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Abstract

A multivariate stochastic volatility model with dynamic equicorrelation and cross leverage ef-

fect is proposed and estimated. Using a Bayesian approach, an efficient Markov chain Monte

Carlo algorithm is described where we use the multi-move sampler, which generates multiple

latent variables simultaneously. Numerical examples are provided to show its sampling effi-

ciency in comparison with the simple algorithm that generates one latent variable at a time

given other latent variables. Furthermore, the proposed model is applied to the multivariate

daily stock price index data. The model comparisons based on the portfolio performances

and DIC show that our model overall outperforms competing models.
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1 Introduction

Over the last several decades, various multivariate volatility models have been proposed

to model asset returns with time-varying variances. Two popular examples are general-

ized autoregressive conditional heteroskedasticity (GARCH) models (Bauwens, Laurent, and

Rombouts (2006)) and multivariate stochastic volatility (SV) models (Asai, McAleer, and

Yu (2006), Chib, Omori, and Asai (2009)).

They are proposed to model the volatility clustering and the dynamic correlations, which

are found to exist in empirical studies of financial time series (Bauwens, Hafner, and Laurent

(2012)). Dynamic conditional correlation (DCC) models (Engle (2002)) and BEKK models

(Engle and Kroner (1995)) are such widely used multivariate GARCH models. They simplify

the multivariate covariance structure since there is an increasing difficulty in estimating too

many parameters for dynamic correlations for high dimensional data. To overcome the diffi-

culty, Engle and Kelly (2012), Vargas (2009), Jin and Tang (2009) and Clements, Coleman-

Fenn, and Smith (2011) proposed the dynamic equicorrelation (DECO) model, which is based

on a DCC model with all correlations equal but time-varying. Making reference to Elton

and Gruber (1973), they argue that the dynamic equicorrelation assumption gives a superior

portfolio allocation. In a Bayesian context, Ledoit and Wolf (2004) proposed the covariance

matrix estimator obtained by shrinking the sample correlation matrix to an equicorrelated

matrix for the purpose of the portfolio optimization. Hafner and Reznikova (2012) applied

the shrinkage methods to the DCC models and improved the estimation results of the DCC

model. Lucas, Schwaab, and Zhang (2012) proposed the dynamic generalized hyperbolic

(GH) skew-t-error model with generalized autoregressive score (GAS) equicorrelation struc-

ture. For an asset allocation, an equicorrelated factor model is sometimes considered as a

mean of dimension reduction (e.g., McNeil, Frey, and Embrechts (2005)).

In volatilities of stock returns, we often observe the asymmetry or the cross leverage effect,

which implies a decrease in the i-th dependent variable at date t followed by an increase in

the j-th latent stochastic variance at date (t + 1). The simple univariate SV model with

leverage effect is given in a state space form as:

yt = m+ exp(ht/2)εt, t = 1, . . . , n, (1)

ht+1 = µ+ φ(ht − µ) + ηt, t = 1, . . . , n− 1, (2)

1



h1 ∼ N

(
µ,

σ2
η

1− φ2

)
, (3)(

εt
ηt

)
∼ N

((
0
0

)
,

(
1 q
q σ2

η

))
, (4)

|φ| < 1, (5)

where yt denotes a (univariate) asset return, ht is a log-variance of yt. The negative value of q

implies the existence of the leverage effect. It can be extended to the multivariate SV model

with cross leverage effect (Dańıelsson (1998), Asai and McAleer (2006), Asai and McAleer

(2009), Chan, Kohn, and Kirby (2006), Ishihara, Omori, and Asai (2011), Ishihara and

Omori (2012) and Nakajima (2012)). The major difficulty in constructing such multivariate

models is to make the covariance matrices positive definite, especially when some dynamic

correlation structure between the asset returns is incorporated. It is desirable to model the

dynamic covariance structure as simply as possible since the parameter estimation becomes

difficult in the sense that there are too many latent variables to be integrated out analytically

to obtain the likelihood function.

In this article, we propose the multivariate SV model with dynamic equicorrelation and

cross leverage effect (DESV model) and describe an efficient Bayesian estimation using the

Markov chain Monte Carlo (MCMC) method to generate the latent stochastic volatilities and

dynamic equicorrelation from the posterior distributions. As discussed in Shephard and Pitt

(1997), Watanabe and Omori (2004) and Omori and Watanabe (2008), we divide all latent

variables into several blocks and generate one block given other blocks (multi-move sampler

or block-sampler). This is known to be more efficient than the simple single-move sampler,

which draws the single latent stochastic volatility (the single dynamic equicorrelation factor)

at a time given the other latent variables and the parameters. It means that we only need

to generate a fewer number of MCMC samples to estimate the posterior distribution of the

interested parameters.

The rest of this article is organized as follows. In Section 2, we propose the multivariate

stochastic volatility model with dynamic equicorrelation and cross leverage effect. Section

3 describes an efficient Bayesian estimation method for the proposed model using a multi-

move sampling method. A single-move sampling method that is simple but inefficient is also

described as a benchmark. In Section 4, we illustrate our estimation method using simulated

data and show that our MCMC algorithm is efficient. Section 5 applies our proposed DESV
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model to the trivariate asset return data based on industrial sector indices of TOPIX (Tokyo

stock price index). Section 6 concludes this article.

2 Equicorrelation model

2.1 Equicorrelation matrix

Suppose that a p-dimensional random variable has an equicorrelation structure where the

p× p equicorrelation matrix takes the form

R =


1 ρ · · · ρ

ρ 1
. . .

...
...

. . .
. . . ρ

ρ . . . ρ 1

 (6)

= (1− ρ)Ip + ρJp, (7)

Ip is a unit matrix of size p, and Jp = 1p1
′
p (1p denotes a p-dimensional vector with all

elements equal to one). The matrix R is positive definite if and only if ρ satisfies the condition

−(p − 1)−1 < ρ < 1. It is noted that the lower bound of ρ is depending on p, that is, as

p becomes larger the lower bound approaches to zero. The determinant and the inverse are

given by

|R| = (1− ρ)p−1{1 + (p− 1)ρ}, (8)

R−1 =
1

1− ρ

(
Ip −

ρ

1− ρ+ pρ
Jp

)
. (9)

We note that the eigenvalues of R are 1 − ρ (multiplicity p − 1) and 1 + (p − 1)ρ. The

eigenvector x = (x1, . . . , xp)
′ associated with 1− ρ satisfies the condition

∑p
i=1 xi = 0, while

the eigenvector associated with 1 + (p − 1)ρ satisfies the condition x1 = · · · = xp. Thus the

spectral decomposition of R is given by

R = {1 + (p− 1)ρ}r1r′1 + (1− ρ)r2r
′
2 + · · ·+ (1− ρ)rpr

′
p,

where r1, . . . , rp are the associated orthonormalized eigenvectors.

Let RD = diag{1+(p−1)ρ, 1−ρ, . . . , 1−ρ} and RO = (r1, . . . , rp). Then, R = RORDR
′
O

and we denote R1/2 = ROR
1/2
D where R

1/2
D = diag{(1+(p−1)ρ)1/2, (1−ρ)1/2, . . . , (1−ρ)1/2}.

Alternatively we could decompose as R = RcR
′
c (e.g., Choleski decomposition), but the

spectral decomposition is advantageous in that it does not depend on the order of the random

variables in the vector.
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2.2 Multivariate SV model with dynamic equicorrelation

Let yt = (y1t, . . . , ypt)
′ denote a p-dimensional asset return vector at time t (t = 1, . . . , n).

