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Abstract

The paper concerns small-area estimation in the heteroscedastic nested error
regression (HNER) model which assumes that the within-area variances are different
among areas. Although HNER is useful for analyzing data where the within-area
variation changes from area to area, it is difficult to provide good estimates for the
error variances because of small samples sizes for small-areas. To fix this difficulty,
we suggest a random dispersion HNER model which assumes a prior distribution
for the error variances. The resulting Bayes estimates of small area means provide
stable shrinkage estimates even for small sample sizes. Next we propose an empirical
Bayes procedure for estimating the small area means. For measuring uncertainty
of the empirical Bayes estimators, we use the conditional and unconditional mean
squared errors (MSE) and derive their second-order approximations. It is interesting
to note that the difference between the two MSEs appears in the first-order terms
while the difference appears in the second-order terms for classical normal linear
mixed models. Second-order unbiased estimators of the two MSEs are given with
an application to the posted land price data.
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1 Introduction

Linear mixed (LM) models and the model-based estimators including empirical Bayes
estimator (EB) or empirical best linear unbiased predictor (EBLUP) have been studied
quite extensively in the literature from both theoretical and applied points of view. For a
good review and account on this topic, see Ghosh and Rao (1994), Pfeffermann (2002), Rao
(2003) and Datta (2009). Of these, the nested error regression (NER) model introduced
by Battese, Harter and Fuller (1988) has been used as a unit-level model. The NER
model with m small-areas assumes that the data yi = (yi1, . . . , yini

)T are taken from
the i-th small-area, i = 1, . . . ,m, where y1, . . . ,ym are mutually independent. It is
further assumed that yij is normally distributed with E[yij] = xT

ijβ, V ar(yij) = σ2
y and

Corr(yij, yik) = ρ, j ̸= k, where β = (β1, . . . , βp)
T , σ2

y and ρ are unknown parameters,
xij’s are known vectors of covariates, and Corr(yij, yik) denoted the correlation coefficient
of yij and yik. The NER model can be expressed as a random effects model with

yij = xT
ijβ + vi + εij, i = 1, . . . ,m; j = 1, . . . , ni, (1.1)

where vi’s and εij’s are mutually independent with vi ∼ N (0, λσ2) and εij ∼ N (0, σ2).
Then V ar(vi)/V ar(εij) = λ, and that σ2

y and ρ correspond to

σ2
y = (1 + λ)σ2 and ρ = λ/(1 + λ).

Jiang and Nguyen (2012) illustrated that the within-area sample variances change dra-
matically from small-area to small-area for the data given in Battese, et al . (1988). Figure
1, given in Section 5 in this paper, also indicates variability of the within-area variances.
Jiang and Nguyen (2012) assumed that the variance E[(yij−xT

ijβ)
2] is proportional to σ2

i ,
which depends on the area i. Since E[(yij −xT

ijβ)
2] = E[(vi+ εij)

2] = V ar(vi)+V ar(εij),
this assumption implies that V ar(vi) + V ar(εij) = Cσ2

i for some constant C. Letting
V ar(εij) = σ2

i , we can see that {V ar(vi)/V ar(εij) + 1}V ar(εij) = {V ar(vi)/V ar(εij) +
1}σ2

i = Cσ2
i , which means that

V ar(vi)/V ar(εij) = C − 1,

namely, V ar(vi)/V ar(εij) is a constant. Using the same notation as in the NER model, we
write V ar(vi)/V ar(εij) = λ. Thus, the heteroscedastic nested error regression (HNER)
model suggested by Jiang and Nguyen (2012) is the model given in (1.1) with

V ar(vi) = λσ2
i and V ar(εij) = σ2

i . (1.2)

In the HNER model, Jiang and Nguyen (2012) demonstrated that the maximum like-
lihood (ML) estimators of β and λ are consistent for large m and that the resulting
empirical Bayes (EB) estimator of ξi = xT

i β + vi ( xi = n−1
i

∑ni

j=1 xij) estimates the

Bayes estimator consistently since the Bayes estimator does not depend on σ2
1, . . . , σ

2
m,

but on β and λ. This is quite interesting, because the number of unknown variances σ2
i ’s
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increases as m tends to infinity. However, the posterior variance of vi given (yi1, . . . , yi,ni
)

is
V ar(vi|yi1, . . . , yi,ni

) = σ2
i λ/(1 + niλ),

which implies that the mean squared error (MSE) of the EB of ξi depends on σ
2
i . Then,

we need to estimate σ2
i for estimating the MSE of the EB of ξi. Since the sample sizes

ni is small in the small-area estimation, we cannot provide good estimates for σ2
i with

reasonable precision.

In this paper, we suggest a random dispersion HNER (RHNER) model which assumes
that the priors of (σ2

i )
−1, i = 1, . . . ,m, are mutually independent gamma random vari-

ables. The resulting Bayes estimator of σ2
i gives stable shrinkage estimates of small area

means even for ni − p = 0.

For measuring uncertainty of the empirical Bayes estimator ξ̂EB
i of ξi, we use the

conditional and unconditional mean squared errors (MSE) defined by

cMSE(ω; ξ̂EB
i |yi) =E[(ξ̂

EB
i − ξi)

2|yi],

MSE(ω; ξ̂EB
i ) =E[(ξ̂EB

i − ξi)
2].

When data of the small area of interest are observed as yi and one wants to know the
prediction error of the EB based on these data, the conditional mean squared error (cMSE)
given yi is used instead of the conventional unconditional MSE. Booth and Hobert (1998)
demonstrated that the difference between the cMSE and MSE is quite small and appears
in the second-order terms in classical normal linear mixed models. In this paper, however,
we show that the difference appears in the leading or the first-order terms for the RHNER
model.

The paper is organized as follows: A setup of the RHNER model and its motivation are
given in Section 2. In Section 3, The maximum likelihood (ML) estimators are described
for estimating the unknown β, λ and hyper-parameters of the gamma distribution. The
consistency of the ML estimators is shown and their asymptotic variances and covariances
are derived through calculation of the Fisher information. In Section 4, we provide second-
order approximations of the conditional and unconditional MSEs of the EB for ξi and their
second-order unbiased estimators based on the parametric bootstrap method. In Section
5, we investigate the performance of the proposed procedures through simulation and
empirical studies. Concluding remarks are given in Section 6 and the technical proofs are
given in the Appendix.

2 HNER Models with Random Dispersions

2.1 Setup of models and predictors

We begin with the model given in (1.1) and (1.2). For stable estimators of σ2
i ’s, we

need enough data from each area. Since ni’s are typically small, σ2
i cannot usually be
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estimated with reasonable precision. To give more stable estimators for σ2
i , we assume a

prior distribution for σ2
i . Let ηi = 1/σ2

i . It is assumed that η1, . . . , ηm are independent
and identically distributed with common pdf

π(ηi|τ1, τ2) ∼ Ga(τ1/2, 2/τ2), (2.1)

a gamma distribution with mean τ1/τ2 and variance 2τ1/τ
2
2 . The HNER model given

in (1.1) and (1.2) with the random dispersion (2.1) is called a Random Heteroscedastic
Nested Error Regression (RHNER) model.

Let y = (yT
1 , . . . ,y

T
m)

T , XT
i = (xi,1, . . . ,xi,ni

) and X = (XT
1 , . . . ,X

T
m). All the

unknown parameters are denoted by ω = (β, λ, τ ) for τ = (τ1, τ2). Then, the RHNER
model is given by

yi|vi, ηi ∼Nni
(X iβ + jni

vi, η
−1
i Ini

),

vi|ηi ∼N (0, λη−1
i ),

ηi ∼Ga(τ1/2, 2/τ2).
(2.2)

The conditional distribution of vi given yi and ηi is N (v̂i, λη
−1
i /(niλ+ 1)), where

v̂i = v̂i(β, λ) =
niλ

niλ+ 1
(yi − xT

i β). (2.3)

It is noted that v̂i = E[vi|yi] does not depend on ηi or σ
2
i .

