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Abstract

Decreasing block rate pricing is a nonlinear price system often used for public utility

services. Residential gas services in Japan and the United Kingdom are provided under

this price schedule. The discrete/continuous choice approach is used to analyze the de-

mand under decreasing block rate pricing. However, the nonlinearity problem, which

has not been examined in previous studies, arises because a consumer’s budget set (a

set of affordable consumption amounts) is nonconvex and, hence, the resulting model

includes highly nonlinear functions. To address this problem, we propose a feasible,

efficient method of demand estimation on the nonconvex budget. The advantages of

our method are as follows: (i) the construction of an Markov chain Monte Carlo algo-

rithm with an efficient blanket based on the Hermite-Hadamard integral inequality and

the power-mean inequality, (ii) the explicit consideration of the (highly nonlinear) sep-

arability condition, which often makes numerical likelihood maximization difficult, and

∗Corresponding author: Phone:+81-798-54-6204. E-mail:miyawaki.koji@kwansei.ac.jp.
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(iii) the introduction of normal disturbance into the discrete/continuous choice model

on the nonconvex budget set. The proposed method is applied to estimate the Japanese

residential gas demand function and evaluate the effect of price schedule changes as a

policy experiment.

Key words: Discrete/Continuous choice approach, Nonconvex budget set, Bayesian

analysis, Residential gas demand, Hermite-Hadamard integral inequality.

JEL classification: C11, C24, D12.

1 Introduction

The decreasing block rate pricing is a nonlinear price system where the unit prices discon-

tinuously decline with the quantity consumed. Figure 1 illustrates a typical decreasing block

rate pricing. As this figure shows, there are several threshold values that divide the con-

Block 1 Block 2 Block 3

Y1
_

Y2
_

O

P1

P2

P3

Unit price

Y (quantity)

Figure 1: Price schedule of a three-block decreasing block rate pricing (K = 3).

sumption amount and the unit prices decrease when the quantity consumed exceeds these

threshold values. The residential gas services in Japan and the United Kingdom are of-

ten provided under decreasing block rate pricing (see also Section 6 for the case of Japan).

Other services, such as the mobile phone service (the personal handy-phone system) in Japan

and some of the residential electricity services in the United States, also employ this price

system. Such a price schedule is likely to be employed partly because the production cost is
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decreasing in scale and partly because this system is considered to encourage a larger amount

of consumption. Formal description of this price schedule is as follows.

Let K be the number of blocks in the decreasing block rate pricing. In Figure 1, K = 3.

The consumption amount Y is divided into these blocks. Let Ȳk be the upper limit quantity

for the k-th block (k = 0, . . . ,K). We set Ȳ0 ≡ 0 and ȲK ≡ ∞ for simplicity. Then, each block

is defined as the interval [Ȳk−1, Ȳk) for k = 1, . . . ,K. The unit prices are set in relation to

these blocks and let Pk be the unit price for the k-th block (k = 1, . . . ,K). Under decreasing

block rate pricing, the unit price monotonically and discontinuously declines according to

the blocks, that is, Pk+1 < Pk for k = 1, . . . ,K −1. When, on the other hand, Pk < Pk+1, such

a price schedule is called the increasing block rate pricing. These two price schedules are

special cases of block rate pricing, where the unit prices discontinuously change with the

quantity consumed. Chapter 7 of Train (1991) provides a brief microeconomic analysis of

block rate pricing.

Generally, it is often the case in consumers’ demand analysis to examine how consumers

respond to the unit price. However, under decreasing block rate pricing, there are several unit

prices depending on the consumption amount, and makes the analysis more complicated.

From the microeconomics’ point of view, such a response is modeled through the demand

function based on the so-called discrete/continuous choice approach, which is first proposed

by Burtless and Hausman (1978).1 As a consequence of this discrete/continuous choice

approach, we can evaluate the social welfare, such as the compensating variation, under

decreasing block rate pricing in comparison with that under uniform price system where

there is only one fixed unit price. A formal presentation of this welfare measure is found in

1The discrete/continuous choice approach is named because it simultaneously considers the discrete and
continuous choices. In the block rate pricing case, consumers choose both the block and the consumption
amount, which are discrete and continuous, respectively. This approach has also been used to examine a wide
range of topics including housing (Lee and Trost (1978); King (1980)), transportation (Mannering and Win-
ston (1985); Hensher and Milthorpe (1987); de Jong (1990); West (2004)), labor supply (Burtless and Hausman
(1978); Burtless and Moffitt (1985)), electricity demand (Herriges and King (1994)), and water demand (He-
witt and Hanemann (1995); Olmstead, Hanemann, and Stavins (2007); Miyawaki, Omori, and Hibiki (2013)).
When the budget set is convex, Miyawaki et al. (2013) proposed the appropriate estimation method. However,
as we will see later, the nonconvex budget case (including the decreasing block rate pricing case) is much more
difficult to estimate model parameters properly.
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Subsection 3.2 and the empirical analysis based on the compensating variation is given in

Subsection 6.3.

This demand function, however, has not been investigated in the previous empirical stud-

ies because it requires the comparison of nonlinear functions (i.e., nonlinear indirect utility

functions which will be defined in Subsection 2.1 and their functional forms will be spec-

ified in Subsection 3.1). Such a nonlinearity is caused by Roy’s identity which is a partial

differential equation based on the consumer’s behavior in the microeconomic theory.2

To avoid this nonlinearity, Blomquist and Newey (2002) proposed a nonparametric ap-

proach. They analyzed the effect of tax reform in Sweden on working hours for married or

cohabiting men from 20 to 60 years of age. For employees, the working time is influenced

by the tax system, and it is interpreted as a block rate pricing. Then, the employee’s decision

about how much time to work can be considered as the problem under block rate pricing.

Thus, Blomquist and Newey (2002) estimated the function of working time as a nonpara-

metric function of the entire tax system. Though their approach is free of the nonlinearity

caused by Roy’s identity and of model misspecifications and distributional errors, it does not

incorporate foundational aspects of the microeconomic theory like Roy’s identity into the

statistical model. Thus, this article considers a parametric model of demand to appropriately

address Roy’s identity.

Previous literature (e.g., Burtless and Hausman (1978); Hausman (1980); Burtless and

Moffitt (1985)) has used parametric models that are based on the discrete/continuous choice

approach and applied them to estimate the effect of block rate pricing involving a two-block

decreasing block rate pricing using the maximum likelihood method.3 However, two-block

2We face the nonlinearity under decreasing block rate pricing, though we do not under increasing block rate
pricing (see, e.g., Moffitt (1986)).

3Recently, Szabó (2009) proposed the maximum likelihood estimation method for general block rate pricing
where the linear demand function is assumed. Szabó (2009) imposed a condition that the direct utility function
is quasiconcave. This condition aims to guarantee that the underlying preference relation be strictly convex,
that is, the preference relation be well-behaved. However, as stated in Hurwicz and Uzawa (1971), two more
conditions (the nonnegative demand condition and the separability condition) are required for the underlying
preference relation to be strictly convex. These additional conditions often make it difficult to numerically
maximize the likelihood function. See Miyawaki et al. (2013) for the detailed discussion on this issue.

4



rate pricing is too simple for use in the analysis of real data such as Japanese residential

gas data, where the number of blocks is much greater than two. (Indeed, the number of

blocks is three to six depending on the gas company.) If the block structure was simplified

to mimic two-block rate pricing, the estimates of the demand function as used for policy-

making would be biased. Thus, we consider general multiple-block decreasing block rate

pricing as a type II Tobit model subject to many nonlinear constraints (see Chapter 10 of

Amemiya (1985) for the Tobit classification) and propose its Bayesian estimation method

using a Markov chain Monte Carlo (MCMC) simulator with an efficient blanket.

A typical Bayesian approach for limited dependent variable models applies the data aug-

mentation method (see Tanner and Wong (1987)). Pioneering works on the Bayesian ap-

proach for such models that utilize the data augmentation can be found in Chib (1992) and

Albert and Chib (1993).

Because the resulting statistical model includes many nonlinear constraints on model

parameters (the comparison of nonlinear functions and the separability condition, which will

be explained in Subsection 3.4), the support of the full conditional distribution for some

model parameters is difficult to calculate when we use a standard statistical software. One

possible solution to this problem is rejection sampling. However, using a simple envelope

function (or a simple blanket) for the support is extremely inefficient because the acceptance

rate of the proposed samples is extremely low (see Section 4.3). Thus, this article develops

an efficient blanket using two properties of convex functions: the Hermite-Hadamard integral

inequality and the power-mean inequality.

