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Abstract

Entry game models are often used to study the nature of firms’ profit and the nature of

competition among firms in empirical studies. However, when there are multiple players in an

oligopoly market, resulting multiple equilibria have made it di�cult in previous studies to esti-

mate the payo↵ functions of players in complete information, static and discrete games without

using unreasonable assumptions. To overcome this di�culty, this paper proposes a practical

estimation method for an entry game with three players using a Bayesian approach. Some mild

assumptions are imposed on the payo↵ function, and the average competitive e↵ect is used to

capture the entry e↵ect of the number of firms.

Our proposed methodology is applied to Japanese airline data in 2000, when there are three

major airline companies, ANA, JAL and JAS. The model comparison is conducted to investigate

the nature of strategic interaction among these Japanese airline companies.

1 Introduction

There has been a growing number of studies of statistical inference in discrete games the class

of empirical studies of entry games originated by Bresnahan and Reiss (1991) and Berry (1992).

Bresnahan and Reiss (1991) proposed estimation methods for a symmetric case where only the

number of entrants in each market was considered important, ignoring who entered the market.

Bajari, Hong, and Ryan (2005) took a complementary approach, imposing assumptions on how

equilibrium is selected in complete information games. Estimation of the confidence region has been

proposed for models with inequality restrictions that apply to entry models (Andrews, Berry and Jia

(2003) and Pakes, Porter, Ho and Is (2005)). Ferrall, Houde, Imai, and Pak (2008) considered the

entry game with incomplete information and proposed a methodological framework using Bayesian

⇤
Graduate School of Economics, University of Tokyo, Tokyo 113-0033, Japan.

†
Faculty of Economics, University of Tokyo, Tokyo 113-0033, Japan.

1



techniques. In this paper, we focus on an entry game model of oligopoly and propose a practical

estimation method for the payo↵ function in complete information, static and discrete games. The

response variables are typically binary (entry or exit) and are subject to multiple equilibria and

strategic interactions, which makes the estimation di�cult. An econometric framework that allows

for multiple equilibria is presented in which we use only the simple condition that firms enter into

a market only when they expect to operate profitably in equilibrium.

Thus, we assume that firms take a pure strategy but do not make any assumptions regarding

equilibrium selection. Because a unique solution is not guaranteed to exist in such an entry game,

we use the concept of a Nash equilibrium as in Bresnahan and Reiss (1991) to address this problem.

Some games have multiple Nash equilibria or no Nash equilibrium; such games are known to cause an

identification problem in the literature. The identification problem arises in the estimation because

econometricians can observe only one realized strategy among multiple equilibria. Although game

theory describes the possibility of multiple equilibria, there is no further information about how the

equilibrium is selected from the observations. The presence of multiple equilibria could result in an

incoherency problem (see Tamer (2003)) in that the choice probabilities implied by the model do

not sum to one. To overcome these problems, in this paper, we employ a Bayesian estimation and

introduce a latent random variable that determines the choice among multiple alternatives.

Some earlier studies proposed a Bayesian estimation of an entry game with two players(e.g.,

Sugawara and Omori (2012)). These studies classify the possible patterns of strategic interactions

by four combinations of sign conditions. We extend this model to an entry game with three players.

There are many possible patterns of strategic interaction when there are three players in game.

To reduce the number of patterns to be examined, we make some assumptions about the payo↵

function.

In an entry game with two players, possible patterns of strategic interactions are classified by

four combinations of sign conditions. However, in an entry game with more than two players, it

becomes extremely complicated to classify many possible patterns of strategic interactions by the

sign of competitive e↵ects. To reduce the number of patterns as discussed in Berry (1992), we

assume that the competitive e↵ect measures how much the firm’s payo↵ increases when the other

firms enter into the market and that it is a function of the number of firms entered into the market.

The number of other firms in the market is considered important deciding whether the firm enters,

but it ignores which firms enter the market. We note that our models can capture asymmetric

e↵ects; while the entry of one player increases the payo↵ function of other players, the entry of

others may decrease the payo↵ function of the player. This is more general than in previous studies,

which assumed that entry e↵ects are symmetric and that the strategic interaction is known.

This paper is organized as follows. Section 2 describes the class of entry game models with three

players and derives the likelihood function. In Section 3, we describe the estimation methods using
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a Bayesian approach. Section 4 applies our proposed model to Japanese airline data. Section 5

concludes the paper.

2 Entry Game Model

2.1 Model

Following Berry (1992), we consider entry models where there are three players and two strategies.

The structure of the game is as follows. A market is composed of three players who face two options,

A = {0, 1}. Each player i bases her action y

im

2 A on a publicly observed variable x

im

2 X. We

assume that y
im

2 A = {0, 1} for i 2 I = {1, 2, 3} and m = 1, · · · ,M .

The strategy y

im

= 1 implies the entrance of the i-th player in the m-th market, while the

strategy y

im

= 0 implies no entrance. Our goal is to estimate payo↵ functions ⇡i

(y1m,y2m,y3m) where

⇡

i

(y1m,y2m,y3m) denotes the payo↵ function for the i-th player in the m-th market when the i-th player

chooses strategy y

im

.

2.2 Three-player two-strategy discrete game

We describe a parametric specification for the profit equation. Profit is assumed to depend on

exogenous data (some of which are unobserved by the econometrician) and on the endogenous

number of firms. The entry e↵ect of firm j on firm i is di↵erent than that of firm j on firm k.

For example, we can assume a payo↵ function like ⇡

i

(y1m,y2m,y3m) = x

0
im

�

i

+ �i

j

y

jm

+ �i

j

0y
j

0
m

+

u

im

. However, under this parameterization, the model becomes extremely complicated when we

classify many possible patterns of strategic interactions by the sign of their competitive e↵ects. For

simplicity, we instead use the average competitive e↵ect to capture the entry e↵ect, depending on

the number of firms. We assume that the payo↵ function is a linear function;

⇡

i

(y1m,y2m,y3m) = x

0
im

�

i

+ �

i

f(n
m

) + u

im

,

where u
im

is the part of profit that is unobserved by the econometrician but observed by all players

in the m-th market. �

i

is a K ⇥ 1 regression coe�cient vector for the i-th player and payo↵ of

the i-th player increases by �

i

f(n
m

) when the n

m

is the number of players in the m-th market.