In this paper, we consider the problem of predicting the mixed quantity

ξi = xT
i β + vi, i = 1, . . . ,m.

The conditional expectation of ξi given yi and ηi is

ξ̂Bi (β, λ) = E[ξi|yi, σ
2
i ] = xT

i β + v̂i(β, λ).

This is interpreted as the Bayes estimator of ξ under squared error loss. Since it does
not depend on ηi, the estimator ξ̂Bi (β, λ) continues to be the conditional expectation of ξi
given yi after integrating out the ηi, that is the Bayes estimator of ξi is the same in the
two situations. However, the empirical Bayes estimators, which substitute estimators of
β and λ into ξ̂Bi (β, λ), are different between the HNER and RHNER models.

In the HNER model, we need to estimate (m+p+1) parameters β, λ and σ2
1, . . . , σ

2
m.

Noting that the number of parameters increases as m increases and that nis are bounded
in small-area estimation, we are faced with the problem of consistency and instability of
the estimators of σ2

i . In this situation, Jiang and Nguyen (2012) established the surprising
result that the MLEs of β and λ are consistent, which lead to the consistency of the EB
ξ̂Bi (β̂, λ̂). However, there are no consistent estimators of the σ2

i . This problem can be
fixed if instead the RHNER model is used. In fact, the parameters we need to estimate
in the RHNER model are β, λ, τ1 and τ2, and we can provide their consistent estimators.
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2.2 A motivation from estimation of dispersions

We give more detailed motivation from the estimation of the dispersion parameters σ2
i in

the HNER model. We first treat the simple case that β = 0 and n1 = · · · = nm = n in
(1.1). Let σ2 = (σ2

1, . . . , σ
2
m)

T and γ = 1/(1 + nλ). It follows from the equation (4) of
Jiang and Nguyen (2012) that the log-likelihood is then

LH(γ,σ2) =
m∑
i=1

[
−n log σ2

i + log γ −
{ n∑

j=1

(yij − yi)
2 + nγy2i

}
/σ2

i

]
+K,

where K is a generic constant. Differentiating LH(γ,σ2) with respect to γ and σ2
i ’s, we

see that the maximum likelihood (ML) estimators, γ̂H and σ̂2H
i , of γ and σ2

i ’s are solutions
of the equations

γ̂H =
m∑m

i=1 ny
2
i /σ̂

2H
i

,

σ̂2H
i =

1

n

{ n∑
j=1

(yij − yi)
2 + nγ̂Hy2i

}
.

(2.4)

It is interesting to point out that σ̂2H
i is an asymptotically unbiased estimator of σ2

i . For
the proof, we can use the fact that ny2i and

∑n
j=1(yij − yi)

2 are mutually independent

with ny2i /(1 + nλ) ∼ σ2
i χ

2
1 and

∑n
j=1(yij − yi)

2 ∼ σ2
i χ

2
n−1. Then, from the consistency of

γ̂H , it follows that E[σ̂2H
i ] converges to

1

n
E
[ n∑
j=1

(yij − yi)
2 + nγy2i

]
=
σ2
i

n
E[χ2

n−1 + γ(1 + nλ)χ2
1] = σ2

i ,

which shows that σ̂2H
i is an asymptotically unbiased estimator of σ2

i .

Although σ̂2H
i is asymptotically unbiased, it is clear that σ̂2H

i is not consistent when
m→ ∞, but n is bounded. Thus, we need to modify σ̂2H

i when n is small. For example,
we look at the empirical Bayes estimator of ξi. In the simple case we treat here, we have
ξi = vi, and the EB of ξi is given by

ξ̂Hi = (1− γ̂H)yi =
{
1− m∑m

i=1 ny
2
i /σ̂

2H
i

}
yi,

from (2.4). This is a natural shrinkage estimator, and it is reasonable for large m since
γ̂H is consistent. When m is not large, however, we have a concern about the precision
of the estimator σ̂2H

i . Since
∑n

j=1(yij − yi)
2 ≤ nσ̂2H

i ≤
∑n

j=1 y
2
ij, it is seen that

y2i∑n
j=1 y

2
ij/n

≤ y2i
σ̂2H
i

≤ y2i
Ti/n

,

for Ti =
∑n

j=1(yij − yi)
2. When n is small, clearly y2i /σ̂

2H
i has a large variation, which

leads to the instability of the empirical Bayes estimator ξ̂Hi . Although the simple case

5



of the equal replications n is considered here, in the survey data we need to handle the
case of small sample sizes ni’s for some small-areas, and the estimators σ̂2H

i ’s cannot have
enough degrees of freedom.

To overcome this drawback, we need to stabilize σ̂2H
i by shrinking it to a point. The

random dispersion model is helpful for the purpose. Assume that ηi = 1/σ2
i has a distri-

bution Ga(τ1/2, 2/τ2). Since Tiηi = Ti/σ
2
i ∼ χ2

n−1, from the joint distribution of (Ti, ηi),
the posterior mean of σ2

i given Ti is

E[σ2
i |Ti] = (Ti + τ2)/(n− 1 + τ1).

When τ̂1 and τ̂2 are estimators of τ1 and τ2 based on the statistics T1, . . . , Tm, it is rea-
sonable to estimate σ2

i by

σ̂2RH
i = (Ti + τ̂2)/(n− 1 + τ̂1).

Clearly, σ̂2RH
i is more stabile than the unbiased estimator Ti/(n − 1) when n is small.

Replacing σ̂2H
i in ξ̂Hi with a shrinkage estimator like σ̂2RH

i , one can get the more stabilized
empirical Bayes estimator

ξ̂RH
i =

{
1− m∑m

i=1 ny
2
i /σ̂

2RH
i

}
yi.

Another need for a consistent estimator of σ2
i appears in evaluation of uncertainty of

the empirical Bayes estimator ξ̂Hi . When the mean squared error is used for measuring
the uncertainty, the MSE of ξ̂Hi , denoted by E[(ξ̂Hi − ξi)

2] converges to

E[Var(vi|yi)] = σ2
i λ/(1 + nλ) = σ2

i (1− γ)/n

for large m. To estimate the uncertainty of ξ̂Hi , we want to estimate the leading term
of the MSE consistently. Since σ̂2H

i is not consistent, however, we cannot provide any
consistent estimator of the leading term in the MSE of ξ̂Hi in the HNER model. This
drawback is overcome in the RHNER model.

3 Predictors and Asymptotic Properties of MSE

3.1 MLE of parameters and the empirical Bayes estimator

We now return back to the RHNER model given in (2.2). When λ and β are known, the
best predictor or the Bayes estimator of ξi = xT

i β + vi is given by

ξ̂Bi =ξ̂Bi (β, λ) = E[ξi|yi]

=xT
i β + (1− γi)(yi − xT

i β),
(3.1)

where γi = γi(λ) = 1/(niλ + 1). Since λ and β are unknown, we need to estimate them
from the marginal distributions of the yi. We provide the maximum likelihood (ML)
estimators for unknown parameters ω = (β, λ, τ1, τ2).
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The joint likelihood of y = (y1, . . . ,ym)
T and η = (η1, . . . , ηm)

T after integrating out
the joint likelihood with respect to vi’s is expressed as

f(y,η|ω) =
m∏
i=1

{ η
ni/2
i

(2π)ni/2
√
niλ+ 1

exp
[
−ηi

2

{ ni∑
j=1

(yij − xT
ijβ)

2 − n2
iλ

niλ+ 1
(yi − xT

i β)
2
}]

× π(ηi|τ1, τ2)
}

=
m∏
i=1

{τ τ1/22 η
(ni+τ1)/2−1
i 2−(ni+τ1)/2

πni/2Γ(τ1/2)
√
niλ+ 1

exp
[
−ηi

2
{Qi(yi,β, λ) + τ2}

]}
, (3.2)

where

Qi = Qi(yi,β, λ) =

ni∑
j=1

(yij − xT
ijβ)