Our approach also has another particular advantage. The previous studies employing

maximum likelihood estimation do not explicitly consider the separability condition, though

this condition is necessary for the demand model under decreasing block rate pricing with

more than two blocks (see Subsection 3.4 for the detailed discussion on the separability

condition under decreasing block rate pricing). Miyawaki et al. (2013) dealt with this issue

in the context of increasing block rate pricing. Under increasing block rate pricing, this
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condition is a set of linear constraints on model parameters. In contrast, under multiple-block

decreasing block rate pricing, our statistical model includes the separability condition, which

is highly nonlinear, to properly estimate the model parameters. Because of this condition,

the likelihood maximization requires the constrained optimization, and it is often difficult

to numerically maximize the likelihood function. Thus, we need to pursue the Bayesian

approach, using the MCMC simulator to estimate the model parameters.

Finally, we would like to note that our proposed method has an advantage over the other

type of discrete/continuous choice analysis used in the context of the multinomial choice

model, as in Dubin and McFadden (1984). The resulting statistical model is the same as that

for demand under decreasing block rate pricing. Dubin and McFadden (1984) analyzed the

joint choice of electric appliances and electricity demand using this approach and estimated

the model parameters based on a combination of the maximum likelihood and the condi-

tional expectation correction method. Their statistical model is simplified by introducing

the logit error into the choice of electric appliance portfolios. However, such a specification

implies the independence of irrelevant alternatives. The subsequent literature addresses this

problem in two ways: by using the nested logit model (e.g., Goldberg (1998)) or by lin-

earizing the nonlinear indirect utilities (e.g., Bernard, Bolduc, and Bélanger (1996)). Carpio,

Wohlgenant, and Safley (2008) used a different method and applied it to the estimation of

the demand for pick-your-own versus preharvested strawberries with normal error. However,

their statistical model is a binary choice model: thus, they do not consider the separability

condition. Therefore, this article is the first study to propose the discrete/continuous choice

model on the nonconvex budget set with normal disturbance.

In presenting a parametric model for demand under decreasing block rate pricing, this

article proposes the use of Bayesian analysis to make the following contributions: (i) the con-

struction of an MCMC algorithm with an efficient blanket based on the Hermite-Hadamard

integral inequality and the power-mean inequality: (ii) the explicit consideration of the

(highly nonlinear) separability condition, which often makes numerical likelihood maxi-
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mization difficult: and (iii) the introduction of normal disturbance into the discrete/continuous

choice model on the nonconvex budget set.

Using the proposed method, we analyze the residential gas demand function and evaluate

the effect of price schedule changes. The substitution between residential gas and electricity

will be left for the future work because our main interest is the demand function under

decreasing block rate pricing.

This article is organized as follows. Section 2 explains the consumer’s choice problem

under one fixed unit price, describes that under the decreasing block rate pricing, and derives

the demand function under decreasing block rate pricing based on the discrete/continuous

choice approach. Then, Section 3 describes the corresponding statistical model and its like-

lihood function, with the discussion of the separability condition. In Section 4, we discuss

the Bayesian approach and its MCMC simulator with an efficient blanket. We also evaluate

the adequacy of the proposed blankets. In Section 5, we explain the model without hetero-

geneity as an alternative model. Section 6 estimates the Japanese residential gas demand

function and evaluates the effect of price schedule changes. Section 7 concludes the study.

2 Demand function under decreasing block rate pricing

2.1 Consumer’s problem under uniform price system

This subsection describes the consumer’s choice problem under uniform price system and

introduces several terminology that is common in microeconomics.

Consider a consumer’s choice problem between two goods, that is, the consumer needs

to decide the consumption amount for each good. In this subsection, both goods are supplied

with one fixed unit prices. Because there are only two goods, it is sufficient to consider a

(relative) unit price P for one good. The unit price for the other good is normalized to one.

Given the total income I, we define the budget set for the consumer. The budget set is a set
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of consumption amounts which the consumer can afford. More precisely,

{(Y,Ya) | PY +Ya ≤ I,Y ≥ 0,Ya ≥ 0} , (1)

where Y and Ya are the consumption amounts for goods with the unit price P and one,

respectively. Figure 2(a) and Figure 2(b) shows the price schedule for Y and the budget set

given above, respectively.

O

P

Unit price

Y (quantity)

(a) Price schedule.

YO

I

Ya

I/P

(b) Budget set.

Figure 2: A uniform price system.

In the classical demand theory, the consumer’s optimal consumption amount is deter-

mined by maximizing its utility subject to the budget set. The utility is a measure that com-

pares possible choices and is usually represented by a real-valued function of these choices.

Let U(Y,Ya) be the well-defined utility function of the consumption amounts. Then, the

utility maximization problem is defined as

max
Y,Ya

U (Y,Ya) subject to PY +Ya ≤ I. (2)

The solution is called the demand functions for these goods denoted by Y(P, I) and Ya(P, I).

The maximum is termed as the indirect utility function represented by V(P, I). These two
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functions are related by the so-called Roy’s identity, which is given by

Y(P, I) = −∂V(P, I)/∂P
∂V(P, I)/∂I

. (3)

See, e.g., Proposition 3.4.G of Mas-Colell, Whinston, and Green (1995) for the derivation of

this identity.

2.2 Consumer’s problem under decreasing block rate pricing

This subsection examines the consumer’s choice problem under decreasing block rate pric-

ing. Suppose there are two goods: a good that is provided under decreasing block rate pricing

and the numeraire good. The numeraire good represents all the other good except the good

under decreasing block rate pricing and its price is normalized to one. Let Y be the demand

for a good under decreasing block rate pricing. Then, because the unit price declines as

the consumption amount grows, the budget set becomes nonconvex (see Figure 3 for the

three-block case).

YY1
_

Y2
_

O

I = Q1

Q2

Q3

Demand
for the numeraire

Figure 3: Budget set of a three-block decreasing block rate pricing (K = 3).

To derive the demand function under decreasing block rate pricing, it is popular to use the

so-called discrete/continuous choice approach (see, e.g., Moffitt (1986)). This approach is a

two-step procedure used to solve the utility maximization problem under block rate pricing.

For each k-th block, let Qk = I −FC−∑k−1
j=1(P j−P j+1)Ȳ j, where FC is the minimum access
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charge as the fixed cost. This variable is called the virtual income for the k-th block. We note

that Qk+1 < Qk for k = 1, . . . ,K −1 (see also Figure 3).

Then, under decreasing block rate pricing, the discrete/continuous choice approach is

described as follows.

Step 1. For each k-th block (k = 1, . . . ,K), maximize the utility under the uniform price

system, where a consumer faces the single unit price Pk and its corresponding

virtual income Qk. As the solution and maximum, we obtain the demand func-

tion Yk and the indirect utility function Vk, respectively.

Step 2. Find the block k such that Vk =max j V j. Then, Yk is the optimal demand.

In Step 1, both the price and the virtual income are given as constants. Thus, this step can

be interpreted as the consumer’s choice problem under uniform price system with the unit

price Pk and the virtual income Qk, which has been described in the previous subsection.

The obtained solution and maximum in this step are called the conditional demand and the

conditional indirect utility, respectively, because they are derived by fixing the block choice

k.

Finally, by following the above two steps, we obtain the demand function under decreas-

ing block rate pricing:

Y = Yk, Vk =max
j

V j. (4)

3 Type II Tobit model with nonlinear indirect utility com-

parisons

3.1 Log-linear demand specification

To derive the statistical form to be used for the empirical analysis, we need to specify the

functional form of the conditional demand or the conditional indirect utility (see equation
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(3)). Following the discussion by Hausman (1985), this article assumes the conditional de-

mand to be linear in logarithm.4That is,

lnYk = β1 ln Pk +β2 ln Qk. (5)

The log-linear function is popular in the analysis of demand under block rate pricing, be-

cause β1 and β2 can be directly interpreted as price and (virtual) income elasticities, respec-

tively, conditional on block choice (see, e.g., Hewitt and Hanemann (1995); Olmstead et al.

(2007)). The price elasticity, for example, is the percentage change in demand with respect

to a percentage change in price. These elasticity parameters play an important role in the

microeconomic theory and in the policy-making.

After specifying the conditional demand function, Roy’s identity implies

Vk = −
P1+β1

k

1+β1
+

Q1−β2
k

1−β2
, (6)

where β1 , −1 and β2 , 1, as derived in Burtless and Hausman (1978). Plugging equations

(5) and (6) into equation (4), we have the demand function under decreasing block rate

pricing based on the discrete/continuous choice approach.5

We note that this theoretical framework does not exclude cases in which multiple blocks

are simultaneously optimal. Such a case is excluded by introducing a continuous random

disturbance into the consumer’s heterogeneity in preferences. Subsection 3.3 describes its

specification.

Remark 1. Hanemann (1984) proposed two other demand functions that are less popular in

the literature: the linear expenditure system (LES) model and the price independent general-

4This functional form implicitly assumes that Pk > 0 and Qk > 0 for all k. Under decreasing block rate
pricing, these assumptions are equivalent to PK > 0 and QK > 0.

