTR = Σ̂DS + c0Q[ΨST ]TRQt.

The improvements of the above estimators over Σ̂JS are measured by the percentage

relative improvement in risk (PRIR), which is defined as

100× R(Σ̂JS,Σ)−R(Σ̂,Σ)

R(Σ̂JS,Σ)
,

where Σ̂ is any of the above estimators from 1 to 7. The risk function of each estimator

is calculated by average of the loss function (2.3) based on 50,000 replications. The

estimated PRIRs are reported in Table 1.

Table 1 indicates several interesting observations.

(1) The negative PRIRs imply that the corresponding estimators are inferior to Σ̂JS.

Such PRIRs frequently appear in the cases of m < p.

(2) In the cases satisfying m < p, Σ̂ST and Σ̂STTR sometimes improve on Σ̂JS and

sometimes do not.

(3) When (n, p,m) = (15, 10, 5) and (10, 15, 5), namely ℓ = m (m < n ∧ p), the im-

provements over Σ̂JS are generally poor since the information is not much available

on the sample mean matrix X with small m.

(4) The risk functions of Σ̂HF , Σ̂HFTR, Σ̂ST , Σ̂STTR and Σ̂JSTR do not depend on Σ

when n ≥ p and Θ = 0m×p. This fact follows from invariance of these estimators

under a scale transformation. On the other hand, the risk function of Σ̂DS is

invariant under a location transformation on X for any fixed (n,m, p) because Σ̂DS

is independent of X.
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(5) Σ̂JSTR and Σ̂DSTR substantially reduce the risks of Σ̂JS and Σ̂DS, respectively.

(6) In our simulation studies, the excellent estimator is Σ̂DSTR among the estimators

considered here, though it is difficult to establish the improvement of Σ̂DSTR over

Σ̂DS analytically.

4 Extensions

The results given in the previous sections will be here extended to the two directions:

Estimation of a component of covariance and estimation of the precision matrix.

4.1 Estimation of the covariance matrix in linear mixed models

A canonical form of multivariate linear mixed models can be provided by the marginal

distribution of the model (1.1) under the assumption that θi ∼ Np(0p,ΣA) for i =

1, . . . ,m. Then, the canonical model is expressed as

X i ∼ Np(0p,Σ+ΣA), i = 1, . . . ,m,

Y j ∼ Np(0p,Σ), j = 1, . . . , n,
(4.1)

where the covariance matrices Σ and ΣA are referred to as the ‘within’ and ‘between’

multivariate components of variance, respectively. Let V =
∑n

i=1 Y iY
t
i and V 2 =∑m

i=1X iX
t
i. The problem is that we want to construct truncated estimators improv-

ing the unbiased estimator n−1V using the statistic V 2. This is known to be a hard

issue, and in the case of n ≥ p and m ≥ p, Srivastava and Kubokawa (1999) used the

conditional distribution of V given V
−1/2
2 V V

−1/2
2 to get the improvement. Kubokawa

and Tsai (2006) derived the dominance result using the Stein-Haff identity in the case of

n ≥ p without any constraints on m and p.

It is noted that the risk function of estimator Σ̂ relative to the intrinsic loss is

R(Σ,ΣA, Σ̂) = E[LV (Σ̂,Σ)] = E[E[LV (Σ̂,Σ)|Θ]],

where Θ = (θ1, . . . ,θm)
t. Since E[LV (Σ̂,Σ)|Θ] is the corresponding risk in the original

model (1.1), it can be seen that all the dominance results given in the model (1.1) still

hold in the covariance components model (4.1). Thus, one gets unified dominance results

in the model (4.1), irrespective of n, p and m.

4.2 Estimation of the precision matrix

LetX = (X1, . . . ,Xm)
t and Y = (Y 1, . . . ,Y n)

t be random matrices having distributions

given in (1.1) with unknown θi’s and unknown Σ. Consider the problem of estimating
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the precision matrix Σ−1 under a weighted invariant quadratic loss given by

L(δ,Σ−1) = tr[{(δ −Σ−1)V }2]
= tr[δV δV ]− 2tr[Σ−1V δV ] + tr[Σ−1V Σ−1V ],

(4.2)

where δ is an estimator of Σ−1. The merit of this loss function is that we can use the key

inequality given in Theorem 3.1.

Consider first the simple class of estimators cV +, where c is a positive constant. The

risk function of cV + is calculated as

R(cV +,Σ−1) = E[L(cV +,Σ−1)] = (n ∧ p)c2 − 2npc+ E[tr[Σ−1V Σ−1V ]].

Thus the best estimator among the class is given by

δBU = {np/(n ∧ p)}V + = (n ∨ p)V + = c−1
0 V +.