2 − n2
iλ

niλ+ 1
(yi − xT

i β)
2

=

ni∑
j=1

{(yij − yi)− (xij − xi)
Tβ}2 + niγi(λ)(yi − xT

i β)
2, (3.3)

where γi = γi(λ) = 1/(niλ+ 1). Integrating out the joint density f(y,η|ω) in (3.2) with
respect to η yields the marginal likelihood of y given by

f(y|ω) =
m∏
i=1

{ τ
τ1/2
2 Γ((ni + τ1)/2)

πni/2
√
niλ+ 1Γ(τ1/2)

{Qi(yi,β, λ) + τ2}−(ni+τ1)/2
}
. (3.4)

Let L = L(β, λ, τ1, τ2) = log f(y|ω). Then,

2L =− ni log π +mτ1 log τ2 + 2
m∑
i=1

ψ(
ni + τ1

2
)− 2mψ(

τ1
2
)

−
m∑
i=1

log(niλ+ 1)−
m∑
i=1

(ni + τ1) log(Qi + τ2),

where ψ(a) = log(Γ(a)). Let Lβ, Lλ, Lτ1 and Lτ2 be the derivatives of L with respect to
β, λ, τ1 and τ2. Then,

2Lβ =−
m∑
i=1

ni + τ1
Qi + τ2

∂Qi

∂β
,

2Lλ =−
m∑
i=1

ni + τ1
Qi + τ2

∂Qi

∂λ
−

m∑
i=1

niγi,

2Lτ1 =
m∑
i=1

log
( τ2
Qi + τ2

)
+

m∑
i=1

{
ψ′(

ni + τ1
2

)− ψ′(
τ1
2
)
}
,

2Lτ2 =m
τ1
τ2

−
m∑
i=1

ni + τ1
Qi + τ2

,

(3.5)
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where ∂Qi/∂λ = −n2
i γ

2
i (yi − xT

i β)
2 for ∂γi/∂λ = −niγ

2
i , and

∂Qi

∂β
= −2

ni∑
j=1

{(yij − yi)− (xij − xi)
Tβ}(xij − xi)− 2niγi(yi − xT

i β)xi. (3.6)

The MLEs of β, λ, τ1 and τ2 are the solution of the simultaneous equations Lβ = 0,

Lλ = 0, Lτ1 = 0 and Lτ2 = 0, and the MLEs are denoted by β̂, λ̂, τ̂1 and τ̂2. The empirical
Bayes estimator of ξi = xT

i β + vi is provided by

ξ̂EB
i = ξ̂Bi (β̂, λ̂) = xT

i β̂ + (1− γ̂i)(yi − xT
i β̂), (3.7)

where γ̂i = γi(λ̂) = 1/(niλ̂+ 1).

3.2 Asymptotic properties of MLE

To evaluate the mean squared errors of the empirical Bayes estimator ξ̂EB
i asymptotically,

we need to derive asymptotic variances and covariances of the MLE when m tends to
infinity. To derive asymptotic properties of the MLE, we assume the following:

(A1) The sample sizes ni’s are bounded below and above as n ≤ ni ≤ n for constants n
and n. The elements of X are uniformly bounded, XTX is positive definite and XTX/m
converges to a positive definite matrix.

Since their asymptotic variances and covariances are expressed by the Fisher informa-
tion matrix, we begin by deriving the Fisher information. Let Iββ be the Fisher informa-
tion matrix of β. The Fisher information matrix of θ = (λ, τ1, τ2)

T and the inverse are
denoted by

Iθθ =

 Iλλ Iλτ1 Iλτ2
Iλτ1 Iτ1τ1 Iτ1τ2
Iλτ2 Iτ1τ2 Iτ2τ2

 and I−1
θθ =

 Iλλ Iλτ1 Iλτ2

Iλτ1 Iτ1τ1 Iτ1τ2

Iλτ2 Iτ1τ2 Iτ2τ2

 .

Then, exact expressions of the Fisher information matrices can be derived in the following
theorem. The proof is given in the Appendix.

Theorem 3.1 The Fisher information of β is given by

Iββ =
τ1
τ2

m∑
i=1

ni + τ1
ni + τ1 + 2

{ ni∑
j=1

(xij − xi)(xij − xi)
T + niγixix

T
i

}
.

Also, Iβλ = 0, Iβτ1 = 0 and Iβτ2 = 0. The elements of 2Iθθ are given by

2Iλλ =
m∑
i=1

(ni + τ1 − 1)n2
i γ

2
i

ni + τ1 + 2
, 2Iλτ1 = −

m∑
i=1

niγi
ni + τ1

,

2Iλτ2 =
τ1
τ2

m∑
i=1

niγi
ni + τ1 + 2

, 2Iτ1τ1 =
1

2

m∑
i=1

{ψ′′(
τ1
2
)− ψ′′(

ni + τ1
2

)},

2Iτ1τ2 =− 1

τ2

m∑
i=1

ni

ni + τ1
, 2Iτ2τ2 =

τ1
τ 22

m∑
i=1

ni

ni + τ1 + 2
.
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It follows from Theorem 3.1 and assumption (A1) that m−1Iββ = O(1) and m−1Iθθ =
O(1), and the limiting values of these quantities are away from zero. The following
theorem is essential for approximating the MSE of ξ̂EB

i asymptotically. The proof is given
in the Appendix.

Theorem 3.2 Assume condition (A1). Then, for θ̂ = (λ̂, τ̂1, τ̂2)
T , it holds that

E[(β̂ − β)(β̂ − β)T |yi] =(Iββ)
−1 +Op(m

−3/2),

E[(θ̂ − θ)(θ̂ − θ)T |yi] =(Iθθ)
−1 +Op(m

−3/2),

E[(β̂ − β)(θ̂ − θ)T |yi] =Op(m
−3/2)0

(3.8)

This implies that β̂−β|yi = Op(m
−1/2) and θ̂− θ|yi = Op(m

−1/2). Also, the conditional

biases E[β̂ − β|yi] = O(m−1) and E[θ̂ − θ|yi] = O(m−1).

4 Measures of Uncertainty of the Empirical Bayes

Estimator

4.1 Second-order approximation of the conditional and uncon-
ditional MSEs

We shall derive a second-order approximation of the MSE of the empirical Bayes (EB)
estimator and its second-order unbiased estimator. Recall that we want to predict ξi =
xT
i β + vi with EB ξ̂EB

i = ξ̂Bi (β̂, λ̂) = xT
i β̂ + v̂i(β̂, λ̂). For measuring uncertainty of EB,

we use the conditional and unconditional mean squared errors (MSE) defined by

cMSE(ω; ξ̂EB
i |yi) =E[(ξ̂

EB
i − ξi)

2|yi],

MSE(ω; ξ̂EB
i ) =E[(ξ̂EB

i − ξi)
2].

The conditional and unconditional MSEs can be decomposed as

cMSE(ω; ξ̂EB
i |yi) =E[{ξi − ξ̂Bi (β, λ)}2|yi] + E[{ξ̂Bi (β̂, λ̂)− ξ̂Bi (β, λ)}2|yi]

=gc1(ω|yi) + gc2(ω|yi), (say) (4.1)

and

MSE(ω; ξ̂EB
i ) =E[{ξi − ξ̂Bi (β, λ)}2] + E[{ξ̂Bi (β̂, λ̂)− ξ̂Bi (β, λ)}2]

=g1(ω) + g2(ω). (say) (4.2)

The first term gc1(ω|yi) is the posterior variance of ξi given y, namely,

gc1(ω|yi) = V ar(ξi|yi) =
λ

niλ+ 1
E[η−1

i |yi] =
λ

niλ+ 1

Qi + τ2
ni + τ1 − 2

, (4.3)
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where Qi is given in (3.3). Similarly, g1(ω) is given by

g1(ω) = E[V ar(ξi|yi)] =
λ

niλ+ 1
E[η−1

i ] =
λ

niλ+ 1

τ2
τ1 − 2

. (4.4)

Noting that gc1(ω|yi) = Op(1), g
c
2(ω|yi) = Op(m

−1), g1(ω) = O(1) and g2(ω) = O(m−1),
we can see that the difference between the cMSE and MSE appears in the leading or the
first-order terms. This is an interesting fact, because the difference is small and appears
in the second-order terms in the classical normal theory mixed models as demonstrated
by Booth and Hobert (1998). They also showed that the difference is significant and
appears in the first-order terms for distributions far from normality. Noting that the
random dispersion model (2.2) is not a normal distribution, but close to a t-distribution,
we observe that the above fact coincides with their assertion.