5As pointed out in Hausman (1985), our approach that involves deciding the demand function first and
deriving its corresponding indirect utility function has two advantages: (i) we can flexibly choose the functional
form of the demand function based on the empirical dataset, and (ii) the stochastic specification becomes
convenient.
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ized log-linear (PIGLOG) model.

3.2 Compensating variation

Because the demand function includes the (conditional) indirect utility, we can evaluate the

effect of the price schedule changes on welfare using the compensating variation. The com-

pensating variation is a quantitative measure of welfare changes due to the price schedule

changes and is defined as the difference between the current income and the income re-

quired to attain the current utility level under the new price schedule. The amount of positive

(negative) difference can be interpreted as the degree of improvement (decline) in consumer

welfare under the new price schedule (see Chapter 3 of Mas-Colell et al. (1995) for a general

discussion of the compensating variation).

For the case of decreasing block rate pricing, the compensating variation is derived as

follows. Let P = {{Pk, Ȳk}K−1
k=1 ,PK ,FC} and P′ = {{P′k, Ȳ

′
k}

K′−1
k=1 ,P

′
K′ ,FC′} denote the current

and the suppositional price schedule, respectively. Then, by solving

V = (the right hand side of equation (6) evaluated with P′), (7)

for I, where V is a certain utility level, we obtain the expenditure at the certain utility level

under the suppositional price schedule P′, which is given by

Ek′
(
P′,V

)
=

(1−β2)

V +
(P′k′)

1+β1

1+β1


1/(1−β2)

+FC′+
k′−1∑
j=1

(
P′j−P′j+1

)
Ȳ′j, (8)

where k′ = argmax jV
′
j and V′j is the (suppositional) indirect utility conditional on the j-th

block under P′ (see Hausman (1981) for the case in which there is a single unit price). With

equation (8), the compensating variation is defined as

CV = I−Ek′
(
P′,Vk

)
, (9)
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where k = argmax jV j and V j is the j-th (current) conditional indirect utility under P.

When we assume P′ to be the uniform price system, that is, P′ = {P∗,FC∗}, we have

Ek′
(
P′,V

)
=

[
(1−β2)

{
V +

(P∗)1+β1

1+β1

}]1/(1−β2)

+FC∗. (10)

The conditional indirect utility under P is given by equation (6). Therefore, the compensating

variation is calculated as

CV = I−
(1−β2)

(P∗)1+β1 −P1+β1
k

1+β1
+

Q1−β2
k

1−β2



1/(1−β2)

−FC∗. (11)

In subsection 6.3, we will conduct the welfare analysis based on the compensating variation

using the empirical data.

Remark 2. Another welfare measure is the equivalent variation, which is given by

EV = Ek
(
P,V′k′

)
− I.

Because both EV and CV show similar patterns with our empirical dataset, the discussion

and the results of EV are suppressed.

3.3 Statistical model

This subsection describes a statistical model that is a nonlinear type II Tobit model based

on the theoretical framework with equations (4)-(6). There are n consumers. Let subscript i

denote the consumer i (i = 1, . . . ,n) and let (yi, pik,qik) = (logYi, log Pik, log Qik).

Then, the statistical model for the demand function under decreasing block rate pricing

is given by

yi = xxx′is∗i
βββ+w∗i +ui, ui ∼ i.i.d. N

(
0,σ2

u

)
, (12)
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where xxxis∗i
= (pis∗i

,qis∗i
)′, βββ = (β1,β2)′,

s∗i = k, if w∗i ∈ Rik =
{
w∗i | Vik > Vi j for k , j

}
and k = 1, . . . ,Ki, (13)

w∗i = zzz′iδδδ+ vi, vi ∼ i.i.d. N
(
0,σ2

v

)
, (14)

Vik = −exp
(
w∗i

) P1+β1
ik

1+β1
+

Q1−β2
ik

1−β2
, (15)

β1 , −1, and β2 , 1. Because of the log-linear demand specification, we require PiKi > 0 and

QiKi > 0 for all i. In our empirical dataset, there are no households whose QiKi ≤ 0.

In this statistical model, there are three components in addition to the theoretical frame-

work with equations (4)-(6). The first component is w∗i , which represents the consumer’s

heterogeneity in preferences. We introduce a hierarchical structure into the heterogeneity

and assume it to be linear in the d-dimensional covariate vector zzzi with its corresponding

coefficient vector δδδ. The disturbance vi of the heterogeneity is normally distributed with a

mean of 0 and a variance of σ2
v .

There are two following motivations for the introduction of this term. At first, as thor-

oughly discussed in Moffitt (1986), this term is introduced to explain unobserved tastes in-

cluded in the utility function. It is natural to assume that the utility function may vary across

consumers due to their unmeasured individual attributes. Then, the solutions to the utility

maximization problem (i.e., the optimal demands) will differ among consumers even if they

face the same price structure and earn the same income level.

Next motivation is to impose zero probability on the multiple optima to the utility max-

imization problem. To see this, let us solve the comparison of conditional indirect utilities

with respect to heterogeneity. This is because the indirect utility conditional on the block

choice is derived from the sum of yik and w∗i using Roy’s identity. The resulting interval is

called the heterogeneity interval and is denoted by Rik. The explicit formula for the hetero-

geneity interval is given in Appendix A.1.

To be rigorous, this interval must be R̄ik = {w∗i | Vik = max j Vi j}, where a tie among the

14



conditional indirect utilities is allowed. Clearly, Rik ⊆ R̄ik. However, the set where Vik is

equal to Vi j ( j , k) has a probability of zero in our statistical model. The reason is as follows.

Conditional on β1 and β2, the condition Vik = Vi j leads to the condition that w∗i must equal

to a certain real value, ln Ek j, which is derived in Appendix A.1. Because w∗i is a continuous

random variable, this condition has a zero probability. Thus, we are allowed to replace

R̄ik with Rik. This zero probability implies that the statistical model excludes the multiple

optima.

The second component is the state variable, s∗i , and we can use the data augmentation

method to estimate the model parameters (see Tanner and Wong (1987) for more information

on this method). The s∗i is a discrete latent variable that takes one of the values from 1 to

Ki and indicates the optimal block for the i-th consumer. Thus, in the proposed statistical

model, the observed block where the consumption is actually made differs from the optimal

block s∗i due to ui, which will be explained in the next paragraph.

The third component is the measurement error ui for demand that follows a normal distri-

bution with a mean of 0 and a variance of σ2
u. This term is assumed to be independent of vi.

As discussed in Hausman (1985), ui also represents an optimization error by the consumer

and a misspecification error by the statistician. Furthermore, Moffitt (1986) pointed out that

it is expected to give nonzero probability on the consumption amount between heterogeneity

intervals (see also Figure 6 of Moffitt (1986)). When the measurement error is excluded from

the model, such a consumption amount will not be observed because the upper limit of the

k-th heterogeneity interval is less than the lower limit of the k+1-st interval. This situation

is alleviated by the introduction of the error term.

We refer to the identification problem of two errors: ui for the observed demand and

vi for heterogeneity. They cannot be fully identified unless there is additional information

through the prior distribution about these errors because there is only one equation for them:

yi = xxx′is∗i
βββ+ zzz′iδδδ+vi+ui. However, due to the utility maximization condition, they are weakly
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separated depending on the dataset.6

Alternatively, it is possible to consider the model without heterogeneity. Section 5 de-

scribes such a model. Subsection 6.4 gives its estimation result with the gas demand data,

and the model comparison between models with and without heterogeneity in terms of the

log of the marginal likelihood. Although there is the identification issue, the two-error com-

ponent model is preferred because of its features described above as well as its fit to the

empirical dataset.

3.4 Likelihood function subject to many nonlinear constraints

The likelihood function augmented by the latent variables is given by

f
(
yi, s∗i ,w

∗
i | βββ,δδδ,σ2

u,σ
2
v

)
∝ (σuσv)−1 exp

[
−1

2

{
σ−2

u

(
yi− xxx′is∗i

βββ−w∗i
)2
+σ−2

v

(
w∗i − zzz′iδδδ

)2
}]

I
(
w∗i ∈ Ris∗i

)
×

Ki−1∏
k=2

I (RLik ≤ RUik) , (16)

where I(A) is the indicator function: I(A) = 1 if A is true and I(A) = 0 otherwise. Because

we take a Bayesian approach as described later and treat βββ as a continuous random vector,

the conditions β1 , −1 and β2 , 1 are omitted hereafter.

RLik and RUik are the respective lower and upper limits of the heterogeneity interval Rik,

and their definitions are given in equation (39) in Appendix A.1. The heterogeneity intervals

cover the real line, that is, ∪Ki
k=1Rik ⊆ (−∞,∞). Further, as noted in the appendix Rik ∩Ri j =

(k , j) for all i. However, depending on values of β1 and β2, the upper limit of the interval

can be less than the lower limit. To eliminate such a situation, we restrict the parameter space

by the last term of the likelihood function.