We next consider the class of estimators (T t)+DT+, where T is defined in Theorem

2.2, T+ = (T tT )−1T t is the Moore-Penrose inverse of T and D is an (n ∧ p) × (n ∧ p)
diagonal matrix with constant diagonal elements. Denote D = diag(d1, . . . , dn∧p). Using

the same lines as in the proof of Theorem 2.2, we evaluate the risk function of (T t)+DT+

as

R((T t)+DT+,Σ−1) =

n∧p∑
i=1

{d2i − 2(n+ p− 2i+ 1)di}+ E[tr[Σ−1V Σ−1V ]].

Hence the best estimator among the class (T t)+DT+ is

δJS = (T t)+(DJS)−1T+,

where DJS is defined in Theorem 2.2. It is here noted that δJS = {Σ̂JS}+ is better than

δBU = {Σ̂US}+ relative to the loss (4.2).

We derive alternative estimators to δBU and δJS. For Q = HL1/2P given below (3.1),

we have Q− = P tL−1/2H t. It is noted that Q− is the generalized inverse of Q. Consider

the class of estimators of the form

δ(Ψ) = δBU + c−1
0 (Q−)tΨQ− = c−1

0 (V + + (Q−)tΨQ−),

whereΨ = Ψ(F ) is an ℓ×ℓ diagonal matrix such that the diagonal elements are absolutely

continuous functions of F .

Theorem 4.1 The risk difference between δ(Ψ) and δBU is given by

R(δ(Ψ),Σ−1)−R(δBU ,Σ−1)

= c−2
0 E

[ ℓ∑
i=1

{
ψ2
i − 2(c0αi − 1)ψi + 4c0fi

∂ψi

∂fi
+ 4c0

ℓ∑
j>i

ψi − ψj

fi − fj
fj

}]
,

where αi = |n− p|+ 2i− 1 for i = 1, . . . , ℓ.
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Proof. It is noted that Q−V = Qt and Q−V (Qt)− = Iℓ. The risk difference between

δ(Ψ) and δBU is expressed as

R(δ(Ψ),Σ−1)−R(δBU ,Σ−1)

= E[2c−1
0 tr(δBU −Σ−1)V (Qt)−ΨQ−V + c−2

0 tr(Qt)−ΨQ−V (Qt)−ΨQ−V ]

= c−2
0 E[2trΨ− 2c0trΣ

−1QΨQt + trΨ2].

Using the same arguments as (3.10) gives the result of this theorem. □
For examples of δ(Ψ) improving on δBU , the Stein type estimator δ(ΨST ) is defined

as

ΨST = diag(ψST
1 , . . . , ψST

ℓ ), ψST
i = c0αi − 1 (i = 1, . . . , ℓ).

It can easily be verified that δ(ΨST ) dominates δBU relative to the loss (4.2) and also, if

ℓ = n ∧ p, then δ(ΨST ) is superior to δJS.

We next consider the Haff type estimator δ(ΨHF ), where

ΨHF = diag(ψHF
1 , . . . , ψHF

ℓ ), ψHF
i =

a

trF
fi (i = 1, . . . , ℓ),

where a is a nonpositive constant. Applying Theorem 4.1 to δ(ΨHF ), we obtain

R(δ(ΨHF ),Σ−1)−R(δBU ,Σ−1)

= a2E

[
trF 2

(trF )2

]
+ 2c0(n ∧ p− 1)a+ 4c0aE

[
ℓ∑

i=1

fi
trF

(
1− fi

trF

)]
,

which is bounded above by a2 + 2c0(n ∧ p − 1)a. Thus, when −2c0(n ∧ p − 1) ≤ a < 0,

δ(ΨHF ) dominates δBU relative to the loss (4.2).

For improvement on estimators δ(Ψ) with Ψ = diag(ψ1, . . . , ψℓ), we can apply the

truncation method. Let [Ψ]TR = diag(ψTR
1 , . . . , ψTR

ℓ ) be a diagonal matrix of order ℓ such

that the i-th diagonal element is given by ψTR
i = max{ψi, c0(n ∨ p +m)(1 + fi)

−1 − 1}.
Theorem 3.1 provides the following proposition.

Proposition 4.1 If Pr([Ψ]TR ̸= Ψ) > 0, then, for any tuple of positive integers n, p and

m, the truncated estimator δ([Ψ]TR) dominates δ(Ψ) relative to the loss (4.2).

Proof. Since

ψTR
i = max{ψi, c0(n ∨ p+m)(1 + fi)

−1 − 1} ≥ ψi (4.3)

for each i, it is observed that

R(δ(Ψ),Σ−1)−R(δ([Ψ]TR),Σ−1)

= c−2
0 E[tr{Ψ2 + 2Ψ− ([Ψ]TR)2 − 2[Ψ]TR} − 2c0trΣ

−1Q{Ψ− [Ψ]TR}Qt]

≥ c−2
0 E[tr{Ψ2 + 2Ψ− ([Ψ]TR)2 − 2[Ψ]TR} − 2c0(n ∨ p+m)tr(Iℓ + F )−1{Ψ− [Ψ]TR}]