Let mt = (m1t, . . . ,mpt)
′ and ht = (h1t, . . . , hpt)

′ denote p-dimensional vectors of unobserved

variables and gt an unobserved variable. We consider the multivariate SV model given by

yt = mt + V
1/2
t εt, εt ∼ Np(0p, Rt), t = 1, . . . , n, (10)

ht+1 = µ+Φ(ht − µ) + ηt, ηt ∼ Np(0p,Ω), t = 1, . . . , n− 1, (11)

h1 = µ+ η0, η0 ∼ Np(0p,Ω0), (12)

gt+1 = γ + θ(gt − γ) + ζt, ζt ∼ N(0, σ2), (13)

g1 = γ + ζ0, ζ0 ∼ N(0, σ2/(1− θ2)), (14)

mt+1 = mt + ηmt, ηmt ∼ Np(0p,Ωm), t = 1, . . . , n− 1, (15)

m1 = ηm0, ηm0 ∼ Np(0p, κIp), (16)

where 0p is a p-dimensional zero vector,

Vt = diag{exp(h1t), . . . , exp(hpt)}, t = 1, . . . , n, (17)

Rt = (1− ρt)Ip + ρtJp, t = 1, . . . , n, (18)

ρt =
exp(gt)

exp(gt) + 1
, t = 1, . . . , n, (19)

µ = (µ1, . . . , µp)
′, (20)

Φ = diag(φ1, . . . , φp), (21)

Ωm = diag(ω2
m1

, . . . , ω2
mp

), (22)(
R

− 1
2

t εt
ηt

)
∼ N2p(02p,Ψ), t = 1, . . . , n− 1, (23)

Ψ =

(
Ip Q′

Q Ω

)
, (24)

and Ω0, the covariance matrix of the initial latent variable h1, satisfies the stationary condi-

tion Ω0 = ΦΩ0Φ+ Ω such that

vec(Ω0) = (Ip2 − Φ⊗ Φ)−1vec(Ω). (25)

We also set Var(g1) = σ2/(1− θ2), the variance of the initial latent variable g1, for assuming

the stationary condition and set κ, the variance of the initial latent variable mj,1 (j =
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1, . . . , p), equal to some large known constant. The latent vector, ht, is a vector of log-

variances of the returns, and the latent variable, gt, is the transformed equicorrelation of yt.

For the identifiability, we set the diagonal elements of the covariance matrix of εt equal to 1.

Notice that we define ρt, t = 1, . . . n, so as to take values on the unit interval, (0, 1). As

shown in the previous subsection, the equicorrelation matrix Rt is positive definite if and

only if ρt is in (−(p− 1)−1, 1). It means that as p becomes large, the negative region of the

parameter space becomes smaller. Therefore it is reasonable to restrict the parameter space

of ρt to the positive region so that the parameter space is independent of p.

We assume, for simplicity, that {mt}nt=1, the latent sequence of the expectations of yt, t =

1, . . . , n, follows a simple random walk. Empirical studies suggest that the expectation of the

asset return is nearly 0 in most cases (e.g., McNeil, Frey, and Embrechts (2005)), but it is

practically important to include non-zero asset means especially for portfolio optimizations

as we shall see in Section 5.3.

3 Bayesian estimation

3.1 Priors and posterior densities

For prior distributions of {µ, γ,Φ, θ, σ2,Ωm}, we assume that

µ ∼ Np(mµ0, Sµ0), (26)

γ ∼ N(mγ0, s
2
γ0), (27)

(φj + 1)/2 ∼ Be(aφj
, bφj

), j = 1, . . . , p, (28)

(θ + 1)/2 ∼ Be(aθ, bθ), (29)

σ2 ∼ IG(ασ20/2, βσ20/2), (30)

ω2
mj

∼ IG(αmj0/2, βmj0/2), j = 1, . . . , p, (31)

where Be(a, b) denotes a beta distribution with parameters a, b and IG(α, β) denotes an

inverted gamma distribution with shape parameter α and scale parameter β. For a prior

distribution of Ψ, we let

Ψ−1 =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
,

5



where Ψ11,Ψ12 and Ψ22 are p×pmatrices, respectively. Noting that Ψ11 = Ip+Ψ12(Ψ22)−1Ψ21,

we assume

Ψ22 ∼ Wp(n0, S0), (32)

Ψ21|Ψ22 ∼ Np×p(Ψ
22∆0,Λ0 ⊗Ψ22), (33)

where W(n, S) denotes a Wishart distribution with parameters (n, S).

Then, the joint posterior density function is

f(ϑ, {ht}nt=1, {gt}nt=1, {mt}nt=1|{yt}nt=1)

∝ π(ϑ)× exp

( n∑
t=1

lt

)
× |Ω0|−

1
2 exp

{
− 1

2
(h1 − µ)′Ω−1

0 (h1 − µ)

}

× |Ω|−
n−1
2 exp

[
− 1

2

n−1∑
t=1

{ht+1 − µ− Φ(ht − µ)}′Ω−1{ht+1 − µ− Φ(ht − µ)}
]

×
(

σ2

1− θ2

)−1/2

exp

{
− (g1 − γ)2

2σ2/(1− θ2)

}
× (σ2)−

n−1
2 exp

[
−
∑n−1

t=1 {gt+1 − (1− θ)γ − θgt}2

2σ2

]
× exp

(
− 1

2κ
m′

1m1

)
× |Ωm|−

n−1
2 exp

{
− 1

2

n−1∑
t=1

(mt+1 −mt)
′Ω−1

m (mt+1 −mt)

}
, (34)

where

lt = −1

2

[
R

− 1
2

t V
− 1

2
t (yt −mt)−Q′Ω−1{ht+1 − µ− Φ(ht − µ)}

]′
× (Ip −Q′Ω−1Q)−1

[
R

− 1
2

t V
− 1

2
t (yt −mt)−Q′Ω−1{ht+1 − µ− Φ(ht − µ)}

]
− 1

2
log{(1− ρt)

p−1(1 + (p− 1)ρt)} −
1

2

∑p
j=1 hjt, (35)

and ϑ = {µ, γ,Φ, θ,Ω, Q, σ2,Ωm}.

We implement the MCMC algorithm in twelve blocks:

1. Initialize {ht}nt=1, {gt}nt=1, {mt}nt=1,µ, γ,Φ, θ,Ω, Q, σ2,Ωm.

2. Generate µ|{yt}nt=1, {ht}nt=1, {gt}nt=1, {mt}nt=1,Φ,Ω, Q.

3. Generate γ|{yt}nt=1, {gt}nt=1, θ, σ
2.

4. Generate Φ|{yt}nt=1, {ht}nt=1, {gt}nt=1, {mt}nt=1,µ,Ω, Q.

5. Generate θ|{yt}nt=1, {gt}nt=1, γ, σ
2.
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6. Generate Ω, Q|{yt}nt=1, {ht}nt=1, {gt}nt=1, {mt}nt=1,µ,Φ.

7. Generate σ2|{yt}nt=1, {gt}nt=1, γ, θ.

8. Generate Ωm|{yt}nt=1, {mt}nt=1.

9. Generate {ht}nt=1|{yt}nt=1, {gt}nt=1, {mt}nt=1,µ,Φ,Ω, Q.

10. Generate {gt}nt=1|{yt}nt=1, {ht}nt=1, {mt}nt=1,µ, γ,Φ, θ,Ω, Q, σ2.

11. Generate {mt}nt=1|{yt}nt=1, {ht}nt=1, {gt}nt=1,µ,Φ,Ω, Q,Ωm.

12. Go to 2.

3.2 Generation of latent variable {ht}nt=1

3.2.1 Single-move sampling method

A simple sampling method for {ht}nt=1, is a single-move sampler that draws a single latent

variable ht at a time given the other ht’s and the parameters. The other method is a multi-

move sampler that draws multiple ht’s simultaneously. A single-move sampler is simpler than

a multi-move sampler, but a multi-move sampler is known to be more efficient (Shephard

and Pitt (1997), Watanabe and Omori (2004) and Omori and Watanabe (2008)). As a

benchmark, we first describe the single-move sampling method. The conditional posterior

density of ht is

f(ht|{hs}−t, {yt}nt=1, {gt}nt=1, {mt}nt=1,ϑ) ∝ g(ht)× exp

{
− 1

2
(ht −mht)

′S−1
ht (ht −mht)

}
,

(36)

where

Sht = {ΦΩ−1Φ+ (Ω−QQ′)−1}−1,

mht = Sht

[
− 1

2
1p +ΦΩ−1{ht+1 − (Ip − Φ)µ}+ (Ω−QQ′)−1{µ+Φ(ht−1 − µ) +Qzt−1}

]
,

g(ht) = exp

[
− 1

2

[
zt −Q′Ω−1{ht+1 − µ− Φ(ht − µ)}

]′
(Ip −Q′Ω−1Q)−1

×
[
zt −Q′Ω−1{ht+1 − µ− Φ(ht − µ)}

]]
,

zt = R
−1/2
t V

−1/2
t (yt −mt).
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We propose a candidate h†
t |{hs}−t, {yt}nt=1, {gt}nt=1, {mt}nt=1,ϑ ∼ N(mht, Sht) and accept it

with probability min[1, g(h†
t)/g(ht)] using Metropolis-Hastings (MH) algorithm, where ht is

a current value.