6With the empirical dataset that will be used in Section 6, we conducted the estimation of the gas demand
function normalizing the variance of heterogeneity to one. The results are affected by this normalization. In
particular, the posterior mean of β1 is estimated to be −0.094 and its 95% credible interval is (−0.31,−0.003).
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The last term, the product of the Ki − 2 indicator functions, is the condition that the

heterogeneity intervals are separable, that is, Rik , ∅ (for all k). We call this condition the

separability condition. This condition is a set of nonlinear constraints on β1 and β2, and the

number of nonlinear constraints increases as the number of observations and blocks grows.

Because of this condition, it is often difficult to numerically maximize the likelihood.

Figure 4 is included to show how the separability condition restricts (β1,β2) by using the

empirical dataset. Because the separability condition is difficult to calculate, each point is

-8 -6 -4 -2 0
-4

-2

0

2

4

b1

b 2

Figure 4: Region implied by the separability condition.

checked whether it satisfies the condition to draw this figure. The light blue area is the area

in which the separability condition holds, whereas the deep blue area is the area in which

it does not. We can see that the separability condition simulated by the empirical dataset

imposes nonlinear (piecewise-linear) constraints on (β1,β2).

In general, when we analyze the multinomial choice model, such a condition is always

required so that every choice is separable. Similarly, Miyawaki et al. (2013) analyzed the

demand model under increasing block rate pricing, which is another multinomial choice

model, and explicitly considered the requirement that the choice intervals be separable. In

this case, the separability condition is a set of linear constraints on elasticity parameters.
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Furthermore, the separability condition is one of the sufficient conditions to make the under-

lying preference relation strictly convex (see Hurwicz and Uzawa (1971) for the sufficient

conditions).

With the likelihood function (16), the data generating process is as follows. First, true

model parameters and a dataset ({xxxik}Ki
k=1 and zzzi for i = 1, . . . ,n) are given. We check if these

values satisfy the separability condition. Then, given them, the heterogeneity decides the

optimal block s∗i . Finally, the gas demand is generated given this optimal block.7

4 Efficient MCMC simulator based on two inequalities

4.1 Prior-Posterior analysis

This article assumes the following proper prior distributions.

β j | σ2
u ∼ T NB j

(
µβ j,0,σ

2
uσ

2
β j,0

)
, ( j = 1,2), σ2

u ∼ IG
(
nu,0

2
,
S u,0

2

)
,

δδδ | σ2
v ∼ Nd

(
µµµδδδ,0,σ

2
vΣΣΣδδδ,0

)
, σ2

v ∼ IG
(
nv,0

2
,
S v,0

2

)
.

(17)

Conditional on σ2
u, β j follows the truncated normal distribution with mean µβ j,0, variance

σ2
uσ

2
β j,0

, and support B j = [l j,m j] ( j = 1,2). Conditional on σ2
v , δδδ follows the d-dimensional

multivariate normal distribution with mean vector µµµδδδ,0 and covariance matrix σ2
vΣΣΣδδδ,0. The

parameter σ j follows the inverse gamma distribution with parameters n j,0/2 and S j,0/2 ( j =

u,v). Its mean and variance are S j,0/(n j,0−2) for n j,0 > 2 and 2S 2
j,0/{(n j,0−2)2(n j,0−4)} for

n j,0 > 4, respectively. The support of β j ( j = 1,2) reflects our prior knowledge. To elicit the

prior distribution, one can make use of knowledge based on demand theory or utilize the

estimates obtained from a similar population (see Subsection 6.2).

7By using this data generating process, it is straightforward to conduct the simulation study. Given true
parameter values, we generate the gas demand. Then, given the generated gas demand as the dataset, the
efficient MCMC simulator that will be described in Section 4 is applied to draw samples from the posterior
distribution. We conducted the simulation study and found that true parameter values were recovered. However,
due to the page limitation, we omit the details.
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Let π(βββ,δδδ,σ2
u,σ

2
v) be the prior density function of (βββ,δδδ,σ2

u,σ
2
v). Then, it is straightfor-

ward to derive the posterior density function, which is given by

π
(
βββ,δδδ,σ2

u,σ
2
v , sss
∗,www∗ | yyy

)
∝ π

(
βββ,δδδ,σ2

u,σ
2
v

)
× (σuσv)−n exp

[
−1

2

{
σ−2

u
(
yyy−XXXβββ−www∗

)′ (yyy−XXXβββ−www∗
)
+σ−2

v
(
www∗−ZZZδδδ

)′ (www∗−ZZZδδδ
)}]

×
n∏

i=1

{
I
(
w∗i ∈ Ris∗i

)Ki−1∏
k=2

I (RLik ≤ RUik)
}
, (18)

where yyy = (y1,y2, . . . ,yn)′, XXX = (xxx1s∗1
, . . . , xxxns∗n)′, sss∗ = (s∗1, s

∗
2, . . . , s

∗
n)′, www∗ = (w∗1,w

∗
2, . . . ,w

∗
n)′,

and ZZZ = (zzz1,zzz2, . . . ,zzzn)′.

To draw samples of model parameters from this posterior density function, we use an

efficient Gibbs sampler, the details of which are given in the next subsection and Appendix

A.2.

4.2 Sampling β1 with an efficient blanket

The full conditional distribution of β1 is the truncated normal distribution, T NC1(µβ1,1,σ
2
uσ

2
β1,1

),

where

σ−2
β1,1 = σ

−2
β1,0+

n∑
i=1

(
pis∗i

)2
, (19)

µβ1,1 = σ
2
β1,1

σ−2
β1,0µβ1,0+

n∑
i=1

pis∗i

(
yi−β2qis∗i

−w∗i
) , (20)

C1 =

 n∩
i=1

Ki∩
j=1, j,s∗i

{
β1 | Vi,s∗i

> Vi j
}∩

 n∩
i=1

Ki−1∩
k=2

{β1 | RLik ≤ RUik}
∩ [l1,m1]. (21)

Because C1 is difficult to calculate, we use rejection sampling. However, as revealed in the

next subsection, a simple blanket, the envelope function in rejection sampling, is not effi-

cient in the sense that the acceptance rate of the proposed candidate is extremely low. There-

fore, we closely approximate C1 by C̃1, which is derived by using two properties of convex
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functions (the Hermite-Hadamard integral inequality and the power-mean inequality), thus

improving our sampling efficiency.

First, without loss of generality, we assume that the support of the prior for β1 is B1 =

[l1,0]. Then, we decompose C1 into a set of larger sets and approximate them to obtain C̃1.

More precisely,

C1 ⊂
n∩

i=1

Ki∩
j=1, j,s∗i

C1i
s∗i j ⊂

n∩
i=1

Ki∩
j=1, j,s∗i

C̃1i
s∗i j ≡ C̃1, (22)

where C1i
k j = {β1 | Vik > Vi j} ∩ [l1,0]. Third, we construct the interval C̃1i

k j (⊃ C1i
k j) using the

following three steps.

Step 1. Apply the Hermite-Hadamard integral inequality. The Hermite-Hadamard integral

inequality8and β1 ∈ [l1,0] imply

∫ Pik

Pi j

xβ1dx ≥


(
Pik −Pi j

) (Pik+Pi j
2

)β1
, if k < j,(

Pik −Pi j
) P
β1
ik +P

β1
i j

2 , if k > j.
(23)

Using this inequality, we have

Vik > Vi j⇐⇒ a1 >

∫ Pik

Pi j

xβ1dx =⇒ a1 > (the right hand side of equation (23)), (24)

where a1 = exp(−w∗i )(1−β2)−1(Q1−β2
ik −Q1−β2

i j ).

Step 2. Apply the power-mean inequality. The power-mean inequality and β1 ∈ [l1,0] imply

Pl1
ik +Pl1

i j

2


1/l1

<

Pβ1
ik +Pβ1

i j

2


1/β1

⇐⇒
Pβ1

ik +Pβ1
i j

2
<

Pl1
ik +Pl1

i j

2


β1/l1

.9 (26)

8Let f : [a,b]→ R be a convex function. Then,

f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
. (25)

See, for example, Niculescu and Persson (2003) for a proof. Niculescu and Persson (2003) also noted that the
first (or last) inequality can define the convex function itself.