In the case of the HNER model, V ar(ξi|yi) is identical to E[V ar(ξi|yi)] since yi has
a normal distribution, and is given by σ2

i λ/(niλ + 1). Thus, it should be noted that we
cannot estimate the first-order term σ2

i λ/(niλ+1) consistently in the HNER model, since
ni is bounded. However, we can estimate gc1(ω|yi) and g1(ω) consistently in the RHNER
model (2.2) since λ, τ1 and τ2 are estimated consistently.

Theorem 4.1 Under assumption (A1), the conditional MSE of ξ̂EB
i is approximated as

cMSE(λ, τ ; ξ̂EB
i |yi) =

1− γi
ni

Qi + τ2
ni + τ1 − 2

+ γ2i x
T
i

(
Iββ

)−1
xi

+ n2
i γ

4
i (yi − xT

i β)
2Iλλ +Op(m

−3/2), (4.5)

for γi = 1/(niλ+ 1), and the unconditional MSE is approximated as

MSE(λ, τ ; ξ̂EB
i ) =

1− γi
ni

τ2
τ1 − 2

+ γ2i x
T
i

(
Iββ

)−1
xi

+ niγ
3
i

τ2
τ1 − 2

Iλλ +O(m−3/2). (4.6)

Proof. We shall evaluate the second terms gc2(ω|yi) and g2(ω). Since ξ̂EB
i − ξ̂Bi is

decomposed as

ξ̂Bi (β̂, λ̂)− ξ̂Bi (β, λ) =
1

niλ̂+ 1
xT
i (β̂ − β) +

( niλ̂

niλ̂+ 1
− niλ

niλ+ 1

)
(yi − xT

i β)

=
1

niλ̂+ 1
xT
i (β̂ − β) +

ni(λ̂− λ)

(niλ+ 1)(niλ̂+ 1)
(yi − xT

i β),

10



gc2(ω|yi) can be expressed as

gc2(ω|yi) =E
[ 1

(niλ̂+ 1)2
{xT

i (β̂ − β)}2
∣∣∣yi

]
+
( ni

niλ+ 1

)2

E
[( λ̂− λ

niλ̂+ 1

)2

(yi − xT
i β)

2
∣∣∣yi

]
+ 2

ni

niλ+ 1
E
[ λ̂− λ

(niλ̂+ 1)2
xT
i (β̂ − β)(yi − xT

i β)
∣∣∣yi

]
=

1

(niλ+ 1)2
E[{xT

i (β̂ − β)}2|yi] +
n2
i

(niλ+ 1)4
E[(λ̂− λ)2|yi](yi − xT

i β)
2

+ 2
ni

(niλ+ 1)3
E[(λ̂− λ)xT

i (β̂ − β)|yi](yi − xT
i β) +Op(m

−3/2).

It follows from Theorem 3.2 that E[{xT
i (β̂−β)}2|yi] = E[{xT

i (β̂−β)}2] +Op(m
−3/2) =

xT
i (Iββ)

−1xi + Op(m
−3/2), E[(λ̂− λ)2|yi] = E[(λ̂− λ)2] + Op(m

−3/2) = Iλλ + Op(m
−3/2)

and E[(λ̂−λ)xT
i (β̂−β)|yi] = E[(λ̂−λ)xT

i (β̂−β)]+Op(m
−3/2) = Op(m

−3/2). Thus, one
gets

gc2(ω|yi) = γ2i x
T
i

(
Iββ

)−1
xi + n2

i γ
4
i (yi − xT

i β)
2Iλλ +Op(m

−3/2). (4.7)

Combining (4.3) and (4.7) yields the approximation given in (4.5). Since

E[(yi − xT
i β)

2] =
niλ+ 1

ni

E[η−1
i ] =

niλ+ 1

ni

τ2
τ1 − 2

,

one gets

g2(ω) = γ2i x
T
i

(
Iββ

)−1
xi + niγ

3
i

τ2
τ1 − 2

Iλλ +O(m−3/2). (4.8)

Combining (4.4) and (4.8) gives the expression given in (4.6). Therefore, the proof of
Theorem 4.1 is complete. □

4.2 Second-order unbiased estimators of the conditional and un-
conditional MSEs

We now derive second-order unbiased estimators of the unconditional and conditional
MSEs. Since it is hard to derive second-order biases of the MLEs of β, λ, τ1 and τ2,
we could not provide analytical second-order unbiased estimators of the MSEs. Instead,
we use the parametric bootstrap methods, which provide second-order unbiased MSE
estimators.

We begin by treating the unconditional case. The parametric bootstrap sample in this
case is denoted as

y∗ij = xT
ijβ̂ + v∗i + ε∗ij, i = 1, . . . ,m; j = 1, . . . , ni, (4.9)

where v∗i ’s and ε
∗
ij’s are conditionally mutually independent given η∗i ’s and

v∗i |η∗i ∼N (0, λ̂/η∗i ),

ε∗ij|η∗i ∼N (0, 1/η∗i ),

η∗i ∼ ∼ Ga(τ̂1/2, 2/τ̂2).
(4.10)
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The estimator of the unconditional MSE, MSE(λ, τ ; ξ̂EB
i ), is given by

mse∗(ξ̂EB
i ) = ĝ∗1 + ĝ∗2,

where

ĝ∗1 =2g1(λ̂, τ̂ )− E∗[g1(λ̂
∗, τ̂ ∗)],

ĝ∗2 =γ̂2iE
∗[{xT

i (β̂
∗
− β̂)}2] + niγ̂

3
i

τ̂2
τ̂1 − 2

E∗[(λ̂∗ − λ̂)2].

Proposition 4.1 Assume the condition (A1). Then,

E[mse∗(ξ̂EB
i )] =MSE(λ, τ ; ξ̂EB

i ) +O(m−3/2).

We next consider the conditional case. Since yi = (yi1, . . . , yini
)T is fixed, a bootstrap

sample yk = (yk1, . . . , yknk
)T is generated from (4.9) for k ̸= i. Noting that yi is fixed, we

construct the estimators β̂
∗
(i), λ̂

∗
(i), τ̂

∗
1(i) and τ̂

∗
2(i) from the yi and the bootstrap sample

y∗
1, . . . ,y

∗
i−1,yi,y

∗
i+1, . . . ,y

∗
m (4.11)

with the same technique as used to obtain the estimator β̂, λ̂, τ̂1 and τ̂2. Let E∗ [·|yi]
be the expectation with regard to the bootstrap sample (4.11). The conditional MSE is
given by cMSE(ω; ξ̂EB

i |yi) = gc1(ω|yi)+g
c
2(ω|yi), where g

c
1(ω|yi) = E[{ξi− ξ̂Bi (β, λ)}2|yi]

and gc2(ω|yi) = E[{ξ̂Bi (β̂, λ̂) − ξ̂Bi (β, λ)}2|yi] from (4.1). Since gc1(ω|yi) = n−1
i (1 −

γi(λ))(Qi(yi,β, λ) + τ2)/(ni + τ1 − 2) from (4.3), a second-order unbiased estimator of
gc1(ω|yi) is given by

ĝc∗1 = 2g1(yi, β̂, λ̂, τ̂ )− E∗

[
g1(yi, β̂

∗
(i), λ̂

∗
(i), τ̂

∗
(i))|yi

]
.