3.2.2 Efficient multi-move sampling method

A simulation smoother, an efficient sampler for the state variables was proposed by de Jong

and Shephard (1995) and by Durbin and Koopman (2002) for the linear Gaussian state space

model. However, such a simulation smoother cannot be applied directly to our nonlinear

model. As discussed in Shephard and Pitt (1997), Watanabe and Omori (2004) and Omori

and Watanabe (2008), we approximate the nonlinear Gaussian likelihood function by the

linear Gaussian likelihood function and implement the MH algorithm.

In this algorithm, we first divide {ht}nt=1 into K + 1 blocks, (hkm−1+1, . . . ,hkm), m =

1, . . . ,K with k0 = 0, kK+1 = n, ki − ki−1 ≥ 2, using stochastic knots km = int[n(m +

Um)/(K + 2)], where Um’s are independent uniform random variables on (0, 1). Next, we

generate (hkm−1+1, . . . ,hkm) given other blocks by generating (η
km−1

, . . . ,η
km−1

), where η
t
=

Ω−1/2ηt.

The conditional posterior density of η = (η′
s
, . . . ,η′

s+r−1
)′ is given by

f(η
s
, . . . ,η

s+r−1
|{yt}nt=1,hs,hs+r+1, {gt}nt=1, {mt}nt=1,ϑ)

∝
s+r∏
t=s

f(yt|ht, {gt}nt=1, {mt}nt=1,ϑ)

s+r−1∏
t=s

f(ηt|ϑ)× (f(hs+r+1|hs+r,ϑ))
I{s+r<n}

∝ exp

(
L− 1

2

s+r−1∑
t=s

η′
t
η
t

)
,

where

L =



s+r∑
t=s

lt −
1

2
{hs+r+1 − (Ip − Φ)µ− Φhs+r}′Ω−1{hs+r+1 − (Ip − Φ)µ− Φhs+r}

if s+ r < n,
n∑

t=s

lt if s+ r = n.

Using Taylor expansion around the conditional posterior mode of η = (η′
s
, . . . ,η′

s+r−1
)′,

we approximate L and construct a proposal density (linear and Gaussian state-space model)

as
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log f(η
s
, . . . ,η

s+r−1
|hs,hs+r+1,ys, . . . ,ys+r)

≈ const.− 1

2

s+r−1∑
t=s

η′
t
η
t
+ L̂+

∂L

∂η′

∣∣∣∣
η=η̂

(η − η̂) +
1

2
(η − η̂)′E

(
∂2L

∂η∂η′

)∣∣∣∣
η=η̂

(η − η̂)

= const.− 1

2

s+r−1∑
t=s

η′
t
η
t
+ L̂+ d̂′(h− ĥ) +

1

2
(h− ĥ)′E

(
∂2L

∂h∂h′

)∣∣∣∣
h=ĥ

(h− ĥ)

= log f∗(η
s
, . . . ,η

s+r−1
|hs,hs+r+1,ys, . . . ,ys+r),

where h = (h′
s+1, . . . ,h

′
s+r)

′ and

d = (d′
s+1, . . . ,d

′
s+r)

′, dt = ∂L/∂ht, (37)

−E

(
∂2L

∂h∂h′

)
=


As+1 B′

s+2 O · · · O
Bs+2 As+2 B′

s+3 · · · O

O Bs+3 As+3
. . .

...
...

. . .
. . .

. . . B′
s+r

O · · · O Bs+r As+r

 , (38)

At = −E

(
∂2L

∂ht∂h′
t

)
, t = s+ 1, . . . , s+ r, (39)

Bt = −E

(
∂2L

∂ht∂h′
t−1

)
, t = s+ 2, . . . , s+ r, Bs+1 = O (40)

(see Appendix A.1 for the derivation of dt, At, Bt). We generate {η
t
}s+r−1
t=s in two steps:

Step 1 (Disturbance smoother).

(a) Initialize η̂
t
, t = s, . . . , s+ r − 1.

(b) Compute d̂t, Ât, B̂t, t = s+ 1, . . . , s+ r. (dt, At, Bt evaluated at η̂
t
)

(c) For t = s+ 2, . . . , s+ r, compute

Ct = Ât − B̂tC
−1
t−1B̂

′
t, Cs+1 = Âs+1, Ct = FtF

′
t ,

Mt = B̂tF
′−1
t−1, Ms+1 = O, Ms+r+1 = O,

bt = d̂t −MtF
−1
t−1bt−1, bs+1 = d̂s+1.

(d) For t = s+ 1, . . . , s+ r, define

ŷt = γ̂t + C−1
t bt, γ̂t = ĥt + F ′−1

t M ′
t+1ĥt+1.

9



(e) Consider the linear and Gaussian state-space model:

ŷt = Ztht +Gtut, (41)

ht+1 = (Ip − Φ)µ+Φht +Htut, (42)

Zt = Ip + F ′−1
t M ′

t+1Φ, Gt = F ′−1
t [Ip,M

′
t+1chol(Ω)], (43)

Ht = [O, chol(Ω)]. (44)

(chol(Ω) denotes Choleski decomposition of Ω.)

(f) Apply Kalman filter and disturbance smoother (Koopman (1993)) and update η̂.

(g) Go to (b) until η̂ converges to the mode.

Step 2. (a) Update η̂ using the disturbance smoother and find a linear and Gaussian state-

space model (41)-(44).

(b) Generate η† ∼ f∗ (the linear and Gaussian state-space model) using Kalman filter

and simulation smoother (de Jong and Shephard (1995) or Durbin and Koopman

(2002)). Conduct Accept-Reject MH (AR-MH) algorithm (Chib and Greenberg

(1995)).

3.3 Generation of latent variables {gt}nt=1 and {mt}nt=1

We consider the two following sampling methods for {gt}nt=1 corresponding to the last sub-

section.

Single-move sampling method. Generate gt given {gs}−t, {yt}nt=1, {ht}nt=1, {mt}nt=1,ϑ using

a random walk MH algorithm for t = 1, . . . , n.

Multi-move sampling method. We divide {gt}nt=1 into K + 1 blocks using stochastic knots

and generate one block given other blocks using the block sampler as mentioned in the last

subsection. See Appendix A.1 for the derivation of dt, At and Bt.

We generate all of mt’s simultaneously using a simulation smoother (de Jong and Shep-

hard (1995) or Durbin and Koopman (2002)).
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3.4 Generation of µ, γ,Φ, θ, σ2,Ωm

Generation of µ. The conditional distribution of µ is

µ|{yt}nt=1, {ht}nt=1, {gt}nt=1, {mt}nt=1,Φ,Ω, Q ∼ N(mµ, Sµ), (45)

where

Sµ = {S−1
µ0 +Ω−1

0 + (n− 1)(Ip − Φ)(Ω−QQ′)−1(Ip − Φ)}−1, (46)

mµ = Sµ

{
S−1
µ0mµ0 +Ω−1

0 h1 + (Ip − Φ)(Ω−QQ′)−1
n−1∑
t=1

(ht+1 − Φht −Qzt)

}
.