20



Step 3. Combine the above two-step results. By combining equations (24) and (26), and

by rearranging these inequalities for β1, we derive the closely approximated interval C̃1i
k j =

C̃⋆1i
k j ∩ [l1,0], where

C̃⋆1i
k j =



(−∞,b1/ p̄(1)) , if k < j and p̄(1) > 0,

(−∞,∞) , if k < j and p̄(1) = 0,

(b1/p̄(1),∞) , if k < j and p̄(1) < 0,

(b1/p̄(l1),∞) , if k > j and p̄(l1) > 0,

(−∞,∞) , if k > j and p̄(l1) = 0,

(−∞,b1/ p̄(l1), ) , if k > j and p̄(l1) < 0,

(27)

b1 = log(a1/(Pik − Pi j))10, and p̄(x) = x−1 log{(Px
ik + Px

i j)/2} (x = 1, l1). By construction,

C1i
k j ⊂ C̃1i

k j. If PiKi > 1 is assumed, we have p̄(1) > p̄(l1) > 0, which simplifies the above

expression.

Finally, by using this interval C̃1i
k j, we approximate C1 by C̃1 = ∩n

i=1 ∩
Ki
j=1, j,s∗i

C̃1i
s∗i j as

mentioned above. Figure 5 illustrates the relationships among C1, C̃1, and B1.

～
max C₁ - max C₁min C₁ - min C₁

C₁

C₁

B₁

～

～{{ { {

min C₁ - min B₁ max B₁ - max C₁

Figure 5: Relationships among C1, C̃1, and B1.

With C̃1, the sampling procedure for β1 is implemented using the following two steps.

Step a. Generate β′1 from the uniform distribution on C̃1 until it is in C1.

9See, for example, Chapter 2 of Hardy, Littlewood, and Pólya (1952) for a proof of the power-mean in-
equality. This equivalence also uses the fact that f (x) = xβ1 (β1 ∈ [l1,0]) is decreasing as x(> 0) increases.

10Because a1 ≷ 0 for all k ≶ j, a1/(Pik −Pi j) > 0 for any k and j (k , j).
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Step b. Accept β′1 with the acceptance probability α(β1,β
′
1); otherwise, retain β1, where

α
(
β1,β

′
1

)
=min

1, ϕ
{(
β′1−µβ1,1

)
σ−1

u σ
−1
β1,1

}
ϕ
{(
β1−µβ1,1

)
σ−1

u σ
−1
β1,1

} , (28)

and ϕ(·) is the probability density function of the standard normal distribution.

The sampling of β2 is conducted in a similar manner. See Appendix A.2 for its full

conditional distribution and Appendix A.3 for the derivation of its efficient blanket.

Joint sampling for (β1,β2) is an alternative sampling algorithm. The GHK simulator

(proposed by Geweke (1991), Hajivassiliou and McFadden (1998), and Keane (1994)) is a

method to draw samples from the truncated multivariate normal distribution. While using

this simulator could improve the sampling efficiency, the GHK simulator has disadvantages.

The support of the conditional posterior distribution for (β1,β2) is difficult to calculate be-

cause of the highly nonlinear indirect utility. Furthermore, its efficient two-dimensional blan-

ket is also difficult to construct. One of the simplest blankets is B1×B2, which is the support

of the joint prior distribution of (β1,β2). As we see in Figure 6 and Table 1 given in the

next subsection, however, this blanket is extremely inefficient with respect to the empirical

dataset.

4.3 Adequacy of the efficient blankets

In this subsection, we evaluate the adequacy of the efficient blanket in two respects by using

the Japanese residential gas demand data. The first measure is the absolute differences,

maxC̃ j −maxC j and minC j −minC̃ j ( j = 1,2), and the second measure is the adequacy

ratio, |C j|/|C̃ j| ( j = 1,2), where |A| is the area of the set A. Figure 5 is helpful in that it

clarifies what these measures mean.

Because C j is difficult to calculate, we obtain these measures via simulation. During each

step in the MCMC iterations (see Appendix A.2), we obtain the approximated interval, C̃ j.

Then, we compute 1,001 equispaced samples in this approximated interval and determine
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whether they belong to C j. Among the samples that are in C j, we obtain the maximum and

the minimum to calculate the absolute differences. Furthermore, the ratio of the number of

samples that belong to C j to the number of those that do not is the adequacy ratio condi-

tional on model parameters. These conditional adequacy ratios are averaged to calculate the

adequacy ratio after the MCMC iterations are complete.

We calculate these two measures using the empirical dataset. The results are shown in

Figure 6 and given in Table 1. Figure 6 presents time series plots of absolute differences. The
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Figure 6: Absolute differences.

Table 1: Adequacy ratios

Coefficient |C j|/|C̃ j| = r1 |C j|/|B j| = r2 Efficiency ratio (r1/r2)

β1 .67 (.21) .0037 (.0026) 181
β2 1.00 (.00) .0004 (.0003) 2,500
∗ Standard deviations in parentheses.

red lines represent time series plots of absolute differences that calculated from our efficient
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blankets, whereas the blue lines are those obtained using the simple method, where C̃ j is

replaced by B j. The red lines are very close to the horizontal lines at zero, which implies

that the proposed efficient blankets are sufficiently close to the true sets. Table 1 indicates the

adequacy ratios in the first two columns and the efficiency ratio, the ratio of two adequacy

ratios, in the third column. Although the adequacy ratios of the efficient blankets differ with

respect to their parameters, they are much (about 200 to 2,500 times) higher than those of

the simple blanket B j. Therefore, based on the empirical dataset, our proposed method well

approximates the true regions for both β1 and β2.

We also investigate how our method would be affected by the number of blocks. In the

empirical dataset, there are 65 and 245 consumers under three-block and six-block decreas-

ing block rate pricing, respectively (see also Panel 7(a) in Subsection 6.1). For these subsets

of the empirical data, we calculate adequacy ratios |C j|/|C̃ j| for j = 1,2. The results are given

in Table 2. The degrees of approximation decreases on average as the number of blocks

Table 2: Adequacy ratios as the number
of blocks increases

Coefficient three blocks six blocks

β1 .93 (.066 ) .82 (.18 )
β2 1.00 (.0005) 1.00 (.0006)
∗ Standard deviations in parentheses.

increases in terms of the adequacy ratio but they are similar when we take into account their

standard deviations.

5 Model without heterogeneity

As an alternative model, this section introduces the statistical model without heterogeneity,

which is given by

yi = xxx′is∗i
βββ+ui, ui ∼ i.i.d. N

(
0,σ2

u

)
, (29)
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where xxxis∗i
= (pis∗i

,qis∗i
)′, βββ = (β1,β2)′,

s∗i = k, if Vik ≥ Vi j for k , j and k = 1, . . . ,Ki, (30)

Vik = −
P1+β1

ik

1+β1
+

Q1−β2
ik

1−β2
. (31)

Then, the likelihood function for the i-th consumer is given by

f
(
yi | βββ,σ2

u

)
=

1
√

2πσu

Ki∑
k=1

exp
{
− 1

2σ2
u

(
yi− xxx′ikβββ

)2
}∏

j,k

I
(
Vik ≥ Vi j

)
. (32)

With the same prior distributions as before (see equation (17)), the posterior distribution is

derived as

π
(
βββ,σ2

u | yyy
)
∝ π

(
βββ,σ2

2

)
σ−n

u

n∏
i=1

Ki∑
k=1

exp
{
− 1
σ2

u

(
yi− xxx′ikβββ

)2
}∏

j,k

I
(
Vik ≥ Vi j

)
, (33)

where π(βββ,σ2
2) is the prior probability density function associated with the prior distribu-

tions. We apply the Metropolis-Hastings within Gibbs algorithm to draw samples from the

posterior distribution. See Appendix A.4 for its details.

6 Empirical analysis and policy evaluation of residential

gas demand

6.1 Data description

This subsection describes the data to be used for the empirical study in the following two

subsections. We conducted an online survey on the Internet from June 2006 to May 2008

that was designed to analyze the water and energy consumption and the garbage emission

behavior of Japanese households. The population of this survey was comprised of the house-
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holds living in the Tokyo and Chiba prefectures. There were about 8.4 million households as

of January 2007. Among them, 47,239 individuals were registered to the survey company,

INTAGE Inc. (http://www.intage.co.jp/english/). Out of 47,239 individuals, 1,687 individu-

als were randomly selected. Then, out of 1,687 individuals, 1,250 participated in our survey.

They were asked for household attributes such as annual income, the number of members in

the household, and so on in June 2006 and April 2007. They were also asked to record their

water and energy consumptions and the garbage emission behavior every month.

For the empirical study, we used the attribute data in June 2006 and the gas consumption

data in January 2007. The dependent variable is the amount of gas consumption (logm3),

which was calculated from the bill by using the corresponding gas price schedule that de-

pends on the area in which the individuals were living. The list of independent variables and

their corresponding coefficients is given in Table 3.

Table 3: Independent variables used in the gas demand function
Coefficient Variable Attribute

β1 (pi1, . . . , piKi) log of monthly unit prices of gas (log ¥50 /m3)
β2 (qi1, . . . ,qiKi) log of monthly virtual incomes (log ¥50)

δ1 zi1 the constant
δ2 zi2 the number of members in a household (person)
δ3 zi3 the number of rooms in a home/apartment (room)
δ4 zi4 the total floor space of a home/apartment (50m2)

The number of households is decreased from 1,250 to 473 for the reasons listed below.