Extending Berry (1992), who used � log n
m

as the average competitive e↵ect, we choose �

i

log n
m

as �
i

f(n
m

) payo↵ function as

⇡

i

(y1m,y2m,y3m) = x

0
im

�

i

+ �

i

log n
m

+ u

im

.
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Table 1: Payo↵ matrix for three players

y1m = 1 y1m = 0
x

0
1m�1 + �1 log nm

+ u1m, 0,
y2m = 1, y3m = 1 x

0
2m�2 + �2 log nm

+ u2m, x

0
2m�2 + �1 log nm

+ u2m

x

0
3m�3 + �3 log nm

+ u3m x

0
3m�3 + �2 log nm

+ u3m

x

0
1m�1 + �1 log nm

+ u1m, 0,
y2m = 1, y3m = 0 x

0
1m�1 + �2 log nm

+ u1m, x

0
2m�2 + u2m,

0 0
x

0
1m�1 + �1 log nm

+ u1m, 0,
y2m = 0, y3m = 1 0, 0,

x

0
3m�3 + �3 log nm

+ u3m x

0
3m�3 + u3m

x

0
1m�1 + u1m, 0,

y2m = 0, y3m = 0 0, 0,
0 0

Furthermore, the payo↵ is assumed to be zero when the i-th player does not enter the market

(y
im

= 0).

We assume that players have complete information and only use pure strategies. The assumption

of complete information implies that (x
im

,�

i

, �

i

, u

im

) are known to both players in the m-th market,

while the econometrician can observe only x

im

. Thus, (�
i

, �

i

) are treated as parameters and u

im

as a random error term in the estimation of the payo↵ function. We assume that if there is a

unique equilibrium based on the iterative elimination of dominated strategies, players choose the

equilibrium. Otherwise, players choose the Nash equilibrium. If, furthermore, there are multiple

Nash equilibria, players choose one of them at random.

Under these assumptions, players play a two-stage game. In the first stage, they decide whether

to enter the market. If the i-th player chooses not to enter the market, she receives nothing, and

the payo↵ function is equal to zero. If the i-th player chooses to enter the market, she plays in a

competition. The i-th player receives x

0
im

�

i

+ �

i

log n
m

+ u

im

when n

m

players enter into market

m. Otherwise, she receives x0
im

�

i

+ u

im

.

In this paper, we classify types of strategic interaction according to the signs of (�1, �2, �3) as

follows. When �1 < 0, �2 < 0 and �3 < 0, the market is “strategically substitutive”, where the

entry of other players will reduce the payo↵ of the entrant. When �1 > 0, �2 > 0 and �3 > 0, the

market is “strategically compensative”, where the entry of one player is also beneficial for other

players. When the signs of (�1, �2, �3) are the same, the entry of one player has a symmetric e↵ect

on the payo↵ functions of other players in each competition. On the other hand, when the signs

of (�1, �2, �3) are di↵erent, the entry of one player may have an asymmetric e↵ect. Thus, the signs

have empirically important implications for the analysis of the market structure. Moreover, as we
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shall describe later, they lead to di↵erent game structures and econometric models depending on

the type of strategic interaction (e.g., Kooreman (1994)).

2.3 Choice Probability and the Likelihood Function

2.3.1 The case �1 < 0, �2 < 0, �3 < 0

Let y
m

= (y1m, y2m, y3m),� = (�1,�2,�3), � = (�1, �2, �3) and F denote the distribution function of

u. To show how we derive the likelihood function, we first consider the case where �1 < 0, �2 < 0

and �3 < 0. Figure 1 shows the regions that correspond to the outcomes of the entry game based on

the coordinates of the unobserved components (u1m, u2m, u3m). In Region 1 of the top left of Figure

1, {(u1m, u2m, u3m)|u1m > �x

0
1m�1 � �1 log 3, u2m > �x

0
2m�2 � �2 log 3, u3m > �x

0
3m�3 � �3 log 3},

the following inequalities hold:

0 < x

0
im

�

i

+ �

i

log 3 + u

im

< x

0
im

�

i

+ �

i

log 2 + u

im

< x

0
im

�

i

+ u

im

for i = 1, 2, 3.

From Table 1, it is clear that all players take strategy 1 no matter what action their competitors

take. Thus, all players enter the market, i.e., (y1m, y2m, y3m) = (1, 1, 1). Strategy 0 is strictly

dominated by strategy 1 for all players, and outcome (1, 1, 1) must be a unique equilibrium. A

similar statement holds true in Region 8, where this unique equilibrium is (0, 0, 0).

Assumption If there is a unique equilibrium based on iterative elimination of dominated strate-

gies, players choose the equilibrium. Otherwise, players choose the Nash equilibrium. If,

furthermore, there are multiple Nash equilibria, players choose one of them at random.

Under this assumption, we can obtain Regions 2 to 7 by iterative elimination of dominated strategies.

For example, in the case where

0 < x

0
1m�1 + �1 log 3 + u1m < x

0
1m�1 + �1 log 2 + u1m < x

0
1m�1 + u1m,

x

0
2m�2 + �2 log 3 + u2m < 0 < x

0
2m�2 + �2 log 2 + u2m < x

0
2m�2 + u2m,

0 < x

0
3m�3 + �3 log 3 + u3m < x

0
3m�3 + �3 log 2 + u3m < x

0
3m�3 + u3m,

the first player and the third player take strategy 1 regardless of the strategy of the second

player. The strategy of the second player depends on the other players and takes strategy 0

((y1m, y2m, y3m) = (1, 0, 1)). Thus, the first and third players enter the market while the second

player does not, and the unique equilibrium is derived. Similarly, we obtain the unique equilibria

for Regions 2 to 7.
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Regions 2 to 7 are derived by the iterated elimination of dominated strategies, where equilibrium

selection is an optimization problem with a unique solution as in perfect competition. The obtained

equilibria are the rational solution, and it is natural for econometricians to assume that they are

observed. However, such a discussion does not hold true for Region M1, {(u1m, u2m, u3m)|�x

0
1m�1�

�1 log 2 < u1m < �x

0
1m�1��1 log 3,�x

0
2m�2��2 log 2 < u2m < �x

0
2m�2��2 log 3,�x

0
3m�3��3 log 3 <

u3m}. We have

x

0
im

�

i

+ �

i

log 3 + u

im

< 0 < x

0
im

�

i

+ �

i

log 2 + u

im

< x

0
im

�

i

+ u

im

for i = 1, 2.

The better strategy is determined by the action of the counterpart of both players, and no equilib-

rium can be obtained. In this paper, we use the concept of Nash equilibrium as the selection rule

to determine the equilibrium. Because the outcomes (1, 0, 1) and (0, 1, 1) are both Nash equilibria,

we further assume that players choose one of these equilibria, based on some factors unknown to

econometricians (Kooreman(1994)).