Generation of γ. The conditional distribution of γ is

γ|{yt}nt=1, {gt}nt=1, θ, σ
2 ∼ N(mγ , s

2
γ), (47)

where

s2γ = {s−2
γ0 + (1− θ2)σ−2 + (n− 1)(1− θ)2σ−2}−1, (48)

mγ = s2γ

[
s−2
γ0mγ0 + (1− θ2)σ−2g1 + (1− θ)σ−2

{ n∑
t=2

gt − θ

n−1∑
t=1

gt

}]
. (49)

Generation of Φ. The conditional posterior density of φ = Φ1p is given by

f(φ|{yt}nt=1, {ht}nt=1, {gt}nt=1, {mt}nt=1,µ,Ω, Q) ∝ g(φ)×exp

{
− 1

2
(φ−mφ)

′S−1
φ (φ−mφ)

}
,

(50)

where

Sφ =

{ n−1∑
t=1

((ht − µ)(ht − µ)′)� (Ω−QQ′)−1

}−1

, (51)

(mt,φ)i =
{
(Ω−QQ′)−1(ht+1 − µ−Qzt)(ht − µ)′

}
i,i
, mφ = Sφ

n−1∑
t=1

mt,φ, (52)

g(φ) =

p∏
j=1

π(φj)× |Ω0|−
1
2 exp

{
− 1

2
(h1 − µ)′Ω−1

0 (h1 − µ)

}
, (53)

and � denotes Hadamard product. Generate a candidate from a truncated normal distribu-

tion over the region {φ; |φi| < 1, i − 1, . . . , p}, φ† ∼ TN(−1,1)(mφ, Sφ), and accept it with

probability min[1, g(φ†)/g(φ)].

11



Generation of θ. The conditional posterior density of θ is given by

f(θ|{yt}nt=1, {gt}nt=1, γ, σ
2) ∝ g(θ)× exp

{
− 1

2s2θ
(θ −mθ)

2

}
, (54)

where

s2θ = σ2

{ n−1∑
t=1

(gt − γ)2
}−1

, mθ = s2θ

n−1∑
t=1

σ−2(gt+1 − γ)(gt − γ), (55)

g(θ) = π(θ)× (1− θ2)1/2 exp

{
− (g1 − γ)2

2σ2/(1− θ2)

}
. (56)

Generate a candidate θ† ∼ TN(−1,1)(mθ, s
2
θ) and accept it with probability min[1, g(θ†)/g(θ)].

Generation of σ2. The conditional distribution of σ2 is

σ2|{yt}nt=1, {gt}nt=1, γ, θ ∼ IG(ασ21/2, βσ21/2), (57)

where ασ21 = ασ20 + n and

βσ21 = βσ20 + (g1 − γ)2(1− θ2) +
n−1∑
t=1

{gt+1 − γ − θ(gt − γ)}2. (58)

Generation of Ωm. The conditional distribution of ω2
mj

, j = 1, . . . , p, is

ω2
mj

|{yt}nt=1, {mt}nt=1 ∼ IG(αmj1/2, βmj1/2), (59)

where αmj1 = αmj0 + n− 1 and

βmj1 = βmj0 +

n−1∑
t=1

(mj,t+1 −mjt)
2. (60)

3.5 Generation of Ω, Q

The conditional posterior density of Ψ12 and Ψ22 is given by

f(Ψ12,Ψ22|{yt}nt=1, {ht}nt=1, {gt}nt=1, {mt}nt=1,µ,Φ)

∝
n−1∏
t=1

f(zt,ηt|ϑ)× π(Ψ21,Ψ22)

∝ |Ω0|−1/2 exp

(
− 1

2
η′
0Ω

−1
0 η0

)
× |Ψ22|(n1−p−1)/2 exp

{
− 1

2
tr(S−1

1 Ψ22)

}
× |Ψ22|−p/2 exp

[
− 1

2
{vec(Ψ21 −Ψ22∆1)}′(Λ1 ⊗Ψ22)−1vec(Ψ21 −Ψ22∆1)

]
(61)
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(see, e.g., Gupta and Nagar (2000) and Ishihara, Omori, and Asai (2011)), where

n1 = n0 + n− 1, S1 = (S−1
0 + Ξ22 +∆0Λ

−1
0 ∆′

0 −∆1Λ
−1
1 ∆′

1)
−1, (62)

Λ1 = (Λ−1
0 + Ξ11)

−1, ∆1 = (−Ξ21 +∆0Λ
−1
0 )Λ1, (63)

Ξ =

(
Ξ11 Ξ12

Ξ21 Ξ22

)
=

n−1∑
t=1

(
zt
ηt

)(
zt
ηt

)′
. (64)

We generate a candidate Ψ† in three steps:

1. Generate (Ψ22)† ∼ W(n1, S1).

2. Generate (Ψ21)†|(Ψ22)† ∼ Np×p((Ψ
22)†∆1,Λ1 ⊗ (Ψ22)†).

3. Compute Q† = −((Ψ22)†)−1(Ψ21)†, Ω† = ((Ψ22)†)−1 + Q†(Q†)′ and accept Ψ† with

probability

min

[
1, exp

{
− 1

2
log |Ω†

0| −
1

2
η′
0(Ω

†
0)

−1η0 +
1

2
log |Ω0|+

1

2
η′
0Ω

−1
0 η0

}]
.

4 Illustrative example using simulated data

This section illustrates our proposed DESV model using simulated data. We consider a

trivariate case (p = 3) and investigate the efficiency of our multi-move sampling method in

comparison with the single-move sampling method. Using the following parameters based on

our empirical studies in Section 5,

µ∗ = 03, γ∗ = 1.7, Φ∗ = 0.97I3, θ∗ = 0.97,Ω∗ = 0.015I3 + 0.015J3,

Q∗ = (−0.1× 13,03,03), σ
2
∗ = 0.05, Ωm∗ = 0.001I3,

we generate 2,000 observations (n = 2000). For prior distributions, we assume

µ ∼ N(µ∗, 100I3), γ ∼ N(γ∗, 100),
φi + 1

2
∼ Be(20, 1.5), i = 1, 2, 3,

θ + 1

2
∼ Be(20, 1.5), σ2 ∼ IG

(
5

2
,
3σ2

∗
2

)
, ω2

mj0 ∼ IG

(
5

2
,
3ω2

mj∗

2

)
, j = 1, 2, 3,

Ψ22 ∼ W(6, 6−1Ω∗), Ψ
21|Ψ22 ∼ N3×3(O, 10I3 ⊗Ψ22).

We set κ = 10. Using the single-move sampler, we generate 200,000 MCMC samples after

discarding the first 10,000 samples as the burn-in period. Also, the multi-move sampler is

13



Table 1: Posterior means, 95% credible intervals, p-values of convergence diagnostic test and
inefficiency factors.