• Dropped out of the survey before January 2007.

• Missing or incorrect data concerning household attributes or gas consumption.

• Use of liquefied petroleum gas. (Its price schedule is not publicly available.)

The sample selection problem will be examined at the end of this subsection.

For these 473 households, we conducted an empirical study that is presented in the next

subsection. The first row of Table 4 gives the summary statistics of the amount of gas con-
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sumption, which is the dependent variable. All these households faced decreasing block

Table 4: Summary statistics of the data used for the empirical study (the num-
ber of households is 473)

Variable Unit Mean SD Min. 1st quartile 3rd quartile Max.

yi logm3 3.75 .78 .053 3.36 3.85 5.70
log Ii log ¥50 9.22 .56 7.42 9.03 9.61 10.82
zi2 person 2.81 1.28 1 2 4 9
zi3 room 4.09 1.10 1 4 5 8
zi4 50m2 1.54 .74 .20 1.10 1.80 8.00
∗ Corr(zi1,zi2) = .49, Corr(zi1,zi3) = .38, Corr(zi2,zi3) = .71.

rate pricing, and their price schedules differed depending on the cities in which they live.

The price structures are shown in Figure 7, wherein the relative frequency of the number

of blocks, the histogram of the unit price where the gas was actually consumed, and the

histogram of the fixed gas service fee are illustrated.
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Figure 7: Relative frequency of the number of blocks and histograms of the unit price and
the fixed gas service fee in January 2007.

Because the exact annual income level is sensitive information to request, our survey

divides annual income levels into eight categories: (in million yen) 0-2, 2-4, 4-6, 6-8, 8-

10, 10-12, 12-15, and over 15. Then, we asked the household its income category. The

monthly income variable to be used for the empirical study is estimated using the median

of the recorded income category divided by 12. For the last category (over 15 million yen),

the approximate annual income is also recorded, and we use this figure divided by 12 as the

monthly income. The second row of in Table 4 summarizes the log of this income variable.
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The summary statistics for the explanatory variables for heterogeneity are given in the

third to the fifth rows of Table 4. At the bottom of this table, the correlation coefficients

among the explanatory variables for heterogeneity are calculated. From these values, we can

establish that there is a high positive correlation between the number of rooms and the total

floor space, such that either of these variables could not explain the residential gas demand.

At the end of this subsection, we discuss the sample selection bias caused by our data

reduction. Table 5 gives summary statistics based on the original data. In the third column,

the numbers of households to calculate these statistics are also given. For example, there

are 564 households who did not drop out our survey as of January 2007 and answered the

questions about gas consumption properly. These statistics are mostly similar to those given

Table 5: Summary statistics of the original data

Variable Unit the number of households Mean SD 1st quartile 3rd quartile

yi logm3 564 3.83 .93 3.40 4.30
log Ii log ¥50 1,103 9.17 .56 9.03 9.62
zi2 person 1,230 2.87 1.36 2 4
zi3 room 1,230 4.13 1.29 3 5
zi4 50m2 1,230 1.56 .91 1.00 1.90
∗ Corr(zi1,zi2) = .52, Corr(zi1,zi3) = .38, Corr(zi2,zi3) = .67.

in Table 4. Therefore, it is natural to assume that the sample selection bias is small.

6.2 Residential gas demand function

The following two subsections are based on the model with heterogeneity. First, we assume

the following prior distributions.

β1 | σ2
u ∼ T N[−2,0]

(
0,100σ2

u

)
, σ2

u ∼ IG (0.01,0.01) ,

β2 | σ2
u ∼ T N[0,2]

(
0,100σ2

u

)
, σ2

v ∼ IG (0.01,0.01) ,

δδδ | σ2
v ∼ N4

(
000,100σ2

v III
)
,

(34)
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where III is the identity matrix. The truncation interval for β j ( j = 1,2) is elicited as follows.11

Because residential gas is one of the necessities for households, its demand is relatively

inelastic with respect to price and income. Thus, we can expect the absolute values of β1

and β2 to be less than one. Furthermore, we assume negative price elasticity according to

microeconomic demand theory (see, e.g., Mas-Colell et al. (1995)), and positive income

elasticity according to the estimate taken from the Family Income and Expenditure Survey

(FIES) conducted in 2008. The FIES survey is intended to analyze the Japanese households

and estimated the expenditure elasticity for gas to be 0.29 (for households with more than

two members) and away from zero at a 5% significant level. Thus, we assume the interval

[−2,0] ([0,2]) for β1 (β2), where −1 (1) is included to examine whether β1 (β2) is less than

−1 (more than 1). Further analysis of our empirical dataset reveals that this prior truncation

area for βββ is included in the area in which the separability condition is satisfied (see Figure

4).

Specified prior distributions are also evaluated by the method proposed by Chib and

Ergashev (2009). For each random draw from the prior distributions, the optimal block s∗i is

computed. After 1000 draws, relative frequencies for each block are calculated, which are

shown in Panel 8(a) for selected consumers. From this panel, specified prior distributions

place relatively large weights on the first block.

If we replace the conditional prior distribution for δδδ by

T ND
(
µµµδδδ,0,σ

2
vΣΣΣδδδ,0

)
, (35)

where D = [0,∞)d, the implied probability distributions become flatter than those with orig-

11We also conducted the analysis without the prior truncations for both β j ( j = 1,2). Posterior means and
standard deviations for elasticity parameters are −0.83 (0.28) for the price elasticity (β1) and 0.27 (0.046) for
the income elasticity (β2). Their 95% credible intervals are [−1.38,−0.28] for β1 and [0.17,0.35] for β2. Thus,
price and income elasticities are highly credible to be negative and positive, respectively, in the sense that
their 95% credible interval does not include zero. Furthermore, income elasticity is highly credible to be less
than one. Other obtained results are very similar to those obtained with priors (34) specified above, which are
omitted due to the page limitation. Thus, we conclude that the results given below are not sensitive to the prior
truncation.
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inal priors (see Panel 8(b)).
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Figure 8: Implied probability distributions of the optimal block for selected consumers.

In terms of the implied probability distributions of the optimal block, it seems that the

truncated prior for δδδ would be plausible. However, such a prior is too restrictive because it

excludes the possibility that some explanatory variables for heterogeneity have negative re-

lation to the gas demand.12 Thus, this article uses the prior distributions specified in equation

(34).

With prior distributions specified in equation (34), the MCMC simulation was carried out

to obtain 6× 106 samples after deleting the first 6× 105 samples. We reduced the obtained

6×106 samples to 2×104 samples by picking up every 300-th sample. The results are given

in Table 6 and shown in Figure 9.13

Each column of the table represents the parameter names, the posterior means, the pos-

terior standard deviations, the 95% credible intervals, and the estimated inefficiency factors.

The inefficiency factor is defined as 1+2
∑∞

j=1 ρ( j), where ρ( j) is the sample autocorrelation

12We also conducted the Bayesian inference with the truncated prior for δδδ, and obtained results are mostly
similar with those found in Table 6. However, the prior truncation affects the marginal posterior distribution
for δ4. The posterior mean for δ4 is 0.086 with its 95% credible interval [0.016,0.17].

13Because our data are reduced from 1,250 to 473, such a large data reduction would influence the obtained
results. To examine the effect from this reduction, we gathered households whose dependent variables are
missing but whose explanatory variables are not. The number of households then became 759. Under the same
MCMC setting, we estimated the residential gas demand function. Missing dependent variables were imputed
within the MCMC simulation by using the data augmentation method. Obtained results are quite similar to
those given in Table 6 and shown in Figure 9, and we omit the details. Thus, the data reduction in explanatory
variables does not influence the estimates of model parameters.
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Table 6: Gas demand function

Parameter Mean SD 95% interval INEF

β1 (price) −.84 .26 [−1.35 −.32] 136
β2 (income) .26 .060 [ .14 .38] 218
δ1 (constant) .84 .62 [− .32 2.06] 259
δ2 (number of members) .17 .026 [ .12 .22] 11
δ3 (number of rooms) .18 .037 [ .11 .25] 5
δ4 (total floor space) .038 .052 [− .067 .14] 6
σu (measurement error) .55 .13 [ .12 .65] 19
σv (heterogeneity error) .17 .15 [ .049 .58] 30
∗ “SD” and “INEF” denote the posterior standard deviation and the esti-

mated inefficiency factor, respectively.