Then, it can be verified that E[ĝc∗1 |yi] = gc1(ω|yi) + op(m
−1). gc2(ω|yi), is estimated via

parametric bootstrap as

ĝc∗2 = E∗[{ξ̂B∗
i (β̂

∗
(i), λ̂

∗
(i))− ξ̂B∗

i (β̂, λ̂)}2
∣∣yi

]
.

Thus,
cmse∗(ξ̂EB

i |yi) = ĝc∗1 + ĝc∗2 . (4.12)

Theorem 4.2 Under the condition (A1), the estimator (4.12) is a second-order unbiased
estimator of cMSE, namely

E[cmse∗(ξ̂EB
i |yi)|yi] = cMSE(ω; ξ̂EB

i |yi) + op(m
−1).

5 Numerical and Empirical Studies

In this section, we investigate performances of the procedures suggested in the previous
sections through the numerical and empirical studies.

12



5.1 Simulation study

We here investigate finite sample performances of the maximum likelihood (ML) estima-
tors in the RHNER model and the second-order unbiased estimators for the conditional
and unconditional MSEs by the Monte Carlo simulation.

The ML estimators β and λ as given in (3.5) based on the RHNER model as well as
the estimators given by Jiang and Nguyen (2012) in HNER are consistent for large m.
As discussed in Section 2.2, however, it is expected that the estimators (3.5) still perform
well for smaller m. Thus, for m = 10, 20 and 30, we examine finite sample performances
of the estimators (3.5) in RHNER and compare them with the estimators in HNER in
light of the mean squared errors (MSE). To this end, we conduct simulation experiments
via the simple regression model given by yij = β0 + β1xij + vi + εij for j = 1, 2, 3 and
i = 1, . . . ,m, where xij’s are generated fromN (0, 1), and these values are fixed throughout
the simulation runs. In this simulation, the true values of β and λ are β0 = β1 = λ = 1.
For (τ1, τ2), we treat two cases: (Case I) (τ1, τ2) = (8, 4) and (Case II) (τ1, τ2) = (3, 1/4).
The values of (mean, variance) of ηi are (2, 1) for Case I and (12, 96) for Case II. This
means that the generated values of σ2

i = 1/ηi in Case I are more variable than those in
Case II.

We numerically compute values of MSE of the estimators of (β0, β1, λ) with

MSE =
1

K

K∑
i=1

(estimate− true parameter)2

for K = 1, 000. Those values for the MSEs of the ML estimator in RHNER are reported
in Table 1, where percentages of improvement over the estimators given by Jiang and
Nguyen (2012) in HNER are given in the parentheses. It is observed from Table 1 that
the values of the MSEs decrease as m increases. This is coincident with the consistency
of the estimators in (3.5). Also, the values given in the parentheses illustrate that the
estimators in RHNER improve on the estimators in HNER, which seems to be due to
the property that the estimates of the variances σ2

i are more stable in RHNER than in
HNER. Concerning the difference between Case I and Case II, the variability of ηi or σ

2
i

affects the estimates of β0 and β1, but does not affect the estimates for λ very much.

We next investigate finite sample performances for the estimators of conditional and
unconditional MSEs suggested in Section 4.2. For simplicity, we here treat the model
without covariates given as yij = µ+ vi + εij, j = 1, . . . , ni, i = 1, . . . ,m, for m = 20 and
50, where the true values of the unknown parameters are µ = 0, λ = 1, τ1 = 8 and τ2 = 4,
namely, the true values of (τ1, τ2) correspond to Case II in the previous simulation. For
the design of ni, we consider

n1+m(k−1)/5, . . . , nmk/5 = k, k = 1, . . . , 5,

which means that m areas are divided into five groups and that areas in each group have
the same sample size ni.

13



Table 1: Mean Squared Errors of the Maximum Likelihood Estimators of (β0, β1, λ) in
the RHNER Model for (Case I) (τ1, τ2) = (8, 4) and (Case II) (τ1, τ2) = (3, 1/4). (Values
on β0 and β1 are multiplied by 100. Values in the parentheses denote percentages of
improvement over the estimators in the HNER model.)

Case Size β0 β1 λ

m = 10 8.85 (50.1) 2.22 (57.6) 0.87 (18.8)
I m = 20 4.42 (59.5) 1.71 (61.7) 0.41 (21.9)

m = 30 2.63 (63.6) 0.88 (63.6) 0.26 (18.8)

m = 10 1.54 (48.3) 0.70 (40.4) 1.01 (10.1)
II m = 20 0.79 (56.4) 0.29 (57.0) 0.44 (18.9)

m = 30 0.53 (54.8) 0.26 (56.8) 0.29 (21.4)

Concerning the unconditional MSEs, their true values are calculated via simulation
with R = 5, 000 replications by calculating the quantity

MSEi =
λ

niλ+ 1

τ2
τ1 − 2

+
1

R

R∑
r=1

(
ξ̂
EB(r)
i − ξ̂

(B)
i

)2

,

where ξ̂
EB(r)
i and ξ̂

B(r)
i are the empirical Bayes and Bayes estimator of ξi in the r-th

replication for r = 1, . . . , R. Then, the mean values of the estimator for the MSE and
their Percentage Relative Bias (RB) are calculated based on T = 1, 000 simulation runs
with each 100 bootstrap samples, where RB is defined as

RBi = 100
T−1

∑T
t=1 M̂SE

(t)

i −MSEi

MSEi

,

for the MSE estimate M̂SEt in the t-th replication for t = 1, . . . , T . For the five groups,
Table 2 reports the average values over each group for the MSE estimates and their relative

biases. It is observed that the MSE estimates of M̂SE are close to the true values of MSE,
and their relative bias are small for both m = 20 and 50. Although Table 3 (p.599) in
Jiang and Nguyen (2012) indicates that the MSE estimates in HNER are not so accurate
when m = 20, the MSE estimates in RHNER seem appropriate even for m = 20. It
seems that this comes from stability of the estimators of variances in each small areas in
RHNER.

Concerning the conditional MSE, we use the same setup as in the simulation on the
unconditional MSE except for ni = 3 for sample sizes in all areas. Without any loss of
generality, it is assumed that values of y1j in the area 1 are given. As conditioning values
for y1j, we use α-quantile points of the marginal distribution of y1j, denoted by y1j(α), and

14



Table 2: Mean and Relative Bias of the Estimators for the Unconditional MSE

m = 20 m = 50

ni MSE M̂SE RB MSE M̂SE RB

1 0.377 0.346 -8.12 0.350 0.337 -3.71
2 0.249 0.228 -8.73 0.231 0.224 -3.27
3 0.183 0.169 -7.82 0.173 0.167 -3.04
4 0.145 0.134 -7.07 0.137 0.133 -2.86
5 0.119 0.111 -6.33 0.114 0.111 -2.74

select the five quantiles for α = 0.05, 0.25, 0.5, 0.75 and 0.95. In the r-th iteration, from
the sample {y11(α), y12(α), y13(α), y21, y22, y23, . . . , ym1, ym2, ym3}, we calculate the values of

ξ̂
EB(r)
1 and ξ̂

B(r)
1 . Then, the true values of the conditional MSE of ξ̂

EB(r)
1 are numerically

calculated as

cMSE1 =
λ

niλ+ 1

Qi + τ2
ni + τ1 − 2

+
1

R

R∑
r=1

(
ξ̂
EB(r)
1 − ξ̂

(B)
1

)2

.

As the same manner as stated above, we calculate conditional MSE estimates and their
relative biases based in 1, 000 simulation runs with each 100 bootstrap samples. The
results by simulation are reported in Table 3, which shows that values of the conditional
MSE are small when the conditioning values are near the median and large when the
conditioning values are near the upper or lower quantiles. Also, it is observed that the
proposed estimator of the conditional MSE gives appropriate estimates when bothm = 20
and 50.