Under these assumptions, we can obtain Figure 1 and, hence, the likelihood function. We define

F

n

i

as the cdf (cumulative distribution function) at �x

0
im

�

i

��

i

log n. Let ✓ = (�, �) and assume that

F is the normal distribution function, and that F̄ ⌘ 1 � F . We define sixteen choice probabilities

for the outcomes in Figure 1 as follows:

P1m ⌘ F̄

3
1 F̄

3
2 F̄

3
3 , P

M1m ⌘ [F 3
1 � F

2
1 ][F

3
2 � F

2
2 ]F̄

3
3 ,

P2m ⌘ F̄

2
1F

2
2 F̄

2
3 + F̄

3
1 [F

3
2 � F

2
2 ]F̄

3
3 , P

M2m ⌘ [F 3
1 � F

2
1 ]F̄

3
2 [F

3
3 � F

2
3 ],

P3m ⌘ F

2
1 F̄

2
2 F̄

2
3 + [F 3

1 � F

2
1 ]F̄

3
2 F̄

3
3 , P

M3m ⌘ F̄

3
1 [F

3
2 � F

2
2 ][F

3
3 � F

2
3 ],

P4m ⌘ F

2
1F

2
2 F̄

2
3 + F1F2[F

2
3 � F3], P

M4m ⌘ [F 3
1 � F

2
1 ][F

3
2 � F

2
2 ][F

3
3 � F

2
3 ],

P5m ⌘ F̄

2
1 F̄

2
2F

2
3 + F̄

3
1 F̄

3
2 [F

3
3 � F

2
3 ], P

M5m ⌘ [F 2
1 � F1]F2[F

2
3 � F3],

P6m ⌘ F̄

2
1F

2
2F

2
3 + [F 2

1 � F1]F2F3, P

M6m ⌘ F1[F
2
2 � F2][F

2
3 � F3],

P7m ⌘ F

2
1 F̄

2
2F

2
3 + F1[F

2
2 � F2]F3, P

M7m ⌘ [F 2
1 � F1][F

2
2 � F2]F3,

P8m ⌘ F1F2F3, P

M8m ⌘ [F 2
1 � F1][F

2
2 � F2][F

2
3 � F3],

where
P8

i=1 Pim

+
P8

i=1 PMim

= 1 and P

im

donate the choice probability of Region i. Furthermore,

we introduce the latent binomial (multinomial) random variable, d

im

(D
ijm

), which selects one
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Figure 1: The case where �1 < 0, �2 < 0, �3 < 0

u3 > �x

0
3m�3 � �3 log 3

-

6
u2

u1

(�x

0
1m�1 � �1 log 3,

�x

0
2m�2 � �2 log 3)

(�x

0
1m�1 � �1 log 2,

�x

0
2m�2 � �2 log 2)

Region 1

(1,1,1)

Region 2

(1,0,1)

Region 3

(0,1,1)

Region 4

(0,0,1)

M1 (1,0,1)
or (0,1,1)

A

A

�x

0
3m�3 � �3 log 3 > u3 > �x

0
3m�3 � log 2

-

6
u2

u1

(�x

0
1m�1 � �1 log 3,

�x

0
2m�2 � �2 log 3)

(�x

0
1m�1 � �1 log 2,

�x

0
2m�2 � �2 log 2)

Region 5

(1,1,0)

Region 2

(1,0,1)

Region 3

(0,1,1)

Region 4

(0,0,1)

M4 (1,1,0)
or (0,1,1)
or (1,0,1)

M2 (1,1,0)
or (0,1,1)

M3 (1,1,0)
or (1,0,1)

A

A

�x

0
3m�3 � �3 log 2 > u3 > �x

0
3m�3

-

6
u2

u1

(�x

0
1m�1 � �1 log 2,

�x

0
2m�2 � �2 log 2)

Region 5

(1,1,0)

Region 6

(1,0,0)

Region 7

(0,1,0)

Region 4

(0,0,1)

M8 (1,0,0)
or (0,1,0)
or (0,0,1)

M5 (1,0,0)
or (0,0,1)

M6 (0,1,0)
or (0,0,1)

(�x

0
1m�1,�x

0
2m�2)

A

A

u3 < �x

0
3m�3

-

6
u2

u1

(�x

0
1m�1 � �1 log 2,

�x

0
2m�2 � �2 log 2)

Region 5

(1,1,0)

Region 6

(1,0,0)

Region 7

(0,1,0)

Region 8

(0,0,0)

M7 (1,0,0)
or (0,1,0)

(�x

0
1m�1,�x

0
2m�2)

A

A
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outcome among possible outcomes of Region M

i

. Then the likelihood function is given by:

f(1, 1, 1|✓,d
m

,D

m

) = P1m

f(1, 0, 1|✓,d
m

,D

m

) = P2m + d1mP

M1m + d3mP

M3m +D41mP

M4m

f(0, 1, 1|✓,d
m

,D

m

) = P3m + (1� d1m)P
M1m + d2mP

M2m +D42mP

M4m

f(0, 0, 1|✓,d
m

,D

m

) = P4m + d5mP

M5m + d6mP

M6m +D81mP

M8m

f(1, 1, 0|✓,d
m

,D

m

) = P5m + (1� d2m)P
M2m + (1� d3m)P

M3m +D43mP

M4m

f(1, 0, 0|✓,d
m

,D

m

) = P6m + (1� d5m)P
M5m + d7mP

M7m +D82mP

M8m

f(0, 1, 0|✓,d
m

,D

m

) = P7m + (1� d6m)P
M6m + (1� d7m)P

M7m +D83mP

M8m

f(0, 0, 0|✓,d
m

,D

m

) = P8m

where d

m

= (d1m, d2m, d3m, d5m, d6m, d7m)0 with d

im

= 0, 1(j = 1, 2, 3, 5, 6, 7), and

D

m

= (D41m, D42m, D43m, D81m, D82m, D83m)0 with D

ijm

= 0, 1 and
P

j

D

ijm

= 1.

2.3.2 The case �1 > 0, �2 < 0, �3 < 0

In this subsection, we will introduce the case in which we include no Nash equilibrium. In the case

where �1 > 0, �2 < 0, �3 < 0, some regions have no Nash equilibrium. Figure 2 shows the regions

that correspond to the outcomes of the entry game of the unobserved components for the case �1 >

0, �2 < 0, �3 < 0. In Region NE1 at the top left of Figure 2, {(u1m, u2m, u3m)|� x

0
1m�1 � �1 log 3 <

u1m < �x

0
1m�1 � �1 log 2,�x

0
2m�2 � �2 log 2 < u2m < �x

0
2m�2 � �2 log 3,�x

0
3m�3 � �3 log 3 < u3m};

there is no Nash equilibrium. Because we obtain the following inequalities,

x

0
1m�1 + u1m < x

0
1m�1 + �1 log 2 + u1m < 0 < x

0
1m�1 + �1 log 3 + u1m,

x

0
2m�2 + �2 log 3 + u2m < 0 < x

0
2m�2 + �2 log 2 + u2m < x

0
2m�2 + u2m,

0 < x

0
3m�3 + �3 log 3 + u3m < x

0
3m�3 + �3 log 2 + u3m < x

0
3m�3 + u3m,

the third player always enters the market, but the entrances of the first player and the second player

depend on each other’s entrance. If all players enter the market, the players have the following payo↵

functions:

0 < x

0
1m�1 + �1 log 3 + u1m,

x

0
2m�2 + �2 log 3 + u2m < 0,

0 < x

0
3m�3 + �3 log 3 + u3m.
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In this situation, the second player has the negative payo↵ function and would not enter the market

if he expected the first player to enter. In the other situation, i.e., only the first and third players

enter the market, (the second player does not enter), the players’ payo↵ functions are

x

0
1m�1 + �1 log 2 + u1m < 0,

0 < x

0
2m�2 + �2 log 2 + u2m,

0 < x

0
3m�3 + �3 log 2 + u3m.