−2.0 −1.5 −1.0 −0.5 0.0

0.5
1.0
1.5 β1

0.0 0.1 0.2 0.3 0.4 0.5

2.5
5.0
7.5 β2

−2 −1 0 1 2 3 4

0.25
0.50
0.75 δ1

0 0.05 0.1 0.15 0.2 0.25 0.3

5
10
15
20 δ2

0.0 0.1 0.2 0.3 0.4

5
10
15 δ3

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

2.5
5.0
7.5 δ4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

5
10
15 σu

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

5
10
15 σv

Figure 9: Marginal posterior densities.

at lag j, and is estimated using the spectral density. It can be interpreted as the ratio of the

variance of the sample mean obtained by the MCMC draws to the variance of the sample

mean by an uncorrelated Monte Carlo draw (see, e.g., Chib (2001)).

6.2.1 Estimates of price and income elasticities

From Table 6, we found that marginal posterior probabilities of price and income elasticities

are Pr(β1 < −0.32 | yyy) > 0.975 and Pr(β2 > 0.14 | yyy) > 0.975. The estimated inefficiency
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factors of elasticity parameters (as well as that of δ1) are much higher than other parameters.

This is partly because of the tight restrictions on βββ and partly because of the high correlation

between β2 and δ1 (Corr(β2, δ1) = −0.82). The other correlation coefficients are less than 0.7

in their absolute values except for that between σu and σv (Corr(σu,σv) = −0.93). This high

correlation between σu and σv is mainly because they are not fully identified.

We compared these estimates with those of previous studies. One of the classical studies

of residential gas demand is the study by Balestra and Nerlove (1966). They analyzed the

natural gas demand using a dynamic model with random effects. Their data are the state-

level panel data for the United States during 1950−62. They estimated the (long-run) price

and income elasticities to be −0.63 and 0.62, respectively, when the depreciation rate for

gas appliances is unconstrained. While the estimated income elasticity calculated by these

researchers using aggregate data is larger than ours, the estimated price elasticity is similar

to ours.

Bloch (1980) also investigated residential gas demand by using the household-level data.

This includes gas usage data for households living in Twin Rivers, New Jersey, during the

winter months (November through April) from 1971 to 1976. The explanatory variables that

Bloch (1980) used are the number of heating degree days, the price of natural gas, and the

consumer price index. He found that the (long-run) price elasticity is estimated to be −0.596

or −0.224 depending on the functional form of the demand function. The former estimate is

similar to our results.

6.2.2 Other parameters

Among the explanatory variables for heterogeneity, the number of members in a household

and the number of rooms in a home are highly credible to be positive in terms of their 95%

credible intervals. These factors should have a positive relationship with gas demand through

water demand for the two following reasons: (1) these two variables are also credible to be

positive in the Japanese residential water demand function (see Table 5 of Miyawaki et al.
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(2013)); and (2) in Japan, residential gas is mainly used for boiling water.

6.3 Policy evaluation—the effect of price schedule changes

In this subsection, we conduct a welfare analysis and evaluate the effect of price schedule

changes. As the suppositional price schedules, we use the following three uniform price

systems, which differ in their unit price: (unit price, fixed service fee) = (¥50/m3, ¥725),

(¥120/m3, ¥725), and (¥250/m3, ¥725). These unit prices are less expensive, as high as,

or more expensive than the unit price that most households are actually facing. The fixed

service fee is set close to the actual fee for most households.

Figure 10 shows the effect of price changes on households in terms of compensating

variation. Each boxplot is the predictive distribution of the compensating variation in one

thousand yen for each household. The number of households is reduced to 90 by select-

ing every 5-th household. Boxplots are sorted in ascending order based on the number of

members in a household.

These results are consistent with what we expect based on microeconomic theory. We

observe the positive (negative) compensating variation when the unit price decreases (in-

creases). That is, the unit price decrease (increase) implies welfare improvement (decline).

However, uniform pricing itself does not seem to have a noticeable influence on compensat-

ing variation (see the panel of ¥120/m3). Furthermore, the degree of improvement (decline)

is affected by explanatory variables for heterogeneity. The above panels show that the more

members there are in a household, the more the compensating variation is likely to change.

Similar patterns are also found with other explanatory variables for heterogeneity.

6.4 Comparison with the model without heterogeneity

Table 7 reports estimation results of the model without heterogeneity. For these results,

we specify prior distributions that are the same as ones for the model with heterogeneity.

Then, 6× 106MCMC samples are generated after discarding the first 6× 105, and they are
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Figure 10: Boxplots of the predictive distribution of the compensating variation (¥103). Each
box represents the range between the first and third quartiles. The upper and lower whiskers
denote the 95-th and 5-th percentiles, respectively.

reduced to 2× 104 samples by picking up every 300-th sample. Compared with the model

Table 7: Gas demand function without heterogeneity

Parameter Mean SD 95% interval INEF

β1 (price) −.96 .39 [−1.65 −.14] 1
β2 (income) .50 .040 [ .42 .58] 1
σu (measurement error) .71 .023 [ .67 .76] 1
∗ “SD” and “INEF” denote the posterior standard deviation and the esti-

mated inefficiency factor, respectively.

with heterogeneity, the price elasticity is similar, while the income elasticity and the standard

deviation for the measurement error are not.

We calculate the log of marginal likelihoods for both models to compare their fits to

the data. For this purpose, the method proposed by Chib and Jeliazkov (2005) is applied

(see also Chib (1995) and Chib and Jeliazkov (2001) for the methods using the so-called
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basic marginal likelihood identity). The log of the marginal likelihood for the model with

heterogeneity is approximately −9.48 with the numerical standard error 1.20, while −518.43

with 0.005 for the model without heterogeneity.

The difference mostly comes from the evaluation of the log of likelihood functions. Thus,

explanatory variables included in the models cause the difference. The model without het-

erogeneity explains the log of gas demand by the log of prices and virtual incomes, while

the model with heterogeneity uses variables for heterogeneity as well as the log of prices and

virtual incomes. Therefore, the latter fits well to the data because it includes more relevant

variables to explain the log of gas demand.

7 Concluding remarks

There are many previous studies that have used the discrete/continuous choice approach in

the analysis of household behaviors under block rate pricing, transportation, housing, labor

supply, etc. It should be noted that the indirect utility function becomes highly nonlinear,

when the budget set is nonconvex, such as in the case of decreasing block rate pricing. How-

ever, previous studies (Burtless and Hausman (1978); Hausman (1980); Burtless and Moffitt

(1985)) on decreasing block rate pricing do not address this problem. Blomquist and Newey

(2002) proposed a nonparametric approach to address this problem, but their approach lacks

the microeconomic theoretical background. This article proposes a new Bayesian estimation

method for residential gas demand on the nonconvex budget set by extending the Bayesian

approach taken by Miyawaki et al. (2013), which proposed a Bayesian estimation method to

analyze consumer demand under increasing block rate pricing. The advantage of our method

is not only that it addresses the nonlinearity problem associated with the nonconvex budget

sets but also that it incorporates the (highly nonlinear) separability condition that is neces-

sary for the demand model under multiple-block block decreasing block rate pricing and

introduces normal disturbance into the multinomial choice model.
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Finally, our method has the potential to estimate the multiple residential energy expen-

diture function. Previous studies have focused on the cross-elasticity of electricity and gas

demand (see Beierlein, Dunn, and James C. McConnon (1981); Baker, Blundell, and Mick-

lewright (1989); Lee and Singh (1994); Maddala, Trost, Li, and Joutz (1997); Vaage (2000);

Mansur, Mendelsohn, and Morrison (2008)). However, they do not take into consideration

the price structure of electricity and gas services. Japanese electricity services are provided

under increasing block rate pricing where the unit price increases as the volume consumed

increases. Thus, by combining the proposed method and the method of Miyawaki et al.

(2013) to estimate the demand function under increasing block rate pricing, we could also

construct a multivariate demand function under both increasing and decreasing block rate

pricing in a natural manner and estimate the residential energy demand function using the

Bayesian approach. We will leave this for our future work.

A Appendices

A.1 Heterogeneity interval

We derive the explicit bounds of the heterogeneity interval, which is given by

Rik =
{
w∗i | Vik > Vi j for j , k

}
=

∩
j,k

{
w∗i | Vik > Vi j

}
. (36)

Let D(x1, x0;θ) = θ−1(xθ1− xθ0) (x0 > 0, x1 > 0, θ , 0). Then, D(x1, x0;θ) ≷ 0 if x1 ≷ x0.14

With this function, we solve Vik > Vi j for w∗i .