5.2 Application to PLP data in Japan

We now investigate empirical performances of the suggested model, the empirical Bayes
estimator and the second-order unbiased estimators of the conditional and unconditional
MSEs through analysis of real data. The data treated here is the posted land price
data along the Keikyu train line in 2001. This train line connects the suburbs in the
Kanagawa prefecture to the Tokyo metropolitan area. Those who live in the suburbs in
the Kanagawa prefecture take this line to work or study in Tokyo everyday. Thus, it is
expected that the land price depends on the distance from Tokyo. The posted land price
data are available for 52 stations on the Keikyu train line, and we consider each station
as a small area, namely, m = 52. For the i-th station, data of ni land spots are available,
where ni varies around 4 and some areas have only one observation.

To investigate variability in each area, the boxplots are drawn for all areas. For nine
selected areas among areas with more than 4 observations, we draw the boxplots in Figure
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Table 3: Mean and Relative Bias of the Estimators for the Conditional MSE

Areas α y1j(α) cMSE1 E[ĉMSE1] RB

0.05 -2.30 0.269 0.244 -9.4
0.25 -0.72 0.129 0.121 -6.3

m = 20 0.50 0.00 0.112 0.098 -12.5
0.75 0.72 0.122 0.123 0.7
0.95 2.30 0.243 0.239 -1.69

0.05 -2.30 0.236 0.223 -5.4
0.25 -0.72 0.131 0.121 -7.3

m = 50 0.50 0.00 0.112 0.107 -3.8
0.75 0.72 0.124 0.123 -0.2
0.95 2.30 0.224 0.228 2.1

1, which clearly indicates that the posted land price has the large within-area variation
and the conventional NER model (which assumes homogeneity of variance) does not seem
to be appropriate.

2.
5
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Figure 1: Boxplots of the Posted Land Price Data for Selected Areas (left) and the
Estimated Density Function of σ2

i = 1/ηi (right).

For j = 1, . . . , ni, yij denotes the value which is transformed by logarithm from the
posted land price (Yen/10,000) for the unit meter squares of the j-th spot, Ti is the time
to take from the nearby station i to the Tokyo station around 8:30 in the morning, Dij

is the value of geographical distance from the spot j to the station i and FARij denotes
the floor-area ratio, or ratio of building volume to lot area of the spot j. These values
of Ti, Dij and FARij are transformed by logarithm. Since these data have within-area

16



variability as indicated in Figure 1 (left), we use the RHNER model

yij = β0 + FARijβ1 + Tiβ2 +Dijβ3 + vi + εij, (5.1)

where vi and εij are mutually independent and distributed as N (0, λσ2
i ) and N (0, σ2

i ),
and ηi(= 1/σ2

i ) is independently distributed as Γ(τ1/2, 2/τ2).

The estimates of the parameters (β0, β1, β2, β3, λ, τ1, τ2) are

β̂0 = 5.69, β̂1 = 0.11, β̂2 = −0.63, β̂3 = −0.08, λ̂ = 0.22, τ̂1 = 2.93, τ̂2 = 0.04.

It is interesting to point out that the estimated regression function is a decreasing function
of Ti andDij, which means that the land price yij tends to decrease as the time from Tokyo
or distance from nearest station increases. Since τ̂1 = 2.93 and τ̂2 = 0.04, the distribution
of ηi has a large mean about 73 and a heavy tail. Since the estimated value of τ1 is smaller
than 4, the variance of ηi or σ

2
i does not exist, which agrees the observation that the posted

land price data has great variability as indicated by the boxplots in Figure 1. Figure 1
(right) draws the estimated density function of σ2

i = 1/ηi where ηi has Γ(τ̂1/2, 2/τ̂2), so
that the distribution of σ2

i has a small mean, but a heavy tail.

The predicted values of x′
iβ + vi and their conditional and unconditional MSE esti-

mates, which can be obtained based on 1, 000 bootstrap samples, are given in Table 4.
It is revealed from Table 4 that the estimates of the unconditional MSE get smaller as
ni gets larger. On the other hands, the estimates of the conditional MSE do not have
a similar property, because the conditional MSE is affected by not only ni but also the
observed values as indicated in Table 3. It is interesting to point out that, in area 48, the
estimated conditional MSE is relatively large while the estimated unconditional MSE is
not large. Noting that this area has great variability as shown in Figure 1, it seems that
the conditional MSE can capture the variability of areas.

6 Concluding Remarks

In the context of small-area estimation, homogeneous linear mixed models like the nested
error regression (NER) model have been studied so far in the literature. Jiang and Nguyen
(2012) found that the data given in Battese, Harter and Fuller (1988) have heterogene-
ity, and first suggested the heteroscedastic nested error regression (HNER) model which
assumes that the within-area variances are different among areas. Motivated from the
inconsistency of the MLE of the dispersion σ2

i , this paper suggests the random dispersion
heteroscedastic nested error regression (RHNER) model. The consistency of the MLE of
the parameters has been shown and their asymptotic variances and covariances have been
derived. For measuring uncertainty of the empirical Bayes estimator, the conditional and
unconditional mean squared errors (MSE) have been approximated up to second-order,
and their second-order unbiased estimators have been provided based on the parametric
bootstrap method. Although the difference between the cMSE and MSE is quite small and
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Table 4: Values of EBLUP and Estimates of Unconditional and Conditional MSES for
Selected fifteen Areas. (Estimates of MSE and cMSE are multiplied by 100)

Area ni EBLUP M̂SE ĉMSE

1 1 4.02 5.19 0.58
4 2 3.91 4.34 0.49
5 5 3.96 3.13 2.31
8 3 3.86 3.83 0.33
17 7 3.50 2.66 1.04
25 7 3.39 2.65 1.37
26 4 3.45 3.42 1.88
32 6 3.22 2.86 2.68
33 8 3.12 2.48 1.90
34 11 3.16 2.09 1.10
35 7 2.99 2.65 3.58
43 6 3.02 2.86 3.73
48 6 3.07 2.86 5.11
49 10 2.82 2.21 2.69
52 6 2.76 2.87 6.55

appears in the second-order terms in classical normal linear mixed models, the difference
appears in the leading or the first-order terms for the RHNER model.

As one of future studies, it is interesting to construct a confidence interval of ξi =
xT
i β + vi. In the RHNER model with random dispersions, it may be computationally

harder to get corresponding confidence intervals. To this end, it is noted that

vi|(yi, ηi) ∼N
(
v̂i(yi,β, λ),

1− γi
niηi

)
,

ηi|yi ∼Ga
(ni + τ1

2
,

2

Qi(yi,β, λ) + τ2

)
,

(6.1)

where v̂i(yi,β, λ) = (1−γi)(yi−xT
i β) for γi = 1/(niλ+1) and Qi(yi,β, λ) given in (3.3).

Let

Zi =

√
ni√

1− γi
√
Qi + τ2

(vi − v̂i).

Thus, the conditional distribution of Zi given yi can be expressed as Zi|yi ∼ fi(zi|τ1),
where the density function of Zi is given by

fi(z|τ1) =
Γ((ni + τ1 + 1)/2)√
πΓ((ni + τ1)/2)

(1 + z2)−(ni+τ1+1)/2. (6.2)
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Define zi,α(τ1) as the solution of the equation∫ ∞

zi,α(τ1)

fi(z|τ1)dz = α.

Hence, P [ξi > Ui(yi,β, λ, τ )] = α, where

Ui(yi,β, λ, τ ) = xT
i β + v̂i(yi,β, λ) +

√
1− γi(λ)

√
Qi(yi,β, λ) + τ2√
ni

zi,α(τ1).

Based on these equalities, we need to show that P [ξi > Ui(yi, β̂, λ̂, τ̂ )] = α+m−1h(β, λ, τ )+
O(m−3/2). Since zi,α(τ1) depends on unknown τ1, it is computationally hard to construct
a confidence interval with second-order accuracy. This issue will be addressed in a future
work.