Then, the first player has the negative payo↵ function and would not enter the market if he expected

that the second player would not enter the market. The second player, however, has the positive

payo↵ function if he enters the market and the first player does not enter the market. Therefore,

we know that the third players always enter the market and have no information regarding the

entrance of the first and second players in this region. Thus, we will observe one of outcomes

(0, 1, 1), (0, 0, 1), (1, 1, 1) or (1, 0, 1).
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Figure 2: The case where �1 > 0, �2 < 0, �3 < 0
u3 > �x

0
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-

6
u2

u1

(�x

0
1m�1 � �1 log 2,

�x

0
2m�2 � �2 log 3)

(�x

0
1m�1 � �1 log 3,

�x

0
2m�2 � �2 log 2)

Region 5

(1,1,0)

Region 2

(1,0,1)

Region 3

(0,1,1)

Region 4

(0,0,1)

Region M1
(1,0,1) or (1,1,0)

NE 2

NE 5

A

A

�x

0
3m�3 � �3 log 2 > u3 > �x

0
3m�3

-

6
u2

u1

(�x

0
1m�1,

�x

0
2m�2 � �2 log 2)

(�x

0
1m�1 � �1 log 2,�x

0
2m�2)

Region 5

(1,1,0)

Region 6
(1,0,0)

Region 7

(0,1,0)

Region 4

(0,0,1)

Region M2

(0,0,1) or (0,1,0)

NE 3

NE 5

A

A

u3 < �x

0
3m�3

-

6
u2

u1

(�x

0
1m�1,

�x

0
2m�2 � �2 log 2)

(�x

0
1m�1 � �1 log 2,�x

0
2m�2)

Region 5

(1,1,0)

Region 6
(1,0,0)

Region 7

(0,1,0)

Region 8

(0,0,0)

NE 4

A

A
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To drive the likelihood function, we let

P1m ⌘ F̄

3
1 F̄

3
2 F̄

3
3 , P

M1m ⌘ F̄

2
1 [F

3
2 � F

2
2 ][F

3
3 � F

2
3 ],

P2m ⌘ F̄

2
1F

3
2 F̄

3
3 + F̄

2
1F

2
2 [F

3
3 � F

2
3 ], P

M2m ⌘ F

2
1 [F

2
2 � F2][F

2
3 � F3],

P3m ⌘ F

3
1 F̄

2
2 F̄

2
3 , P

NE1m ⌘ [F 2
1 � F

3
1 ][F

3
2 � F

2
2 ]F̄

3
3 ,

P4m ⌘ F

2
1F

2
2 F̄

2
3 + F

2
1F2[F

2
3 � F3], P

NE2m ⌘ [F 2
1 � F

3
1 ]F̄

3
2 [F

3
3 � F

2
3 ],

P5m ⌘ F̄

2
1 F̄

3
2 [F

3
3 � F

2
3 ] + F̄

2
1 F̄

2
2F

2
3 , P

NE3m ⌘ [F1 � F

2
1 ]F2[F

2
3 � F3],

P6m ⌘ F̄1F
2
2F

2
3 , P

NE4m ⌘ [F1 � F

2
1 ][F

3
2 � F

2
2 ]F3,

P7m ⌘ F

2
1 F̄

2
2 [F

2
3 � F3] + F

2
1 F̄2F3, P

NE5m ⌘ [F 2
1 � F

3
1 ][F

3
2 � F

2
2 ][F

3
3 � F

2
3 ]

P8m ⌘ F1F2F3, + [F1 � F

2
1 ][F

2
2 � F2][F

2
3 � F3].

We introduce the latent binomial (multinomial) random variables d
im

(D
ijm

), which select one out-

come from possible outcomes Region M
i

(NE
i

). Then, we obtain the likelihood function by

f(1, 1, 1|✓,d
m

,D

m

) = P1m +D11mP

NE1m +D21mP

NE2m +D51mP

NE5m,

f(1, 0, 1|✓,d
m

,D

m

) = P2m + d1mP

M1m +D12mP

NE1m +D31mP

NE3m +D52mP

NE5m,

f(0, 1, 1|✓,d
m

,D

m

) = P3m +D22mP

NE2m +D13mP

NE1m +D53mP

NE5m,

f(0, 0, 1|✓,d
m

,D

m

) = P4m + d2mP

M2m +D14mP

NE1m +D32mP

NE3m +D54mP

NE5m,

f(1, 1, 0|✓,d
m

,D

m

) = P5m + (1� d1m)P
M1m +D23mP

NE2m +D41mP

NE4m +D55mP

NE5m,

f(1, 0, 0|✓,d
m

,D

m

) = P6m +D33mP

NE3m +D42mP

NE4m +D56mP

NE5m,

f(0, 1, 0|✓,d
m

,D

m

) = P7m + (1� d2m)P
M2m +D24mP

NE2m +D43mP

NE4m +D57mP

NE5m,

f(0, 0, 0|✓,d
m

,D

m

) = P8m +D34mP

NE3m +D44mP

NE4m +D58mP

NE5m,

when dm = (d1m,d2m)0, D

m

= (D11m, ..., D14m, D21m, ..., D24m, D31m, ..., D34m, D41m, ..., D44m).

Likelihood functions for other cases where (�1 > 0, �2 < 0, �3 < 0), (�1 > 0, �2 > 0, �3 < 0)

and (�1 > 0, �2 > 0, �3 > 0) are described in Appendix A.

3 Bayesian Estimation

In this section, we describe how to estimate the model parameters using a hierarchical Bayesian

model. Consider, for example, the case where �1 < 0, �2 < 0, �3 < 0.

For the likelihood function, we define d

m

= (d1m, d2m, d3m, d5m, d6m, d7m)0 and

D

m

= (D41m, D42m, D43m, D81m, D82m, D83m)0. For parameter d
m

andD

m

, we assume the binomial
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and multinomial distribution, respectively. Thus, d
im

(D
ijm

) takes 1 with probability p

im

(p
ijm

),

d

im

|p
im

⇠ Bernoulli(p
im

), p

im

⇠ Beta(a
i1m, a

i2m),

D

im

|p
im

⇠ Multi(p
im

), p

im

⇠ Dirichlet(a
im

)

where a
i1m, a

i2m are the parameters of Beta distribution and a

im

= (a
i1m, a

i2m, a

i3m)0 is the param-

eter vector of the Dirichlet distribution. The likelihood function f(y|✓,d,D) is given by

f(y|✓,d,D) =
MY

m=1

f(y
m

|✓,d
m

,D

m

)

=
MY

m=1

f(1, 1, 1|✓,d
m

,D

m

)I[y=(1,1,1)]
f(1, 0, 1|✓, d

m

d

m

,D

m

)I[y=(1,0,1)] · · ·

f(0, 0, 0|✓,d
m

,D

m

)I[y=(0,0,0)]

where y = (y1, · · · , ym)0, d = (d1, · · · ,dM

) and D = (D1, ...,DM

).