Vik > Vi j⇐⇒−exp
(
w∗i

)
D

(
Pik,Pi j;1+β1

)
> −D

(
Qik,Qi j;1−β2

)
(37)

14Suppose x1 > x0 > 0. Then, because xθl (l = 0,1) is decreasing (increasing) with respect to xl if θ < (>)0, the
numerator xθ1− xθ0 ≶ 0 if θ ≶ 0. Therefore, D(x1, x0;θ)> 0 if x1 > x0 > 0. Similarly, D(x1, x0;θ)< 0 if x0 > x1 > 0.
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⇐⇒


w∗i < ln Ek j, if k < j,

w∗i > ln Ek j, if k > j,
(38)

where Ek j = D(Qik,Qi j;1− β2)/D(Pik,Pi j;1+ β1). The last equivalence makes use of the

property of decreasing block rate pricing: Pik ≷ Pi j and Qik ≷ Qi j if k ≶ j. Both Pik > 0 and

Qik > 0 for all k because we assume the log-linear demand specification. Thus, D(Pik,Pi j;1+

β1) ≷ 0 and D(Qik,Qi j;1−β2) ≷ 0 if k ≶ j.

Finally, we have

Ri1 =

(
−∞,min

1< j
ln E1 j

)
,

Rik =

(
max
k> j

ln Ek j,min
k< j

ln Ek j

)
, k = 2, . . . ,Ki−1,

RiKi =

(
max
Ki> j

ln EKi j,∞
)
.

(39)

We note that Rik∩Ri j = ∅ (k , j).

A.2 Gibbs sampler

The Gibbs sampler is implemented in seven steps.

Step 1. Set initial values to (βββ,δδδ, sss∗,www∗,σ2
u,σ

2
v).

Step 2. Generate β1 given β2, sss∗,www∗,σ2
u.

See Subsection 4.2.

Step 3. Generate β2 given β1, sss∗,www∗,σ2
u.

The full conditional distribution of β2 is the truncated normal distribution, T NC2(µβ2,2,σ
2
uσ

2
β2,2

),

where

σ−2
β2,1 = σ

−2
β2,0+

n∑
i=1

(
qir∗i

)2
, (40)

µβ2,1 = σ
2
β2,1

σ−2
β2,0µβ2,0+

n∑
i=1

qis∗i

(
yi−β1 pis∗i

−w∗i
) , (41)
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C2 =

 n∩
i=1

Ki∩
j=1, j,s∗i

{
β2 | Vi,s∗i

> Vi j
}∩

 n∩
i=1

Ki−1∩
k=2

{β2 | RLik ≤ RUik}
∩ [l2,m2]. (42)

The rejection sampling with an efficient blanket is applied to obtain samples of β2. The

efficient blanket C̃2 will be derived in the next appendix. The acceptance probability is given

by

α
(
β2,β

′
2

)
=min

1, ϕ
{(
β′2−µβ2,1

)
σ−1

u σ
−1
β2,1

}
ϕ
{(
β2−µβ2,1

)
σ−1

u σ
−1
β2,1

} . (43)

Step 4. Generate (σ2
v , δδδ) given www∗.

By integrating the joint density function of (σ2
v , δδδ) given www∗ over δδδ, we have the full condi-

tional distribution of σ2
v as the inverse gamma distribution, IG(nv,1/2,S v,1/2), where nv,1 =

nv,0+n and

S v,1 = S v,0+µµµ
′
δδδ,0ΣΣΣ

−1
δδδ,0µµµδδδ,0+www∗′www∗−µµµ′δδδ,1ΣΣΣ

−1
δδδ,1µµµδδδ,1. (44)

Then, given σ2
v , the full conditional distribution of δδδ is the multivariate normal distribution,

Nd(µµµδδδ,1,σ
2
vΣΣΣδδδ,1), where

µµµδδδ,1 = ΣΣΣδδδ,1
(
ΣΣΣ−1
δδδ,0µµµδδδ,0+ZZZ′www∗

)
, ΣΣΣ−1

δδδ,1 = ΣΣΣ
−1
δδδ,0+ZZZ′ZZZ. (45)

Step 5. Generate {s∗i ,w∗i }ni=1 given βββ,δδδ,σ2
u,σ

2
v .

The blocking technique is applied to draw samples of (s∗i ,w
∗
i ). The full conditional distri-

bution of s∗i is the multinomial distribution, the probability mass function of which is given

by

π
(
s∗i = s | βββ,δδδ,σ2

u,σ
2
v

)
∝

[
Φ

{
τ−1 (RUis− θis)

}
−Φ

{
τ−1 (RLis− θis)

}]
exp

(
−mis

2

)
, (46)
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for s = 1, . . . ,Ki, where τ2 = (σ−2
u +σ

−2
v )−1 and

(mis, θis) =

 (σuσv)−2
(
yi− xxx′isβββ− zzz′iδδδ

)2

σ−2
u +σ

−2
v

,
σ−2

u

(
yi− xxx′isβββ

)
+σ−2

v zzz′iδδδ

σ−2
u +σ

−2
v

 . (47)

Given s∗i = s, the full conditional distribution of w∗i is the truncated normal distribution,

T NRis(θis, τ
2).

Step 6. Generate σ2
u given βββ, sss∗,www∗.

The full conditional distribution of σ2
u is the inverse gamma distribution, IG(nu,1/2,S u,1/2),

where nu,1 = nu,0+n+2 and

S u,1 = S u,0+
(
βββ−µµµβββ,0

)′
ΣΣΣ−1
βββ,0

(
βββ−µµµβββ,0

)
+

(
yyy−XXXβββ−www∗

)′ (yyy−XXXβββ−www∗
)
. (48)

Step 7. Go to Step 2.

A.3 Efficient blanket for β2

We assume that the support of the prior distribution for β2 is B2 = [0,m2] without loss of

generality. Let

C2i
k j =

{
β2 | Vik > Vi j

}
∩ [0,m2] and a2 = exp(w∗i )(1+β1)−1

(
P1+β1

ik −P1+β1
i j

)
. (49)

Then, the Hermite-Hadamard integral inequality and β2 ∈ [0,m2] derive

a2 <


(
Qik −Qi j

) Q
−β2
ik +Q

−β2
i j

2 , if k < j,(
Qik −Qi j

) (Qik+Qi j
2

)−β2
, if k > j.

(50)
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By applying the power-mean inequality, we have C̃2i
k j = C̃⋆2i

k j ∩ [0,m2] (⊃C2i
k j), where

C̃⋆2i
k j =



(−∞,−b2/q̄(−m2)) , if k < j and q̄(−m2) > 0,

(−∞,∞) , if k < j and q̄(−m2) = 0,

(−b2/q̄(−m2),∞) , if k < j and q̄(−m2) < 0,

(−b2/q̄(1),∞) , if k > j and q̄(1) > 0,

(−∞,∞) , if k > j and q̄(1) = 0,

(−∞,−b2/q̄(1)) , if k > j and q̄(1) < 0,

(51)

b2 = log(a2/(Qik −Qi j)), and q̄(x) = x−1 log{(Qx
ik +Qx

i j)/2} (x = 1,−m2). If QiKi > 1 is as-

sumed, we have q̄(1) > q̄(−m2) > 0, which simplifies the above expression. With this closely

approximated interval C̃2i
k j, we have C̃2 = ∩n

i=1∩
Ki
j=1, j,s∗i

C̃2i
s∗i j, which includes C2.

A.4 Metropolis-Hastings within Gibbs algorithm

To draw samples from the posterior distribution of the model without heterogeneity, we apply

the Metropolis-Hastings within Gibbs algorithm, which is implemented in four steps.

Step 1. Set initial values to (βββ,σ2
u).

Step 2. Generate βββ given σ2
u.

Let s∗i be the optimal block for the i-th consumer, i.e., Vis∗i
≥ Vi j for j , s∗i and j = 1, . . . ,Ki,

given the current value of βββ. Generate a candidate βββ† from the following bivariate normal

distribution, N(µµµβ,1,σ
2
uΣΣΣβ,1), where

ΣΣΣβ,1 =

ΣΣΣ−1
β,0+

n∑
i=1

xxxi,s∗i
xxx′i,s∗i

−1

, µµµβ,1 = ΣΣΣβ,1

ΣΣΣ−1
β,0µµµβ,0+

n∑
i=1

xxxi,s∗i
yi

 , (52)

and calculate the optimal block s†i given βββ†. Then, accept the candidate with the following
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probability,

min


1,

n∏
i=1

exp

− 1
2σ2

u

(
yi− xxx′

i,s†i
βββ†

)2


exp
{
− 1

2σ2
u

(
yi− xxx′i,s∗i

βββ†
)2

}

. (53)

If the candidate is accepted, update βββ by βββ†. Otherwise, retain the current value of βββ.

Step 3. Generate σ2
u given βββ.

The full conditional distribution for σ2
u is the inverse Gamma distribution, which is given by

IG


nu,0+2+n

2
,
S u,0+

(
βββ−µµµβ,0

)′
ΣΣΣ−1
β,0

(
βββ−µµµβ,0

)
+

∑n
i=1

(
yi− xxx′i,s∗i

βββ
)2

2

 , (54)

where s∗i is the i-th consumer’s optimal block given βββ.

Step 4. Go to Step 2.
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