Another interesting topic is that one can consider a different type of a random disper-
sion model given by

yi|vi, ηi ∼Nni
(X iβ + jni

vi, η
−1
i Ini

),

vi ∼N (0, σ2
v),

ηi ∼Ga(τ1/2, 2/τ2).
(6.3)

In this model, the random effect vi is distributed independent of ηi or σ
2
i , namely, the

variance of yij − xT
ijβ − vi changes from area to area, while the variance of yij − xT

ijβ
varies from area to area in the RHNER model (2.2). Since the integration in the marginal
likelihood (3.4) with respect to ηi cannot give a closed form in the model (6.3), it may be
harder to analyze this model, but it is worth trying it in the future.

A Appendix

A.1 Proof of Theorem 3.1

We begin by providing the following two lemmas which will be used for calculating the Fisher
information.

Lemma A.1 Conditional on ηi, Qi defined below (3.2) is distributed independently of (
∑ni

j=1{(yij−
yi)− (xij − xi)

Tβ}2/Qi, (yi − xT
i β)

2/Qi).

Proof. Let us assume that β and λ are fixed. Given the joint pdf in (3.2), conditional on
ηi, Qi is complete sufficient, while (

∑ni
j=1{(yij − yi) − (xij − xi)

Tβ}2/Qi, (yi − xT
i β)

2/Qi) is
ancillary. Now we apply Basu’s theorem to get Lemma A.1. □

Lemma A.2 Let Ri = Qi/(Qi + τ2). Marginally, that is, after integrating out ηi, Ri ∼
Beta(ni/2, τ1/2).
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Proof. Note that Qi|ηi ∼ η−1
i χ2

ni
and ηi ∼ Ga(τ1/2, 2/τ2). Now integrating out ηi, the

marginal pdf of Qi is

f(Qi) =
Q

ni/2−1
i τ

τ1/2
2

(Qi + τ2)(ni+τ1)/2

Γ((ni + τ1)/2)

Γ(ni/2)Γ(τ1/2)

=
( Qi

Qi + τ2

)ni/2−1( τ2
Qi + τ2

)τ1/2−1 τ2
(Qi + τ2)2

1

B(ni/2, τ1/2)
.

Then, Ri has pdf f(Ri) = R
ni/2−1
i (1−Ri)

τ1/2−1/B(ni/2, τ1/2), which proves Lemma A.2. □

It follows as a consequence of Lemma A.2 that

E
[ 1

Qi + τ2

]
=τ−1

2 E[1−Ri] =
τ1
τ2

1

ni + τ1
, (A.1)

E
[ Qi

(Qi + τ2)2

]
=τ−1

2 E[Ri(1−Ri)] =
τ1
τ2

ni
(ni + τ1)(ni + τ1 + 2)

, (A.2)

E
[ Q2

i

(Qi + τ2)2

]
=E[R2

i ] =
ni(ni + 2)

(ni + τ1)(ni + τ1 + 2)
. (A.3)

We will be using (A.1), (A.2) and (A.3) repeatedly in the following calculations.

We begin with the second derivative Lββ, which can be written from (3.5) as

2Lββ = −
m∑
i=1

ni + τ1
Qi + τ2

∂2Qi

∂β∂βT
+

m∑
i=1

ni + τ1
(Qi + τ2)2

∂Qi

∂β

∂Qi

∂βT
. (A.4)

But,

∂2Qi/∂β∂β
T = 2

ni∑
j=1

(xij − xi)(xij − xi)
T + 2niγixix

T
i , (A.5)

for γi = 1/(niλ+ 1). It is noted that

∂Qi

∂β
=− 2

ni∑
j=1

{(yij − yi)− (xij − xi)
Tβ}(xij − xi)− 2niγi(yi − xT

i β)xi

=− 2

ni∑
j=1

(eij − ei)(xij − xi)− 2niγi(vi + ei)xi,

where eij = yij − xT
ijβ and ei = n−1

i

∑ni
j=1 eij . One can also write Qi =

∑ni
j=1(eij − ei)

2 +

niγi(vi + ei)
2. Once again, conditional on ηi, Q

−1
i (∂Qi/∂β)(∂Qi/∂β

T ) is ancillary and is thus
independent of Qi. This leads to

E
[
(Qi + τ2)

−2∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi] =E
[ Qi

(Qi + τ2)2
Q−1

i

∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi]
=E

[ Qi

(Qi + τ2)2

∣∣∣ηi]E[
Q−1

i

∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi].
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Similarly,

E
[∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi] = E[Qi|ηi]E
[
Q−1

i

∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi],
so that

E
[
Q−1

i

∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi] = E
[∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi]/E[Qi|ηi]. (A.6)

But, using the fact that (ei1, . . . , eini , vi) and −(ei1, . . . , eini , vi) have the same distribution and
(ei1 − ei, . . . , eini − ei) is distributed independently of (vi, ei) conditional on ηi, it follows that

E
[∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi] =4E
[ ni∑
j=1

e2ij(xij − xi)(xij − xi)
T + n2i γ

2
i (vi + ei)

2xix
T
i

]
=4n−1

i

[ ni∑
j=1

(xij − xi)(xij − xi)
T + niγixix

T
i

]
. (A.7)

Combining (A.1), (A.2) and (A.4) - (A.7), one gets

Iββ = E[−Lββ] =
τ1
τ2

m∑
i=1

ni + τ1
ni + τ1 + 2

{ ni∑
j=1

(xij − xi)(xij − xi)
T + niγixix

T
i

}
.

Next, observe that

2Lβλ =−
m∑
i=1

ni + τ1
Qi + τ2

∂2Qi

∂β∂λ
+

m∑
i=1

ni + τ1
(Qi + τ2)2

∂Qi

∂β

∂Qi

∂λ

=− 2

m∑
i=1

n2i γ
2
i

ni + τ1
Qi + τ2

(yi − xT
i β)xi

+ 2

m∑
i=1

n2i γ
2
i

ni + τ1
(Qi + τ2)2

{ ni∑
j=1

[
yij − yi − (xij − xi)

Tβ
]
(xij − xi) + niγi(yi − xT

i β)xi

}
× (yi − xT

i β)
2

=− 2

m∑
i=1

n2i γ
2
i

ni + τ1
Qi + τ2

(vi + ei)xi

+ 2
m∑
i=1

n2i γ
2
i

ni + τ1
(Qi + τ2)2

{ ni∑
j=1

(eij − ei)(xij − xi) + niγi(vi + ei)xi

}
(vi + ei)

2.

Arguing as belore, (ei1, . . . , eini , vi) and −(ei1, . . . , eini , vi) have the same distribution and (ei1−
ei, . . . , eini − ei) is distributed independently of (vi, ei) conditional on ηi, it follows that Iβλ =
−E[Lβλ] = 0. Similarly,

2Lβτ1 =−
m∑
i=1

(Qi + τ2)
−1∂Qi/∂β

=2

m∑
i=1

1

Qi + τ2

{ ni∑
j=1

[
yij − yi − (xij − xi)

Tβ
]
(xij − xi) + niγi(yi − xT

i β)xi

}
,
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so that Iβτ1 = −E[Lβτ1 ] = 0. Moreover,

2Lβτ2 =
m∑
i=1

(ni + τ1)(Qi + τ2)
−2∂Qi/∂β

=2

m∑
i=1

ni + τ1
(Qi + τ2)2

{ ni∑
j=1

[
yij − yi − (xij − xi)

Tβ
]
(xij − xi) + niγi(yi − xT

i β)xi

}
,

so that Iβτ2 = −E[Lβτ2 ] = 0.