True Mean 95% interval CD IF
(m-move) (s-move)

µ1 0 -0.062 (-0.433, 0.322) 0.065 3.9 31.2
µ2 0 -0.055 (-0.372, 0.277) 0.393 5.9 56.2
µ3 0 0.094 (-0.134, 0.331) 0.460 11.2 137.2
γ 1.7 1.597 (1.319, 1.873) 0.226 8.4 173.5
φ1 0.97 0.979 (0.966, 0.989) 0.280 46.7 145.0
φ2 0.97 0.976 (0.962, 0.988) 0.212 50.7 140.8
φ3 0.97 0.966 (0.948, 0.981) 0.616 98.8 467.5
θ 0.97 0.959 (0.935, 0.978) 0.130 73.6 787.7
Ω11 0.03 0.028 (0.018, 0.042) 0.264 136.2 627.2
Ω21 0.015 0.011 (0.004, 0.019) 0.509 128.1 843.8
Ω31 0.015 0.015 (0.006, 0.024) 0.320 147.2 1006.0
Ω22 0.03 0.025 (0.016, 0.037) 0.560 137.3 412.8
Ω32 0.015 0.011 (0.004, 0.019) 0.980 135.9 496.4
Ω33 0.03 0.027 (0.016, 0.041) 0.431 172.4 771.2
Q11 -0.1 -0.065 (-0.094, -0.035) 0.333 69.0 308.7
Q21 -0.1 -0.062 (-0.092, -0.034) 0.953 89.4 365.9
Q31 -0.1 -0.081 (-0.111, -0.051) 0.555 87.2 367.4
Q12 0 -0.008 (-0.042, 0.026) 0.215 86.3 237.2
Q22 0 -0.007 (-0.041, 0.030) 0.016 105.2 554.2
Q32 0 -0.016 (-0.050, 0.019) 0.380 96.4 625.0
Q13 0 -0.006 (-0.044, 0.031) 0.038 99.4 108.0
Q23 0 -0.030 (-0.065, 0.004) 0.360 106.6 177.6
Q33 0 -0.008 (-0.041, 0.028) 0.135 91.6 319.2
σ2 0.05 0.051 (0.029, 0.078) 0.213 133.7 1098.0
ω2
m1

× 103 1 0.897 (0.502, 1.419) 0.881 112.5 97.8
ω2
m2

× 103 1 0.695 (0.391, 1.110) 0.776 110.9 218.5
ω2
m3

× 103 1 0.838 (0.497, 1.341) 0.758 115.4 176.6

The maximum IF’s are indicated in bold type.

Table 2: Inefficiency factors.

(m-move) (s-move) (m-move) (s-move) (m-move) (s-move)

h1,500 35.8 331.2 h1,1000 8.2 313.9 h1,1500 43.9 966.5
h2,500 37.5 453.5 h2,1000 15.4 376.0 h2,1500 46.4 697.7
h3,500 31.5 424.9 h3,1000 15.2 488.3 h3,1500 73.5 1138.7
g500 18.7 811.0 g1000 8.7 330.4 g1500 33.0 1396.9
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used to generate 40,000 MCMC samples after discarding the first 5,000 samples as the burn-in

period. We set the number of the blocks to 301 (K = 300) based on several trials.

Table 1 reports the true values, posterior means, 95% credible intervals, p-values of con-

vergence diagnostic test (CD) by Geweke (1992) and estimated inefficiency factors (IF). The

inefficiency factor is defined as 1 + 2
∑∞

g=1 ρ(g), where ρ(g) is the sample autocorrelation at

lag g. This is interpreted as the ratio of the numerical variance of the posterior mean from

the chain to the variance of the posterior mean from hypothetical uncorrelated draws. The

smaller the inefficiency factor becomes, the closer the MCMC sampling is to the uncorrelated

sampling.

The posterior means are all close to the true values, which suggests that our proposed

algorithms work well. All p-values of convergence diagnostic (CD) tests are greater than 0.01,

suggesting that there is no significant evidence against the convergence of the distribution

of MCMC samples to the posterior distribution. The inefficiency factors for the single-move

sampler (the maximum is 1098.0) are larger than those for the multi-move sampler (the

maximum is 172.4). Further, Table 2 shows inefficiency factors for the latent variables ht

and gt, t = 500, 1000, 1500. For ht (gt), t = 500, 1000, 1500, the inefficiency factors for the

single-move sampler are about ten (forty) larger times than those for the multi-move sampler,

which suggests that our proposed multi-move sampling method is efficient compared with

the single-move sampling method1.

5 Empirical study

5.1 Data

This section applies our proposed model to returns of subindices of Tokyo stock price index

(TOPIX) — three industrial sector indices: (1) Machinery, (2) Electric Appliances and (3)

Precision Instruments. The sample period is from January 4, 2005 to December 28, 2012

(1964 observations in total). The asset return is calculated as yt = (log pt − log pt−1)× 100,

where pt is the asset price at time t. Figure 1 shows the time series plot of the three returns.

The trajectories are relatively similar to each other, so it is expected that the equicorrelation

1The acceptance rates for {ht}nt=1 and {gt}nt=1 are 0.643 and 0.803 using the multi-move sampler
and 0.748 and 0.615 using the single-move sampler. The elapsed time for the simulation using the
multi-move (single-move) sampler is 3.00 (0.23) hours per 10,000 iterations with Intel Core i7 3970X
Extreme Edition (3.5GHz).
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parameters are estimated to be positive.

2005 2006 2007 2008 2009 2010 2011 2012 2013
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TOPIX(Electric Appliances)
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−10

0

10

TOPIX(Precision Instruments)

Figure 1: Time series plot of TOPIX.

5.2 Estimation results

Using the same prior distributions for the parameters as in Section 4, we implement the

MCMC algorithm to conduct a Bayesian inference on the parameters of interest. We generate

100,000 MCMC samples from the posterior distributions of the parameters in the model after

discarding the first 10,000 samples as the burn-in period.

Table 3 reports the summary of the estimation results. Figure 2 shows the posterior

means of exp(hj,t/2), square root of the estimated time-varying variances and ρt, the dynamic

equicorrelation of yt.

The posterior means of µj ’s are similar and the levels of the volatilities are not different

from one another. We also find that the posterior means of the diagonal elements of Ω are

similar and it is consistent with the observed fluctuations shown in Figures 2. The credible

intervals of off-diagonal elements of Ω are positive and do not include zero, which means that
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Table 3: Posterior means, 95% credible intervals, p-values of convergence diagnostic tests
and inefficiency factors.

Mean 95% interval CD IF

µ1 0.767 (0.478, 1.040) 0.002 28.6
µ2 0.614 (0.268, 0.939) 0.796 17.3
µ3 0.683 (0.375, 0.973) 0.219 33.1
γ 1.724 (1.491, 1.946) 0.016 19.4
φ1 0.971 (0.959, 0.982) 0.618 450.1
φ2 0.978 (0.968, 0.987) 0.104 476.0
φ3 0.976 (0.965, 0.985) 0.970 360.3
θ 0.943 (0.897, 0.975) 0.013 315.7
Ω11 0.030 (0.020, 0.043) 0.502 259.7
Ω21 0.027 (0.018, 0.038) 0.252 269.9
Ω31 0.026 (0.017, 0.037) 0.794 239.9
Ω22 0.025 (0.016, 0.037) 0.121 393.0
Ω32 0.024 (0.015, 0.035) 0.394 351.9
Ω33 0.024 (0.015, 0.036) 0.890 422.6
Q11 -0.108 (-0.138, -0.080) 0.839 262.0
Q21 -0.086 (-0.113, -0.060) 0.045 240.7
Q31 -0.084 (-0.110, -0.059) 0.095 193.0
Q12 -0.015 (-0.039, 0.012) 0.396 186.7
Q22 -0.005 (-0.032, 0.021) 0.209 368.1
Q32 -0.002 (-0.029, 0.024) 0.895 372.8
Q13 0.008 (-0.026, 0.043) 0.366 178.3
Q23 0.004 (-0.031, 0.039) 0.838 582.5
Q33 -0.014 (-0.047, 0.019) 0.496 255.9
σ2 0.061 (0.028, 0.111) 0.011 361.1
ω2
m1

× 103 0.261 (0.131, 0.486) 0.856 166.0
ω2
m2

× 103 0.205 (0.110, 0.364) 0.102 130.0
ω2
m3

× 103 0.224 (0.118, 0.408) 0.049 250.8

unobserved volatilities are correlated positively each other.

The posterior means of autoregressive coefficients (φj ’s) are very high (over 0.97), which

shows that the log volatilities follow highly persistent processes. In addition, the top three

panels of Figure 2 indicate the comovement of the volatilities. The trajectories sharply

increased in September 2008, corresponding to the financial crisis during which Lehman

Brothers filed for Chapter 11 bankruptcy protection (September 15, 2008). We also observe

the increase in March 2011, resulted from Tohoku Region Pacific Coast Earthquake.