For the prior distributions, we assume a multivariate normal distribution for � and a truncated

normal distribution for �,

� ⇠ N (�0,⌃0),

�

i

⇠ T N
Ri(�i0,⌃�i0).

The prior distribution of �
i

is truncated on region R

i

, for example, the region R

i

= (�1, 0), for the

case where �1 < 0, �2 < 0, �3 < 0. Then, the joint posterior probability density is

⇡(✓,d,D, p|y) /f(y|✓, d)⇡(✓)
MY

m=1

"
8Y

i=1

h
p

(dim+ai1m)�1
im

(1� p

im

)(1�dim+ai2m)�1
i# "

Y

i

p

(Dijm+aijm�1)
ijm

#
,

where ⇡(✓) denotes a probability density function of the multivariate normal distribution N (�0,⌃0)

and the truncated normal distribution T N
Ri(�i0,⌃�i0). The conditional posterior probability dis-

tributions of d
m

and p

m

are: for i = 1, . . . , 8,

d

im

|✓, p
im

,y ⇠ Bernoulli(q
im

),

D

im

|✓, p
m

,y ⇠ Multi(q
im

),

where q

im

= (q
i1m, q

i2m, q

i3m)0,

q

im

=
p

im

f(y
m

|✓,D
m

, d

im

= 1, d�im

)

p

im

f(y
m

|✓,D
m

, d

im

= 1, d�im

) + (1� p

im

)f(y
m

|✓,D
m

d

im

= 0, d�im

)
,
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q

ijm

=
p

ijm

f(y
m

|✓, D
ijm

= 1, D
ikm

= 0, D
ilm

= 0, D�im

,d

m

)
P3

k=1 pikmf(y
m

|✓, D
ikm

= 1, D�ikm

= 0,D�im

,d

m

)
,

where d�im

(D�im

) implies that all elements of d
m

(D
m

) except d

im

(D
im

), D�ikm

= 0 imply that

D

ilm

= 0(for l 6= k). Finally, conditional posterior distributions of p
im

and p

im

are

p

im

|✓, d
im

,y ⇠ Beta(a
i1m + d

im

, a

i2m + 1� d

im

),

p

im

|✓, d
im

,y ⇠ Dirichlet(a
i

+D

im

).

Markov Chain Monte Carlo (MCMC) algorithm. We implement a MCMC algorithm in six

blocks:

1. Initialize p,d,�, �

2. Generate p|�, �,d,D,y

3. Generate d,D|�, �,p,y

4. Generate �|p,d,D, �,y

5. Generate �|�,d,D,p,y

6. Go to Step 2

To sample in steps 4 and 5 from ⇡(�|p,d,D, �,y) and ⇡(�|�,p,d,D,y), we employ the Metropolis-

Hastings algorithm using the normal or truncated normal proposal densities, which approximate the

conditional posterior densities. The approximation is based on a Taylor expansion of the conditional

posterior density around the conditional mode, where it can be found numerically by the Newton-

Raphson method. See Appendix B for illustrative examples.

4 Application to Japanese airline competition

4.1 Brief history of the Japanese airline industry

In Japan, there used to be three major airline companies: Japan Airlines (JAL), Air Nippon

Airways (ANA) and Japan Air System (JAS, formerly called Toa Domestic Airlines). These three

companies were permitted to operate in the Japanese airline market. Japanese airline markets are

strictly regulated by the government. Airline companies need government approvals and licenses to

determine airfares and to operate new routes. This system is also called the 45/47 system (where

45 and 47 imply the years 1970 and 1972 of the Showa era in Japan). Under the 45/47 system,

JAL, as the Japanese flag carrier, was assigned to operate international flights and main domestic

13



routes. ANA operated both main domestic flights and local routes, and JAS operated local flights

only. Consequently, ANA operated the most domestic routes and JAL has the fewest domestic

routes. Until JAS was merged with JAL in 2001, the market share of ANA, JAL and JAS exceeded

90% and the market was almost an oligopoly; airfares for the three airlines were almost the same.

Therefore, for the most part, there were only three players, ANA, JAL and JAS, in the Japanese

airline industry at that time.

4.2 Data description

In this paper, we focus on Japanese airline competition as an entry game where the three players

are ANA, JAL and JAS, including their a�liated companies. We define a market as a trip between

two airports. If a firm has at least one flight between the airports, we say the i-th player enters the

m-th market and let y
im

= 1. Our data come from the timetable (Japan Railway Company, 2000)

for January, 2000. Japan had 94 airports in 2000, but some of them were located in islands and

primarily served the island residents. Such airports handled few flights and operated by government

policy. To provide transportation for those who lived in the islands, the government subsidized an

airline to operate flights. These airports are not part of market competition, so we removed these

from our sample. With one exception, we also eliminated airports with fewer than two routes or

that were located in isolated islands. The exception was Naha, which is the largest city in Okinawa

prefecture and plays an important role in both business and tourism. Thus, we have 38 airports

and 703 markets.

We describe explanatory variables in the rest of this subsection. In this study, there are four

types of explanatory variables in the payo↵ function: firm-market specific variables, a dummy

variable for a strong competitor of an airline and variables of important factors for demand and for

cost.

As a firm-market specific explanatory variable, we added sums of the number of flights from

the two airports for each firm (e.g., Flight ANA for ANA). The firm needs little additional cost

to operate a new route if it already has another route from the airport, because it does not need

to install a variety of facilities such as a new check-in counter or ticket o�ce. Thus, the sum of

the number of fights represents the marginal cost of operations, and we expect these variables have

positive coe�cients.

In Japan, railways are a popular transportation service; they have a large share of domestic

transportation. In particular, the bullet train called the Shinkansen has become a great competitor

of the airlines in domestic long-distance transportation. In this study, we include a dummy variable

for the Shinkansen in their payo↵ function (Train). The Shinkansen dummy will take the value

of one if one can go to the destination with no transfer by Shinkansen, and the station is located

within an hour of the airport.
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Table 2: Summary Statistics

Variable Mean Stdev
Distance 0.000 0.490
Population 0.664 1.201p
Population 2.041 1.574

Train 0.825 2.751
Flight ANA 3.167 2.849
Flight JAL 1.941 2.139
Flight JAS 1.298 1.741

We focus on two factors as explanatory variables following previous studies such as Sugawara

and Omori (2011), Berry (1992) and Cilberlto and Tamer (2009). First, we consider travel cost,

which was measured by the direct distance between airports (Distance). The greater is the distance

between the airports, the more cost we will incur to travel. Direct distances are calculated by the

geodesic distance formula (Banerjee et al. (2004, pp.17-18)). Second, we used the population of

the prefecture where an airport was located as proxy variables for demand and market size factor.