Finally, we evaluate the second derivatives in Lθθ for θ = (λ, τ1, τ2)
T . First, we compute

2Lλλ =−
m∑
i=1

ni + τ1
Qi + τ2

∂2Qi

∂λ2
+

m∑
i=1

ni + τ1
(Qi + τ2)2

(∂Qi

∂λ

)2
+

m∑
i=1

n2i γ
2
i

=− 2
m∑
i=1

(ni + τ1)Qi

Qi + τ2
n3i γ

3
i (yi − xT

i β)
2/Qi

+
m∑
i=1

(ni + τ1)Q
2
i

(Qi + τ2)2
n4i γ

4
i (yi − xT

i β)
4/Q2

i +
m∑
i=1

n2i γ
2
i . (A.8)

It is here observed that (yi −xT
i β)

2niγi/Qi ∼ Beta(1/2, ni/2) and is distributed independently
of Qi. Further,

E[niγi(yi − xT
i β)

2/Qi] =1/ni, (A.9)

E[(niγi)
2(yi − xT

i β)
4/Q2

i ] =3/{ni(ni + 2)}. (A.10)

Hence, from (A.1), (A.3) and (A.8)-(A.10),

Iλλ =E[−Lλλ]

=
m∑
i=1

E
[(ni + τ1)Qi

Qi + τ2

]
n2i γ

2
i n

−1
i − 1

2

m∑
i=1

E
[(ni + τ1)Q

2
i

(Qi + τ2)2

]
n2i γ

2
i

3

ni(ni + 2)
−

m∑
i=1

n2i γ
2
i

=
1

2

[ m∑
i=1

n2i γ
2
i − 3

m∑
i=1

n2i γ
2
i

ni + τ1 + 2

]
=
1

2

m∑
i=1

ni + τ1 − 1

ni + τ1 + 2
n2i γ

2
i .

Next, 2Lλτ1 = −
∑m

i=1(Qi+τ2)
−1∂Qi/∂λ =

∑m
i=1{Qi/(Qi+τ2)}niγi{niγi(y−xT

i β)
2/Qi}, which

yields that

Iλτ1 = E[−Lλτ1 ] = −(1/2)

m∑
i=1

{ni/(ni + τ1)}niγin−1
i = −(1/2)

m∑
i=1

niγi/(ni + τ1).

Since 2Lλτ2 =
∑m

i=1(ni+ τ1)(Qi+ τ2)
−2∂Qi/∂λ = −

∑m
i=1{(ni+ τ1)Qi/(Qi+ τ2)

2}niγi{niγi(y−
xT
i β)

2/Qi}, one gets

Iλτ2 = E[−Lλτ2 ] =
1

2

τ1
τ2

m∑
i=1

niγi
ni + τ1 + 2

.
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Finally, it is observed that 2Lτ1τ1 = (1/2)
∑m

i=1{ψ′′((ni + τ1)/2)− ψ′′(τ1/2)}, 2Lτ1τ2 = m/τ2 −∑m
i=1(Qi + τ2)

−1 and 2Lτ2τ2 = −mτ1/τ22 +
∑m

i=1(ni + τ1)(Qi + τ2)
−2. Then,

Iτ1τ1 = E[−Lτ1τ1 ] =
1

4

m∑
i=1

{
ψ′′(

τ1
2
)− ψ′′(

ni + τ1
2

)
}
.

Also, using Lemma A.2, one gets Iτ1τ2 = E[−Lτ1τ2 ] = −(2τ2)
−1

∑m
i=1 ni/(ni + τ1) and Iτ2τ2 =

E[−Lτ2τ2] = τ1(2τ
2
2 )

−1
∑m

i=1 ni/(ni + τ1 + 2).

A.2 Proof of Theorem 3.2

Let ω = (ω1, . . . , ωp+3)
T = (βT , λ, τT )T . The log likelihood of (y1, . . . ,ym) is denoted by ℓ(ω),

which is also expressed as

ℓ(ω) =
m∑
j=1

ℓ(ω;yj),

where ℓ(ω;yj) = log f(yj |ω) is the log likelihood function of yj . Let ℓω(ω) = (∂/∂ω)ℓ(ω) and

ℓωω(ω) = (∂2/∂ω∂ωT )ℓ(ω). Then, the (a, b)-element of ℓωω(ω) is written as

(
ℓωω(ω)

)
ab

=

m∑
j=1

ℓab(ω;yj),

where ℓab(ω;yj) = (∂2/∂ωa∂ωb)ℓ(ω;yj). Since y1, . . . ,ym are mutually independent, the
law of large numbers implies that −m−1

∑m
j=1 ℓab(ω;yj) given yi converges to the limit of

m−1
∑m

j=1E[−ℓab(ω;yj)|yi]. Let Iab(ω) = m−1
∑m

j=1E[−ℓab(ω;yj)]. It is noted that

Iab(ω)−m−1
m∑
j=1

E[−ℓab(ω;yj)|yi] =
1

m

{
E[−ℓab(ω;yi)] + ℓab(ω;yi)

}
,

is of order Op(m
−1). This shows that given yi,

−m−1ℓωω(ω)|yi = m−1Iωω(ω) +Op(m
−1/2),

where Iωω(ω) = −E[ℓωω(ω)]. Also, it holds that unconditionally, −m−1ℓωω(ω) = m−1Iωω(ω)+
Op(m

−1/2). Since limm→∞m−1Iωω(ω) is positive definite, it follows from Mardia and Marshall
(1984) or Sweeting (1980) that ω̂ − ω = Op(m

−1/2) for the MLE ω̂ of ω.

Using the Taylor series expansion and the above approximation, we can see that

0 = ℓω(ω̂) =ℓω(ω) + ℓωω(ω)(ω̂ − ω) +Op(1),

=ℓω(ω)− Iωω(ω)(ω̂ − ω) +Op(1).

This implies that

√
m(ω̂ − ω) =

{
m−1Iωω(ω)

}−1
m−1/2ℓω(ω) +Op(m

−1/2). (A.11)
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Hence, it follows that

E[(ω̂ − ω)(ω̂ − ω)T |yi] =
{
m−1Iωω(ω)

}−1 1

m2
E[ℓω(ω)

{
ℓω(ω)

}T |yi]
{
m−1Iωω(ω)

}−1

+Op(m
−3/2).

Since E[ℓω(ω;yj)] = 0 and ℓω(ω) =
∑m

j=1 ℓω(ω;yj), it can be seen that

1

m2
E[ℓω(ω)

{
ℓω(ω)

}T |yi]

=
1

m2

m∑
j=1,j ̸=i

E[
{
ℓω(ω;yj)

}{
ℓω(ω;yj)

}T |yi] +
1

m

{
ℓω(ω;yi)

}{
ℓω(ω;yi)

}T

=
1

m2

m∑
j=1

E[
{
ℓω(ω;yj)

}{
ℓω(ω;yj)

}T
]

+
1

m2

{{
ℓω(ω;yi)

}{
ℓω(ω;yi)

}T − E[
{
ℓω(ω;yi)

}{
ℓω(ω;yi)

}T
]
}
,

which implies that

1

m2
E[ℓω(ω)

{
ℓω(ω)

}T |yi] =
1

m2
Iωω(ω) +Op(m

−2).

Thus, one gets
E[(ω̂ − ω)(ω̂ − ω)T |yi] = Iωω(ω)−1 +Op(m

−1/2),

which shows (3.8) in Theorem 3.2. This implies that conditionally, ω̂ − ω|yi = Op(m
−1/2).

Concerning the bias of the MLE ω̂, from (A.11), it follows that

E[ω̂ − ω|yi] =
{
m−1Iωω(ω)

}−1
m−1E[ℓω(ω)|yi] +Op(m

−1).

It is here noted that E[ℓω(ω)|yi] =
∑m

j=1E[ℓω(ω;yj)|yi] =
∑m

j=1E[ℓω(ω;yj)] + {ℓω(ω;yi) −
E[ℓω(ω;yi)]} = 0 + Op(1), so that E[ω̂ − ω|yi] = Op(m

−1). This shows the second part of
Theorem 3.2. Therefore, the proof is complete.
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