The posterior means of autoregressive coefficient (θ) is very high and the equicorrelation

parameter is highly persistent, too. The bottom panel of Figure 2 shows that the equicor-
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Figure 2: Posterior means (solid lines) and 95% credible intervals (between the two outmost
dotted lines) of square root of the variances and the dynamic equicorrelation.

relation parameter varies at a high level (far from zero) and greatly, which means that it is

time-varying and far from constant.

The posterior probability with which Q11 is negative is over 0.975 and this is similar for

Q21 and Q31. The 95% credible intervals of the other elements of Q include zeros. As stated

in Section 2, Q is the covariance between zt, the transformed error term in the observed

equation of our model and ηt+1, the error term in the state equation for t = 1, . . . , n− 1. To

verify the existence of the cross leverage effects, we should transform Q using Rt and Ω to

obtain the posterior means of the (time-varying) correlations between εt and ηt+1.

Figure 3 shows the posterior means of dynamic correlations between the return of i-th

asset at time t (yi,t) and the j-th log variance at time t + 1 (hj,t+1). Their trajectories are

negative and far from zero, which indicates the existence of the cross leverage effect.

We note that the leverage effect of asset 1 is the strongest (the mean is −0.617) and

the leverage effect of asset 3 is the weakest (the mean is −0.492) among the cross leverage
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Figure 3: Posterior means (solid lines) and 95% credible intervals (between the two outmost
dotted lines) of correlation of (yit, hj,t+1).

effects. In addition, the correlations between y1t and h2,t+1 is apparently weaker than the

correlations between y2t and h1,t+1. It indicates that cross leverage effects from asset i to j,

i 6= j, are not symmetric.

In conclusion, using our multivariate DESV model, we can therefore detect the volatility

clustering, the dynamic equicorrelation and the cross leverage effects of the three subindices.

Figure 4 shows the posterior means of the expectations of the asset returns. We find

that the 95% credible intervals include zero at almost all of the time points as expected. It

seems to fluctuate slowly, which is consistent with the small values of the variances (ω2
mj

’s)

reported in Table 32.

Note that the acceptance rates for {ht}nt=1 and {gt}nt=1 in the independent MH algorithms

are 0.645 and 0.791, respectively. It indicates that the generated candidates are accepted with

relatively high probability and our sampling algorithm works well.

2Although the estimation results of ω2
mj

’s may be affected by the selection of hyperparameters of the
corresponding prior distributions, the posterior estimates of other parameters are not affected.
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Figure 4: Posterior means (solid lines) and 95% credible intervals (between the two outmost
dotted lines) of the expectations.

5.3 Model comparison

This subsection conducts a model comparison of our proposed model and the competing

models based on forecasting and the DIC (Spiegelhalter, Best, Carlin, and van der Linde

(2002)).

Forecasting. In modeling time-varying variances of asset returns, it is important to forecast

the future covariance matrices of the time series for the financial risk management. To

evaluate such a forecasting performance, we conduct out-of-sample covariance forecasts and

give the minimum variance portfolios. It has often been implemented to investigate such

a forecasting performance by the well-known mean-variance optimization (e.g., Luenberger

(1997)).

Suppose that E(yt+1|Ft) and Var(yt+1|Ft) denote, respectively, the conditional mean

and covariance of a p-dimensional vector yt+1, the asset return at time t + 1, given Ft,

the information at time t. In this study, we make two hedge portfolios: a global minimum

variance (GMV) portfolio and a minimum variance (MV) portfolio. The GMV portfolio

weights (w) are obtained as the solution to the problem:

min
w

w′Var(yt+1|Ft)w s.t. w′1p = 1. (65)
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We set the MV portfolio weights (w) as the solution to the problem:

min
w

w′Var(yt+1|Ft)w s.t. w′1p = 1 and w′E(yt+1|Ft) ≥ q0, (66)

where q0 is the target value. It indicates that we make the expected returns exceed q0 for

this case. The optimal weights are given by

wGMV =
1

a
Var(yt+1|Ft)

−11p, (67)

wMV =
c− q0b

ac− b2
Var(yt+1|Ft)

−11p +
q0a− b

ac− b2
Var(yt+1|Ft)

−1E(yt+1|Ft), (68)

where

a = 1′pVar(yt+1|Ft)
−11p, (69)

b = 1′pVar(yt+1|Ft)
−1E(yt+1|Ft), (70)

c = E(yt+1|Ft)
′Var(yt+1|Ft)

−1E(yt+1|Ft). (71)

We implement the rolling forecast as follows:

1. Estimate the parameters of interest using the data from January 2005 to December

2010. (We set the data as {yt}nt=1.)

2. For the next 3 months including n1 trading days, i.e., t = n+ 1, . . . , n+ n1 − 1,

(a) use the particle filter (e.g., Doucet, de Freitas, and Gordon (2001)) to compute

E(yt+1|Ft) and Var(yt+1|Ft) numerically (Note that they cannot be obtained an-

alytically). See Appendix A.2 for details.

(b) compute the two hedge portfolio weights described above and the “realized” re-

turns, w′
GMVyt+1, w

′
MVyt+1.

3. Include the new observations of the next three months to our estimation period and

remove the old observations of the first three months. Re-estimate the parameters of

interest using the six-year-data (relabeled as {yt}nt=1).

4. Go to 2.

This is repeated until all one-step-ahead forecasts and portfolio choices are conducted through

December 2012. In the end, we calculate the standard deviations of the “realized” returns
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(493 in total). The numerical standard error of the estimate is obtained by repeating the

particle filter forty times.

As a benchmark for the model comparison, we also estimate the univariate SV model

with leverage effect introduced in Section 1 and the dynamic equicorrelation (DECO) model

proposed by Engle and Kelly (2012) (see Appendix A.3 for details). We set the number of

particles M = 100, 000 and the target value q0 = −10, 0, 10, 20 annually.

Table 4: Out-of-sample portfolio standard deviations (standard errors in parentheses).

GMV MV(-10) MV(0) MV(10) MV(20)

DESV 1.477 1.745 1.835 2.094 2.446
(0.001) (0.053) (0.072) (0.115) (0.154)

univariate SV 1.484 2.581 3.158 3.935 4.756
(0.000) (0.062) (0.109) (0.153) (0.194)

DECO 1.576 2.606 2.194 1.973 1.942
(0.000) (0.034) (0.022) (0.013) (0.011)

Table 4 reports the out-of-sample portfolio standard deviations using the six-year rolling

estimation window. The prior distributions for each estimation are the same as those of the

previous subsection. For each of the hedging strategies, the standard deviation based on our

multivariate model is smaller than that of the univariate model. We note that MV portfolio

strategy with q0 = 20 (annually) makes the biggest difference between the two and GMV

portfolio strategy makes the smallest difference between the two. For GMV strategy, the

standard deviation based on our multivariate model is also smaller than that of the DECO

model. However, with respect to MV strategy, our model may not necessarily outperform

the DECO model for very large q0, taking account of standard errors.

Model selection based on DIC. The Deviance Information Criterion (DIC) is used as a

Bayesian measure of fit or adequacy and is defined as

DIC = Eϑ|Yn
[D(ϑ)] + pD, (72)

where D(ϑ) = −2 log f(Yn|ϑ), pD = Eϑ|Yn
[D(ϑ)]−D(Eϑ|Yn

[ϑ]) represents model complexity

as a penalty. We estimate Eϑ|Yn
[D(ϑ)] using the sample analogueD(ϑ(d)) =

1
d∗
∑d∗

d=1D(ϑ(d)),

where ϑ(d)’s are resampled from the posterior distribution. We set d∗ equal to 100. Because

we need to compute D(ϑ) numerically, we use the particle filter, where we set the number of
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particles M = 10, 000 (see Appendix A.2 for details). The numerical standard error of the

estimate is obtained by repeating the particle filter ten times.

Table 5: The means of DIC estimates, their standard errors, the maximum and minimum of
DIC values.