We made two explanatory variables from the population, (1) the product of the city population

and (2) the square root of the product of the population of the prefecture where the airports were

located. Including the squared root of the population is intended to capture the non-linear e↵ect.

We do not adopt the squared population for the non-linear e↵ect because it did not improve the

model comparison criterion, DIC (see Section 4.4). We used the population based on the census

data conducted in 2000. Table 2 shows summary statistics for the independent variable.

The numbers of observed entries in the markets for ANA, JAS and JAL are 107, 72 and 44,

respectively; Table 3 shows the details of entrance status. The number of markets where only JAL

is present is few because JAL had been regulated to operate only main routes under the 45/47

system. In Japanese airline markets, we can see that ANA and JAL establish a presence in the

domestic market in 2000.

4.3 Estimation results

Let �

ANA

, �
JAL

, and �

JAS

denote the coe�cient of the logarithm of n
m

for ANA, JAL and JAS.

�

ANA

> 0, �
JAL

> 0, �
JAS

> 0 among eight competing models because it is selected as the best

model based on DIC as we shall see in Section 4.4.

Table 4 shows posterior means, posterior standard deviations, 95% credible intervals and ine�-

ciency factors. The 3,000 MCMC samples were generated after discarding 300 initial samples as the

burn-in period. The ine�ciency factors (IF) are 1-12, implying that the chain mixes very well (IF

is described in Appendix B). The acceptance rates of the independence Metropolis-Hastings algo-
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Table 3: Entrance status

Number of markets
ANA, JAL and JAS 27
ANA and JAL 13
JAS and JAL 1
ANA and JAS 13
ANA 54
JAS 31
JAL 3
No entrant 561

rithm are su�ciently high and the proposal distribution seems to approximate well the conditional

posterior distribution.

The restriction, �
ANA

> 0, �
JAL

> 0, �
JAS

> 0, means that the market is strategically com-

pensative, where the entry of one airline is also beneficial for other airlines. Estimation results

indicate that the posterior mean of �
JAL

(1.862) is much greater than are those of �
ANA

(0.312) and

�

JAS

(0.205) (Table 4). The entry decision of JAL is to follow the market leaders JAS and ANA.

Because ANA and JAS are allowed to operate in more domestic routes than is JAL, they were able

to accumulate more knowledge of the domestic market than JAL, which could contribute only to

main routes. This is because the segregation policy, the 45/47 system, has been historically applied

to the Japanese airline industry. The 45/47 system allows JAL to operate only limited domestic or

local flights, while ANA and JAS operate most local routes making them the market leaders.

Estimation results of the model with �

ANA

> 0, �
JAL

> 0, �
JAS

> 0 provide several implications.

First, posterior means of the train dummy in all payo↵ function are negative. This implies that all

airlines’ profit would decrease when there was a bullet train, Shinkansen. The bullet train is the

greatest competitor for airlines in the Japanese transportation market. In fact, price competition

is very severe between railway companies and airlines in certain markets. A discounted plane ticket

fare between Tokyo and Osaka, for example, is almost same cost as a train ticket. Second, all signs

of the sum of the number of flights, Flight ANA, Flight JAS and Flight JAL, are positive. As the

marginal cost of flight operations decreases, the payo↵ would add as expected. If ANA has already

entered into the airport, even if it add a new flight, there is little additional cost for operation. This

result is consistent with the reality. Third, the posterior means of Population and
p
Population are

negative and positive, respectively. Some population size is needed to operate an airplane profitably,

but an excess of population does not increase the profit.
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Table 4: Estimation results for model with �

ANA

> 0, �
JAL

> 0, �
JAS

> 0.
Posterior means, standard deviations, 95% credible intervals and ine�ciency factors.

Parameter Mean Std 95% Interval IF
ANA

Constant** -2.712 0.220 (-3.150,-2.271) 2
Distance -0.195 0.170 (-0.523,0.139) 2
Population** -0.389 0.147 (-0.664,-0.097) 1p
Population* 0.256 0.128 (0.003,0.499) 2

Train** -0.102 0.036 (-0.175,-0.031) 2
Flight ANA** 0.340 0.036 (0.270,0.412) 2
�

ANA

** 0.312 0.214 (0.017,0.806) 3
JAL

Constant** -4.988 0.643 (-6.316,-3.837) 1
Distance** 1.072 0.330 (0.409,1.723) 1
Population* -0.589 0.256 (-1.100,-0.111) 2p
Population** 0.892 0.270 (0.376,1.427) 2

Train -0.041 0.047 (-0.140,0.051) 2
Flight JAL** 0.208 0.070 (0.070,0.348) 4
�

JAL

** 1.862 0.380 (1.130,2.637) 12
JAS

Constant** -3.406 0.300 (-3.994,-2.844) 2
Distance 0.030 0.207 (-0.369,0.426) 2
Population** -0.488 0.167 (-0.823,-0.173) 1p
Population** 0.646 0.155 (0.344,0.953) 1

Train** -0.179 0.041 (-0.262,-0.099) 1
Flight JAS** 0.339 0.041 (0.258,0.422) 2
�

JAS

** 0.205 0.158 (0.007,0.592) 4

4.4 Model comparison

The Japanese airline market has been gradually deregulated since the 1980s, but some features

remain from the former regulation regime. Therefore, the type of strategic interaction between the

three major companies is unclear, and the signs of �
i

’s are unknown a priori. Thus, we first estimate

the eight models we considered in Section 2 and determine the type of strategic interaction in the

Japanese airline market by conducting model selection based on the DIC.

To conduct model comparisons, we use DIC (deviance information criterion; see e.g., Spiegel-

halter et al. (2002) ) which is defined as

DIC = E

⇡(✓|x) {D(✓)}+ p

D

= D(✓⇤) + 2p
D

,
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where ✓

⇤ = E

⇡(✓|x)(✓), D(✓) = � log f(x|✓) and,

p

D

= E

⇡(✓|x) {D(✓)}�D(✓⇤)

= E

⇡(✓|x) {�2 log f(x|✓)}+ 2 log f(x|✓⇤),

p

D

represents the e↵ective number of parameters and is used as a measure of the model complexity

of a Bayesian model. Allowing for both goodness-of-fit and complexity, we select the model with

the smallest DIC.

In the analysis of Japanese airline data, we use the following prior distributions:

� ⇠ N (0, 100I6),

�

i

⇠ T N (�1,0)(�1, 10) for �

i

< 0,

�

i

⇠ T N (0,1)(1, 10) for �

i

> 0,

p

im

⇠ i.i.d.Beta(1, 1) for i = 1, 2, 3, 5, 6, 7,m = 1, . . .M,

p

im

⇠ i.i.d.Dirichlet(1) for i = 4, 8,m = 1, . . .M,

The DICs for eight competing models are shown in Table 5.