= c−2
0 E[tr{Ψ− [Ψ]TR}{Ψ+ [Ψ]TR + 2Iℓ − 2c0(n ∨ p+m)(Iℓ + F )−1}], (4.4)
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where the inequality is verified by Theorem 3.1. The last r.h.s. of (4.4) is expressed by

c−2
0 E

[ ℓ∑
i=1

(ψi − ψTR
i )

{
ψi + ψTR

i + 2− 2c0
n ∨ p+m

1 + fi

}]
. (4.5)

Once again using (4.3), we can see that the summation in (4.5) is bounded below by

ℓ∑
i=1

(ψi − ψTR
i )

{
ψTR
i + ψTR

i + 2− 2c0
n ∨ p+m

1 + fi

}

= 2
ℓ∑

i=1

(ψi − ψTR
i )

{
ψTR
i + 1− c0

n ∨ p+m

1 + fi

}
,

which is equal to zero. Hence the proof is complete. □
Using Proposition 4.1 immediately yields the following corollary.

Corollary 4.1 The truncated estimator δ([ΨST ]TR) dominates δ(ΨST ) relative to the

loss (4.2). Also, δ([ΨHF ]TR) dominates δ(ΨHF ) relative to the loss (4.2).
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Table 1: Estimated PRIR (%) in estimation of the covariance matrix

Σ Θ n (m, p) Σ̂HF Σ̂HFTR Σ̂ST Σ̂STTR Σ̂JSTR Σ̂DS Σ̂DSTR

(A) (a) 15 (10, 5) 1.2 9.8 12.5 14.3 18.2 24.4 35.6

10 (15, 5) 2.3 10.4 13.6 15.1 18.7 18.9 30.3

5 (15, 10) 2.3 10.4 13.7 15.2 18.8 19.0 30.6

15 (5, 10) −0.9 −0.8 3.0 3.5 10.0 17.4 27.2

10 (5, 15) −0.9 −0.8 2.9 3.4 10.0 17.3 27.1

5 (10, 15) 1.2 9.8 12.5 14.3 18.2 24.4 35.6

(A) (b) 15 (10, 5) 0.4 6.2 6.3 7.2 11.7 24.4 31.6

10 (15, 5) 1.3 6.7 7.2 8.0 12.4 18.9 26.7

5 (15, 10) 1.1 6.5 6.8 7.6 11.8 19.0 26.6

15 (5, 10) −1.8 −1.7 0.5 0.7 7.3 17.4 25.1

10 (5, 15) −1.8 −1.8 0.5 0.7 7.2 17.3 25.0

5 (10, 15) 0.0 6.0 5.9 6.8 11.3 24.4 31.3

(A) (c) 15 (10, 5) 0.0 5.5 5.3 6.1 10.6 24.4 30.8

10 (15, 5) 0.8 5.8 5.7 6.4 11.0 18.9 25.7

5 (15, 10) 0.3 5.3 4.7 5.4 9.7 19.0 25.1

15 (5, 10) −2.3 −2.2 −0.4 −0.1 6.5 17.4 24.4

10 (5, 15) −2.4 −2.3 −0.4 −0.2 6.4 17.3 24.3

5 (10, 15) −0.6 4.9 4.1 4.9 9.5 24.4 30.0

(B) (a) 15 (10, 5) 1.2 9.8 12.5 14.3 18.2 16.3 29.8

10 (15, 5) 2.3 10.4 13.6 15.1 18.7 14.2 27.6

5 (15, 10) 1.7 7.3 9.7 10.7 14.5 11.7 20.6

15 (5, 10) −0.9 −0.8 3.0 3.5 10.0 13.0 22.9

10 (5, 15) −0.7 −0.6 2.2 2.5 8.0 11.1 18.3

5 (10, 15) 0.7 5.5 7.1 8.1 11.3 12.0 18.8

(B) (b) 15 (10, 5) 0.6 6.8 7.6 8.5 16.2 16.3 23.4

10 (15, 5) 1.7 7.4 9.0 9.8 16.9 14.2 22.7

5 (15, 10) 1.4 5.9 8.0 8.6 12.9 11.7 19.3

15 (5, 10) −1.4 −1.3 1.5 1.8 9.7 13.0 20.1

10 (5, 15) −0.9 −0.8 1.7 1.9 7.7 11.1 17.6

5 (10, 15) 0.6 4.7 6.3 7.0 10.3 12.0 18.2

(B) (c) 15 (10, 5) −0.1 5.4 4.6 5.4 14.0 16.3 20.6

10 (15, 5) 0.8 5.9 5.7 6.4 14.5 14.2 19.8

5 (15, 10) 0.4 4.0 4.0 4.5 9.0 11.7 16.3

15 (5, 10) −2.4 −2.4 −0.4 −0.2 8.5 13.0 17.8

10 (5, 15) −1.6 −1.5 0.1 0.2 6.3 11.1 16.0

5 (10, 15) −0.0 3.2 3.2 3.7 7.1 12.0 15.8
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