DIC (s.e.) DICmax DICmin

DESV 16311.8 (1.3) 16320.7 16305.9
univariate SV 21774.4 (1.3) 21781.4 21769.6
DECO 16598.8 (0.8) 16604.9 16595.5

Table 5 shows the sample means of ten DICs, their standard errors, the maximum and

minimum of ten DICs for each model. The DIC of the DESV model is the smallest and our

model outperforms other competing models. We also note that the DIC of the DECO model

is smaller than that of the univariate SV model.

In summary, our proposed model with the time-varying covariance structure shows good

out-of-sample forecasting performance with respect to dynamic GMV portfolio, and our

multivariate model and the DECO model show good out-of-sample forecasting performances

with respect to dynamic MV portfolios. In addition, the DESV model attains the smallest

DIC. It suggests that, for asset returns with time-varying variances, we should model the

covariance structure among the asset returns and the one-step-ahead variances including

the dynamic correlations between the asset returns. Furthermore, in comparison with the

univariate SV and the DECO model, our method is shown to perform well regarding both

one-ahead predictions and goodness-of-fit in the analysis of multivariate stock returns.

6 Conclusion

This article proposed the novel multivariate stochastic volatility model with dynamic equicor-

relation and cross leverage effect. We took a Bayesian approach and described the efficient

MCMC algorithm by dividing the latent variables of our nonlinear model into several blocks

and approximating them to those of linear Gaussian state-space models. Its sampling effi-

ciency is illustrated using simulated data in comparison with the single-move sampler.

An empirical study is provided using industrial sector index data of TOPIX. We find the

persistence in the volatilities and equicorrelations and the existence of strong cross leverage

effects. Model comparisons are conducted and our DESV model is found to outperform the
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univariate SV model and the multivariate GARCH-type model.

Our proposed model may be extended to the block-equicorrelation model. As shown

in this article, the equicorrelation assumption is very simple but useful. Meanwhile, the

assumption seems to be too strong and runs counter to the intuition, especially when the

number of dependent variables is very large. However, this is beyond the scope of this paper

and is left for our future work.
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Appendix

A.1 Computations for the block-sampler

Noting that

∂R
−1/2
t

∂gt
= −1

2
diag

[
(p− 1){1 + (p− 1)ρt}−3/2(1− ρt)ρt

−(1− ρt)
−1/2ρt · 1p−1

]
·R′

O, (73)

∂2R
−1/2
t

∂g2t

= −1

2
diag

[
−3

2(p− 1)2{1 + (p− 1)ρt}−5/2(1− ρt)ρt + (p− 1){1 + (p− 1)ρt}−3/2(1− 2ρt)

{−1
2(1− ρt)

−3/2ρt − (1− ρt)
−1/2} · 1p−1

]
·R′

O,

(74)

∂V
−1/2
t

∂hj1t
= diag

{
0′,−1

2
exp

(
− 1

2
hj1t

)
,0′
}
, j1 = 1, . . . , p, (75)
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∂2V
−1/2
t

∂h2j1t
= diag

{
0′,

1

4
exp

(
− 1

2
hj1t

)
,0′
}
, j1 = 1, . . . , p, (76)

and

∂2V
−1/2
t

∂hj1t∂hj2t
= O, j1 = 1, . . . , p, j2 = 1, . . . , p, j1 6= j2, (77)

we compute dt, At, Bt as below.

A.1.1 Computations for {ht}nt=1

Derivation of dt, t = s+ 1, . . . , s+ r. We can obtain

(dt)j1 =
∂lt
∂hj1t

+
∂lt−1

∂hj1t
, j1 = 1, . . . , p, (78)

where

∂lt
∂hj1t

= −

R
− 1

2
t

∂V
− 1

2
t

∂hj1t
(yt −mt) +Q′Ω−1Φ

∂ht

∂hj1t


′

(Ip −Q′Ω−1Q)−1

·
[
R

− 1
2

t V
− 1

2
t (yt −mt)−Q′Ω−1{ht+1 − µ− Φ(ht − µ)}

]
− 1

2
, (79)

∂lt−1

∂hj1t
=

(
Q′Ω−1 ∂ht

∂hj1t

)′
(Ip −Q′Ω−1Q)−1

·
[
R

− 1
2

t−1V
− 1

2
t−1 (yt−1 −mt−1)−Q′Ω−1{ht − µ− Φ(ht−1 − µ)}

]
. (80)

Derivation of At, t = s+ 1, . . . , s+ r. We can obtain

(At)[j1,j1] = −E

(
∂2lt
∂h2j1t

)
− ∂2lt−1

∂h2j1t
, j1 = 1, . . . , p, (81)

(At)[j1,j2] = −E

(
∂2lt

∂hj1t∂hj2t

)
− ∂2lt−1

∂hj1t∂hj2t
, j1 = 1, . . . , p, , j2 = 1, . . . , p, j1 6= j2, (82)

where

E(∂2lt/∂h
2
j1t)

= −tr

[{
∂2V

− 1
2

t

∂h2j1t
R

− 1
2

′

t (Ip −Q′Ω−1Q)−1R
− 1

2
t V

− 1
2

t

+
∂V

− 1
2

t

∂hj1t
R

− 1
2

′

t (Ip −Q′Ω−1Q)−1R
− 1

2
t

∂V
− 1

2
t

∂hj1t

}
E{(yt −mt)(yt −mt)

′}

]

25



− E(yt −mt)
′

[
− ∂2V

− 1
2

t

∂h2j1t
R

− 1
2

′

t (Ip −Q′Ω−1Q)−1Q′Ω−1{ht+1 − µ− Φ(ht − µ)}

+ 2
∂V

− 1
2

t

∂hj1t
R

− 1
2

′

t (Ip −Q′Ω−1Q)−1Q′Ω−1Φ
∂ht

∂hj1t

]

−
(

∂ht

∂hj1t

)′
ΦΩ−1Q(Ip −Q′Ω−1Q)−1Q′Ω−1Φ

∂ht

∂hj1t
, (83)

E(∂2lt/∂hj1t∂hj2t)

= −tr

{
∂V

− 1
2

t

∂hj1t
R

− 1
2

′

t (Ip −Q′Ω−1Q)−1R
− 1

2
t

∂V
− 1

2
t

∂hj2t
· E{(yt −mt)(yt −mt)

′}

}

− E(yt −mt)
′

{
∂V

− 1
2

t

∂hj1t
R

− 1
2

′

t (Ip −Q′Ω−1Q)−1Q′Ω−1Φ
∂ht

∂hj2jt

+
∂V

− 1
2

t

∂hj2t
R

− 1
2

′

t (Ip −Q′Ω−1Q)−1Q′Ω−1Φ
∂ht

∂hj1t

}

−
(

∂ht

∂hj1t

)′
ΦΩ−1Q(Ip −Q′Ω−1Q)−1Q′Ω−1Φ

∂ht

∂hj2t
, (84)

∂2lt−1

∂hj1t∂hj2t
= −

(
Q′Ω−1 ∂ht

∂hj1t

)′
(Ip −Q′Ω−1Q)−1

(
Q′Ω−1 ∂ht

∂hj2t

)
. (85)

We note that

zt = R
−1/2
t V

−1/2
t (yt −mt) ∼ N(Q′Ω−1{ht+1 − µ− Φ(ht − µ)}, Ip −Q′Ω−1Q), (86)

and hence that

E(yt −mt) = V
1/2
t R

1/2
t Q′Ω−1{ht+1 − µ− Φ(ht − µ)}, (87)

Var(yt −mt) = V
1/2
t R

1/2
t (Ip −Q′Ω−1Q)(R

1/2
t )′V

1/2
t , (88)

E{(yt −mt)(yt −mt)
′} = Var(yt −mt) + E(yt −mt)E(yt −mt)

′. (89)

Derivation of Bt, t = s+ 2, . . . , s+ r. We can obtain

(Bt)[j1,j2] = −E

(
∂2lt−1

∂hj1t∂hj2,t−1

)
, j1 = 1, . . . , p, j2 = 1, . . . , p, (90)

where

E

(
∂2lt−1

∂hj1t∂hj2,t−1

)
=

(
Q′Ω−1 ∂ht

∂hj1t

)′
(Ip −Q′Ω−1Q)−1R

− 1
2

t−1

∂V
− 1

2
t−1

∂hj2,t−1
E(yt−1 −mt−1)

+

(
Q′Ω−1 ∂ht

∂hj1t

)′
(Ip −Q′Ω−1Q)−1

(
Q′Ω−1Φ

∂ht−1

∂hj2,t−1

)
. (91)

26



A.1.2 Computations for {gt}nt=1 (block-sampler)

Derivation of dt, t = s+ 1, . . . , s+ r. We can obtain

dt =
∂lt
∂gt

, (92)

where

∂lt
∂gt

= −

∂R
− 1

2
t

∂gt
· V − 1

2
t (yt −mt)


′

(Ip −Q′Ω−1Q)−1

·
[
R

− 1
2

t V
− 1

2
t (yt −mt)−Q′Ω−1{ht+1 − µ− Φ(ht − µ)}

]
+

1

2
p(p− 1)ρ2t {1 + (p− 1)ρt}−1.