Table 5: DIC for eight competing models

Model Sign of � Ranking DIC Std. Err.
M1 �

ANA

< 0 �

JAL

< 0 �

JAS

< 0 8 838.9 (0.07)
M2 �

ANA

> 0 �

JAL

< 0 �

JAS

< 0 6 828.5 (0.08)
M3 �

ANA

< 0 �

JAL

> 0 �

JAS

< 0 4 803.4 (0.37)
M4 �

ANA

< 0 �

JAL

< 0 �

JAS

> 0 7 833.9 (0.47)
M5 �

ANA

> 0 �

JAL

> 0 �

JAS

< 0 2 801.1 (0.40)
M6 �

ANA

> 0 �

JAL

< 0 �

JAS

> 0 5 826.8 (0.22)
M7 �

ANA

< 0 �

JAL

> 0 �

JAS

> 0 3 802.5 (0.24)
M8 �

ANA

> 0 �

JAL

> 0 �

JAS

> 0 1 800.9 (0.30)
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Figure 3: Estimated posterior densities of �
ANA

, �

JAL

and �

JAS

for models M3, M5, M7 and M8
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First, when we compare two models in which the signs of �
ANA

and �

JAS

are the same, the model

with the positive �

JAL

is always preferred. For example, comparing model M1 (�
JAL

< 0, �
ANA

<

0, �
JAS

< 0) and model M3 (�
JAL

> 0, �
ANA

< 0, �
JAS

< 0), model M3 has a smaller DIC (803.2)

than that of model M1 (838.9) and is preferred. We obtain similar results when we compare models

M2 and M5, models M4 and M7 and models M6 and M8. This implies that positive �

JAL

is always

supported by the dataset.

Therefore, we focus on four models with positive �

JAL

(models M3, M5, M7 and M8), below.

The DICs suggest that model M8 is the best (�
ANA

> 0, �
JAL

> 0, �
JAS

> 0) among the four

models. The payo↵s of all players increase when other players enter the market and the market is a

strategically compensative competition. Furthermore, Figure 3 shows estimated posterior densities

of �
i

’s for these models. The posterior densities of �
JAL

are very similar for these models, while those

of �
ANA

and �

JAS

appear di↵erent depending on the model. This result is reasonable because, under

the 45/47 system, ANA and JAS were allowed to operate more routes than JAL; this superiority is

advantageous to JAL, allowing it to construct more networks that are beneficial after deregulation.

JAL could enter only main routes where ANA and JAS already entered. This compensative property

of the Japanese airline market is a clear di↵erence from that of the US market, where airlines engage

in severe substitution competition (where all �
i

’s are negative).

We note that the DIC of model M5 is close to that of model M8. As shown in Table 7 (Appendix
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C), the estimation results of model M5 are very similar to those of model M8 except for �

JAS

.

Moreover, as shown in Figure 3, posterior densities of �
JAS

have high peaks close to zero in both

models suggesting that the entry decision for JAS is not a↵ected by the other airline companies.

5 Conclusions

This paper proposes a Bayesian estimation of an entry game model without making equilibrium

selection assumptions when there are multiple equilibria. In an entry game model with three

players, asymmetric entry e↵ects are allowed in the payo↵ function for each player through the

number of players in the market. The proposed estimation method was applied to an empirical

study of Japanese airline competition. We compared models with all possible combinations of signs

of competitive e↵ects and found that the competition had a substitutive structure in the Japanese

airline industry in the year 2000.

Based on estimates of the competitive e↵ect, the entry decision of JAL is found to follow market

leaders JAS and ANA, which is, considering the history of the Japanese airline industry. This paper

also reveals that airlines and trains are in rivals. In fact, there is little of a di↵erence between the

costs of flying and train travel.

Acknowledgement

We thank Tsunehiro Ishihara for providing useful comments and discussions through this research.

We are also grateful to Hideo Kozumi, Kazuhiko Kakamu and Koji Miyawaki for the comments

as well as to seminar participants at the University of Tokyo, Waseda University and Ryukyu

University. The computational results were obtained by using Ox version 5.10(Doornik, 2007).

References

[1] Andrews, D., Berry, S., and Jia, P., “Confidence Regions for Parameters in Discrete Games

with Multiple Equilibria, with an Application to Discount Chain Store Location,” Working

Paper, 2004.

[2] Bajari, P., Hong, H., and Ryan, S., “Identification and estimation of discrete games of complete

information,” Econometrica, 78, 1529-1568, 2010.

[3] Berry, S., “Estimation of a model of entry in the airline industry,” Econometrica, 60(4), 889-

917, 1992.

20



[4] Bresnahan, T. and Reiss, P., “Empirical models of discrete games,” Journal of Econometrics,

48, 57-81, 1991.

[5] Ciliberto, F., and Tamer, E., “Market structure and multiple equilibria in airline markets,”

Econometrica, 77, 1791-1828, 2009.

[6] Doornik, J. A. (2007) Obeject-Oriented Matrix Programming Using Ox, 3rd edn., London:

Timberlake Consultants Press and Oxford.

[7] Ferrall, C., Houde, J., Imai, S., and Pak, M., “Bayesian estimation of games with incomplete

information,” Working Paper, 2008.

[8] Gelfand, A., and Dey, D., “Bayesian model choice: asymptotics and exact calculations,” Jour-

nal of the Royal Statistical Society, Series B, 56, 237-246, 1994.

[9] Geweke, J., “Using simulation methods for Bayesian econometric models: inference, develop-

ment, and communication (with discussion and rejoinder)”, Econometric Reviews, 18, 1-126,

1999.

[10] Kooreman, P., “Estimation of econometric models of some discrete games,” Journal of Applied

Econometrics, 9(3), 255-268, 1994.

[11] Pakes, A., Porter, J., Ho, K., and Ishii, J., “Moment inequalities and their applications,”

Working Paper, 2005.

[12] Robert, C., and Casella, G., “Monte Carlo statistical methods,” Springer, New York, 2 ed.,

2004.

[13] Sugawara, S., and Omori, Y., “Duoploly in the Japanese airline market: Bayesian estimation

for the entry game,” The Japanese Economic Review, 63, 310-332, 2012.

[14] Tamer, E., “Incomplete simultaneous discrete response model with multiple equilibria,” Review

of Economic Studies, 70, 147-165, 2003.

Appendix

A. Other Cases

There are some other cases of combinations of signs of �

t

’s. In this section, we will introduce

likelihood functions for other cases. We can obtain the likelihood under the same assumptions and

with the same logic of Section 2.
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A.1 The case �1 > 0, �2 > 0, �3 < 0

Figure 4 shows the regions that correspond to the outcomes of the entry game of the unobserved

components in the case where �1 > 0, �2 > 0, �3 < 0.