(93)

Derivation of At, t = s+ 1, . . . , s+ r. We can obtain

At = −E

(
∂2lt
∂g2t

)
, (94)

where

E(∂2lt/∂g
2
t )

= −tr

[{
V

− 1
2

t

(
∂2R

− 1
2

t

∂g2t

)′

(Ip −Q′Ω−1Q)−1R
− 1

2
t V

− 1
2

t

+ V
− 1

2
t

(
∂R

− 1
2

t

∂gt

)′

(Ip −Q′Ω−1Q)−1∂R
− 1

2
t

∂gt
V

− 1
2

t

}
E{(yt −mt)(yt −mt)

′}

]

+ E(yt −mt)
′V

− 1
2

t

(
∂2R

− 1
2

t

∂g2t

)′

(Ip −Q′Ω−1Q)−1Q′Ω−1{ht+1 − µ− Φ(ht − µ)}

+
1

2
p(p− 1)ρ2t (1− ρt){1 + (p− 1)ρt}−2{2 + (p− 1)ρt}. (95)

Derivation of Bt, t = s+ 2, . . . , s+ r. We can obtain Bt = 0.

A.2 Particle filter

Let f(ht|Yt,ϑ) denote the density function of ht given (Yt,ϑ) where Yt = {y1, . . . ,yt}, and

let f̂(ht|Yt,ϑ) denote the discrete approximation to f(ht|Yt,ϑ).

We drawM samples from the conditional joint distribution of (ht+1,ht, gt+1, gt,mt+1,mt)

given (Yt+1,ϑ) with the density

f(ht+1,ht, gt+1, gt,mt+1,mt|Yt+1,ϑ)
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∝ f(yt+1|ht+1, gt+1,mt+1, Yt,ϑ)f(ht+1|ht, gt,mt, Yt,ϑ)f(gt+1|gt,ϑ)f(mt+1|mt,ϑ)

× f(ht, gt,mt|Yt,ϑ). (96)

We implement the particle filter:

1. (a) Generate

h
(i)
1 ∼ Np(µh1 ,Σh1), g

(i)
1 ∼ N(µg1 , σ

2
g1), m

(i)
1 ∼ Np(µm1 ,Σm1), i = 1, . . . ,M,

where µh1 ,µm1 are some constant vectors, Σh1 ,Σm1 are some constant positive-

definite matrices, µg1 is some constant and σ2
g1 is some positive constant (we adopt

the posterior mean vectors of h1,m1, the posterior covariance matrices of h1,m1,

the posterior mean of g1 and the posterior variance of g1), respectively.

(b) Compute

πi =
π̃i∑M
j=1 π̃i

, π̃i =
f(y1|h1, g1,m1,ϑ)f(h1, g1,m1|ϑ)

g(h1, g1,m1|ϑ)
, (97)

where g(·) is a density generating h
(i)
1 , g

(i)
t and m

(i)
1 .

(c) Set f̂(h
(i)
1 , g

(i)
1 ,m

(i)
1 |Y1,θ) = πi.

2. For t = 1, . . . , n+ n1 − 1,

(a) generate h
(i)
t , g

(i)
t ,m

(i)
t ∼ f̂(ht, gt,mt|Yt,ϑ).

(b) generate h
(i)
t+1 ∼ f(ht+1|h(i)

t , g
(i)
t ,m

(i)
t , Yt,ϑ), g

(i)
t+1 ∼ f(gt+1|g(i)t ,ϑ), m

(i)
t+1 ∼

f(mt+1|m(i)
t ,ϑ).

(c) compute

πi =
π̃i∑M
j=1 π̃j

, π̃i = f(yt+1|h(i)
t+1, g

(i)
t+1,m

(i)
t+1, Yt,ϑ). (98)

(d) set f̂(h
(i)
t+1, g

(i)
t+1,m

(i)
t+1|Yt+1,ϑ) = πi.

Note that yt+1|ht+1, gt+1,mt+1,∼ Np(mt+1, V
1/2
t+1Rt+1V

1/2
t+1 ), t = 1, . . . , n+ n1 − 1.

For t = n, . . . , n+ n1 − 1, we obtain

µ̂t+1|t =
1

M

M∑
i=1

m
(i)
t+1 → E(yt+1|Ft), (99)

Σ̂t+1|t =
1

M

M∑
i=1

V
1/2(i)
t+1 R

(i)
t+1V

1/2(i)
t+1 +Ωm → Var(yt+1|Ft). (100)
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A.3 Dynamic equicorrelation (DECO) model

As a benchmark for the model comparison, we consider the following dynamic equicorrelation

(DECO) model discussed in Engle and Kelly (2012):

yt = mt + εt, εt ∼ N(0p,Σt), t = 1, ..., n, (101)

mt+1 = mt + ηmt, ηmt ∼ N(0p,Ωm), t = 1, ..., n− 1, (102)

m1 = ηm0, ηm0 ∼ N(0p, κIp), (103)

where

Σt = DtRtDt, (104)

Dt = diag(h
1/2
1t , . . . , h

1/2
pt ), (105)

Rt = (1− ρt)Ip + ρtJt, (106)

ρt =
1

p(p− 1)
(1′pR

DCC
t 1p − p), (107)

RDCC
t = Q̃

− 1
2

t QtQ̃
− 1

2
t , (108)

Qt = (1− αDCC − βDCC)Q

+ αDCCQ̃
1
2
t−1D

− 1
2

t−1(yt−1 −mt−1)(yt−1 −mt−1)
′D

− 1
2

t−1Q̃
1
2
t−1 + βDCCQt−1, (109)

Q1 = Q, (110)

Q̃t replaces the off-diagonal elements of Qt with zeros but remains its main diagonal, Q is a

positive definite matrix,

0 < αDCC < 1, (111)

0 < βDCC < 1, (112)

αDCC + βDCC < 1. (113)

For simplicity, we assume that all the diagonal elements of Q are 1 and all the off-diagonal

elements are the same positive constant. It is reasonable to make the assumption because

Q is the unconditional covariance matrix of D−1
t (yt −mt) and we apply the data which is

expected to be positively correlated.

Following Engle and Kelly (2012), we assume that hit, i = 1, . . . , p have asymmetric

GARCH or GJR structure (Glosten, Jagannathan, and Runkle (1993)):

hit = ωGARCH
i + αGARCH

i (yi,t−1 −mi,t−1)
2
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+ γGARCH
i (yi,t−1 −mi,t−1)

2I{yi,t−1−mi,t−1<0} + βGARCH
i hi,t−1, (114)

hi1 = ωGARCH
i /(1− αGARCH

i − βGARCH
i − γGARCH

i ), (115)

0 < αGARCH < 1, (116)

0 < αGARCH + γGARCH < 1, (117)

0 < βGARCH < 1, (118)

0 < αGARCH + βGARCH + γGARCH < 1, (119)

0 < ωGARCH. (120)

Estimation results for the DECO model are omitted to save space.
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