Figure 4: The case where �1 > 0, �2 > 0, �3 < 0
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where
P

i

P

im

(✓)+
P

i

P

Mim

(✓)+
P

i

P

NEim

(✓) = 1 and P

im

denote the choice probability of Region

i. We introduce the latent binomial (multinomial) random variables d

im

(D
ijm

), which select one

outcome from possible outcomes of Region M
i

(NE
i

). Then, we obtain the likelihood function by

f(1, 1, 1|✓,d
m

,D

m

) = P1m + d1mP

M1m +D11mP

NE1m +D21mP

NE2m +D51mP

NE5m,

f(1, 0, 1|✓,d
m

,D

m

) = P2m +D12mP

NE1m +D41mP

NE4m +D52mP

NE5m,

f(0, 1, 1|✓,d
m

,D

m

) = P3m +D22mP

NE2m +D31mP

NE3m +D53mP

NE5m,

f(0, 0, 1|✓,d
m

,D

m

) = P4m + (1� d1m)P
M1m +D32mP

NE3m +D42mP

NE4m +D54mP

NE5m,

f(1, 1, 0|✓,d
m

,D

m

) = P5m + d2mP

M2m +D13mP

NE1m +D23mP

NE2m +D55mP

NE5m,

f(1, 0, 0|✓,d
m

,D

m

) = P6m +D14mP

NE1m +D43mP

NE4m +D56mP

NE5m,

f(0, 1, 0|✓,d
m

,D

m

) = P7m +D24mP

NE2m +D33mP

NE3m +D57mP

NE5m,

f(0, 0, 0|✓,d
m

,D

m

) = P8m + (1� d2m)P
M2m +D34mP

NE3m +D44mP

NE4m +D58mP

NE5m.

A.2 The case �1 > 0, �2 > 0, �3 > 0

Figure 5 shows the regions that correspond to the outcomes of the entry game of the unobserved

components in the case where �1 > 0, �2 > 0, �3 > 0.
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Figure 5: The case where �1 > 0, �2 > 0, �3 > 0
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B. Illustrative Example Using Simulated Data

We illustrate our proposed estimation procedure using simulated data. We generated 1000 obser-

vations. Prior distributions of parameters of the choice probability models are assumed to be:

� ⇠ N (0, 10I6)

�

i

⇠ T N (�1,0)(�1, 10),

p

im

⇠ i.i.d.Beta(1, 1) for i = 1, . . . , 8,m = 1, . . .M,

p

im

⇠ i.i.d.Dirichlet(1)

where 1 = (1, 1, 1)0. There are 2600 MCMC iterations after discarding 300 initial samples as the

burn-in period. Table 6 shows the true value, posterior means, posterior standard deviations, 95%

credible intervals, and ine�ciency factors (IF). The true values of all coe�cients are fairly close to

the posterior mean estimates and are included in the 95% credible intervals.

Table 6: Simulation results
True value, posterior means, posterior standard deviations, 95% credible intervals, ine�ciency fac-
tors (IF)

Prm. True Mean Std 95% Interval IF

�11 0 0.041 0.141 (-0.235,0.332) 22
�12 -1 -0.977 0.060 (-1.100,-0.864) 2
�21 1 0.981 0.122 (0.747,1.243) 10
�22 -1 -0.938 0.060 (-1.057,-0.824) 2
�31 1.5 1.406 0.195 (1.027,1.782) 19
�32 2.5 2.613 0.161 (2.310,2.930) 2
�1 -0.5 -0.656 0.174 (-1.011,-0.319) 23
�2 -0.5 -0.474 0.165 (-0.817,-0.150) 11
�3 -1 -1.006 0.246 (-1.502,-0.524) 19

The ine�ciency factor is defined as 1+ 2
P1

s=0 ⇢s, where ⇢

s

is the sample autocorrelation at lag

s calculated from the sampled values and is used to measure how well the chain mixes( see, e.g.,

Chib (2001)). Because it is the ratio of the numerical variance of the posterior sample mean to the

variance of the posterior sample mean from the hypothetical uncorrelated draws, it suggests the

relative number of correlated draws necessary to attain the same variance of the posterior sample

mean from uncorrelated draws. The obtained ine�cient factors are 1-22, indicating that the chain

mixes very well. The acceptance rates for the independent Metropolis-Hastings algorithm are as

high as 85%, for all parameters.
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C. Estimation Result of Model M5

In Table 5, model M5 has the second smallest DIC. In this section, we will introduce the result of

Model M5. Table 7 shows estimation results for model M5, which are true where �
ANA

> 0, �
JAL

>

0, and �

JAS

< 0. Model M5 assumes that ANA and JAL have a positive e↵ect when the other airline

enters the market but that only JAS has a negative e↵ect from the entrance of other airlines. Table

7 shows posterior means, posterior standard deviations, 95% credible intervals, and ine�ciency

factors.

Table 7: Estimation results for model M5
Posterior means, posterior standard deviations, 95% credible intervals, ine�ciency factors.

Parameter Mean Std 95% Interval IF
ANA

Constant** -2.668 0.224 (-3.122, -2.221) 2
Distance -0.203 0.161 (-0.520, 0.109) 1
Population* -0.378 0.149 (-0.659, -0.079) 1p
Population 0.234 0.132 (-0.024, 0.485) 1

Train** -0.098 0.036 (-0.173, -0.028) 2
Flight ANA** 0.329 0.037 (0.257, 0.404) 2
�

ANA

** 0.581 0.299 (0.073, 1.222) 4
JAL

Constant** -4.999 0.654 (-6.364, -3.828) 3
Distance** 1.082 0.338 (0.437, 1.761) 2
Population* -0.593 0.260 (-1.109, -0.065) 2p
Population** 0.897 0.273 (0.371, 1.448) 1

Train -0.043 0.046 (-0.133, 0.046) 1
Flight JAL** 0.211 0.069 (0.068, 0.345) 3
�

JAL

** 1.874 0.354 (1.201, 2.565) 13
JAS

Constant** -3.502 0.316 (-4,145,-2.917) 2
Distance 0.069 0.212 (-0.357,0.479) 1
Population** -0.533 0.163 (-0.858,-0.212) 2p
Population** 0.707 0.158 (0.407,1.031) 2

Train** -0.186 0.040 (-0.265,-0.109) 2
Flight JAS** 0.366 0.040 (0.286,0.449) 3
�

JAS

** -0.248 0.183 (-0.681,-0.011) 6

From Table 7, the estimation results of model M5 are very similar to those of model M8. The

signs of all parameters’ posterior means except �
JAS

in model M5 are the same as those of model

M8 and the posterior means in model M8 are included in the 95% credible interval in model M5.

�

JAS

in model M5 and model M8 are restricted in their signs to negative and positive, respectively.

As shown in Table 4, the 95% credible interval and posterior mean of �
JAS

in model M8 are very
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close to zero. In Table 7, those of �
JAS

in model M5 are also very close to zero. These results

suggest that the entry decision of JAS is not a↵ected by the other airlines.
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